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Abstract

In this study, we focus on proving and developing fractional integral inequalities for
h-convex functions and functions whose absolute value of derivatives exhibits h-strong
convexity. These concepts extend classical integral inequalities to fractional orders.
By leveraging the properties of h-convexity within the fractional integral framework,
we establish new inequalities related to the Hermite-Hadamard type. Additionally, we
derive estimates and bounds for integral transforms and provide bounds for the left and
right sides of Riemann-Liouville integrals. These findings contribute to broadening the

theoretical applications of both classical and fractional integrals across various types.
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Résumé

Dans cette étude, nous nous concentrons sur la démonstration et le développement
de certaines inégalités intégrales fractionnaires pour les fonctions h-convexes et les fonc-
tions dont les dérivées en valeur absolue présentent une proprieté de h-convexité forte.
Ces concepts étendent les inégalités intégrales classiques aux ordres fractionnaires. En
exploitant les proprietés de la h-convexité dans le cadre des intégrales fractionnaires,
nous établissons de nouvelles ingalités intégrales liées au type Hermite-Hadamard in-

equality.
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Introduction

Fractional calculus,is an extension of classical calculus that deals with non-integer in-
tegrals and derivatives, has developed as a valuable tool for mathematical modeling in
a variety of scientific and engineering fields. When it comes to explaining phenomena
with memory effects, anomalous diffusion, and complex dynamics, traditional integer-
order calculus frequently falls short. Fractional integration, which has applications
in physics, engineering, signal processing, and artificial intelligence, offers the flexibil-
ity required to capture these complex processes by generalizing the idea of integration.
The genesis of fractional calculus can be traced back to the 17th century with Leibniz’s
inquiry into the meaning of fractional order derivatives. This initial curiosity spurred
the interest of mathematicians like Fourier and Laplace, who explored its applications
in areas such as heat transfer and wave phenomena. The 19th century witnessed the
formal development of fractional integration by Riemann and Liouville, laying the
groundwork for understanding systems with inherent memory. Later, Hadamard intro-
duced alternative definitions using logarithmic transformations, proving valuable for
analyzing irregular or delayed behaviors. Recent advancements have further expanded
the applicability of fractional calculus, leading to the development of new forms of
fractional integrals like the Caputo derivative (suited for differential equations with

well-defined initial conditions), integrals with generalized kernels (enhancing model ac-



curacy), and integrals in functional spaces (broadening the theoretical scope). These
developments have solidified fractional calculus as a crucial component of modern sci-
ence and engineering. A significant area within fractional calculus is the study of
fractional integral inequalities. These inequalities play a vital role in establishing the
existence and uniqueness of solutions to differential and integral equations, as well as
in analyzing their stability and optimization properties. Research in this domain often
focuses on inequalities involving specific classes of functions, such as h-convex func-
tions, which possess unique mathematical characteristics. A fundamental inequality in
this context is the Hermite-Hadamard (H-H) inequality, providing valuable approxima-
tions for convex functions and finding widespread use in optimization and numerical
analysis. This study aims to contribute to the existing body of knowledge by exploring
new inequalities and expanding classical results within this framework.

The work is organized into three distinct chapters, each addressing specific aspects
of these investigations.

Chapter one lays the foundation by presenting definitions and fundamental concepts
related to convexity, classical integral inequalities (including Hoélder’s inequality and
Minkowski’s inequality), and the basic principles of fractional calculus. This chapter
serves as a necessary introduction for the subsequent analyses.

In chapter two,We present fractional integrals functions which generalizes than of
Riemann-Liouville fractional integrals, characterized by two parameters, and two non-
negative locally integrable functions. This study leads to establish some fractional inte-
gral inequalities via the class of h-convex.As consequence, some estimates and bounds
for some functions are obtained, also bounds for left hand side and right of Riemann-
Liouville integrals, which lead to the well-known Hermite-Hadamard inequality. This

was the subject of a publication that appeared in the journal
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” Nonlinear Functional Analysis and Applications” Vol.30, No.2 (2025), pp.
420-446 ISSN: 1229-1595(print), 2466-0973(online).
https://doi.org/10.22771 /nfaa.2020.25.00.00
http://nfaa.kyungnam.ac.kr/journal-nfaa.

Chapter three presents the concept of strongly h-convex functions and investigates
some of their properties.We apply the same integral functions to this class of func-
tions. This was the subject of a publication that appeared in the journal :Arabian
journal of Mathematics
Arab. J. Math. https://doi.org/10.1007/s40065-025-00556-6.

In summary, this thesis underscores the theoretical and practical significance of
fractional integration as a powerful analytical approach with far-reaching applications
across diverse scientific domains. By concentrating its efforts on exploring fractional
integral inequalities in conjunction with convex functions, this research aims to generate
meaningful contributions to ongoing advancements in the field, offering both theoretical
insights and potential applications in allied disciplines.

In conclusion,we find a fairly recent and detailed bibliography.
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Chapter 1

PRELIMINARY CONCEPTS

1.1 Definitions

Convex functions have been the object of attention in recent decades and the original
notion has been extended and generalized in various directions, such functions are
important in many parts of analysis and geometry and their properties have been
studied in detail. Readers interested can consult , where a panorama, practically

complete, of these branches is presented.

1.1.1 Some type of Convexities

e Convexity

Definition 1.1.1 A function ¢ : [a, ] — (—o00,+00) is said to be a convex

function if it satisfies the following inequality

p(T€+ (1 = 7)¢) <70(8) + (1 = 7)p((), V¢, € € [, A].

12



where 0 < 7 < 1.
P-convex

Definition 1.1.2 Let I an interval in R, we say that a function v : I — R is
of P type, or that v belongs to the class P(I), if 1 is nonnegative and for all

a,be I and p € [0,1] we have:

W(pa+ (1= p)b) < (a) +p(b). (1.1)

J- convex

Definition 1.1.3 Let I an interval in R, we say that a function ¥ : I — R
is Jensen-convex or(mid-convez) function or shortly (J-convez), that is function

satisfying the condition:

va,b€].7¢<a+b) < ¥(a) +9(b)

2 2

s-convex
Two definitions of s-convexity (0 < s < 1) of real-valued functions are known
in the literature.It is proved among others that s-convexity in the second sense
is essentially stronger than the s-convexity in the first, original, sense whenever

0<s< 1.
Definition 1.1.4 A function f : RT — R, where Rt = [0,400), is said to be

s-convex in the first sense if the function satisfying the condition:

Plaa+ pb) < o*Y(a) + p*h(b). (1.3)

13



for all a,b € [0,00) and all o, p > 0 with a® + p* = 1. This class of functions is

denoted by K!-functions, was introduced by Orlicz (1961) .

Definition 1.1.5 A function ¢ : R™ — R, where RT = [0, +00), is said to be

s-convex in the second sense if the function satisfying the condition:

U(aa + pb) < a*P(a) + p°Y(b). (1.4)

for all a,b € [0,00) and all o, p > 0 with o + p = 1. This class of functions is

denoted by K?-functions.

Remark 1.1.6  — Of course, both s-convezities mean just the convexity when

s = 1.

— For more information on the classes K} and K2 see []].

Strongly convex function

Definition 1.1.7 [26]. Let I be an interval in R. We say that a function 1 :
I — R is strongly conver with modulus w > 0 if 1 is nonnegative and for all

x,y € I and p € (0,1), we have:

V(pz+ (1= py) < pvo(z) + (1= p)ip(y) —wp(l — p)(z —y)*. (1.5)

Strongly convex functions have been introduced by Polyak [26]. They have useful
properties in optimization theory. For instance, if v is strongly convex, then it is
bounded from below, its level sets {x € I : ¢(x) < A} are bounded for each A and

¢ has a unique minimum on every closed subinterval of I (cf. [28], p. 268). Since

14



strong convexity is a strengthening of the notion of convexity, some properties of
strongly convex functions are just stronger versions of known properties of convex
functions.

A function ¥ : I — R is said to be strongly convex with modulus w if and only
if the function g : I — R defined by g(z) = ¥(z) — wa? is convex.

For a twice differentiable function 1) is strongly convex with modulus w, we have

Y () > 2w.

h-Convex function

Definition 1.1.8 [35]. Let I be an interval in R and h: [0,1] C J — (0,00) be
a given function. A function v : I — R is called h- convez if for all x,y € I and
p € [0,1]

Y(pr + (1= p)y) < h(p)v(z) +h((1 = p))Y(y). (1.6)

holds. If @ 15 reversed,then 1 is said h-concave.

