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Abstract

In this study, we focus on proving and developing fractional integral inequalities for

h-convex functions and functions whose absolute value of derivatives exhibits h-strong

convexity. These concepts extend classical integral inequalities to fractional orders.

By leveraging the properties of h-convexity within the fractional integral framework,

we establish new inequalities related to the Hermite-Hadamard type. Additionally, we

derive estimates and bounds for integral transforms and provide bounds for the left and

right sides of Riemann-Liouville integrals. These findings contribute to broadening the

theoretical applications of both classical and fractional integrals across various types.
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Résumé

Dans cette étude, nous nous concentrons sur la démonstration et le développement

de certaines inégalités intégrales fractionnaires pour les fonctions h-convexes et les fonc-

tions dont les dérivées en valeur absolue présentent une proprieté de h-convexité forte.

Ces concepts étendent les inégalités intégrales classiques aux ordres fractionnaires. En

exploitant les proprietés de la h-convexité dans le cadre des intégrales fractionnaires,

nous établissons de nouvelles inǵalités intégrales liées au type Hermite-Hadamard in-

equality.
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Introduction

Fractional calculus,is an extension of classical calculus that deals with non-integer in-

tegrals and derivatives, has developed as a valuable tool for mathematical modeling in

a variety of scientific and engineering fields. When it comes to explaining phenomena

with memory effects, anomalous diffusion, and complex dynamics, traditional integer-

order calculus frequently falls short. Fractional integration, which has applications

in physics, engineering, signal processing, and artificial intelligence, offers the flexibil-

ity required to capture these complex processes by generalizing the idea of integration.

The genesis of fractional calculus can be traced back to the 17th century with Leibniz’s

inquiry into the meaning of fractional order derivatives. This initial curiosity spurred

the interest of mathematicians like Fourier and Laplace, who explored its applications

in areas such as heat transfer and wave phenomena. The 19th century witnessed the

formal development of fractional integration by Riemann and Liouville, laying the

groundwork for understanding systems with inherent memory. Later, Hadamard intro-

duced alternative definitions using logarithmic transformations, proving valuable for

analyzing irregular or delayed behaviors. Recent advancements have further expanded

the applicability of fractional calculus, leading to the development of new forms of

fractional integrals like the Caputo derivative (suited for differential equations with

well-defined initial conditions), integrals with generalized kernels (enhancing model ac-
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curacy), and integrals in functional spaces (broadening the theoretical scope). These

developments have solidified fractional calculus as a crucial component of modern sci-

ence and engineering. A significant area within fractional calculus is the study of

fractional integral inequalities. These inequalities play a vital role in establishing the

existence and uniqueness of solutions to differential and integral equations, as well as

in analyzing their stability and optimization properties. Research in this domain often

focuses on inequalities involving specific classes of functions, such as h-convex func-

tions, which possess unique mathematical characteristics. A fundamental inequality in

this context is the Hermite-Hadamard (H-H) inequality, providing valuable approxima-

tions for convex functions and finding widespread use in optimization and numerical

analysis. This study aims to contribute to the existing body of knowledge by exploring

new inequalities and expanding classical results within this framework.

The work is organized into three distinct chapters, each addressing specific aspects

of these investigations.

Chapter one lays the foundation by presenting definitions and fundamental concepts

related to convexity, classical integral inequalities (including Hôlder’s inequality and

Minkowski’s inequality), and the basic principles of fractional calculus. This chapter

serves as a necessary introduction for the subsequent analyses.

In chapter two,We present fractional integrals functions which generalizes than of

Riemann-Liouville fractional integrals, characterized by two parameters, and two non-

negative locally integrable functions. This study leads to establish some fractional inte-

gral inequalities via the class of h-convex.As consequence, some estimates and bounds

for some functions are obtained, also bounds for left hand side and right of Riemann-

Liouville integrals, which lead to the well-known Hermite-Hadamard inequality. This

was the subject of a publication that appeared in the journal
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” Nonlinear Functional Analysis and Applications” Vol.30, No.2 (2025), pp.

420-446 ISSN: 1229-1595(print), 2466-0973(online).

https://doi.org/10.22771/nfaa.2020.25.00.00

http://nfaa.kyungnam.ac.kr/journal-nfaa.

Chapter three presents the concept of strongly h-convex functions and investigates

some of their properties.We apply the same integral functions to this class of func-

tions.This was the subject of a publication that appeared in the journal :Arabian

journal of Mathematics

Arab. J. Math. https://doi.org/10.1007/s40065-025-00556-6.

In summary, this thesis underscores the theoretical and practical significance of

fractional integration as a powerful analytical approach with far-reaching applications

across diverse scientific domains. By concentrating its efforts on exploring fractional

integral inequalities in conjunction with convex functions, this research aims to generate

meaningful contributions to ongoing advancements in the field, offering both theoretical

insights and potential applications in allied disciplines.

In conclusion,we find a fairly recent and detailed bibliography.
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Chapter 1

PRELIMINARY CONCEPTS

1.1 Definitions

Convex functions have been the object of attention in recent decades and the original

notion has been extended and generalized in various directions, such functions are

important in many parts of analysis and geometry and their properties have been

studied in detail. Readers interested can consult , where a panorama, practically

complete, of these branches is presented.

1.1.1 Some type of Convexities

• Convexity

Definition 1.1.1 A function ϕ : [α, β] → (−∞,+∞) is said to be a convex

function if it satisfies the following inequality

ϕ(τξ + (1− τ)ζ) ≤ τϕ(ξ) + (1− τ)ϕ(ζ),∀ζ, ξ ∈ [α, β].

12



where 0 ≤ τ ≤ 1.

• P -convex

Definition 1.1.2 Let I an interval in R, we say that a function ψ : I → R is

of P type, or that ψ belongs to the class P (I), if ψ is nonnegative and for all

a, b ∈ I and ρ ∈ [0, 1] we have:

ψ(ρa+ (1− ρ)b) ≤ ψ(a) + ψ(b). (1.1)

• J- convex

Definition 1.1.3 Let I an interval in R, we say that a function ψ : I → R

is Jensen-convex or(mid-convex) function or shortly (J-convex), that is function

satisfying the condition:

∀a, b ∈ I, ψ
(
a+ b

2

)
≤ ψ(a) + ψ(b)

2
. (1.2)

• s-convex

Two definitions of s-convexity (0 < s < 1) of real-valued functions are known

in the literature.It is proved among others that s-convexity in the second sense

is essentially stronger than the s-convexity in the first, original, sense whenever

0 < s < 1.

Definition 1.1.4 A function f : R+ → R, where R+ = [0,+∞), is said to be

s-convex in the first sense if the function satisfying the condition:

ψ(αa+ ρb) ≤ αsψ(a) + ρsψ(b). (1.3)

13



for all a, b ∈ [0,∞) and all α, ρ > 0 with αs + ρs = 1. This class of functions is

denoted by K1
s -functions, was introduced by Orlicz (1961) .

Definition 1.1.5 A function ψ : R+ → R, where R+ = [0,+∞), is said to be

s-convex in the second sense if the function satisfying the condition:

ψ(αa+ ρb) ≤ αsψ(a) + ρsψ(b). (1.4)

for all a, b ∈ [0,∞) and all α, ρ > 0 with α + ρ = 1. This class of functions is

denoted by K2
s -functions.

Remark 1.1.6 – Of course, both s-convexities mean just the convexity when

s = 1.

– For more information on the classes K1
s and K2

s see [4].

• Strongly convex function

Definition 1.1.7 [26]. Let I be an interval in R. We say that a function ψ :

I → R is strongly convex with modulus w > 0 if ψ is nonnegative and for all

x, y ∈ I and ρ ∈ (0, 1), we have:

ψ(ρx+ (1− ρ)y) ≤ ρψ(x) + (1− ρ)ψ(y)− wρ(1− ρ)(x− y)2. (1.5)

Strongly convex functions have been introduced by Polyak [26]. They have useful

properties in optimization theory. For instance, if ψ is strongly convex, then it is

bounded from below, its level sets {x ∈ I : ψ(x) ≤ λ} are bounded for each λ and

ψ has a unique minimum on every closed subinterval of I (cf. [28], p. 268). Since

14



strong convexity is a strengthening of the notion of convexity, some properties of

strongly convex functions are just stronger versions of known properties of convex

functions.

A function ψ : I → R is said to be strongly convex with modulus w if and only

if the function g : I → R defined by g(x) = ψ(x)− wx2 is convex.

For a twice differentiable function ψ is strongly convex with modulus w, we have

ψ”(x) ≥ 2w.

• h-Convex function

Definition 1.1.8 [35]. Let I be an interval in R and h : [0, 1] ⊂ J → (0,∞) be

a given function. A function ψ : I → R is called h- convex if for all x, y ∈ I and

ρ ∈ [0, 1]

ψ(ρx+ (1− ρ)y) ≤ h(ρ)ψ(x) + h((1− ρ))ψ(y). (1.6)

holds. If (1.6) is reversed,then ψ is said h-concave.

This notion was introduced by S.Varosanec and generalizes the classes of non-

negative convex functions, s− convex functions (in the second sence), Godunova-

Levin functions and P−functions, which are obtained by taking in (1.6) h(t) =

t, h(t) = ts(s ∈ (0.1)), h(t) = 1/t and h(t) = 1, respectively.

• Strongly h-convex

Definition 1.1.9 Let I be an interval in R and h : [0, 1] → (0,∞) be a given

function.A function ψ : I → R is said strongly h-convex function with modulus

15



w > 0, if

ψ(ρc+ (1− ρ)d) ≤ h(ρ)ψ(c) + h(1− ρ)ψ(d)− wρ(1− ρ)(d− c)2. (1.7)

1.2 Some Fundamental Integral Inequalities

Definition 1.2.1 [29]. For 1 ≤ p ≤ ∞,−∞ ≤ δ < ∆ ≤ ∞. We denote by Lp :=

Lp([δ,∆]), the set of all Lebesgue measurable functions ϑ, real valued for which

∫ ∆

δ

|ϑ(ξ)|p dξ <∞.

If p =∞, L∞([δ,∆]) is defined as the set of all essentially bounded functions for which

ess sup |ϑ(ξ)| := inf{M > 0 : meas({ξ : ϑ(ξ) ≥M}) = 0} <∞,

where esssup |ϑ(x)| is an essential supremum of the function |ϑ(x)|.

Theorem 1.2.2 [29]. For 1 ≤ p ≤ ∞, the spaces Lp(.) are Banach spaces (complete

normed spaces) under the norms:

‖ϑ‖θ =

(∫ ∆

δ

|ϑ(ξ)|θ dξ
) 1

θ

<∞,

‖ϑ‖∞ = ess sup |ϑ(ξ)| <∞.

16



1.2.1 Hôlder’s Inequality

The Hôlder’s1inequality and its corollaries in the theory of Lebesgue spaces Lp are

fundamental inequalities.

Definition 1.2.3 [29](Hôlder conjugates ). Let 1 ≤ p, q ≤ ∞ are said Hôlder conju-

gates if
1

p
+

1

q
= 1. In particular p = 2 is its conjugate,( 1 and ∞ ) are conjugates

.

Lemma 1.2.4 ( Young’s Inequality). Let p, q ≥ 1, with 1
p

+ 1
q

= 1, then

∀a, b ≥ 0, ab ≤ ap

p
+
bq

q
. (1.8)

proof: The function exp : t → et is convex ( R → R). Thus for all t, s ∈ R

and α ∈ [0, 1]

e(αt+(1−α)s) ≤ αet + (1− α)es.

Let a, b > 0. Take α = 1
p

(1 − α = 1
q
,) t = p ln(a) and s = q ln(b). we get

inequality (1.8).

Theorem 1.2.5 [29](Riesz-Hölder’s inequality for integrals). Let Ω be a

measurable set and 1 ≤ p, q <∞ be such that 1/p+1/q = 1. If f ∈ Lp(Ω), g ∈

Lq(Ω), then

‖fg‖L1(Ω) :=

∫
Ω

∣∣fg∣∣dx ≤ ∥∥f∥∥
Lp(Ω)

∥∥g∥∥
Lq(Ω)

, (1.9)

and fg ∈ L1(Ω).

Idea of proof. If either ‖f‖Lp = 0 or ‖g‖Lp = 0, the result is trivial so we

assume these two quantities ‖f‖Lp(Ω), ‖g‖Lq(Ω) are both finite and non-zero.

