Please use this identifier to cite or link to this item: http://dspace.univ-tiaret.dz:80/handle/123456789/16956
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBENGUESSOUM, Adel-
dc.date.accessioned2025-12-29T09:55:29Z-
dc.date.available2025-12-29T09:55:29Z-
dc.date.issued2025-12-16-
dc.identifier.urihttp://dspace.univ-tiaret.dz:80/handle/123456789/16956-
dc.descriptionIn this study, we focus on proving and developing fractional integral inequalities for h-convex functions and functions whose absolute value of derivatives exhibits h-strong convexity. These concepts extend classical integral inequalities to fractional orders. By leveraging the properties of h-convexity within the fractional integral framework, we establish new inequalities related to the Hermite-Hadamard type. Additionally, we derive estimates and bounds for integral transforms and provide bounds for the left and right sides of Riemann-Liouville integrals. These ndings contribute to broadening the theoretical applications of both classical and fractional integrals across various types.en_US
dc.description.abstractDans cette etude, nous nous concentrons sur la d emonstration et le d eveloppement de certaines in egalit es int egrales fractionnaires pour les fonctions h-convexes et les fonc- tions dont les d eriv ees en valeur absolue pr esentent une propriet e de h-convexit e forte. Ces concepts etendent les in egalit es int egrales classiques aux ordres fractionnaires. En exploitant les propriet es de la h-convexit e dans le cadre des int egrales fractionnaires, nous etablissons de nouvelles in galit es int egrales li ees au type Hermite-Hadamard in- equality.en_US
dc.language.isoenen_US
dc.publisherUniversité ibn khaldoun-Tiareten_US
dc.subjectHolders inequality, fractional integrals, minkowski inequalityen_US
dc.titleSur des Inégalités Intégrales Dans certaines Classes De Fonctionsen_US
dc.typeThesisen_US
Appears in Collections:Doctorat

Files in This Item:
File Description SizeFormat 
TH.D.MATH.2025.04.pdf765,87 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.