This notion was introduced by S.Varosanec and generalizes the classes of non-

negative convex functions, s— convex functions (in the second sence), Godunova-
Levin functions and P—functions, which are obtained by taking in (1.6) h(t) =

t,h(t) =t*(s € (0.1)),h(t) = 1/t and h(t) = 1, respectively.

Strongly h-convex

Definition 1.1.9 Let I be an interval in R and h : [0,1] — (0,00) be a given

function.A function v : I — R is said strongly h-convex function with modulus

15



w > 0, if

U(pe+ (1= p)d) < hp)(c) + (1 = p)ip(d) —wp(l = p)(d —)*.  (L.7)

1.2 Some Fundamental Integral Inequalities

Definition 1.2.1 [29]. For 1 < p < o0,—00 < § < A < oco. We denote by L, :=

L,([6,A]), the set of all Lebesque measurable functions ¥, real valued for which
A
| e ds <.
If p =00, Loo([0, Al) is defined as the set of all essentially bounded functions for which
esssup [U(§)| := inf{M > 0: meas({§ : ¥(§) > M}) =0} < oo,

where esssup |V(x)| is an essential supremum of the function |9(x)|.

Theorem 1.2.2 [2]]. For 1 < p < oo, the spaces L,(.) are Banach spaces (complete

normed spaces) under the norms:

191l = ( / : |z9<f>|‘9dg)é < oo,

19|, = esssup|P(&)] < .

16



1.2.1 Hélder’s Inequality

The Hélder’sﬂinequality and its corollaries in the theory of Lebesgue spaces L, are

fundamental inequalities.

Definition 1.2.3 [29/(Hoélder conjugates ). Let 1 < p,q < oo are said Holder conju-

1
gates if — 4+ — = 1. In particular p = 2 is its conjugate,( 1 and oo )are conjugates
p q

Lemma 1.2.4 ( Young’s Inequality). Let p,q > 1, with 119 + % =1, then
P b
Va,b >0, ab< a——l——. (1.8)
p q

proof: The function exp :t — e’ is convex ( R — R). Thus for all ¢,s € R
and « € [0,1]

et 1=03) < el 1 (1 — a)e’.

Let a,b > 0. Take «a = % (1-—a= %,) t = pln(a) and s = ¢qln(b). we get
inequality (|1.8]).
Theorem 1.2.5 [29](Riesz-Hélder’s inequality for integrals). Let Q1 be a

measurable set and 1 < p,q < oo be such that 1/p+1/q=1. If f € L,(Q),g €

L,(Q), then

Woloa = [ 1151t <151l 19
and fg € L1(Q).

Idea of proof. If either |/f|z, =0 or |g||z, =0, the result is trivial so we

assume these two quantities | f||.,), |9/, are both finite and non-zero.

LOtto Holder, 1859-1937, born in Stuttgart, active in Guttingen and Thingen. He gave important
contributions.

17



Si 1<p,q<oo, we apply lemma with

T T
B 14Col IR Gl
HfHLp(Q) Hg”Lq(Q)
For the complete proof see [17].
Remark 1.2.6 o If |f||., 0 orlglz, s infinite,or equal to zero, in-

equality (1.9) is trivial.

e A very special case. If p =2, then q =2 and the Hélder’s inequality

(1.9) leads to
Ifoleser = [ 19lde < 1] 1ol (110

known as the Cauchy-Schwar?)| inequality. It is a particular case of

the Cauchy-Schwarz for semi-inner product spaces.

1.2.2 Minkowski’s Inequality.

Theorem 1.2.7 [29](Inequality of Riesz-Minkowski for integrals). Let )

be a measurable set, and let 1 <p <oo, feL,(Q) et ge L,(Q). Then

I/ +gHLP(Q) S ||f||Lp(Q) - HgHLp(Q)' (1.11)

2Cauchy (1821) first proved the inequality (Cauchy’s inequality) for square summable sequences.
This inequality was generalized to integrals by A. Schwarz (1885). Also known as the Cauchy-
Bunyakovsky inequality (1859). Otto Holder (1989) extended Cauchy’s inequality for the general
values of p and ¢ by establishing,for sequences (a,,) and (b,,). The latter inequality is then generalized
to the case of integrals by F. Riesz (1910).

18



I/ +gHLOO(Q) < HfHLOO(Q) - Hg”LOO(Q)' (1.12)

Equality holds if Af = Bgu — a.e. for A and B of the same sign and not

stmultaneously zero.

Minkovski’ﬂ inequality is the triangle inequality for the spaces L,(f).

Idea of the proof. 1) If p=1:

174 0l = [ 11+ ldz < [ |7law [ Jolar =111, 0+ ol o

2)If l1<p<o

/\f+g\pdx:/]f+g\|f+g|p_1dx
Q Q

< [Uslls+aP o [ lolls + ol e

We apply Holder’s inequality:Note that + % =1, and ¢= p%l.

1
p

1.3 Some Concepts in Fractional Calculus

1.3.1 Some special functions

Gamma and Beta functions.
In 1783, Leonhard FEuler made his first comments on fractional order deriva-

tive. He worked on progressions of numbers and introduced first time the

3the inequality in Theorem was first proved for finite sums of numbers by a German math-
ematician Hermann Minkowski (1896) and then generalized to the case of integrals of functions by F.
Riesz (1910).
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generalization of factorials to Gamma function. This function is general-

ization of a factorial in the following form:
I'(n)=(n—1).

All through the work we utilize the functions I'(z) (see [27, [29]).

Definition 1.3.1 [29] The Euler-Gamma function is defined as

o= [
0

where ™ > 0.

The Beta function, or the first order Euler function, is defined as:

(1.13)

Definition 1.3.2 [29]. Let a,b € R be such that a > 0 and b > 0, which

guarantee the existence of the integral. We define the Beta function,

denoted by B(a,b), from the following integral

1
B(a,b)—/ N1 — )" tdt.
0

(1.14)

the beta-function is connected with the Gamma-function by the relation

Proposition 1.3.3 [29] Let a;b € R such that a,b > 0. Then

[(a)I'(b)

B(a,b) = Tath)

20



1.3.2 Fractional Integrals

The Riemann-Liouville-fractional integrals [29] of f € Ly := L1(§,A), 5, A € R

having an order v € R,v > 0) are defined as follows

3
<J§+f><s>=ﬁ / (€~ )" fGodp, €56

3
5D = 7 [ =9 S, €<,

A

Remark 1.3.4 e The integrals J{_f,J{ f are defined for functions f €

Ly := L1(0,A), existing almost everywhere.

Theorem 1.3.5 [29](theorem 2.6 p 48). The Riemann-Liouville-fractional

integrals functions are bounded in L,([0,A]),p > 1 i.e. the following esti-

mates
|5+ fllz,6.0) < Cull fllz, 6,47 (1.15)
N Jx- fll Lo, < Crll £l L, 6,40 (1.16)
. _(A—o)
hold with the constant C, = SR

The inequalities (1.15) and (1.16) may be verified by simple operations

using the generalized Minkowski’s inequality.

Theorem 1.3.6 [29] . For any [ € C([a,b],R) for o, > 0. The Riemann-

Liouwille fractional integral satisfies the property

JOJPf(t) = JPIf(t) = TP (1),

21



this result is called the semi-group property of fractional integration.

1.4 Convexity and Fractional Inequalities

The following lemma [15] allows us to prove Theorem [1.4.3]

Lemma 1.4.1 Let f : I C R — R be differentiable function on I° where

5, A el with 06 <A. If f' € L1[0, A, the following equality holds:

A . 1
£ () J;f(A) - % 1_ 6/5 fla)de = ¥ ; (1—2t)f'(t6 + (1 — t)A)dt.  (1.17)

Proof 1.4.2 We set

J= % (1—20)f/(t6 + (1 — t)A)dt.
0

By applying integration by parts, we get:

f(t5+( /ft6+ (1-1) )dt}

f5)+ (A /ft5+ (1-t)A dt}

f(6) + f(A) fA (A 5/ft5—|—1—t )dt

Using the change of the variable x =t§ + (1 —t)A, we get:

f() + f(A) > f@)
J = T+(A—(S)/ Foaph

f(0) + f(A
B 2 TA- 5/f

22



So, we get

HOLIE o [ =252 [(a—rw+ 0 -nay

The following inequalities of the Hermite- Hadamard type were established

for the above convex function.