1Otto Hôlder, 1859-1937, born in Stuttgart, active in Guttingen and Tbingen. He gave important
contributions.
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Si 1 ≤ p, q <∞, we apply lemma 1.2.4 with

a =

∣∣f(x)
∣∣∥∥f∥∥

Lp(Ω)

, and b =

∣∣g(x)
∣∣∥∥g∥∥

Lq(Ω)

,

For the complete proof see [17].

Remark 1.2.6 • If ‖f‖Lp(Ω) or ‖g‖Lq(Ω) is infinite,or equal to zero, in-

equality (1.9) is trivial.

• A very special case. If p = 2, then q = 2 and the Hôlder’s inequality

(1.9) leads to

‖fg‖L1(Ω) :=

∫
Ω

∣∣fg∣∣dx ≤ ∥∥f∥∥
L2(Ω)

∥∥g∥∥
L2(Ω)

, (1.10)

known as the Cauchy-Schwarz2 inequality. It is a particular case of

the Cauchy-Schwarz for semi-inner product spaces.

1.2.2 Minkowski’s Inequality.

Theorem 1.2.7 [29](Inequality of Riesz-Minkowski for integrals). Let Ω

be a measurable set, and let 1 ≤ p ≤ ∞, f ∈ Lp(Ω) et g ∈ Lp(Ω). Then

∥∥f + g
∥∥
Lp(Ω)

≤
∥∥f∥∥

Lp(Ω)
+
∥∥g∥∥

Lp(Ω)
. (1.11)

2Cauchy (1821) first proved the inequality (Cauchy’s inequality) for square summable sequences.
This inequality was generalized to integrals by A. Schwarz (1885). Also known as the Cauchy-
Bunyakovsky inequality (1859). 0tto Holder (1989) extended Cauchy’s inequality for the general
values of p and q by establishing,for sequences (an) and (bn). The latter inequality is then generalized
to the case of integrals by F. Riesz (1910).

18



∥∥f + g
∥∥
L∞(Ω)

≤
∥∥f∥∥

L∞(Ω)
+
∥∥g∥∥

L∞(Ω)
. (1.12)

Equality holds if Af = Bg µ− a.e. for A and B of the same sign and not

simultaneously zero.

Minkovski’s3 inequality is the triangle inequality for the spaces Lp(Ω).

Idea of the proof. 1) If p = 1:

∥∥f + g
∥∥
L1(Ω)

=

∫
Ω

∣∣f + g
∣∣dx ≤ ∫

Ω

∣∣f ∣∣dx+

∫
Ω

∣∣g∣∣dx =
∥∥f∥∥

L1(Ω)
+
∥∥g∥∥L1(Ω)

.

2) If 1 < p <∞

∫
Ω

∣∣f + g
∣∣pdx =

∫
Ω

∣∣f + g
∣∣∣∣f + g

∣∣p−1
dx

≤
∫

Ω

∣∣f ∣∣∣∣f + g
∣∣p−1

dx+

∫
Ω

∣∣g∣∣∣∣f + g
∣∣p−1

dx.

We apply Hölder’s inequality:Note that 1
p

+ 1
q

= 1, and q = p
p−1

.

1.3 Some Concepts in Fractional Calculus

1.3.1 Some special functions

Gamma and Beta functions.

In 1783, Leonhard Euler made his first comments on fractional order deriva-

tive. He worked on progressions of numbers and introduced first time the

3the inequality in Theorem 1.2.7. was first proved for finite sums of numbers by a German math-
ematician Hermann Minkowski (1896) and then generalized to the case of integrals of functions by F.
Riesz (1910).
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generalization of factorials to Gamma function. This function is general-

ization of a factorial in the following form:

Γ(n) = (n− 1)!.

All through the work we utilize the functions Γ(z) (see [27, 29]).

Definition 1.3.1 [29] The Euler-Gamma function is defined as

Γ(τ) =

∫ ∞
0

µτ−1e−µdµ, (1.13)

where τ > 0.

The Beta function, or the first order Euler function, is defined as:

Definition 1.3.2 [29]. Let a, b ∈ R be such that a > 0 and b > 0, which

guarantee the existence of the integral. We define the Beta function,

denoted by B(a, b), from the following integral

B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt. (1.14)

the beta-function is connected with the Gamma-function by the relation

Proposition 1.3.3 [29] Let a; b ∈ R such that a, b > 0. Then

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
.

20



1.3.2 Fractional Integrals

The Riemann-Liouville-fractional integrals [29] of f ∈ L1 := L1(δ,∆), δ,∆ ∈ R

having an order ν ∈ R, ν > 0) are defined as follows

(Jνδ+f)(ξ) =
1

Γ(ν)

∫ ξ

δ

(ξ − µ)ν−1f(µ)dµ, ξ > δ

(Jν∆−f)(ξ) =
1

Γ(ν)

∫ ξ

∆

(µ− ξ)ν−1f(µ)dµ, ξ < ∆.

Remark 1.3.4 • The integrals Jν∆−f, J
ν
δ+f are defined for functions f ∈

L1 := L1(δ,∆), existing almost everywhere.

Theorem 1.3.5 [29](theorem 2.6 p 48). The Riemann-Liouville-fractional

integrals functions are bounded in Lp([δ,∆]), p ≥ 1 i.e. the following esti-

mates

‖Jνδ+f‖Lp(δ,∆) ≤ Crl‖f‖Lp([δ,∆]), (1.15)

‖Jν∆−f‖Lp([δ,∆]) ≤ Crl‖f‖Lp([δ,∆]), (1.16)

hold with the constant Crl = (∆−δ)ν
|Γ(ν+1)| .

The inequalities (1.15) and (1.16) may be verified by simple operations

using the generalized Minkowski’s inequality.

Theorem 1.3.6 [29] . For any f ∈ C([a, b],R) for α, β > 0. The Riemann-

Liouville fractional integral satisfies the property

JαJβf(t) = JβJαf(t) = Jα+βf(t),

21



this result is called the semi-group property of fractional integration.

1.4 Convexity and Fractional Inequalities

The following lemma [15] allows us to prove Theorem 1.4.3.

Lemma 1.4.1 Let f : I ⊂ R → R be differentiable function on I◦ where

δ,∆ ∈ I with δ < ∆. If f ′ ∈ L1[δ,∆, the following equality holds:

f(δ) + f(∆)

2
− 1

∆− δ

∫ ∆

δ

f(x)dx =
∆− δ

2

∫ 1

0

(1− 2t)f ′(tδ + (1− t)∆)dt. (1.17)

Proof 1.4.2 We set

J =
∆− δ

2

∫ 1

0

(1− 2t)f ′(tδ + (1− t)∆)dt.

By applying integration by parts, we get:

J =
∆− δ

2

[
(1− 2t)

f(tδ + (1− t)∆)

δ −∆
|01 + 2

∫ 1

0

f(tδ + (1− t)∆)

δ −∆
dt

]
=

∆− δ
2

[
f(δ) + f(∆)

∆− δ
+ 2

∫ 1

0

f(tδ + (1− t)∆)

δ −∆
dt

]
=

f(δ) + f(∆)

2
+ (∆− δ)

∫ 1

0

f(tδ + (1− t)∆)

δ −∆
dt

Using the change of the variable x = tδ + (1− t)∆, we get:

J =
f(δ) + f(∆)

2
+ (∆− δ)

∫ δ

∆

f(x)

(δ −∆)2
dx

=
f(δ) + f(∆)

2
− 1

∆− δ

∫ ∆

δ

f(x)dx.
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So, we get

f(δ) + f(∆)

2
− 1

∆− δ

∫ ∆

δ

f(x)dx =
∆− δ

2

∫ 1

0

(1− 2t)f ′(tδ + (1− t)∆)dt.

The following inequalities of the Hermite-Hadamard type were established

for the above convex function.

Theorem 1.4.3 Let f : [a, b]→ R be differentiable function on [a, b]. If |f ′| is

convex on [a, b]. Then

∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣ ≤ (b− a)(|f ′(a)|+ |f ′(b)|)
8

. (1.18)

Proof 1.4.4 By using (1.17), we have:

∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣ =

∣∣∣∣b− a2

∫ 1

0

(1− 2t)f ′(ta+ (1− t)b)dt
∣∣∣∣

≤ b− a
2

∫ 1

0

|1− 2t||f ′(ta+ (1− t)b)|dt

≤ b− a
2

∫ 1

0

|1− 2t| [t|f ′(a)|+ (1− t)|f ′(b)|] dt

≤ b− a
2

[∫ 1

0

|1− 2t|t|f ′(a)|dt+

∫ 1

0

|1− 2t|(1− t)|f ′(b)|dt
]

≤ b− a
2

[∫ 1
2

0

(1− 2t)t|f ′(a)|dt+

∫ 1

1
2

(2t− 1)t|f ′(a)|dt

]

+
b− a

2
[

∫ 1
2

0

(1− 2t)(1− t)|f ′(b)|dt

+

∫ 1

1
2

(2t− 1)(1− t)|f ′(b)|dt]

≤ b− a
2

[
1

4
|f ′(a)|+ 1

4
|f ′(b)|

]
≤ b− a

8
[|f ′(a)|+ |f ′(b)|] .
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One of the most important inequalities for convex functions, is the fa-

mous Hermite-Hadamard inequality: published by Hermite in 1883 and,

independently, by Hadamard in 1893.

Theorem 1.4.5 (Hermite-Hadamard inequality). Let ϕ : U ⊆ R −→ R be a

convex function, then the following inequality holds.

ϕ

(
a+ b

2

)
≤ 1

b− a

∫ b

a

ϕ(τ)dτ ≤ ϕ(a) + ϕ(b)

2
. (1.19)

In [30], Fejer gave the weighted version of the inequalities (1.19),so-called

Hermite-Hadamard-Fejer inequalities, as follow: If ϕ : [a, b] → R is convex

and the function Υ : [a, b] → R is positive and symmetric with respect to

(a+ b)/2, then:

ϕ

(
a+ b

2

)∫ b

a

Υ (t)dt ≤
∫ b

a

Υ (t)ϕ(t)dt ≤ ϕ(a) + ϕ(b)

2

∫ b

a

Υ (t)dt.

Remark 1.4.6 Taking Υ (t) = 1, we get the inequality of Hermite-Hadamard

(1.19).

Inequalities via h-convexity

Other extensions of the Hermite-Hadamard inequality (1.19) are established

related to the h-convexity, we have

1

2h(1/2)
ϕ

(
a+ b

2

)
≤ 1

b− a

∫ b

a

ϕ(τ)dτ ≤ [ϕ(a) + ϕ(b)]

∫ 1

0

h(t)dt. (1.20)

with h(1/2) > 0 and h is Riemann integrable on [0, 1].
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In [30] is given the following interesting integral inequalities of Hermite-

Hadamard type involving Riemann-Liouville fractional integrals.

Theorem 1.4.7 Let α > 0, 0 ≤ a < b and φ : [a, b]→ R be a positive function ,

φ ∈ L1[a, b]. If φ is a convex function on [a, b], then the following inequalities

for fractional integrals hold:

φ

(
a+ b

2

)
≤ Γ(α + 1)

2(b− a)α
[
Jαa+φ(b) + Jαb−φ(a)

]
≤ φ(a) + φ(b)

2
. (1.21)

Theorem 1.4.8 Let α > 0, 0 ≤ a < b and φ : [a, b]→ R be a positive function ,

φ, h ∈ L1[a, b]. Assume that h is superadditive on [a, b]. If φ is an h- convex

function on [a, b], then

Γ(α)

(b− a)α
[
Jαa+φ(b) + Jαb−φ(a)

]
≤ h(1)(φ(a) + φ(b))

α
. (1.22)
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Chapter 2

ESTIMATES FOR FRACTIONAL

INTEGRALS OF

RIEMANN-LIOUVILLE TYPE

USING A CLASS OF

FUNCTIONS

2.1 Introduction

Due the wide application of inequalities,integral inequalities for example in

the study of existence and the uniqueness of the solutions of differential

equations,integral equations,in optimization problems where the objective

function is convex or h-convex and the constraints are given by fractional

integral inequalities.It is natural to study integral inequalities involving frac-
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tional calculus.

Fractional calculus generalizes derivative and integral operations to non-

integer orders, providing a more flexible approach to modeling complex

phenomena.

