
Please use this identifier to cite or link to this item:
http://dspace.univ-tiaret.dz:80/handle/123456789/16956Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | BENGUESSOUM, Adel | - |
| dc.date.accessioned | 2025-12-29T09:55:29Z | - |
| dc.date.available | 2025-12-29T09:55:29Z | - |
| dc.date.issued | 2025-12-16 | - |
| dc.identifier.uri | http://dspace.univ-tiaret.dz:80/handle/123456789/16956 | - |
| dc.description | In this study, we focus on proving and developing fractional integral inequalities for h-convex functions and functions whose absolute value of derivatives exhibits h-strong convexity. These concepts extend classical integral inequalities to fractional orders. By leveraging the properties of h-convexity within the fractional integral framework, we establish new inequalities related to the Hermite-Hadamard type. Additionally, we derive estimates and bounds for integral transforms and provide bounds for the left and right sides of Riemann-Liouville integrals. These ndings contribute to broadening the theoretical applications of both classical and fractional integrals across various types. | en_US |
| dc.description.abstract | Dans cette etude, nous nous concentrons sur la d emonstration et le d eveloppement de certaines in egalit es int egrales fractionnaires pour les fonctions h-convexes et les fonc- tions dont les d eriv ees en valeur absolue pr esentent une propriet e de h-convexit e forte. Ces concepts etendent les in egalit es int egrales classiques aux ordres fractionnaires. En exploitant les propriet es de la h-convexit e dans le cadre des int egrales fractionnaires, nous etablissons de nouvelles in galit es int egrales li ees au type Hermite-Hadamard in- equality. | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | Université ibn khaldoun-Tiaret | en_US |
| dc.subject | Holders inequality, fractional integrals, minkowski inequality | en_US |
| dc.title | Sur des Inégalités Intégrales Dans certaines Classes De Fonctions | en_US |
| dc.type | Thesis | en_US |
| Appears in Collections: | Doctorat | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| TH.D.MATH.2025.04.pdf | 765,87 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.