Theorem 1.4.3 Let f : [a,b] = R be differentiable function on [a,b]. If |f’| is

convex on [a,b]. Then

‘f 2 b—a/f

Proof 1.4.4 By using (1.17), we have:

b—a)(lf’(8)| + 11D (1.18)

'f(a);—f(b)—bia/abf(x)dx _ ‘b;a/ol(l—2t)f’(ta+(1—t)b)dt‘
< b;“ 01|1—2t||f’(ta+(1—t)b)|dt
< = i (a)|+ 1 =)[f' (b)) dt
< Mlu_zt\tyf \dt+/]1—2t|1—t )\dt]

IN

b;ﬂéuf%MNnﬁ+/@w4mﬂ>w]

e | RO EERIOI

%—[@FJM—MﬂWM

biaﬁwwu&ww@

(1 ()] + L )]

<

b—a

<
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One of the most important inequalities for convex functions, is the fa-
mous Hermite-Hadamard inequality: published by Hermite in 1883 and,

independently, by Hadamard in 1893.

Theorem 1.4.5 (Hermite-Hadamard inequality). Let ¢ : U CR — R be a

convezx function, then the following inequality holds.

w(a;b)ﬁbia/j“’mmgw' (1.19)

In [30], Fejer gave the weighted version of the inequalities ([1.19)),so-called
Hermite-Hadamard-Fejer inequalities, as follow: If ¢ : [a,b] — R is convex

and the function 7 : [a,b] — R is positive and symmetric with respect to

(a+0)/2, then:

e bT(t)dtg bT(t)ga(t)dtSM bT(t)dt.
2 ) Ja a 2 .

Remark 1.4.6 Taking Y(t) = 1, we get the inequality of Hermite-Hadamard

1.19).

Inequalities via h-convexity
Other extensions of the Hermite-Hadamard inequality ((1.19)) are established

related to the h-convexity, we have

a b 1
2h(1/2)¢( ;b) < / p(r)dr < [p(a) + (b)) /O h(t)dt. (1.20)

“b—a
with h(1/2) > 0 and h is Riemann integrable on [0, 1].

24



In [30] is given the following interesting integral inequalities of Hermite-

Hadamard type involving Riemann-Liouville fractional integrals.

Theorem 1.4.7 Let o >0, 0<a <b and ¢ : [a,b] = R be a positive function ,
¢ € L'a,b]. If ¢ is a convex function on [a,b], then the following inequalities

for fractional integrals hold:

Theorem 1.4.8 Let o > 0,0<a<b and ¢: [a,b] - R be a positive function ,
¢, h € L'a,b]. Assume that h is superadditive on [a,b]. If ¢ is an h- convex

function on [a,b], then

(1.22)

o ob) 4 Jp o(a)] < MO +00)
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Chapter 2

ESTIMATES FOR FRACTIONAL
INTEGRALS OF
RIEMANN-LIOUVILLE TYPE
USING A CLASS OF
FUNCTIONS

2.1 Introduction

Due the wide application of inequalities,integral inequalities for example in
the study of existence and the uniqueness of the solutions of differential
equations,integral equations,in optimization problems where the objective
function is convex or h-convex and the constraints are given by fractional

integral inequalities.It is natural to study integral inequalities involving frac-
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tional calculus.

Fractional calculus generalizes derivative and integral operations to non-
integer orders, providing a more flexible approach to modeling complex

phenomena.

In recent years, fractal and Fractional Problems in Mathematics, es-
pecially fractional integral inequalities involving h-convex functions have
garnered significant attention due to their broad applications across opti-
mization, differential equations, signal processing, and related areas. Re-
searchers have explored various inequalities to establish connections with
existing theories and uncover new insights. Notable works such as [8, 32,
37, 31, 20], 38] have utilized Riemann-Liouville and Hadamard [22, 10, 12]

integrals and their generalizations.

Almeida, Ricardo, et al. (2020) [1] investigated fractional integral in-
equalities for h-convex functions, providing applications to differential equa-

tions and integral equations.

Pachpatte, B. G. (2021) [25] contributed to understanding these in-
equalities by deriving explicit bounds and highlighting the importance of
h-convexity.

Ahmad, Bashir, and Saleem Ullah (2021) [6] explored Hermite-Hadamard
type inequalities for h-convex functions, demonstrating applications in spe-

cial functions and integral transforms.

These inequalities are powerful tools for analyzing the properties of func-
tions, normed vector spaces, and measure spaces. Their understanding and

application are crucial to many fundamental results and theorems in various
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areas of mathematics.

This work aims to provide a comprehensive understanding of fractional
integral inequalities involving h-convex functions and their significance in
various mathematical domains. It establishes new inequalities, explores

their applications, and contributes to advancing theoretical frameworks.

2.2 Preliminaries

Definition 2.2.1 Let I C R be an interval and ¢ : 1 — R, h:[0,1] — (0,00) be

non-negative functions. The function ¢ is said to be h—convex if

p(pc+ (1 — p)d) < h(p)p(c) + h(1 — p)o(d) (2.1)

holds for all ¢c,d €1 and p € [0,1].If is reversed ¢ is said h-concave.

Definition 2.2.2 Let I C R be an interval and ¢ : 1 — R, h:[0,1] — (0,00) be

non-negative functions. The function ¢ is said to be h— J-convex if

6 (57) <1 (5) 00+ otan 22)

Remark 2.2.3 The class of convex functions is a special case of h-convex
functions, where h(t) =t for all t. Similarly, the class of concave func-
tions is a special case of h-concave functions with h(t) = —t. By choosing
different functions for h, one can obtain wvarious subclasses of h. The
s-convex functions (in the second sence), Godunova-Levin functions and

P—functions, which are obtained by taking in h(t) =t°(s € (0.1)),h(t) =
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1/t and h(t) =1, respectively [16, 37, (35, (38].

Example 2.2.4 A special case of h— convex function h(t) = J\{%’t € (0,1)

Vi V-t
o(tc+ (1 —t)d) < o(c) + 7

<A

¢(d) (2.3)

fort= %, we get the h— J-convexity.

Our objective in this work is to establish some estimates for a more gen-

eral fractional integral than the Riemann-Liouville fractional integral using

the h-convexity property of functions (see Theorem|2.3.6.and [2.3.19}) as well
as of absolute values of ordinary derivative (see Theorem|2.3.12]).

2.3 Main results

Definition 2.3.1 Let 0 <0 <A <oo,1 <p<oo,u>0,v>1. Let F,; be the

integral operator defined from L,([6,A]) to L,([6,A]) as follows

P o) = o [ (5= 007t 3] s utoe, 24

and

I'(w) s

Where u,w are bounded,locally integrable and non-negative functions. Pro-

P a0 = 29 o g ] s (2.5

vided the integrals exist. We set F?i;ﬂqﬁ = F?:};AJb = ¢.
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Remark 2.3.2 o If v = 1,w(s) = u(s) = 1, then the ntegrals F’fll = Jr

coincides with the classical Riemann-Liouville fractional integrals.

e For ;1> 0,v > 1, necessary and sufficient conditions for the bounded-
ness of the integrals Fif on L,(0,00),are found (see [17],Theorem

3.1).
e It follows from definition that FLl o(x) = w(z)F,7 o(z).
Theorem 2.3.3 Let 0 <0 < A < oo, > 0,v > 1. The integrals F,, s ¢ and
F A ¢ are well defined.

o Ifw,uc L([0,A]),¢ € Li([6,A]) then the integral functions are bounded
from Ly([0,A]) on Ly([0, A]).

o Ifw,u € Lo([0,A]), ¢ € Loo([d, A]) then the integral functions are bounded
on Ly().

o If we L([0,A]),pu € Li([6,A]) then the integral functions are bounded
Sfrom Ly, ([0, A]) on Ly([0,A]).

o If we Ly([0,A]), Fia ¢ € Ly([6,A]) and p,q are conjugates, then the

integral functions are bounded from L, ,([0,A]) on Li([9, Al).

Proof 2.3.4 We prove the item 1.

Let ¢ € Li([4,4]), and u,w essentially bounded on [§, A]. We have

Ju] < lulloo, |w] < flwlloo-
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We estimate,||F);, ¢||. Hence

[ o o(s)| < w(s) /5 (s — 1y {m %} - (1) u(t)dt

I'(w)

A v—1
< lellelllle |10 5] 1950000

It follows ( see |1.15,and |1.16]) that

5 A v—1
225,001 < lollalull [ 105 ] Culol

The rest is similar.

Remark 2.3.5 The conditon on u,w to be bounded is sufficient not neces-

sary.