In recent years, fractal and Fractional Problems in Mathematics, es-

pecially fractional integral inequalities involving h-convex functions have

garnered significant attention due to their broad applications across opti-

mization, differential equations, signal processing, and related areas. Re-

searchers have explored various inequalities to establish connections with

existing theories and uncover new insights. Notable works such as [8, 32,

37, 31, 20, 38] have utilized Riemann-Liouville and Hadamard [22, 10, 12]

integrals and their generalizations.

Almeida, Ricardo, et al. (2020) [1] investigated fractional integral in-

equalities for h-convex functions, providing applications to differential equa-

tions and integral equations.

Pachpatte, B. G. (2021) [25] contributed to understanding these in-

equalities by deriving explicit bounds and highlighting the importance of

h-convexity.

Ahmad, Bashir, and Saleem Ullah (2021) [6] explored Hermite-Hadamard

type inequalities for h-convex functions, demonstrating applications in spe-

cial functions and integral transforms.

These inequalities are powerful tools for analyzing the properties of func-

tions, normed vector spaces, and measure spaces. Their understanding and

application are crucial to many fundamental results and theorems in various
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areas of mathematics.

This work aims to provide a comprehensive understanding of fractional

integral inequalities involving h-convex functions and their significance in

various mathematical domains. It establishes new inequalities, explores

their applications, and contributes to advancing theoretical frameworks.

2.2 Preliminaries

Definition 2.2.1 Let I ⊂ R be an interval and φ : I → R, h : [0, 1] → (0,∞) be

non-negative functions. The function φ is said to be h−convex if

φ(ρc+ (1− ρ)d) ≤ h(ρ)φ(c) + h(1− ρ)φ(d) (2.1)

holds for all c, d ∈ I and ρ ∈ [0, 1].If (2.1) is reversed φ is said h-concave.

Definition 2.2.2 Let I ⊂ R be an interval and φ : I → R, h : [0, 1] → (0,∞) be

non-negative functions. The function φ is said to be h− J-convex if

φ

(
c+ d

2

)
≤ h

(
1

2

)
[φ(c) + φ(d)]. (2.2)

Remark 2.2.3 The class of convex functions is a special case of h-convex

functions, where h(t) = t for all t. Similarly, the class of concave func-

tions is a special case of h-concave functions with h(t) = −t. By choosing

different functions for h, one can obtain various subclasses of h. The

s-convex functions (in the second sence), Godunova-Levin functions and

P−functions, which are obtained by taking in (2.1) h(t) = ts(s ∈ (0.1)), h(t) =
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1/t and h(t) = 1, respectively [16, 37, 35, 38].

Example 2.2.4 A special case of h− convex function h(t) =
√
t√

1−t , t ∈ (0, 1)

φ(tc+ (1− t)d) ≤
√
t√

1− t
φ(c) +

√
1− t√
t

φ(d) (2.3)

for t = 1
2
, we get the h− J-convexity.

Our objective in this work is to establish some estimates for a more gen-

eral fractional integral than the Riemann-Liouville fractional integral using

the h-convexity property of functions (see Theorem 2.3.6.and 2.3.19.) as well

as of absolute values of ordinary derivative (see Theorem 2.3.12.).

2.3 Main results

Definition 2.3.1 Let 0 < δ < ∆ < ∞, 1 ≤ p < ∞, µ > 0, ν > 1. Let Fµ,ν
u,ω be the

integral operator defined from Lp([δ,∆]) to Lp([δ,∆]) as follows

Fµ,ν
u,ω;δ+φ(s) =

ω(s)

Γ(µ)

∫ s

δ

(s− t)µ−1
[
ln
s

t

]ν−1

φ(t)u(t)dt, (2.4)

and

Fµ,ν
u,ω;∆−φ(s) =

ω(s)

Γ(µ)

∫ ∆

s

(t− s)µ−1

[
ln
t

s

]ν−1

φ(t)u(t)dt. (2.5)

Where u, ω are bounded,locally integrable and non-negative functions. Pro-

vided the integrals exist. We set F0,1
1,1;δ+φ = F0,1

1,1;∆−φ = φ.
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Remark 2.3.2 • If ν = 1, ω(s) = u(s) = 1, then the ntegrals Fµ,1
1,1 = Jµ

coincides with the classical Riemann-Liouville fractional integrals.

• For µ > 0, ν > 1, necessary and sufficient conditions for the bounded-

ness of the integrals Fµ,ν
u,ωf on Lp(0,∞),are found (see [17],Theorem

3.1 ).

• It follows from definition 2.3.1 that Fµ,ν
u,ω;.φ(x) = ω(x)Fµ,ν

u,1;.φ(x).

Theorem 2.3.3 Let 0 < δ < ∆ < ∞, µ > 0, ν > 1. The integrals Fµ,ν
u,ω,δ+φ and

Fµ,ν
u,ω,∆−φ are well defined.

• If ω, u ∈ L∞([δ,∆]), φ ∈ L1([δ,∆]) then the integral functions are bounded

from L1([δ,∆]) on L1([δ,∆]).

• If ω, u ∈ L∞([δ,∆]), φ ∈ L∞([δ,∆]) then the integral functions are bounded

on L∞().

• If ω ∈ L∞([δ,∆]), φu ∈ L1([δ,∆]) then the integral functions are bounded

from L1,u([δ,∆]) on L1([δ,∆]).

• If ω ∈ Lq([δ,∆]),Fµ,ν
u,1;∆−φ ∈ Lp([δ,∆]) and p, q are conjugates, then the

integral functions are bounded from L1,u([δ,∆]) on L1([δ,∆]).

Proof 2.3.4 We prove the item 1.

Let ϕ ∈ L1([δ,∆]), and u, ω essentially bounded on [δ,∆]. We have

|u| ≤ ‖u‖∞, |ω| ≤ ‖ω‖∞.
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We estimate,‖Fµ,ν
u,ω,.φ‖. Hence

∣∣Fµ,ν
u,ω;δ+φ(s)

∣∣ ≤ ∣∣∣∣∣ω(s)

Γ(µ)

∫ s

δ

(s− t)µ−1

[
ln

∆

δ

]ν−1

φ(t)u(t)dt

∣∣∣∣∣
≤ ‖ω‖∞‖u‖∞

[
ln

∆

δ

]ν−1

|Jµδ+φ(s)|.

It follows ( see 1.15,and 1.16) that

‖Fµ,ν
u,ω;δ+φ‖1 ≤ ‖ω‖∞‖u‖∞

[
ln

∆

δ

]ν−1

Crl‖φ‖1.

The rest is similar.

Remark 2.3.5 The conditon on u, ω to be bounded is sufficient not neces-

sary.

Theorem 2.3.6 Let µ1, µ2 ≥ 1 and ν1, ν2 ≥ 1.Let φ : [δ; ∆] → R be a non-

negative h-convex function, where h is Lebesgue integrable on (0, 1). As-

sume that u is non-decreasing on [δ, s] and non-increasing on [s,∆], for

s ∈ (δ,∆). Then the following inequality

1

u(s)ω(s)

Γ(µ1)Fµ1,ν1

u,ω;δ+φ(s)(
ln
s

δ

)ν1−1 +
Γ(µ2)Fµ2,ν2

u,ω;∆−φ(s)(
ln

∆

s

)ν2−1


≤ φ(s) [(s− δ)µ1 + (∆− s)µ2 ]

∫ 1

0

h(1− z)dz

+ (φ(δ)(s− δ)µ1 + φ(∆)(∆− s)µ2)

∫ 1

0

h(z)dz (2.6)

holds.
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Proof 2.3.7 Let s ∈ (δ,∆). Firstly, let us examine the function φ on the

interval [δ, s]. Therefore, for all t ∈ [δ, s], the following inequality

u(t)
[
ln
s

t

]ν1−1

(s− t)µ1−1 ≤ u(s)
[
ln
s

δ

]ν1−1

(s− δ)µ1−1 (2.7)

holds.Due to the h-convexity of φ, we write

φ(t) ≤ h

(
s− t
s− δ

)
φ(δ) + h

(
t− δ
s− δ

)
φ(s). (2.8)

Multiplying (2.7),(2.8) side to side and integrating the result over [δ, s],

we get

∫ s

δ

u(t)
[
ln
s

t

]ν1−1

(s− t)µ1−1 φ(t)dt

≤ u(s)(s− δ)µ1

[
ln
s

δ

]ν1−1
{
φ(s)

∫ 1

0

h(1− z)dz + φ(δ)

∫ 1

0

h(z)dz

}
, (2.9)

that is

Γ(µ1)Fµ1,ν1

u,ω;δ+φ(s) ≤ u(s)ω(s)
[
ln
s

δ

]ν1−1

(s− δ)µ1

×
{
φ(s)

∫ 1

0

h(1− z)dz + φ(δ)

∫ 1

0

h(z)dz

}
, (2.10)

thus

Γ(µ1)Fµ1,ν1

u,ω;δ+φ(s)

u(s)ω(s)
[
ln
s

δ

]ν1−1 ≤ (s− δ)µ1

{
φ(s)

∫ 1

0

h(1− z)dz + φ(δ)

∫ 1

0

h(z)dz

}
. (2.11)
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Now let µ2, ν2 ≥ 1, then for t ∈ [s,∆] the following inequalities

u(t)

[
ln
t

s

]ν2−1

(t− s)µ2−1 ≤ u(s)

[
ln

∆

s

]ν2−1

(∆− s)µ2−1 (2.12)

and

φ(t) ≤ h

(
t− s
∆− s

)
φ(∆) + h

(
∆− t
∆− s

)
φ(s) (2.13)

hold.And we proceed as in the first step.Thus it results that

Γ(µ2)Fµ2,ν2

u,ω;∆−φ(s)

u(s)ω(s)

[
ln

∆

s

]ν2−1 ≤ (∆− s)µ2

{
φ(s)

∫ 1

0

h(1− z)dz + φ(∆)

∫ 1

0

h(z)dz

}
. (2.14)

By adding (2.11) and (2.14), we get (2.6).

Corollary 2.3.8 By setting µ1 = µ2 = µ ≥ 1 and ν1 = ν2 = ν ≥ 1 in (2.6),we

get

Γ(µ)

u(s)ω(s)

Fµ,ν
u,ω;δ+φ(s)(
ln
s

δ

)ν−1 +
Fµ,ν
u,ω;∆−φ(s)(
ln

∆

s

)ν−1


≤ φ(s)[(s− δ)µ + (∆− s)µ]

∫ 1

0

h(1− z)dz

+ (φ(δ)(s− δ)µ + φ(∆)(∆− s)µ)

∫ 1

0

h(z)dz. (2.15)

Corollary 2.3.9 By choosing in (2.15) u = 1, ω = 1, h(x) = x and ν = 1,then

Γ(µ)
(
Jµδ+φ(s) + Jµ∆−φ(s)

)
≤ φ(s)

(s− δ)µ + (∆− s)µ

2
+
φ(δ)(s− δ)µ + φ(∆)(∆− s)µ

2
. (2.16)
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Corollary 2.3.10 If we choose µ = 1 and taking s =
δ + ∆

2
in (2.16) then,we

have

1

∆− δ

∫ ∆

δ

φ(t)dt ≤ 1

2
φ

(
δ + ∆

2

)
+
φ(δ) + φ(∆)

2
. (2.17)

Example 2.3.11 The following example shows the validity of the inequality

established. Let φ : [δ; ∆] → R+, φ(t) = 1 and h(t) = tk, k ≤ 1, t > 0. Let

µ > 1, ν = 2, u = 1, ω = 1. We verify easly that

• φ is h-convex.