Theorem 2.3.6 Let py,p0 > 1 and vy,v, > 1.Let ¢ : [§;A] — R be a non-
negative h-conver function, where h is Lebesgue integrable on (0,1). As-
sume that u is non-decreasing on [J,s| and non-increasing on [s,Al], for

s € (6,A). Then the following inequality

1 I(p)Fy, 05, 6(s) +F(M2)Fﬁifi_ (s)
U(S)W(S) (ln f)m—l lné vo—1
0 S

< O[5 = 0+ (A= [ h s

+ (0(0)(s = 0)"" + (D) (A — 5)") /O h(z)dz (2.6)

holds.
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Proof 2.3.7 Let s € (0,A). Firstly, let us examine the function ¢ on the

interval [0, s]. Therefore, for all t € [, s|, the following inequality

v1—1 v1—1
u(t) [m ﬂ (5 — )11 < u(s) [m ﬂ (5 — o) (2.7)
holds.Due to the h-convexity of ¢, we write
s—t t—9¢
o < (225) o0+ 1 (125 9 25)

Multiplying ,@ stde to side and integrating the result over [0, s],

we get

< u(s)(s — o)™ [m g] ! {¢(3) /0 1 h(1 — 2)dz + $(0) /0 1 h(z)dz} : (2.9)

that s

DR, 6(9) < als)els) [105] " (s =0

« {qb(s) /01 h(1 — 2)dz + 6(6) /01 h(z)dz} | (2.10)
thus

D P <8)1 < (s —=0)" < o(s) 1h(l—z)dz o(5) 1h(z)dz . (211)
u(s)w(s) [ln g] o { /0 " /0 }
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Now let s, v > 1, then for t € [s,A] the following inequalities

S S

u(t) {111 5] - (t — s)"271 < u(s) {111 é} - (A — )2t (2.12)

and

o) <h (525 ) od) 11 (5=5) ot (213

hold. And we proceed as in the first step. Thus it results that

(o) Fo A 9(5)

uets) (2] .

< (A— s {qb(s)/Olh(l—z)dz+¢(A)/Olh(z)dz}. (2.14)

S

By adding and , we get (@)

Corollary 2.3.8 By setting 1y = o = p>1 and vy =1, =v > 1 in (@),we

get

L(p) | Fuls:d(s)  Fula o(s)
u(s)w(s) <ln g)y 1 (lné)y1

S

< B(s)(s— O + (A — 5] / Bl — 2)dz
b (6(8)(s — 6 + S(AY(A — s)) /0 h(2)dz. (2.15)

Corollary 2.3.9 By choosing in u=1, w=1h(zx) =2 and v = 1,then

D(p) (JE0(s) + JA_0(s))

< (s j; (A—s)" | o(8)(s — )" +2¢(A)(A o
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O+ A

Corollary 2.3.10 If we choose ;1 =1 and taking s = in (2.16]) then,we

have

B / i< do (152 4 201 8) 2.17)

Example 2.3.11 The following example shows the validity of the inequality
established. Let ¢ : [5;A] — Ry, ¢(t) = 1 and h(t) = t*k < 1,t > 0. Let

pw>lv=2u=1w=1 We verify easly that
® ¢ is h-convex.

Hence from corollary [2.3.8.,we have the estimates

F(M)(iiizéwrl)(s) < (s 0)" {/01(1 — 2)kdz + /01 zkdz} . (2.18)
and
P(u)(fl”ifﬁg_lx«s) <@l [a-spas [2a) e

It It
2 S
< —0)#In = 2.2

s 1 5 W
2 A

< —(A—s)!In—. 2.21

_k—l—l( s) " (221)



+A

For s = and k=1, we get
S+A —1
= [+ A a S+ A A—-0\" od+A
_ - = < .
[5R ) (A ae (A) WS e
and
A AN 2t A-5\" 2A
[ — < | — . .
AA <t 2 ) 1“5+Adt—( 2 )1n5+A (2:23)

Theorem 2.3.12 Let py, o, v1,v2 > 1.Let ¢ : [0;A] — R be a mon-negative
differentiable function.Let u,w be locally integrable, non-negative func-
tions.Also suppose that u is absolutely continuous, non-decreasing on [0, s]

and non-increasing on [s,A|, for s € (§,A). If |¢'| is h— convex, then

I 1
‘ (Oq + ) (Fu1,u1+1 +y1FM1+1,V1 . Fu1+1,l/1+1) ¢(5>

s\ A1 u,w;0+ u/tw;6+ u/ ,w;é+
w(s) (111 S>

b T (Pt R R o
w(s) <ln ;)
— (u(E) s — 8 + (AN A — 5 (224

< |¢'(s)] ((A _ g)uatl <ln %) v (s — g)m+! (m g)) /01 h(1 — 2)dz

b (@is -t (w2) 1800 (n2)”) [ e
u(t)

holds. Where u' is the usual derivative of u and (u/t)(t) denote —-.

Proof 2.3.13 First step:For s € (0,A) consider the function ¢ on the inter-
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val [0,s]. Hence for jy,v; > 1 and t € [0, s] the following inequalitiy

V1

I wy s —om < 2] us) (s — oyt (2.25)
i 5

holds.Due to the h- convexity of |¢'|, it results that for t € [J, s]

§)loorn (=) 100
vorn (=3) 0ol (2.26)

Multiplying (2.25)and the right side of and integrating the result

(=

< ¢'(t) h(

over [0, s|. Hence

/5 Cult)(s — ) [m ;] Nt (2.27)

< u(s)(s — g)rtt [ln g} -

< (1661 [ 11 =2)tz+ 1900 [ ).

By integrating by parts,we obtain

/5 Cult) (s — £y (m ;) & ()dt
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< [ln g} - u(s)(s — o)+t

« (]¢’(s)|/01 h(l—z)dz+\q§’(6)|/01 h(z)dz). (2.28)

Using definition and inequality (2.28),it follows that

F + ]' 1% 1% 1%
Ll b D (Bt e e Yol (229
w(s) (In S)

— ¢(0)u(d)(s — )"
< us)(s — syt (y¢'(s)|/0 h(1— 2)ds + \¢'(5)|/0 h(z)dz) |

By considering the left hand side of , we deduce a stmilar inequality

—u(s)(s — §)M1H! [hlg}” x (y¢'<s)| /0 1h(1—z)dz+|¢’(5)\ /O 1h(z)dz)
< / Cu(t) (s — )" In ﬂ & (1)dt. (2.30)

)

By combining the resulting inequalitiy and , we obtain

r +1 . , )
e (Fris + mE i — B i) o(s) — 6(0)u(d) (s — )
w(s) <ln 5)

< u(s)(s — syt (y¢'<s)| /01 Bl — 2)dz + |¢/(6)] /Olh(z)dz) | (2.31)

Last step:Let t € [s,A], ua > 0,15 > 0, and taking in acount that |¢'| is

h-convex, thus it follows that

(t — 5)" <ln f) Y (Ao (m é) : (2.32)

S S
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and

(1 (320 el n (525 ) ) (289

< o <n(50) e+ n (522 ) Wl

The rest is similar to the first step. Consequently

r 1
CCR) (Fﬁifz“ + iR+ Fgaj}gz“) 6(s) — (A)u(A)(A — s)2

(2]
< wsa = ot (1) [ b -2+ 170 [ nee) (234

Via triangular inequality, by adding inequalities and ,the re-

quiered inequality holds.

As special cases, we have the following corollaries,

Corollary 2.3.14 By setting 111 = ps = pu,v1 = vo = v, h(t) = t",r € (0,1] in

2.2/)) then

F 1
(,u _'_ ) ([FM w1 + VFIH-LV o FlH—l v+1 + FZ:ZE +u Fu?;lwyA + Fz;t-j:ztl] ¢> (S)

- % ( U n %)Bumwm +(s—oy*'In (g)”uww(a)) |
o ( sy (lné)r :1<s -y (w3))
+ r¢'<A>r(A_SW (3) i G (239

r+1 r+1
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holds.

Corollary 2.3.15 If we choose u=1,v=1,v=0, and r =1 in (2.35), then

[T+ 1) (F50(s) + Tp_0(s)) — (A = 9)"6(A) + (s —0)") p(d)]  (2.36)

< [T AL Z T g B o)+ E= )

holds.

+A

o
Corollary 2.3.16 On letting x =

‘ /f Dt — Hf()‘ (2.37)
2oy (52 L+ i@+ 176

and =1, in (2.36), then

IN

28 valid.

We need the following result

Lemma 2.3.17 Assume that ¢ : [§,A] — R, be h—convex function and ¢ is

symmetric about , then

4 (#) <o (%) 6(x) we5A] (2.38)

18 valid.

Proof 2.3.18 We have

(5+A 1 z—0 A—=x 1 T —0 A—zx
5 (6A 5+AA—5)+_<A +0 >




Hence,

o(5) = (o) (5542355
- n(g) [ (a5=5+0555)|
- h(%)¢(5+A_x)+h(%)¢<x)

Theorem 2.3.19 Let py > 0,2 > 0,01, > 1.Let ¢ : [§;A] — R be a non-
negative h-convex function, where h is Lebesgue integrable on (0,1). Let
u,w be integrable and non-negative functions,w(d) # 0,w(A) # 0. Also sup-
pose that u is monotonic on [§,A], for s € (§,A). If ¢ is symmetric about

A
5+T. It follows that

1. If u s increasing,then
u(d)

[ ) ) (45

[(un+ DELIR"6(8) | Tlus + DFR50(A)

= v(0) * v(A)

< u(A) ((A _ gyt (m %) + (A — gyt <ln %) )

< (6(6) + H(A) /0 h(2)dz (2.39)
holds .
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2. If u s decreasing,then

D(p + DFEIR"6(0)  T(ue + DFL26(A)

: w(d) * w(A)

< u(d) <(A — gyt (ln %) " + (A = st <ln %)Wl)

x (cb(é) /0 Che) 4+ 6(a) /O “h1 - Z)dz) 00
is valid .

Proof 2.3.20 We start by the case u is increasing. For t € [§,A],uy > 0,1, >

1, we have

(t— )y (m %) ") < (A — sy (m %) RN (2.41)

and

o) <n (55 ) o)+ (55 ) 9() (2.42)

Multiplying inequalities ,(2.42) side to side,and integrating the re-

sult over [6,A]. It follows that

/6A(t — )M (m %) " u(t)p(t)dt < (A =)t (1n %) B ua)

X (¢(5) /0 1h(z)+¢(A) /0 1h(1—z)dz). (2.43)
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From which, we have

(g + DFIR" 6(0)

0 (2.44)
< u(A)(A =5yt (ln %>V11 (gzb(é) /01 h(z)+ ¢(A) /01 h(1— z)dz> :
On the other hand for t € [0, A], we have
(A — 1) (m %)M u(t) < (A — 5= (m %) RN (2.45)

By multiplying and and integrating the result over [§, A], we

get

D (pa + DFLZP0(A) (AN
ey < u(A)(A — syt (m 3>

X (¢(5) /0 1h(z)+¢(A) /0 1h(1—z)dz). (2.46)

By adding and (2.46),it results that

T(p1+ DFING(0) Tz + 1FEE26(A)

w(0) ' w(d)
< u(A) <(A _ gy (m %) - (A= gyt (m %) >
< (6(5)+ B(A)) /0 h(2)dz. (2.47)

Using Lemma ,we have

’ <#> u(0)(t — o)™ (ln §> n-1
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integrating over [§, A], we get

o5 ) ol )

)i

Similarly,we have

¢ <5+2A) w(8)(A — 1) (ln %yﬂ
< 2h (%) P)u(t)(A — )= (1n %) Va1

integrating (2.50) with respect to t over [5, A], we get

oo (P52 [ (wd)

r DEF™ 2 6(A
< 9h l (:u2+ ) u,v;0+ ¢( )
2 v(A)

Adding and , we obtain

u(8)s (ﬂ)

(g + DAY 0(0) | T(pe + DFR50(A)

2
2

v(0) v(A)
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(2.49)

(2.50)

(2.51)

/5 YAy (m %)Vﬂ +(t—s)ym (m %)1 dt]

: (2.52)



combining and (2.53),we have
u(d)

o (1) /5A(A — Ly (m %)Vﬂ gy <ln §>V11dt
2

P + DF00) T+ DFE L 6(A)

uw; A—

) - (A

u(a) ((A o () @t () )

< (B(8) + H(A)) / h(z)dz.

IN

IN

Simalar proof for the case u decreasing.

Corollary 2.3.21 By setting p = jio = p and vy = vy = v, we obtain

/5 Aoy (m %)” +(t—6) (m %)1 dt] s (%)

u(9)

)

u+},u 5 u—i—?,y A
< T(p+1) (F“’“fw) ©, F“’j(f)( )> (2.53)
< @)@ -0 (w5 ) @)+ o) [ hiaa

case u increasing.

Example 2.3.22 The following example illustrates the validity of estimates.
Let ¢ : [5;A] = Ry, ¢(t) =1 and hi(t) = t*k < 1,t > 0. let u > 0,v > 1,

u=1,w=1 We verify that

® ¢ is hi-convex.

0+ A

® ¢ is symmeltric about
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Hence from corollary |2.3.21,we get the estimates

A\
=3
>
|
=
=
+
/D
S
| >
~_
\
~/~ =

/1 25+ 01(1 — z)kdz) : (2.54)

I AN AN 2(A =g AN
A = < AT — < —"Ft— — .
T /5 (A—1) (ln ; ) < /5 (A—1) (ln , ) dt < 1 <ln 5)

and

I AN £\ 2(A — g AN
— —HH — < — M - < — :
Ql_k/a (t —9) (ln 6) _/5 (t —9) <ln5> dt < 1 + (ln 6)

Take the change of variables t =6+ (A —0d)e ™ and t = A — (A —Jd)e™™, we

get

o0 _ v—1 o0 _ v—1
o / el [ln (1 + 2 56"5)} dr < / et [ln (1 L2 56_$):| dx
21k J, 5 0 5

and

1 o0 Ae” vl o Ae® vl
(e =/ < Dz |y 77
zlk/O ‘ {nAew—Aer} d”“"—/o ‘ [nAeI—A+5] dx
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For v =2

1 e~ (mtD)z | (SejL—H dr < / e~ (hHhz 1y w do < 2 In é,
0

21—k 0 Jer

and

1 o Ae* o Ae* 2 A
B L I </ ey, 2C gp < S s
o1k J, © "Ae A5, € "Ae A+ T SRS

Taking k =1, we get

0e”
and
e _/Ooe_mln B¢ <m S0
a 0 Ae? —A+9§ 5
The functions F,G are the integral transforms of f(z) = %’ g(z) =
Aeffezw respectivelly.

Corollary 2.3.23 If we choose u = 1,w = 1,v = 1 and taking h(x) = z in
, then the inequality

1 0+ A
w+1)” ( 2 )
[(p+1) p+1 P,
< W (JA— P(6) + Iy ¢(A))
< 20) J;sb(A) (2.55)
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holds.

Remark 2.3.24 On letting ;1 — 0,in , we get the inequality of Hermite-
Hadamard

¢<A2+5) <y et < A o) (2.56)
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Chapter 3

SOME INTEGRAL
INEQUAIITIES INVOLVING H-
STRONGLY CONVEX
FONCTIONS AND
APPLICATIONS

3.1 Introduction

In the realm of mathematics, inequalities and integral inequalities serve as
foundational tools that significantly influence a multitude of fields, ranging
from pure mathematics to applied sciences. These mathematical constructs
are not merely theoretical curiosities; they have profound implications in

areas such as optimization, numerical analysis, and even in the study of dif-
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ferential equations. Over the years, a rich body of literature has emerged,
with numerous authors investigating a wide array of inequalities that apply
to both fractional integrals and classical integrals. Notable contributions
can be found in works such as , [17, 31, 15, [30], among others. These
studies highlight the versatility among others. These studies highlight the
versatility and importance of integral inequalities in advancing mathemat-
ical knowledge. One particularly captivating aspect of this area of study
is the relationship between convexity and inequalities. The property of
convexity has attracted considerable interest from mathematicians around
the globe, especially when employed in conjunction with Riemann-Liouville
fractional integrals. Convex functions are characterized by their unique
properties, which often lead to stronger and more insightful inequalities.
As a result, the exploration of convexity has evolved significantly over re-
cent years, with researchers expanding its definitions and generalizations
to encompass a wider variety of functions and contexts. Numerous integral
inequalities have been developed specifically for various categories of convex
functions, reflecting the ongoing fascination with this topic. Works such as
[8, 31, 16l 23, 20|, 18, 11, 5, B3], 34] illustrate the breadth of research dedi-
cated to this area. These contributions not only deepen our understanding
of convexity but also enhance our ability to apply these concepts across
different mathematical domains. In this article, we introduce a new per-
spective by considering an alternative type of fractional integral operator,
as discussed in sources like [8] and [17]. This operator generalizes existing
frameworks and opens new avenues for exploration within the context of

strongly h-convex functions. By utilizing this more generic fractional inte-
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gral operator, we aim to establish novel fractional integral inequalities that
contribute to the rich tapestry of mathematical inequality theory. Through
this work, we hope to shed light on the intricate connections between con-
vexity, fractional integrals, and inequalities. Our findings not only enhance
theoretical understanding but also pave the way for future research oppor-

tunities in both pure and applied mathematics.