Hence from corollary 2.3.8.,we have the estimates

Γ(µ)(F µ,2
1,1;δ+1)(s)

ln
s

δ

≤ (s− δ)µ
{∫ 1

0

(1− z)kdz +

∫ 1

0

zkdz

}
. (2.18)

and

Γ(µ)(F µ,2
1,1;∆−1)(s)

ln
∆

s

≤ (∆− s)µ
{∫ 1

0

(1− z)kdz +

∫ 1

0

zkdz

}
. (2.19)

or

∫ s

δ

(s− t)µ−1 ln
s

t
dt =

(s− δ)µ

µ
ln
s

δ
− 1

µ

∫ s

δ

(s− t)µ t−1dt

≤ 2

k + 1
(s− δ)µ ln

s

δ
, (2.20)

∫ ∆

s

(t− s)µ−1 ln
t

s
dt =

(∆− s)µ

µ
ln

∆

s
− 1

µ

∫ ∆

s

(t− s)µ t−1dt

≤ 2

k + 1
(∆− s)µ ln

∆

s
. (2.21)
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For s =
δ + ∆

2
and k = 1, we get

∫ δ+∆
2

δ

(
δ + ∆

2
− t
)µ−1

ln

(
δ + ∆

2t

)
dt ≤

(
∆− δ

2

)µ
ln
δ + ∆

2δ
(2.22)

and ∫ ∆

δ+∆
2

(
t− δ + ∆

2

)µ−1

ln
2t

δ + ∆
dt ≤

(
∆− δ

2

)µ
ln

2∆

δ + ∆
. (2.23)

Theorem 2.3.12 Let µ1, µ2, ν1, ν2 ≥ 1.Let φ : [δ; ∆] → R be a non-negative

differentiable function.Let u, ω be locally integrable, non-negative func-

tions.Also suppose that u is absolutely continuous, non-decreasing on [δ, s]

and non-increasing on [s,∆], for s ∈ (δ,∆). If |φ′| is h− convex, then

| Γ(α1 + 1)

ω(s)
(

ln
s

δ

)∆1

(
Fµ1,ν1+1
u,ω;δ+ + ν1F

µ1+1,ν1

u/t,ω;δ+ − Fµ1+1,ν1+1
u′,ω;δ+

)
φ(s)

+
Γ(µ2 + 1)

ω(s)

(
ln

∆

s

)ν2

(
Fµ2,ν2+1
u,ω;δ− + ν2F

µ2+1,ν2

u/t,ω;∆− + Fµ2+1,ν2+1
u′,ω;∆−

)
φ(s)

− (φ(δ)u(δ)(s− δ)µ1 + φ(∆)u(∆)(∆− s)µ2) | (2.24)

≤ |φ′(s)|

(
(∆− s)µ2+1

(
ln

∆

s

)∆2

+ (s− δ)µ1+1
(

ln
s

δ

)ν1

)∫ 1

0

h(1− z)dz

+

(
|φ′(∆)|(∆− s)µ2+1

(
ln

∆

s

)ν2

+ |φ′(δ)|(s− δ)µ1+1
(

ln
s

δ

)ν1
)∫ 1

0

h(z)dz

holds.Where u′ is the usual derivative of u and (u/t)(t) denote
u(t)

t
.

Proof 2.3.13 First step:For s ∈ (δ,∆) consider the function φ on the inter-
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val [δ, s]. Hence for µ1, ν1 ≥ 1 and t ∈ [δ, s] the following inequalitiy

[
ln
s

t

]ν1

u(t)(s− t)µ1 ≤
[
ln
s

δ

]ν1

u(s)(s− δ)µ1+1 (2.25)

holds.Due to the h- convexity of |φ′|, it results that for t ∈ [δ, s]

−
(
h

(
s− t
s− δ

)
|φ′(δ)|+ h

(
t− δ
s− δ

)
|φ′(s)|

)
≤ φ′(t) ≤ h

(
s− t
s− δ

)
|φ′(δ)|+ h

(
t− δ
s− δ

)
|φ′(s)|. (2.26)

Multiplying (2.25)and the right side of (2.26) and integrating the result

over [δ, s]. Hence

∫ s

δ

u(t)(s− t)µ1

[
ln
s

t

]ν1

φ′(t)dt (2.27)

≤ u(s)(s− δ)µ1+1
[
ln
s

δ

]ν1

×
(
|φ′(s)|

∫ 1

0

h(1− z)dz + |φ′(δ)|
∫ 1

0

h(z)dz

)
.

By integrating by parts,we obtain

∫ s

δ

u(t) (s− t)µ1

(
ln
s

t

)ν1

φ′(t)dt

= −φ(δ)
(

ln
s

δ

)ν1

u(δ)(s− δ)µ1

−
∫ s

δ

(
ln
s

t

)ν1

u′(t) (s− t)µ1 φ(t)dt

+ µ1

∫ s

δ

(
ln
s

t

)ν1

u(t) (s− t)µ1−1 φ(t)dt

+ ν1

∫ s

δ

(
ln
s

t

)ν1−1 u(t)

t
(s− t)µ1 φ(t)dt
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≤
[
ln
s

δ

]ν1

u(s)(s− δ)µ1+1

×
(
|φ′(s)|

∫ 1

0

h(1− z)dz + |φ′(δ)|
∫ 1

0

h(z)dz

)
. (2.28)

Using definition 2.3.1 and inequality (2.28),it follows that

Γ(µ1 + 1)

ω(s)
(

ln
s

δ

)ν1

(
Fµ1,ν1+1
u,ω;δ+ + ν1F

µ1+1,ν1

u/t,ω;δ+ − Fµ1+1,ν1+1
u′,ω;δ+

)
φ(s) (2.29)

− φ(δ)u(δ)(s− δ)µ1

≤ u(s)(s− δ)µ1+1

(
|φ′(s)|

∫ 1

0

h(1− z)dz + |φ′(δ)|
∫ 1

0

h(z)dz

)
.

By considering the left hand side of (2.26), we deduce a similar inequality

−u(s)(s− δ)µ1+1
[
ln
s

δ

]ν1

×
(
|φ′(s)|

∫ 1

0

h(1− z)dz + |φ′(δ)|
∫ 1

0

h(z)dz

)
≤

∫ s

δ

u(t) (s− t)µ1

[
ln
s

t

]ν1

φ′(t)dt. (2.30)

By combining the resulting inequalitiy and (2.29), we obtain

∣∣∣∣∣∣∣
Γ(µ1 + 1)

ω(s)
(

ln
s

δ

)ν1

(
Fµ1,ν1+1
u,ω;δ+ + ν1F

µ1+1,ν1

u/t,ω;δ+ − Fµ1+1,ν1+1
u′,ω;δ+

)
φ(s)− φ(δ)u(δ)(s− δ)µ1

∣∣∣∣∣∣∣
≤ u(s)(s− δ)µ1+1

(
|φ′(s)|

∫ 1

0

h(1− z)dz + |φ′(δ)|
∫ 1

0

h(z)dz

)
. (2.31)

Last step:Let t ∈ [s,∆], µ2 > 0, ν2 ≥ 0, and taking in acount that |φ′| is

h-convex, thus it follows that

(t− s)µ2

(
ln
t

s

)ν2

≤ (∆− s)µ2

(
ln

∆

s

)ν2

(2.32)
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and

−
(
h

(
∆− t
∆− s

)
|φ′(s)|+ h

(
t− s
∆− s

)
|φ′(∆)|

)
(2.33)

≤ φ′(t) ≤ h

(
∆− t
∆− s

)
|φ′(s)|+ h

(
t− s

∆− x

)
|φ′(∆)|.

The rest is similar to the first step.Consequently

∣∣∣∣∣∣∣∣
Γ(µ2 + 1)

ω(s)

(
ln

∆

s

)ν2

(
Fµ2,ν2+1
u,ω;∆− + ν2F

µ2+1,ν2

u/t,ω;∆− + Fµ2+1,ν2+1
u′,ω;∆−

)
φ(s)− φ(∆)u(∆)(∆− s)µ2

∣∣∣∣∣∣∣∣
≤ u(s)(∆− s)µ2+1

(
|φ′(s)|

∫ 1

0

h(1− z)dz + |f ′(∆)|
∫ 1

0

h(z)dz

)
(2.34)

Via triangular inequality, by adding inequalities (2.31) and (2.34),the re-

quiered inequality holds.

As special cases, we have the following corollaries,

Corollary 2.3.14 By setting µ1 = µ2 = µ, ν1 = ν2 = ν, h(t) = tr, r ∈ (0, 1] in

(2.24) then

|Γ(µ+ 1)

ω(s)u(s)

([
Fµ,ν+1
u,ω;δ+ + νFµ+1,ν

u/t,ω;δ+ − Fµ+1,ν+1
u′,ω;δ+ + Fµ,ν+1

u,ω;∆− + νFµ+1,ν
u/t,ω;∆− + Fµ+1,ν+1

u′,ω;∆−

]
φ
)

(s)

− 1

u(s)

((
(∆− s)µ+1 ln

∆

s

)β
u(∆)φ(∆) + (s− δ)µ+1 ln

(s
δ

)ν
u(δ)φ(δ)

)
|

≤ |φ′(s)|

(
(∆− s)µ+1

(
ln

∆

s

)ν
+ (s− δ)µ+1

(
ln
s

δ

)ν)
r + 1

+ |φ′(∆)|
(∆− s)µ+1

(
ln

∆

s

)ν
r + 1

+ |φ′(δ)|
(s− δ)µ+1

(
ln
s

δ

)ν
r + 1

(2.35)
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holds.

Corollary 2.3.15 If we choose u = 1, v = 1, ν = 0, and r = 1 in (2.35), then

∣∣Γ(µ+ 1)
(
Jµδ+φ(s) + Jµb−φ(s)

)
− ((∆− s)µφ(∆) + (s− δ)µ)φ(δ)

∣∣ (2.36)

≤ |(∆− s)
µ+1 + (s− δ)µ+1

2
φ′(s)|+ (∆− s)µ+1

2
|φ′(∆)|+ (s− δ)µ+1

2
|φ′(δ)|

holds.

Corollary 2.3.16 On letting x =
δ + ∆

2
and µ = 1, in (2.36), then

∣∣∣∣ 1

∆− δ

∫ ∆

δ

f(t)dt− f(∆) + f(δ)

2

∣∣∣∣ (2.37)

≤ (∆− δ)
8

[
2
∣∣f ′(δ + ∆

2

) ∣∣+ |f ′(∆)|+ |f ′(δ)|
]

is valid.

We need the following result

Lemma 2.3.17 Assume that φ : [δ,∆] → R, be h−convex function and φ is

symmetric about
δ + ∆

2
, then

φ

(
δ + ∆

2

)
≤ 2h

(
1

2

)
φ(x) x ∈ [δ,∆]. (2.38)

is valid.

Proof 2.3.18 We have

δ + ∆

2
=

1

2

(
δ
x− δ
∆− δ

+ ∆
∆− x
∆− δ

)
+

1

2

(
∆
x− δ
∆− δ

+ δ
∆− x
∆− δ

)
.
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Hence,

φ

(
δ + ∆

2

)
≤ h

(
1

2

)[
φ

(
δ
x− δ
∆− δ

+ ∆
∆− x
∆− δ

)]
+ h

(
1

2

)[
φ

(
∆
x− δ
∆− δ

+ δ
∆− x
∆− δ

)]
= h

(
1

2

)
φ(δ + ∆− x) + h

(
1

2

)
φ(x)

= 2h

(
1

2

)
φ(x).

Theorem 2.3.19 Let µ1 > 0, µ2 > 0, ν1, ν2 ≥ 1.Let φ : [δ; ∆] → R be a non-

negative h-convex function, where h is Lebesgue integrable on (0, 1). Let

u, ω be integrable and non-negative functions,ω(δ) 6= 0, ω(∆) 6= 0. Also sup-

pose that u is monotonic on [δ,∆], for s ∈ (δ,∆). If φ is symmetric about

δ + ∆

2
. It follows that

1. If u is increasing,then

u(δ)

2h

(
1

2

) [∫ ∆

δ

(t− δ)µ1

(
ln
t

δ

)ν1−1

+ (∆− t)µ2

(
ln

∆

t

)ν2−1

dt

]
φ

(
δ + ∆

2

)

≤
Γ(µ1 + 1)Fµ1+1,ν1

u,ω;∆− φ(δ)

v(δ)
+

Γ(µ2 + 1)Fµ2+1,ν2

u,ω;δ+ φ(∆)

v(∆)

≤ u(∆)

(
(∆− δ)µ1+1

(
ln

∆

δ

)ν1−1

+ (∆− δ)µ2+1

(
ln

∆

δ

)ν2−1
)

× (φ(δ) + φ(∆))

∫ 1

0

h(z)dz (2.39)

holds .
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2. If u is decreasing,then

u(∆)

2h

(
1

2

) [∫ ∆

δ

(t− δ)µ1

(
ln
t

δ

)ν1−1

+ (∆− t)µ2

(
ln

∆

t

)ν2−1

dt

]
φ

(
δ + ∆

2

)

≤
Γ(µ1 + 1)Fµ1+1,ν1

u,ω;∆− φ(δ)

ω(δ)
+

Γ(µ2 + 1)Fµ2+1,ν2

u,ω;δ+ φ(∆)

ω(∆)

≤ u(δ)

(
(∆− δ)µ1+1

(
ln

∆

δ

)ν1−1

+ (∆− δ)µ2+1

(
ln

∆

δ

)ν2−1
)

×
(
φ(δ)

∫ 1

0

h(z) + φ(∆)

∫ 1

0

h(1− z)dz

)
(2.40)

is valid .