3.2 Preliminaries

Definition 3.2.1 (Strongly h— convexity)[3]. Let T an interval of R and
h:[0,1] — (0,00) be a given non negative function. A non negative function

¥:7Z — R s said to be strongly h- convexr whith modulus § > 0, if

I+ (1= A)v) < ENI(S) +E(L = AP (v) = BAA = 1) (s —v)° (3.1)

holds for all c,v € T and X € (0,1]. The function ¥ is said to be strongly h—

concave if is reversed.

Remark 3.2.2 e For =0, we get the notion of h— conver (h— concave

)[35].
e For h(t) =t, means that ¢ is strongly convex.

e Any convex function ¥ on a subset B with h(t) < t ( h(t) > t) is

strongly convex (strongly concave).

Example 3.2.3 Let ¥ : [-1,1] — R defined by 9(t) = 2, and h(t) = 1,t € (0,1)

20



Then V9 s strongly h—convex with modulus § = 1. Indeed,for every t,p €

[—1,1]and X € (0,1),we have

IO+ (1= A)t) = 2 < hI(p) + h(1 — N(t) — BAL — N)(p — 1)

=4-AN1-X)(p—1t)~

Different classes of strongly convex functions are obtained by taking in (/3.1])
h(v) =v,h(v) =v"(r € (0.1)),h(rv) = 1/v and h(v) =1, (see [35]).

We recall that

F s 0(s) = ?52)) /;(5 - [ln ;] o) ult)t, (3.2)
and
Pl o) = g [ - ] o0t (5.3

Where u,w are bounded,locally integrable and non-negative functions.

Remark 3.2.4 1. If r = 1,v(s) = u(s) = 1,5 € (a,b), the operator F‘H = JI,

where J? is the Riemann-Liouville integral operator [2].

1
2. If g = 1,v(s) = 1,u(c) = -, the operator Kll’r1 coincides with the
S <’

classical Hadamard integral operator H' :

Y, 0(<) = % / g (in %)1 ﬁ(y)%”, ¢>a (3.4)
and
Hy 9(s) = FLT) /gb (ln g)Tl 19(1/)%/ ¢<b (right). (3.5)



We need the following result

Lemma 3.2.5 Let 9 : [a,b] — R be a strongly h— convex function with mod-

ulus § > 0. If ¥ is symmetric about “T*b , then it results that

b 1 b—2
0(“57) <20 (5) 000+ 855 cela (3.6)
2 2 4
Proof 3.2.6 We have
a+b 1(c¢c—a b—¢ 1/ ¢—a b—¢
2 _§<bb—a+ab—a>+§(ab—a—H)b—a>7 (3.7)

since vV is strongly h- convex, then we have

a+b 1 ¢—a b—g 1 c—a b—¢
ﬁ( 2 ) B 0(§[bb—a+ab—a}+§[(ab—a+bb—a)]>
a+b—2¢

h<%>0(<)+h(%)ﬁ(a+b—q)+ﬂ 1

1 a—+b—2

IN

3.3 Related results

Theorem 3.3.1 Let q1,q2,71,72 > 1,0 < a < b < oo. Let h be Lebesgue integrable
on (0,1) and vV : [a;b] — R be a non-negative strongly h— convex function
with modulus 3 > 0. Assum that u is integrable nonnegative function non

decreasing on |a,s|, non increasing on [¢,b] for ¢ € [a,b] and v a positive

o2



function. Then

% (CO)T(@)FL0(6) + D) (@) FE9(6))
< u(s) [ln 2]“1 (¢ —a)®

X {ﬁ(c)/o h(l—z)dz—H?(a)/O h<z)dz—5(§‘6“) }

+ (<) [m 9} - (¢ — a)®

S
X {19(§) /01 h(1 — z)dz 4+ ¥(b) /01 h(z)dz — 3 %} (3.8)
holds.

Proof 3.3.2 Firstly let ¢ € [a,b], then for v € [a,5] and ¢ > 1,1 > 1, the

following inequality

S S

(¢ —v)nt <111 —)rl_l u(v) < (s —a)?? <ln —>T1_1 u(s) (3.9)

14 a

holds. Since ¥ is strongly h- convex on |a,<] whith modulus 5 > 0, we have

I(v) < h (g - ”) 9(a) + h (” - “) 9) =B —v)(v—a), (3.10)

S—a S—a

and

/;(g —y)nt [ln S} n u(v) ¥(v)dv

v

< -0t 2]

« lﬁ(a)/jh(i:Z)dz/+19(§)/:h<z:2) du—ﬁ/ag(g—u)(v—a)dy

= (¢—a)® [ln 2] n u(s)
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X {ﬁ(g) /01 h(1 — 2)dz + ¥(a) /01 h(z)dz — 8 (s _6a) } :

In vertu of the definition (?7?), it results that

DT (0) L2, 0(6) < uls)os) ] ™ x (6 — ape

1 1 (§ . (l)2
19(@)/ h(1— 2)dz + 19((1)/ (e~ p o (3.11)
0 0
And similarly for v € [¢,b],¢ € (a,b) and qz,72 > 1 the following inequality
ro—1 b ro—1
(v—¢)e! <ln —) u(v) < (b—¢)= ! <ln —) u(s) (3.12)
S

holds.

Using the fact that O is strongly h— convex on [¢,b], we get

()l (@) FE 00 < u(e)ofe) (2] x -9
{19(§) /01 h(1 = 2)dz + 0(b) /01 h(z)dz — B @} . (3.13)

By adding and (3.13), we obtain (3.8).

Remark 3.3.3 1.If u is increasing on [a,b], then for all ¢ € [a,b],we have

% ()T (@)F5a0(<) + T(ra)T (g) F9(<))
< o [n] -

X {ﬁ(g)/olhu—z)dzw(a)/()lh(z)dz—ﬂ%}

o4



X {ﬁ(g) /01 h(1 — z)dz + 9(b) /01 h(z)dz — (b_—6<)2} (3.14)

2.If u is decreasing on |a,b]|, then for all < € [a,b],we have

(Pro)T () Filiia s 9(s) + T(r2)T(a2) Fiy (<))

IN
g
—_ o~
s 2

X {ﬁ(g) /01 h(1 — 2)dz 4+ ¥(a) /01 h(z)dz — B (s —6a) }

X

{ﬁ(g) /01 h(1 — 2)dz + 9(b) /01 h(z)dz — B %} . (3.15)

Now we investigate some integral inequalities for functions whose deriva-

tives in absolute value are strongly h-convex.

Theorem 3.3.4 Let ¢q1,q2,71,72 > 0 and 0 < a < b < co. Let 9 : [a;b] — R be a
non-negative differentiable function.Let u a locally integrable non-negative
function, absolutely continuous, non decreasing on [a,<|, non increasing on
[s,b] for < € [a,b] and v a positive function. If || is a strongly h— convex

function, then

T+ DT (0 + 1) fgimtt gl I
| U(() (hl g)n <Fu1,v;:z+ + Ful/ij;a:_ — Kul’,v;a—i-l > 19(0

D(ry + 1T (o + 1
ot D0 £1) (poast | st | ottt o)
v(s) (ln 2)

— (a)u(a)(s = a)® +I(b)u(b)(b - <)*) |
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< u(€) [96)] [(b— = + (s — a)*] / Bl — 2)dz

+ u(<) [[0'(O) (b= )™ + [ (a)] (¢ — )] /0 h(z)dz

(§ . a)Q1+4 + (b o g)fI2+4

—_ B 5

u(s) (3.16)

holds. Where v’ is the usual derivative of u and (u/v)(v) = @

Proof 3.3.5 Firstly let ¢ € [a,b]. Then for v € |a,¢] and ¢ > 0,71 > 0 the

following inequality

S S

u(v)(s —v)® (ln —)Tl <u(s)(s —a)® <ln —)rl (3.17)

14 a

holds.

Since || is strongly h— convex therefore for v € [a,s|, we have

Lhs— — [h (i:—Z) (a)] + h (Z:Z) 9()] = B(s — ) (v — a)

< J'(v) <
—v

h (i - a) 0 (a)| + I (Z:Z) 19(s)| = B (s —v) (v —a) = Rhs.  (3.18)

Multiplying the Rhs of and side to side and integrating over

[CL, C], we get

/; [ln ﬂn w(v)(s — )" (v)dr < wuls) [ln 2] b (¢ —a)nt!
X (W’(g) /01 h(1 = z)dz + |¥'(a)| /01 h(z)dz)
— (ln 2)“ u(g)ﬂ(g—Ta)‘hH. (3.19)
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On the other hand by integrating by parts the left hand of , we have

/ag <ln %)Tl u(v)(s — v)2Y (v)dv
- Cr o)t

+ @ / g (1ng)”u(y)(g—y)quﬁ(y)du
+om / (m2)" 1u(yy)(q—l/)‘”19( v

< uls) [hﬂ " = a)nt

x <|19' |/ (1—2)dz +|9'(a |/ )

B [Ins ] (¢ —a)*
6

u(s).

Using definition 77 and inequality @, we get the inequality

F(Tl i 1)F (ql t 1) q,r1itl q1+1,r1 qi+1,r1+1
U(C) (lni)” <Fuva+ +Fu/l/va+_FuUQ+ )ﬁ(g)

- d(a)ula)(s —a)"

IN

_ B (s _6a)q1_+ u(s).

Now if we consider the Lhs of inequality , we have

] e

« <|19’(§)|/01h(1—z)dz—|—|19’(a)|/01 h(z)dz)
B

[ln i]” éc —a)” u(6)

_|_

57

u(s)(s — a)n <|19’(§)| /01 h(1 —z)dz + |¥'(a)| /01 h(z)dz)

(3.20)

(3.21)

(3.22)



14

< /: [ln Eyl u(v)(s — v)®Y (v)dv.

A similar reasoning leads to a similar inequality to .By combining

the resulting inequality and the inequality , we get

P(Tl + 1)F (QI + 1) <F(I1,7‘1+1 + Fq1+1,7'1 . Fq1+1,7'1+1> ﬁ(g) . 19(@)@[/(@) (§ o a)ql

v(s) (ln i)m et u/twiat u' wia+
< o=t (o [ =i+ i [ nca:)
_ B(g_Ta)qlﬂu(g). 5o

On the other hand for g > 0,75 > 0,v € [¢,b], we have

(v — <)% (m 3) S u) < (b— " (m 9) " (o) (3.24)

S S

and

Lhs = - [h (z:g> [9'()] + (r—z) 90| _B@]

< 9 <
b—v / v—g ’ (b—§)3 _

The rest is similar to the first step. Consequently

I'(r +1 r + 1 ) 2 T2 2 T2
(ot DR £ 1) (vt y povitee — pottt) o) — 0(0)u)(b - o)
v(s) (111 E)

< uls)(b—q)ett (\z?’(c)\ /01 h(1 — z)dz + |9 ()| /01 h(z)dz)

SR L) (3.26)

o8



Via triangular inequality, by adding inequalities and , the

required inequality holds.

As special cases, we have

Corollary 3.3.6 By setting ¢1 = g2 = q, 71 =12 =71, and h(z) = z in

F(T+1)F(Q+1) r+1 1,r 1,r+1 r+1 1,r 1,r+1
’ U({) <FZ7,U;+ + FZ,J/FV,;J;a-i- - Fijtv;a—t + FZ’,U?Z— + FiJ/rt,;;b— - sztv:bj ) ﬁ(g)

_ [(ln g)r u(b)9(b)(b — )7 +1n (2) u(a)d(a)(s — a)‘”l} |
(In2)" (b — o) + (In )" (¢ — a)?*!

T

< Q) [I() — 5
L oue) [0/ (0)] (b — )" (In?)" + @;(Q [9'(a)] (s — @)™ (In )"
(¢ — a)q+4 In> " +(b— g)q+4 lné '
— Buls) ( a> - ( g) . (3.27)

Corollary 3.3.7 By setting u=v =1, in

| T(r+ 1)T(g+ 1) (F‘{;’;;i +FI +FO T+ F?ﬁ{;,) 9(s)
b\" S\"
_ Z _ e+l > _ 4)eat+1
Kln g) I(B)(b — <)+ + In (a) 9(a)(s — a) } |
)" (b—¢) ! 4+ (In<)" (¢ — a)it!
[0'(0)] (b — <) (In2)" + [9'(a)] (s — a)™ (In£)"
2
(¢ —a)*™ (ln £>T +(b—¢)" (ln é)

— B ¢ ; S/ (3.28)

IN

Corollary 3.3.8 By setting »r = 0 n , we get the following integral

29



inequality involving Riemann-Liouville integrals

‘F(q +1) (I 9(s) + T 9(s)) — (I(b)(b—<)* + I(a)(s — a)q)|
(b= + (< —a)r I QT (B)] + (¢ — @)™ [ (a)]
2 2
- Ot -, 329

<

V'(<)]

Corollary 3.3.9 By taking < = a and ¢ = b in (3.29), we get the following

fractional integral inequality

D(g+1) (35,:9(0) + T3_0(a)) — (b= a)? (9(b) + ¥(a))]

< - { e+l - o-ot). (3.30)

If =0 in(3.30),we get

ID(q+1) (I8, 0(0) + TL_9(a)) — (b— a)? (I(b) + V(a))]

< (b—a)™ {0 + [¥'(a)l}- (3.31)

Corollary 3.3.10 By setting ¢ = 1, and taking ¢ = “T“’ n ,'it results

that

‘ 1 /bﬁ(g)dt_ﬁ(b)w(a) g

b a 2 |°
b {2 o (‘” . b) ' 1) + Iﬁ’(aﬂ] - —ar (3:32)

Corollary 3.3.11 By setting ¢ =0,u=v =1, in

| T(r+1) (H,,9(c) + Hy _9(c)) -
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[(m ’3)29(5)(5 O+ ln (2)T19(a)(§ = a)] |

IA

In?)" (b— <) (¢ —a
o L) Gt (ng) -0
O (b=<) () +|9(a)[ (s —a) ()"
5

(s — a)* (m 2) F(bh—o) (111 ’g)

c . . (3.33)

In particular if ¢ = a and ¢ =b in (3.33),we have

|rw+1mH;ﬁww+Hzww)—(mé)Yb—whﬂw+ﬂmﬂ|

a

b ' / /
< (2) 0-a @+ @)

(b— a)t (m g)
~ 8 5 . (3.34)
If 5 =0, then
b T
04 1) (H,00) + 1 0(@) ~ (1n2) 6= 0)000) + 0(a)]|
< (m2) e-a@rol+ @) (3.35)

3.4 Applications

Now we give some applications of the results that have been established

previously.

Theorem 3.4.1 Under the assymptions of theorem [2.3.6,the following in-
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equality

holds.

IN

FIm 9(b
U(b) u,v;a+ ( >+

u(b) |In 2] - (b—a)®

{79(5)/0 h(1 — z)dz —1—19((1)/0 h(z)dz — 3 (b —GG) }

u(a) [111 9] o (b— a)®

a

{19(@)/0 h(l — 2)dz + 19(6)/0 h(zydz — g0 _6“) } (3.36)

Proof 3.4.2 We take s =a and < =) in and adding the results.

Corollary 3.4.3 By setting g1 = ¢ = q and vy =13 =1 in it results

that

18 valid.

X

+

X

T(rT(q) <LFW () + ——F" 19(@)

v(b) u,viat v(a) w,v3b—
u(b) {m 2] - (b— a)
{z?(b) /01 h(1 — 2)dz + V(a) /01 h(z)dz — B (b—Ta)Q}
u(a) {m 2} oy

{19(@) /01 h(1 — 2)dz + 9(b) /01 h(z)ydz — g0 _6“) } (3.37)
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Corollary 3.4.4 By settingu =v = 1,r = 1, we obtain an inequality involving

Riemann-Liouville integrals

D(q) (J400) + Ji_9(a) < (b a)?

« {(19(b)+19(a))(/0 h(l—z)dz—i—/o h@)d@-ﬁ@}. (3.38)

Corollary 3.4.5 By taking h(z) = z in (3.38), we have

I(q) (JLO() + JL9(<) < (b—a)

X (ﬁ(b) +9(a) — M’T_a)z) . (3.39)

If 5 =0, then

[(q) (Ja40(<) + Jy9(c)) < (b—a)? (9(b) + I(a))

Corollary 3.4.6 By setting 6 =0,g=1 and s =b or ¢ =a in , we get

b a
’ 1 - / I(v)dv < w. (3.40)

Corollary 3.4.7 By setting c=0,q=1 and ¢ = “T’Lb in , we have

bia /abﬁ(y)du <9 (a—zf—b) N Y(a) + V(b)

— (3.41)

Corollary 3.4.8 By setting v = 1,u(z) =

ST

,q=1and h(z) = z in (3.15), we
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obtain an inequality involving Hadamard integrals

U(r) (H, (<) + Hy_9(<))
L] (s —a)+ 1] (b—0)

< T (3.42)
= dLHSEURL SRS
Y L I G B L M GO

: |

Corollary 3.4.9 By taking s =a and ¢ =0 in , we obtain

() (00 + B @) < (=) [?]