Proof 2.3.20 We start by the case u is increasing. For t ∈ [δ,∆], µ1 > 0, ν1 ≥

1, we have

(t− δ)µ1

(
ln
t

δ

)ν1−1

u(t) ≤ (∆− δ)µ1

(
ln

∆

δ

)ν1−1

u(∆) (2.41)

and

φ(t) ≤ h

(
t− δ
∆− δ

)
φ(δ) + h

(
∆− t
∆− δ

)
φ(∆). (2.42)

Multiplying inequalities (2.41),(2.42) side to side,and integrating the re-

sult over [δ,∆]. It follows that

∫ ∆

δ

(t− δ)µ1

(
ln
t

δ

)ν1−1

u(t)φ(t)dt ≤ (∆− δ)µ1+1

(
ln

∆

δ

)ν1−1

u(∆)

×
(
φ(δ)

∫ 1

0

h(z) + φ(∆)

∫ 1

0

h(1− z)dz

)
. (2.43)
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From which, we have

Γ(µ1 + 1)Fµ1+1,ν1

u,ω;∆− φ(δ)

ω(δ)
(2.44)

≤ u(∆)(∆− δ)µ1+1

(
ln

∆

δ

)ν1−1(
φ(δ)

∫ 1

0

h(z) + φ(∆)

∫ 1

0

h(1− z)dz

)
.

On the other hand for t ∈ [δ,∆], we have

(∆− t)µ2

(
ln

∆

t

)ν2−1

u(t) ≤ (∆− δ)µ2

(
ln

∆

δ

)ν2−1

u(∆). (2.45)

By multiplying (2.42) and (2.45) and integrating the result over [δ,∆], we

get

Γ(µ2 + 1)Fµ2+1,ν2

u,ω;δ+ φ(∆)

ω(∆)
≤ u(∆)(∆− δ)µ2+1

(
ln

∆

δ

)ν2−1

×
(
φ(δ)

∫ 1

0

h(z) + φ(∆)

∫ 1

0

h(1− z)dz

)
. (2.46)

By adding (2.44) and (2.46),it results that

Γ(µ1 + 1)Fµ1+1,ν1

u,ω;∆− φ(δ)

ω(δ)
+

Γ(µ2 + 1)Fµ2+1,ν2

u,ω;δ+ φ(∆)

ω(∆)

≤ u(∆)

(
(∆− δ)µ1+1

(
ln

∆

δ

)ν1−1

+ (∆− δ)µ2+1

(
ln

∆

δ

)ν2−1
)

× (φ(δ) + φ(∆))

∫ 1

0

h(z)dz. (2.47)

Using Lemma (2.3.17),we have

φ

(
δ + ∆

2

)
u(δ)(t− δ)µ1

(
ln
t

δ

)ν1−1
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≤ 2h

(
1

2

)
φ(t)u(t)(t− δ)µ1

(
ln
t

δ

)ν1−1

, (2.48)

integrating (2.48) over [δ,∆], we get

u(δ)φ

(
δ + ∆

2

)∫ ∆

δ

(t− δ)µ1

(
ln
t

δ

)ν1−1

dt

≤ 2h

(
1

2

)
Γ(µ1 + 1) Fµ1+1,ν1

u,v;∆− φ(δ)

v(δ)
. (2.49)

Similarly,we have

φ

(
δ + ∆

2

)
u(δ)(∆− t)µ2

(
ln

∆

t

)ν2−1

≤ 2h

(
1

2

)
φ(t)u(t)(∆− t)µ2

(
ln

∆

t

)ν2−1

(2.50)

integrating (2.50) with respect to t over [δ,∆], we get

u(δ)φ

(
δ + ∆

2

)∫ ∆

δ

(∆− t)µ2

(
ln

∆

t

)ν2−1

dt

≤ 2h

(
1

2

)
Γ(µ2 + 1)Fµ2+1,ν2

u,v;δ+ φ(∆)

v(∆)
. (2.51)

Adding (2.49) and (2.51), we obtain

u(δ)φ

(
δ + ∆

2

)[∫ ∆

δ

(∆− t)µ2

(
ln

∆

t

)ν2−1

+ (t− δ)µ1

(
ln
t

δ

)ν1−1

dt

]

≤ 2h

(
1

2

)[
Γ(µ1 + 1)Fµ1+1,ν1

u,v;∆− φ(δ)

v(δ)
+

Γ(µ2 + 1)Fµ2+1,ν2

u,v;δ+ φ(∆)

v(∆)

]
, (2.52)
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combining (2.47) and (2.52),we have

u(δ)

2h

(
1

2

) [∫ ∆

δ

(∆− t)µ2

(
ln

∆

t

)ν2−1

+ (t− δ)µ1

(
ln
t

δ

)ν1−1

dt

]
φ

(
∆ + δ

2

)

≤
Γ(µ1 + 1)Fµ1+1,ν1

u,ω;∆− φ(δ)

ω(δ)
+

Γ(µ2 + 1)Fµ2+1,ν2

u,ω;δ+ φ(∆)

ω(∆)

≤ u(∆)

(
(∆− δ)µ1+1

(
ln

∆

δ

)ν1−1

+ (∆− δ)µ2+1

(
ln

∆

δ

)ν2−1
)

× (φ(δ) + φ(∆))

∫ 1

0

h(z)dz.

Similar proof for the case u decreasing.

Corollary 2.3.21 By setting µ1 = µ2 = µ and ν1 = ν2 = ν, we obtain

u(δ)

2h

(
1

2

) [∫ ∆

δ

(∆− t)µ
(

ln
∆

t

)ν−1

+ (t− δ)µ
(

ln
t

δ

)ν−1

dt

]
φ

(
δ + ∆

2

)

≤ Γ(µ+ 1)

(
Fµ+1,ν
u,ω;∆−φ(δ)

ω(δ)
+

Fµ+1,ν
u,ω;δ+φ(∆)

ω(∆)

)
(2.53)

≤ 2u(∆)(∆− δ)µ+1

(
ln

∆

δ

)ν−1

(φ(δ) + φ(∆))

∫ 1

0

h(z)dz.

case u increasing.

Example 2.3.22 The following example illustrates the validity of estimates.

Let φ : [δ; ∆] → R+, φ(t) = 1 and hk(t) = tk, k ≤ 1, t > 0. let µ > 0, ν ≥ 1,

u = 1, ω = 1. We verify that

• φ is hk-convex.

• φ is symmetric about
δ + ∆

2
.
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Hence from corollary 2.3.21,we get the estimates

1

21−k

[∫ ∆

δ

(∆− t)µ
(

ln
∆

t

)ν−1

+ (t− δ)µ
(

ln
t

δ

)ν−1

dt

]
≤ Γ(µ+ 1)

(
Fµ+1,ν

1,1;∆− 1(δ) + Fµ+1,ν
1,1;δ+ 1(∆)

)
≤ 2(∆− δ)µ+1

(
ln

∆

δ

)ν−1(∫ 1

0

zk +

∫ 1

0

(1− z)kdz

)
. (2.54)

Or

1

21−k

∫ ∆

δ

(∆− t)µ
(

ln
∆

t

)ν−1

≤
∫ ∆

δ

(∆− t)µ
(

ln
∆

t

)ν−1

dt ≤ 2(∆− δ)µ+1

k + 1

(
ln

∆

δ

)ν−1

.

and

1

21−k

∫ ∆

δ

(t− δ)µ
(

ln
t

δ

)ν−1

≤
∫ ∆

δ

(t− δ)µ
(

ln
t

δ

)ν−1

dt ≤ 2(∆− δ)µ

k + 1
+

(
ln

∆

δ

)ν−1

.

Take the change of variables t = δ + (∆ − δ)e−x and t = ∆ − (∆ − δ)e−x, we

get

1

21−k

∫ ∞
0

e−(µ+1)x

[
ln

(
1 +

∆− δ
δ

e−x
)]ν−1

dx ≤
∫ ∞

0

e−(µ+1)x

[
ln

(
1 +

∆− δ
δ

e−x
)]ν−1

dx

≤ 2

k + 1

(
ln

∆

δ

)ν−1

,

and

1

21−k

∫ ∞
0

e−(µ+1)x

[
ln

∆ex

∆ ex −∆ + δ

]ν−1

dx ≤
∫ ∞

0

e−(µ+1)x

[
ln

∆ex

∆ ex −∆ + δ

]ν−1

dx
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≤ 2

k + 1

(
ln

∆

δ

)ν−1

.

For ν = 2

1

21−k

∫ ∞
0

e−(µ+1)x ln
δ ex + ∆− δ

δ ex
dx ≤

∫ ∞
0

e−(µ+1)x ln
δ ex + ∆− δ

δ ex
dx ≤ 2

k + 1
ln

∆

δ
,

and

1

21−k

∫ ∞
0

e−(µ+1)x ln
∆ex

∆ ex −∆ + δ
dx ≤

∫ ∞
0

e−(µ+1)x ln
∆ex

∆ ex −∆ + δ
dx ≤ 2

k + 1
ln

∆

δ
.

Taking k = 1, we get

F (λ) :=

∫ ∞
0

e−λx ln
δ ex + ∆− δ

δ ex
dx ≤ ln

∆

δ
(λ > 0),

and

G(λ) :=

∫ ∞
0

e−λx ln
∆ex

∆ ex −∆ + δ
dx ≤ ln

∆

δ
(λ > 0).

The functions F,G are the integral transforms of f(x) = δ ex+∆−δ
δ ex

, g(x) =

∆ex

∆ ex−∆+δ
respectivelly.

Corollary 2.3.23 If we choose u = 1, ω = 1, ν = 1 and taking h(x) = x in

(2.53), then the inequality

1

(µ+ 1)
φ

(
δ + ∆

2

)
≤ Γ(µ+ 1)

2(∆− δ)µ+1

(
Jµ+1

∆− φ(δ) + Jµ+1,
δ+ φ(∆)

)
≤ φ(δ) + φ(∆)

2
(2.55)
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holds.

Remark 2.3.24 On letting µ→ 0,in (2.55), we get the inequality of Hermite-

Hadamard

φ

(
∆ + δ

2

)
≤ 1

∆− δ

∫ ∆

δ

φ(t)dt ≤ φ(∆) + φ(δ)

2
. (2.56)
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Chapter 3

SOME INTEGRAL

INEQUAlITIES INVOLVING H-

STRONGLY CONVEX

FONCTIONS AND

APPLICATIONS

3.1 Introduction

In the realm of mathematics, inequalities and integral inequalities serve as

foundational tools that significantly influence a multitude of fields, ranging

from pure mathematics to applied sciences. These mathematical constructs

are not merely theoretical curiosities; they have profound implications in

areas such as optimization, numerical analysis, and even in the study of dif-
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ferential equations. Over the years, a rich body of literature has emerged,

with numerous authors investigating a wide array of inequalities that apply

to both fractional integrals and classical integrals. Notable contributions

can be found in works such as , [17, 31, 15, 30], among others. These

studies highlight the versatility among others. These studies highlight the

versatility and importance of integral inequalities in advancing mathemat-

ical knowledge. One particularly captivating aspect of this area of study

is the relationship between convexity and inequalities. The property of

convexity has attracted considerable interest from mathematicians around

the globe, especially when employed in conjunction with Riemann-Liouville

fractional integrals. Convex functions are characterized by their unique

properties, which often lead to stronger and more insightful inequalities.

As a result, the exploration of convexity has evolved significantly over re-

cent years, with researchers expanding its definitions and generalizations

to encompass a wider variety of functions and contexts. Numerous integral

inequalities have been developed specifically for various categories of convex

functions, reflecting the ongoing fascination with this topic. Works such as

[8, 31, 16, 23, 20, 18, 11, 5, 33, 34] illustrate the breadth of research dedi-

cated to this area. These contributions not only deepen our understanding

of convexity but also enhance our ability to apply these concepts across

different mathematical domains. In this article, we introduce a new per-

spective by considering an alternative type of fractional integral operator,

as discussed in sources like [8] and [17]. This operator generalizes existing

frameworks and opens new avenues for exploration within the context of

strongly h-convex functions. By utilizing this more generic fractional inte-
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gral operator, we aim to establish novel fractional integral inequalities that

contribute to the rich tapestry of mathematical inequality theory. Through

this work, we hope to shed light on the intricate connections between con-

vexity, fractional integrals, and inequalities. Our findings not only enhance

theoretical understanding but also pave the way for future research oppor-

tunities in both pure and applied mathematics.

3.2 Preliminaries

Definition 3.2.1 (Strongly h− convexity)[3]. Let I an interval of R and

h : [0, 1]→ (0,∞) be a given non negative function. A non negative function

ϑ : I → R is said to be strongly h- convex whith modulus β > 0, if

ϑ(λς + (1− λ)υ) ≤ ξ(λ)ϑ(ς) + ξ(1− λ)ϑ(υ)− βλ (λ− 1) (ς − υ)2 (3.1)

holds for all ς, υ ∈ I and λ ∈ (0, 1]. The function ϑ is said to be strongly h−

concave if (3.1) is reversed.

Remark 3.2.2 • For β = 0, we get the notion of h− convex (h− concave

)[35].

• For h(t) = t, (3.2) means that ϕ is strongly convex.

• Any convex function ϑ on a subset B with h(t) ≤ t ( h(t) ≥ t) is

strongly convex (strongly concave).

Example 3.2.3 Let ϑ : [−1, 1] → R defined by ϑ(t) = 2, and h(t) = 1, t ∈ (0, 1)
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Then ϑ is strongly h−convex with modulus β = 1. Indeed,for every t, p ∈

[−1, 1]and λ ∈ (0, 1),we have

ϑ(λp+ (1− λ)t) = 2 ≤ h(λ)ϑ(p) + h(1− λ)ϑ(t)− βλ(1− λ)(p− t)2

= 4− λ(1− λ)(p− t)2.

Different classes of strongly convex functions are obtained by taking in (3.1)

h(ν) = ν, h(ν) = νr(r ∈ (0.1)), h(ν) = 1/ν and h(ν) = 1, (see [35]).

We recall that

Fµ,ν
u,ω;δ+φ(s) =

ω(s)

Γ(µ)

∫ s

δ

(s− t)µ−1
[
ln
s

t

]ν−1

φ(t)u(t)dt, (3.2)

and

Fµ,ν
u,ω;∆−φ(s) =

ω(s)

Γ(µ)

∫ ∆

s

(t− s)µ−1

[
ln
t

s

]ν−1

φ(t)u(t)dt. (3.3)

Where u, ω are bounded,locally integrable and non-negative functions.

Remark 3.2.4 1. If r = 1, v(ς) = u(ς) = 1, ς ∈ (a, b), the operator Fq,1
1,1 = Jq. ,

where Jq. is the Riemann-Liouville integral operator [2].

2. If q = 1, v(ς) = 1, u(ς) =
1

ς
, the operator K1,r

1
ς
,1

coincides with the

classical Hadamard integral operator Hr
. :

Hr
a+ϑ(ς) =

1

Γ(r)

∫ ς

a

(
ln
ς

ν

)r−1

ϑ(ν)
dν

ν
, ς > a (3.4)

and

Hr
b−ϑ(ς) =

1

Γ(r)

∫ b

ς

(
ln
ν

ς

)r−1

ϑ(ν)
dν

ν
ς < b (right). (3.5)
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We need the following result

Lemma 3.2.5 Let ϑ : [a, b]→ R be a strongly h− convex function with mod-

ulus β > 0. If ϑ is symmetric about a+b
2

, then it results that

ϑ

(
a+ b

2

)
≤ 2h

(
1

2

)
ϑ(ς) + β

a+ b− 2ς

4
, ς ∈ [a, b]. (3.6)

Proof 3.2.6 We have

a+ b

2
=

1

2

(
b
ς − a
b− a

+ a
b− ς
b− a

)
+

1

2

(
a
ς − a
b− a

+ b
b− ς
b− a

)
; (3.7)

since ϑ is strongly h- convex, then we have

ϑ

(
a+ b

2

)
= ϑ

(
1

2

[
b
ς − a
b− a

+ a
b− ς
b− a

]
+

1

2

[(
a
ς − a
b− a

+ b
b− ς
b− a

)])
≤ h

(
1

2

)
ϑ(ς) + h

(
1

2

)
ϑ(a+ b− ς) + β

a+ b− 2ς

4

= 2h

(
1

2

)
ϑ(ς) + β

a+ b− 2ς

4
.

3.3 Related results

Theorem 3.3.1 Let q1, q2, r1, r2 ≥ 1, 0 < a < b <∞. Let h be Lebesgue integrable

on (0, 1) and ϑ : [a; b] → R be a non-negative strongly h− convex function

with modulus β > 0. Assum that u is integrable nonnegative function non

decreasing on [a, ς], non increasing on [ς, b] for ς ∈ [a, b] and v a positive
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function. Then

1

v(ς)

(
Γ(r1)Γ(q1)Fq1,r1

u,v;a+ϑ(ς) + Γ(r2)Γ(q2)F q2,r2
u,v;b−ϑ(ς)

)
≤ u(ς)

[
ln
ς

a

]r1−1

(ς − a)q1

×

{
ϑ(ς)

∫ 1

0

h(1− z)dz + ϑ(a)

∫ 1

0

h(z)dz − β (ς − a)2

6

}

+ u(ς)

[
ln
b

ς

]r2−1

(ς − a)q2

×

{
ϑ(ς)

∫ 1

0

h(1− z)dz + ϑ(b)

∫ 1

0

h(z)dz − β (b− ς)2

6

}
(3.8)

holds.

Proof 3.3.2 Firstly let ς ∈ [a, b], then for ν ∈ [a, ς] and q1 ≥ 1, r1 ≥ 1, the

following inequality

(ς − ν)q1−1
(

ln
ς

ν

)r1−1

u(ν) ≤ (ς − a)q1−1
(

ln
ς

a

)r1−1

u(ς) (3.9)

holds. Since ϑ is strongly h- convex on [a, ς] whith modulus β > 0, we have

ϑ(ν) ≤ h

(
ς − ν
ς − a

)
ϑ(a) + h

(
ν − a
ς − a

)
ϑ(ς)− β (ς − ν) (ν − a) , (3.10)

and

∫ ς

a

(ς − ν)q1−1
[
ln
ς

ν

]r1−1

u(ν)ϑ(ν)dν

≤ (ς − a)q1−1
[
ln
ς

a

]r1−1

u(ς)

×
[
ϑ(a)

∫ ς

a

h

(
ς − ν
ς − a

)
dν + ϑ(ς)

∫ ς

a

h

(
ν − a
ς − a

)
dν − β

∫ ς

a

(ς − ν) (ν − a) dν

]
= (ς − a)q1

[
ln
ς

a

]r1−1

u(ς)
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×

{
ϑ(ς)

∫ 1

0

h(1− z)dz + ϑ(a)

∫ 1

0

h(z)dz − β
(ς − a)2

6

}
.

In vertu of the definition (??), it results that

Γ(r1)Γ (q1) Fq1,r1
u,v;a+ϑ(ς) ≤ u(ς)v(ς)

[
ln
ς

a

]r1−1

× (ς − a)q1{
ϑ(ς)

∫ 1

0

h(1− z)dz + ϑ(a)

∫ 1

0

h(z)dz − β (ς − a)2

6

}
. (3.11)

And similarly for ν ∈ [ς, b], ς ∈ (a, b) and q2, r2 ≥ 1 the following inequality

(ν − ς)q2−1

(
ln
ν

ς

)r2−1

u(ν) ≤ (b− ς)q2−1

(
ln
b

ς

)r2−1

u(ς) (3.12)

holds.

Using the fact that ϑ is strongly h− convex on [ς, b], we get

Γ(r2)Γ (q2) Fq2,r2
u,v;b−ϑ(ς) ≤ u(ς)v(ς)

[
ln
b

ς

]r2−1

× (b− ς)q2{
ϑ(ς)

∫ 1

0

h(1− z)dz + ϑ(b)

∫ 1

0

h(z)dz − β (b− ς)2

6

}
. (3.13)

By adding (3.11) and (3.13), we obtain (3.8).

Remark 3.3.3 1.If u is increasing on [a, b], then for all ς ∈ [a, b],we have

1

v(ς)

(
Γ(r1)Γ(q1)Fq1,r1

u,v;a+ϑ(ς) + Γ(r2)Γ(q2)F q2,r2
u,v;b−ϑ(ς)

)
≤ u(ς)

[
ln
ς

a

]r1−1

(ς − a)q1

×

{
ϑ(ς)

∫ 1

0

h(1− z)dz + ϑ(a)

∫ 1

0

h(z)dz − β (ς − a)2

6

}
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+ u(b)

[
ln
b

ς

]r2−1

(ς − a)q2

×

{
ϑ(ς)

∫ 1

0

h(1− z)dz + ϑ(b)

∫ 1

0

h(z)dz − β (b− ς)2

6

}
(3.14)

2.If u is decreasing on [a, b], then for all ς ∈ [a, b],we have

1

v(ς)

(
Γ(r1)Γ(q1)Fq1,r1

u,v;a+ϑ(ς) + Γ(r2)Γ(q2)F q2,r2
u,v;b−ϑ(ς)

)
≤ u(a)

[
ln
ς

a

]r1−1

(ς − a)q1

×

{
ϑ(ς)

∫ 1

0

h(1− z)dz + ϑ(a)

∫ 1

0

h(z)dz − β (ς − a)2

6

}

+ u(ς)

[
ln
b

ς

]r2−1

(ς − a)q2

×

{
ϑ(ς)

∫ 1

0

h(1− z)dz + ϑ(b)

∫ 1

0

h(z)dz − β (b− ς)2

6

}
. (3.15)

Now we investigate some integral inequalities for functions whose deriva-

tives in absolute value are strongly h-convex.

Theorem 3.3.4 Let q1, q2, r1, r2 ≥ 0 and 0 < a < b < ∞. Let ϑ : [a; b] → R be a

non-negative differentiable function.Let u a locally integrable non-negative

function, absolutely continuous, non decreasing on [a, ς], non increasing on

[ς, b] for ς ∈ [a, b] and v a positive function. If |ϑ′| is a strongly h− convex

function, then

| Γ(r1 + 1)Γ (q1 + 1)

v(ς)
(
ln ς

a

)r1 (
Fq1,r1+1
u,v;a+ + Fq1+1,r1

u/ν,v;a+ −Kq1+1,r1+1
u′,v;a+

)
ϑ(ς)

+
Γ(r2 + 1)Γ (q2 + 1)

v(ς)
(
ln b

ς

)r2 (
Fq2,r2+1
u,v;b− + Fq2+1,r2

u/ν,v;b− + Fq2+1,r2+1
u′,v;b−

)
ϑ(ς)

− (ϑ(a)u(a)(ς − a)q1 + ϑ(b)u(b)(b− ς)q2) |
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≤ u(ς) |ϑ′(ς)|
[
(b− ς)q2+1 + (ς − a)q1+1

] ∫ 1

0

h(1− z)dz

+ u(ς)
[
|ϑ′(b)| (b− ς)q2+1 + |ϑ′(a)| (ς − a)q1+1

] ∫ 1

0

h(z)dz

− β
(ς − a)q1+4 + (b− ς)q2+4

6
u(ς) (3.16)

holds.Where u′ is the usual derivative of u and (u/ν)(ν) := u(ν)
ν
.

Proof 3.3.5 Firstly let ς ∈ [a, b]. Then for ν ∈ [a, ς] and q1 ≥ 0, r1 ≥ 0 the

following inequality

u(ν)(ς − ν)q1
(

ln
ς

ν

)r1
≤ u(ς)(ς − a)q1

(
ln
ς

a

)r1
(3.17)

holds.