(3.43)

If 5 =0, then
I(r) (H, 9(b) + H;_9(a)) < (b—a) {ln

Theorem 3.4.10 Let ¢;,q20 > 0, r1,75 > 1 and 0 < a,b < co. Let 9 : [a,b] — R,
be an strongly h- convex function, u an integrable non-negative function,
momnotonic on [a,b] and v a non-negative function with v(a) # 0,v(b) # 0. If
U is symmetric about 2, it follows that for all v € [a,b]

(1) If u is increasing, then

Lhs = u(a) | M {1(0;q1,71) + J(0;q2,72) } + — < {I(L;q1,71) + J(Li g2, 72) }

M()
L(r)T (¢ + D) Fypp9(a) | T(ra)l (g2 + 1) Fra 2 9(b)
= v(a) * v(b)
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-t (w) s (n2)"

x (9(a) +O(b)) /0 W)
_ Bu(b) W (m S)Tl_l + W (m S)Tﬂ] _ Rhs. (3.44)
holds.

(2) If u is decreasing, then

4h (3)
L)L (g1 + D F™7 (@) T(r)0 (go + 1) F2070(0)

u,v;b— u,v;a+

v(a) * v(b)

ri—1 ro—1
b-am () +@p-a@ (m
a a

< (9(a) +O(b)) /0 h(2)dz

(D (1113)“1% <1b>] (3.45)

u(b) [M {1(0;5q1,71) + J(05g2,72) } + {I(1;q1,m)+ J(1; qQ,'rz)}]

IA

VAN

u(a)

— Bula)

holds. Where

Hasgr) = / "o — a)e (W) v, Jaigr) = / "o — vy (m Q)H dv.

a a v

Proof 3.4.11 Suppose that u is increasing. We have for all v € [a,b], 11 > 1

v

(v—a) (ln —)n_l u(v) < (b—a)® (ln §>T1_1 u(b). (3.46)

a a
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Since VU is strongly h- convex therefore for v € [a,b], we have

I(v) < h (Z%Z) 9(a) + h (2 - Z) 9(b) = Blv — a)(b - v). (3.47)

By multiplying inequalities (3.46), (3.47), side to side and by integrating

, we obtain

/ab(y —a)® <1n Z>T1_1 u(v)d(v)dv

< (b—a)n* (m §>”_1 u(b) <19(a) /01 h(z)d= + 9(b) /01 h(1 — z)dz)
_ gl ZW (m 9) (3.48)

From which, we have

D(r)T (g + 1) FE 09 (a)

u,v;b—
v(a)

< uld)(b— a)nt! (m 9)r1_1 (0@) /0 Ch(z) +000) /0 1 h(l—z)dz>

a

q1 ri—l
- 5%(1112) . (3.49)

On the other hand for all v € [a,b], we have

(b— 1) (m 9) ") < (b o) (m 9) R (3.50)

v a
And similarly it follows that

L(ro)L (g2 + 1) Fila 7 9(0)
v(b)

< u(b)(b — a)®+! (ln é)rz1

a
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X (19(@) /0 1 h(z)dz + 9(b) /0 1h(1—z)dz)

q2 ra—1
- s (W) (3.51)

By adding and , we get

L(r)T (g + D Fpip " 0(a) | T(ra)T (g2 + 1) FRL0(0)

u,v;b— u,v;a+

o " o)
) u@)Pb_ayﬁlong)”4+%b—awﬁlOng)”*]

X (19(&)+19(b))/0 h(z)dz

_ 8 [W <]n S)l + W <1n g)ll . (3.52)

To prove the left hand side: Lhs, we use the Lemma |2.38 and monotonic-

ity properties of real valued functions u and In.

49( 22 ) B (a+b

Indeed, setting M = ey ). We have for all v € [a,b]

C

M + o v < 9(v), (3.53)

and
u(a)(v —a)™ (ln §>r11 <u)(v—a)® (ln g)rll , (3.54)
u(a)(b—v)® (ln g) - <u(v)(b—v)? <ln g)”‘l . (3.55)

Multiplay and stde to side and integrating with respect to v
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over [a,b], we obtain

c
u(a) | MI(0;q1,71) + ——<1(15q1,71)
4h (3)

q1+1,r1 a
- INCERINA tj;)Ku,u;b J(a) (3.56)

Also we have

u(a) [MJ(U; G2, 72) + L)J(l; qz,rz)]

ah (3
L(r2)T (g2 + 1) Fi2 L9 (b)

- v(b)

(3.57)

Adding and

u(a) [M{I(O;ql,h) + J(0;q2,72)} + 1 b {I(l;ql,r1)+J(1;qz,r2)}]

h(3)
()T (@ + D) F2E"9(a)  D(ro)T (g + 1) F2EL29(b
< ( 1) <Q1 ) u,v;b ( ) + (T2) (Q2 ) w,v;a+ ( ) (358)
v(a) v(b)
combining and , we obtain the inequality .
If u is decreasing, we have for all v € [a,b], 1 > 1
@ (] AV @ (] AN
- Z < (- - . .
(v —a) (na> u(v) < (b—a) (na) u(a) (3.59)

To prove the left hand side, we replace u(a) in (3.54)), (3.55) by u(b) and

the rest of the proof is similar.
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Corollary 3.4.12 By setting ¢ = ¢ = q and r; = ry = r, we have the following
inequalities

1. If u is increasing

u(a) [M {1(0;q,7) + J(0;¢,7)} + % {I(Lq,7) + J(1;q, 7‘)}]
FIr0(a)  FL9(b)
< I'(rl(g+1) ( (@) + o(0) )

u(b) [19((1) /0 h(z) 4 00) /0 B = s — W)T_“)S] 2b — q)r! (m 9>M |

a

(3.60)

IN

2. If u is decreasing

u(b) [M {1(0;q,7) + J(0;q4,7)} +

ser@+U<E%éT®+Fi@$®>

u(a) {(19(@) + (b)) /0 h(2)ds — O . G)T 2b — a)rt! (m Q)H |

IA

1
Corollary 3.4.13 By taking ¢ = 0 and v = — in (3.61]),we obtain the in-
<

equality

1 . . B . .
= [M {1(0;0,7) + J(0;0,r)} + e (I(1;0,7) + J(1; O,T)}]

< T(r) (H_d(a) + H, ()
< [wm) +9(b)) /0 h(z)dz — 2= } 2(b—a) (m 9) . (3.62)

3 a a
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In particular if h(z) = 2,5 =0 then

1 a+b

()

I'(r) (H)_9(a) + HL,0(b)) (3.63)
(b—a) (m g)’”‘l d(a) +9(b)

IN

IA

a a 2

Corollary 3.4.14 If we put v = v = 1,r = 1 in (3.60), we get under the

assumptions of Theorem (2.3),the inequality

: .
TORUCUDER)

< T(g+1) (I 9(a) + T 9(D)) (3.64)

= [0 [ 1)+ 00 [ wierae -5 L,

MA{I1(0;q,1) + J(0;¢, 1)} + ——~

IA

_ q+1 .
umme]@wﬂ)zjmwﬂ)zgﬂ_@_ﬁ]uwﬂ):(b_ayu( a +b a)

q+1 g+1 q+2
b b—a
dJ(1:g1) = (b—a) [ —— — .
and J(tig1) = (0= (- 220

Remark 3.4.15 If 5 = 0,h(z) = z,q — 0, then from above inequality, we get

Hadamard’s inequality

9 (“;b) < bia /abﬁ(g)dg < Ha) +9() (3.65)
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Conclusion and Perspectives

3.5 Conclusion

This research introduces a generalized fractional integral operator that uses
a logarithmic kernel and includes two parameters along with two non-
negative locally integrable functions. The study applies this generalized
integrals specifically to a type of function called h-convex and strongly
h-comvex functions. For these functions, the work proves new fractional
integral inequalities.

Key results include finding estimates and bounds for integral transform
of functions, providing examples. It also establishes integral inequalities
that connect the generalized operator to the classical Riemann-Liouville
fractional integrals. Furthermore, the research extends the well-known
Hermite-Hadamard inequality to work with h-convex functions within the
fractional calculus setting.

This work is important because it successfully combines the concept
of h-convexity with fractional calculus tools. It creates a bridge between
newer fractional integral inequalities and traditional classical inequalities.

The generalized operator and the proven results offer a foundation for fur-
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ther research. Future possibilities,applying the techniques to other types of
convex functions or different fractional operators like Caputo or Hadamard,
using it for solving fractional equations numerically, extending it to multi-
ple variables, applying it in physics or engineering problems, and finding
even sharper versions of the inequalities. This research opens new paths

for exploration in mathematical analysis.
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