Since |ϑ′| is strongly h− convex therefore for ν ∈ [a, ς], we have

Lhs = −
[
h

(
ς − ν
ς − a

)
|ϑ′(a)|+ h

(
ν − a
ς − a

)
|ϑ′(ς)| − β (ς − ν) (ν − a)

]
≤ ϑ′(ν) ≤

h

(
ς − ν
ς − a

)
|ϑ′(a)|+ h

(
ν − a
ς − a

)
|ϑ′(ς)| − β (ς − ν) (ν − a) = Rhs. (3.18)

Multiplying the Rhs of (3.18) and (3.17)side to side and integrating over

[a, ς], we get

∫ ς

a

[
ln
ς

ν

]r1
u(ν)(ς − ν)q1ϑ′(ν)dν ≤ u(ς)

[
ln
ς

a

]r1
(ς − a)q1+1

×
(
|ϑ′(ς)|

∫ 1

0

h(1− z)dz + |ϑ′(a)|
∫ 1

0

h(z)dz

)
−

(
ln
ς

a

)r1
u(ς)

β (ς − a)q1+4

6
. (3.19)
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On the other hand by integrating by parts the left hand of (3.19), we have

∫ ς

a

(
ln
ς

ν

)r1
u(ν)(ς − ν)q1ϑ′(ν)dν

= −ϑ(a)
(

ln
ς

a

)r1
u(a)(ς − a)q1

−
∫ ς

a

(
ln
ς

ν

)r1
u′(ν)(ς − ν)q1ϑ(ς)dν

+ q1

∫ ς

a

(
ln
ς

ν

)r1
u(ν)(ς − ν)q1−1ϑ(ν)dν

+ r1

∫ ς

a

(
ln
ς

ν

)r1−1 u(ν)

ν
(ς − ν)q1ϑ(ν)dν

≤ u(ς)
[
ln
ς

a

]r1
(ς − a)q1+1 (3.20)

×
(
|ϑ′(ς)|

∫ 1

0

h(1− z)dz + |ϑ′(a)|
∫ 1

0

h(z)dz

)
−

β
[
ln ς

a

]r1 (ς − a)q1+4

6
u (ς) .

Using definition ?? and inequality (3.20), we get the inequality

Γ(r1 + 1)Γ (q1 + 1)

v(ς)
(
ln ς

a

)r1 (
Fq1,r1+1
u,v;a+ + Fq1+1,r1

u/ν,v;a+ − Fq1+1,r1+1
u′,v;a+

)
ϑ(ς)

− ϑ(a)u(a)(ς − a)q1

≤ u(ς)(ς − a)q1+1

(
|ϑ′(ς)|

∫ 1

0

h(1− z)dz + |ϑ′(a)|
∫ 1

0

h(z)dz

)
− β (ς − a)q1+4

6
u(ς). (3.21)

Now if we consider the Lhs of inequality (3.18), we have

−
[
ln
ς

a

]r1
u(ς)(ς − a)q1+1

×
(
|ϑ′(ς)|

∫ 1

0

h(1− z)dz + |ϑ′(a)|
∫ 1

0

h(z)dz

)
(3.22)

+
β
[
ln ς

a

]r1 (ς − a)q1+4

6
u(ς)
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≤
∫ ς

a

[
ln
ς

ν

]r1
u(ν)(ς − ν)q1ϑ′(ν)dν.

A similar reasoning leads to a similar inequality to (3.21).By combining

the resulting inequality and the inequality (3.21), we get

∣∣∣∣∣Γ(r1 + 1)Γ (q1 + 1)

v(ς)
(
ln ς

a

)r1 (
Fq1,r1+1
u,v;a+ + Fq1+1,r1

u/t,v;a+ − Fq1+1,r1+1
u′,v;a+

)
ϑ(ς)− ϑ(a)u(a)(ς − a)q1

∣∣∣∣∣
≤ u(ς)(ς − a)q1+1

(
|ϑ′(ς)|

∫ 1

0

h(1− z)dz + |ϑ′(a)|
∫ 1

0

h(z)dz

)
− β (ς − a)q1+4

6
u (ς) . (3.23)

On the other hand for q2 > 0, r2 ≥ 0, ν ∈ [ς, b], we have

(ν − ς)q2
(

ln
ν

ς

)r2
u(ν) ≤ (b− ς)q2

(
ln
b

ς

)r2
u(ς) (3.24)

and

Lhs = −

[
h

(
b− ν
b− ς

)
|ϑ′(ς)|+ h

(
ν − ς
b− ς

)
|ϑ′(b)| − β (b− ς)3

6

]
≤ ϑ′(ν) ≤

h

(
b− ν
b− ς

)
|ϑ′(ς)|+ h

(
ν − ς
b− ς

)
|ϑ′(b)| − c(b− ς)3

6
= Rhs. (3.25)

The rest is similar to the first step. Consequently

∣∣∣∣∣Γ(r2 + 1)Γ (q2 + 1)

v(ς)
(
ln b

ς

)r2 (
Fq2,r2+1
u,v;b− + Fq2+1,r2

u/ν,v;b− − Fq2+1,r2+1
u′,v;b−

)
ϑ(ς)− ϑ(b)u(b)(b− ς)q2

∣∣∣∣∣
≤ u(ς)(b− ς)q2+1

(
|ϑ′(ς)|

∫ 1

0

h(1− z)dz + |ϑ′(b)|
∫ 1

0

h(z)dz

)
− β (b− ς)q2+4

6
u(ς). (3.26)
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Via triangular inequality, by adding inequalities (3.23) and (3.26), the

required inequality holds.

As special cases, we have

Corollary 3.3.6 By setting q1 = q2 = q, r1 = r2 = r, and h(z) = z in (3.16)

| Γ(r + 1)Γ(q + 1)

v(ς)

(
Fq,r+1
u,v;a+ + Fq+1,r

u/ν,v;a+ − Fq+1,r+1
u′,v;a+ + Fq,r+1

u,v;b− + Fq+1,r
u/t,v;b− − Fq+1,r+1

u′,v;b−

)
ϑ(ς)

−
[(

ln
b

ς

)r
u(b)ϑ(b)(b− ς)q+1 + ln

( ς
a

)r
u(a)ϑ(a)(ς − a)q+1

]
|

≤ u(ς) |ϑ′(ς)|
(
ln b

ς

)r
(b− ς)q+1 +

(
ln ς

a

)r
(ς − a)q+1

2

+ u(ς)
|ϑ′(b)| (b− ς)q+1

(
ln b

ς

)r
+ u(ς) |ϑ′(a)| (ς − a)q+1

(
ln ς

a

)r
2

− β u(ς)

(ς − a)q+4
(

ln
ς

a

)r
+ (b− ς)q+4

(
ln
b

ς

)r
6

. (3.27)

Corollary 3.3.7 By setting u = v = 1, in (3.27)

| Γ(r + 1)Γ(q + 1)
(
Fq,r+1

1,1;a+ + Fq,r+1
1,1;b− + Fq+1,r

1/ν,1;a+ + Fq+1,r
1/ν,1;b−

)
ϑ(ς)

−
[(

ln
b

ς

)r
ϑ(b)(b− ς)q+1 + ln

( ς
a

)r
ϑ(a)(ς − a)q+1

]
|

≤ |ϑ′(ς)|
(
ln b

ς

)r
(b− ς)q+1 +

(
ln ς

a

)r
(ς − a)q+1

2

+
|ϑ′(b)| (b− ς)q+1

(
ln b

ς

)r
+ |ϑ′(a)| (ς − a)q+1

(
ln ς

a

)r
2

− β

(ς − a)q+4
(

ln
ς

a

)r
+ (b− ς)q+4

(
ln
b

ς

)r
6

. (3.28)

Corollary 3.3.8 By setting r = 0 in (3.28), we get the following integral
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inequality involving Riemann-Liouville integrals

∣∣Γ(q + 1)
(
Jqa+ϑ(ς) + Jqb−ϑ(ς)

)
− (ϑ(b)(b− ς)q + ϑ(a)(ς − a)q)

∣∣
≤ |ϑ′(ς)| (b− ς)

q+1 + (ς − a)q+1

2
+

(b− ς)q+1 |ϑ′(b)|+ (ς − a)q+1 |ϑ′(a)|
2

− β

6

[
(ς − a)q+4 + (b− ς)q+4] . (3.29)

Corollary 3.3.9 By taking ς = a and ς = b in (3.29), we get the following

fractional integral inequality

∣∣Γ(q + 1)
(
Jqa+ϑ(b) + Jqb−ϑ(a)

)
− (b− a)q (ϑ(b) + ϑ(a))

∣∣
≤ (b− a)q+1

{
|ϑ′(b)|+ |ϑ′(a)| − β

3
(b− a)3

}
. (3.30)

If β = 0 in(3.30),we get

∣∣Γ(q + 1)
(
Jqa+ϑ(b) + Jqb−ϑ(a)

)
− (b− a)q (ϑ(b) + ϑ(a))

∣∣
≤ (b− a)q+1 {|ϑ′(b)|+ |ϑ′(a)|} . (3.31)

Corollary 3.3.10 By setting q = 1, and taking ς = a+b
2

in (3.29),it results

that

∣∣∣∣ 1

b− a

∫ b

a

ϑ(ς)dt− ϑ(b) + ϑ(a)

2

∣∣∣∣ ≤
(b− a)2

8

[
2

∣∣∣∣ϑ′(a+ b

2

)∣∣∣∣+ |ϑ′(b)|+ |ϑ′(a)|
]
− β

48
(b− a)5 . (3.32)

Corollary 3.3.11 By setting q = 0, u = v = 1, in (3.27)

| Γ(r + 1)
(
Hr
a+ϑ(ς) + Hr

b−ϑ(ς)
)
−
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[(
ln
b

ς

)r
ϑ(b)(b− ς) + ln

( ς
a

)r
ϑ(a)(ς − a)

]
|

≤

|ϑ′(ς)|
(
ln b

ς

)r
(b− ς) +

(
ln ς

a

)r
(ς − a)

2
+

|ϑ′(b)| (b− ς)
(
ln b

ς

)r
+ |ϑ′(a)| (ς − a)

(
ln ς

a

)r
2

−

c

(ς − a)4
(

ln
ς

a

)r
+ (b− ς)4

(
ln
b

ς

)r
6

. (3.33)

In particular if ς = a and ς = b in (3.33),we have

| Γ(r + 1)
(
Hr
a+ϑ(b) + Hr

b−ϑ(a)
)
−
(

ln
b

a

)r
(b− a) [ϑ(b) + ϑ(a)] |

≤
(

ln
b

a

)r
(b− a) (|ϑ′(b)|+ |ϑ′(a)|)

− β

(b− a)4

(
ln
b

a

)r
3

. (3.34)

If β = 0, then

| Γ(r + 1)
(
Hr
a+ϑ(b) + Hr

b−ϑ(a)
)
−
(

ln
b

a

)r
(b− a) [ϑ(b) + ϑ(a)] |

≤
(

ln
b

a

)r
(b− a) (|ϑ′(b)|+ |ϑ′(a)|) . (3.35)

3.4 Applications

Now we give some applications of the results that have been established

previously.

Theorem 3.4.1 Under the assymptions of theorem 2.3.6,the following in-
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equality

Γ(r1)Γ(q1)

v(b)
Fq1,r1
u,v;a+ϑ(b) +

Γ(r2)Γ(q2)

v(a)
Fq2,r2
u,v;b−ϑ(a)

≤ u(b)

[
ln
b

a

]r1−1

(b− a)q1

×

{
ϑ(b)

∫ 1

0

h(1− z)dz + ϑ(a)

∫ 1

0

h(z)dz − β (b− a)2

6

}

+ u(a)

[
ln
b

a

]r2−1

(b− a)q2

×

{
ϑ(a)

∫ 1

0

h(1− z)dz + ϑ(b)

∫ 1

0

h(z)dz − β (b− a)2

6

}
(3.36)

holds.

Proof 3.4.2 We take ς = a and ς = b in (3.8) and adding the results.

Corollary 3.4.3 By setting q1 = q2 = q and r1 = r2 = r in (3.36) it results

that

Γ(r)Γ(q)

(
1

v(b)
Fq,r
u,v;a+ϑ(b) +

1

v(a)
Fq,r
u,v;b−ϑ(a)

)
≤ u(b)

[
ln
b

a

]r−1

(b− a)q

×

{
ϑ(b)

∫ 1

0

h(1− z)dz + ϑ(a)

∫ 1

0

h(z)dz − β (b− a)2

6

}

+ u(a)

[
ln
b

a

]r−1

(b− a)q

×

{
ϑ(a)

∫ 1

0

h(1− z)dz + ϑ(b)

∫ 1

0

h(z)dz − β (b− a)2

6

}
(3.37)

is valid.
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Corollary 3.4.4 By setting u = v = 1, r = 1, we obtain an inequality involving

Riemann-Liouville integrals

Γ(q)
(
Jqa+ϑ(b) + Jqb−ϑ(a)

)
≤ (b− a)q

×

{
(ϑ(b) + ϑ(a))(

∫ 1

0

h(1− z)dz +

∫ 1

0

h(z)dz)− β (b− a)2

3

}
. (3.38)

Corollary 3.4.5 By taking h(z) = z in (3.38), we have

Γ(q)
(
Jqa+ϑ(ς) + Jqb−ϑ(ς)

)
≤ (b− a)q

×

(
ϑ(b) + ϑ(a)− β (b− a)2

3

)
. (3.39)

If β = 0, then

Γ(q)
(
Jqa+ϑ(ς) + Jqb−ϑ(ς)

)
≤ (b− a)q (ϑ(b) + ϑ(a))

.

Corollary 3.4.6 By setting β = 0, q = 1 and ς = b or ς = a in (3.39), we get

1

b− a

∫ b

a

ϑ(ν)dν ≤ ϑ(a) + ϑ(b)

2
. (3.40)

Corollary 3.4.7 By setting c = 0, q = 1 and ς = a+b
2

in (3.39), we have

1

b− a

∫ b

a

ϑ(ν)dν ≤ ϑ

(
a+ b

2

)
+
ϑ(a) + ϑ(b)

2
. (3.41)

Corollary 3.4.8 By setting v = 1, u(z) =
1

z
, q = 1 and h(z) = z in (3.15), we
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obtain an inequality involving Hadamard integrals

Γ(r)
(
Hr
a+ϑ(ς) +Hr

b−ϑ(ς)
)

≤
1
a

[
ln ς

a

]r−1
(ς − a) + 1

ς

[
ln b

ς

]r−1
(b− ς)

2
(3.42)

+

ϑ(a)
a

[
ln ς

a

]r−1
(ς − a) + ϑ(b)

ς

[
ln b

ς

]r−1
(b− ς)

2

− β
1
ς

[
ln b

ς

]r−1
(b− ς)3 + 1

a

[
ln ς

a

]r−1
(ς − a)3

6
.

Corollary 3.4.9 By taking ς = a and ς = b in (3.42), we obtain

Γ(r)
(
Hr
a+ϑ(b) +Hr

b−ϑ(a)
)
≤ (b− a)

[
ln
b

a

]r−1

×

(
ϑ(b) + ϑ(a)

a
− β (b− a)2

3

)
. (3.43)

If β = 0, then

Γ(r)
(
Hr
a+ϑ(b) +Hr

b−ϑ(a)
)
≤ (b− a)

[
ln
b

a

]r−1
ϑ(b) + ϑ(a)

a
.

Theorem 3.4.10 Let q1, q2 ≥ 0, r1, r2 ≥ 1 and 0 < a, b < ∞. Let ϑ : [a, b] → R,

be an strongly h- convex function, u an integrable non-negative function,

monotonic on [a, b] and v a non-negative function with v(a) 6= 0, v(b) 6= 0. If

ϑ is symmetric about a+b
2
, it follows that for all ν ∈ [a, b]

(1) If u is increasing, then

Lhs = u(a)

[
M {I(0; q1, r1) + J(0; q2, r2)}+

c

4h
(

1
2

) {I(1; q1, r1) + J(1; q2, r2)}

]

≤
Γ(r1)Γ (q1 + 1) F

q1+1,r1
u,v;b− ϑ(a)

v(a)
+

Γ(r2)Γ (q2 + 1) F
q2+1,r2
u,v;a+ ϑ(b)

v(b)
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≤ u(b)

[
(b− a)q1+1

(
ln
b

a

)r1−1

+ (b− a)q2+1

(
ln
b

a

)r2−1
]

× (ϑ(a) + ϑ(b))

∫ 1

0

h(z)dz

− β u(b)

[
(b− a)q1+4

6

(
ln
b

a

)r1−1

+
(b− a)q2+4

6

(
ln
b

a

)r2−1
]

= Rhs. (3.44)

holds.

(2) If u is decreasing, then

u(b)

[
M {I(0; q1, r1) + J(0; q2, r2)}+

c

4h
(

1
2

) {I(1; q1, r1) + J(1; q2, r2)}

]

≤
Γ(r1)Γ (q1 + 1) F

q1+1,r1
u,v;b− ϑ(a)

v(a)
+

Γ(r2)Γ (q2 + 1) F
q2+1,r2
u,v;a+ ϑ(b)

v(b)

≤ u(a)

[
(b− a)q1+1

(
ln
b

a

)r1−1

+ (b− a)q2+1

(
ln
b

a

)r2−1
]

× (ϑ(a) + ϑ(b))

∫ 1

0

h(z)dz

− β u(a)

[
(b− a)q1+4

6

(
ln
b

a

)r1−1

+
(b− a)q2+4

6

(
ln
b

a

)r2−1
]

(3.45)

holds. Where

I(α; q, r) =

∫ b

a

να(ν − a)q
(

ln
ν

a

)r−1

dν, J(α; q, r) =

∫ b

a

να(b− ν)q
(

ln
b

ν

)r−1

dν.

Proof 3.4.11 Suppose that u is increasing. We have for all ν ∈ [a, b], r1 ≥ 1

(ν − a)q1
(

ln
ν

a

)r1−1

u(ν) ≤ (b− a)q1
(

ln
b

a

)r1−1

u(b). (3.46)
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Since ϑ is strongly h- convex therefore for ν ∈ [a, b], we have

ϑ(ν) ≤ h

(
ν − a
b− a

)
ϑ(a) + h

(
b− ν
b− a

)
ϑ(b)− β(ν − a)(b− ν). (3.47)

By multiplying inequalities (3.46), (3.47), side to side and by integrating

, we obtain

∫ b

a

(ν − a)q1
(

ln
ν

a

)r1−1

u(ν)ϑ(ν)dν

≤ (b− a)q1+1

(
ln
b

a

)r1−1

u(b)

(
ϑ(a)

∫ 1

0

h(z)dz + ϑ(b)

∫ 1

0

h(1− z)dz

)
− β

(b− a)q1+4

6

(
ln
b

a

)r1−1

(3.48)

From which, we have

Γ(r1)Γ (q1 + 1) Fq1+1,r1
u,v;b− ϑ(a)

v(a)

≤ u(b)(b− a)q1+1

(
ln
b

a

)r1−1(
ϑ(a)

∫ 1

0

h(z) + ϑ(b)

∫ 1

0

h(1− z)dz

)
− β

(b− a)q1+4

6

(
ln
b

a

)r1−1

. (3.49)

On the other hand for all ν ∈ [a, b], we have

(b− ν)q2
(

ln
b

ν

)r2−1

u(ν) ≤ (b− a)q2
(

ln
b

a

)r2−1

u(b). (3.50)

And similarly it follows that

Γ(r2)Γ (q2 + 1) Fq2+1,r2
u,v;a+ ϑ(b)

v(b)
≤ u(b)(b− a)q2+1

(
ln
b

a

)r2−1
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×
(
ϑ(a)

∫ 1

0

h(z)dz + ϑ(b)

∫ 1

0

h(1− z)dz

)
− β

(b− a)q2+4

6

(
ln
b

a

)r2−1

. (3.51)

By adding (3.49) and (3.51), we get

Γ(r1)Γ (q1 + 1) Fq1+1,r1
u,v;b− ϑ(a)

v(a)
+

Γ(r2)Γ (q2 + 1) Fq2++1,r2
u,v;a+ ϑ(b)

v(b)

≤ u(b)

[
(b− a)q1+1

(
ln
b

a

)r1−1

+ (b− a)q2+1

(
ln
b

a

)r2−1
]

× (ϑ(a) + ϑ(b))

∫ 1

0

h(z)dz

− β

[
(b− a)q1+4

6

(
ln
b

a

)r1−1

+
(b− a)q2+4

6

(
ln
b

a

)r2−1
]
. (3.52)

To prove the left hand side: Lhs, we use the Lemma 2.38 and monotonic-

ity properties of real valued functions u and ln .

Indeed, setting M =
4ϑ(a+b

2 )−β (a+b)

8h( 1
2)

. We have for all ν ∈ [a, b]

M +
c

4h
(

1
2

)ν ≤ ϑ(ν), (3.53)

and

u(a)(ν − a)q1
(

ln
ν

a

)r1−1

≤ u(ν)(ν − a)q1
(

ln
ν

a

)r1−1

, (3.54)

u(a)(b− ν)q2
(

ln
b

ν

)r2−1

≤ u(ν)(b− ν)q2
(

ln
b

ν

)r2−1

. (3.55)

Multiplay (3.54) and (3.53) side to side and integrating with respect to ν
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over [a, b], we obtain

u(a)

[
MI(0; q1, r1) +

c

4h
(

1
2

)I(1; q1, r1)

]

≤
Γ(r1)Γ (q1 + 1) Kq1+1,r1

u,v;b− ϑ(a)

v(a)
(3.56)

Also we have

u(a)

[
MJ(0; q2, r2) +

c

4h
(

1
2

)J(1; q2, r2)

]

≤
Γ(r2)Γ (q2 + 1) Fq2+1,r2

u,v;a+ ϑ(b)

v(b)
(3.57)

Adding (3.56) and (3.57)

u(a)

[
M {I(0; q1, r1) + J(0; q2, r2)}+

β

4h
(

1
2

) {I(1; q1, r1) + J(1; q2, r2)}

]

≤
Γ(r1)Γ (q1 + 1) Fq1+1,r1

u,v;b− ϑ(a)

v(a)
+

Γ(r2)Γ (q2 + 1) Fq2+1,r2
u,v;a+ ϑ(b)

v(b)
(3.58)

combining (3.52) and (3.58), we obtain the inequality (3.46).

If u is decreasing, we have for all ν ∈ [a, b], r1 ≥ 1

(ν − a)q1
(

ln
ν

a

)r1−1

u(ν) ≤ (b− a)q1
(

ln
b

a

)r1−1

u(a). (3.59)

To prove the left hand side, we replace u(a) in (3.54), (3.55) by u(b) and

the rest of the proof is similar.
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Corollary 3.4.12 By setting q1 = q2 = q and r1 = r2 = r, we have the following

inequalities

1. If u is increasing

u(a)

[
M {I(0; q, r) + J(0; q, r)}+

β

4h
(

1
2

) {I(1; q, r) + J(1; q, r)}

]

≤ Γ(r)Γ (q + 1)

(
Fq+1,r
u,v;b−ϑ(a)

v(a)
+

Fq+1,r
u,v;a+ϑ(b)

v(b)

)
(3.60)

≤ u(b)

[
ϑ(a)

∫ 1

0

h(z) + ϑ(b)

∫ 1

0

h(1− z)dz − β(b− a)3

3

]
2(b− a)q+1

(
ln
b

a

)r−1

.

2. If u is decreasing

u(b)

[
M {I(0; q, r) + J(0; q, r)}+

c

4h
(

1
2

) {I(1; q, r) + J(1; q, r)}

]

≤ Γ(r)Γ (q + 1)

(
Fq+1,r
u,v;b−ϑ(a)

v(a)
+

Fq+1,r
u,v;a+ϑ(b)

v(b)

)
(3.61)

≤ u(a)

[
(ϑ(a) + ϑ(b))

∫ 1

0

h(z)dz − c(b− a)3

3

]
2(b− a)q+1

(
ln
b

a

)r−1

.

Corollary 3.4.13 By taking q = 0 and u =
1

ς
in (3.61),we obtain the in-

equality

1

b

[
M {I(0; 0, r) + J(0; 0, r)}+

β

4h
(

1
2

) {I(1; 0, r) + J(1; 0, r)}

]
≤ Γ(r)

(
Hr
b−ϑ(a) + H,r

a+ϑ(b)
)

≤
[
(ϑ(a) + ϑ(b))

∫ 1

0

h(z)dz − β(b− a)3

3

]
2(b− a)

a

(
ln
b

a

)r−1

. (3.62)
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In particular if h(z) = z, β = 0 then

1

b
ϑ

(
a+ b

2

)
≤ Γ(r)

(
Hr
b−ϑ(a) + H,r

a+ϑ(b)
)

(3.63)

≤ (b− a)

a

(
ln
b

a

)r−1
ϑ(a) + ϑ(b)

2
.

Corollary 3.4.14 If we put u = v = 1, r = 1 in (3.60), we get under the

assumptions of Theorem (2.3),the inequality

M {I(0; q, 1) + J(0; q, 1)}+
β

4h
(

1
2

) {I(1; q, 1) + J(1; q, 1)}

≤ Γ (q + 1)
(
Jq+1
b− ϑ(a) + Jq+1

a+ ϑ(b)
)

(3.64)

≤ (b− a)q+1

[
(ϑ(a)

∫ 1

0

h(z) + ϑ(b))

∫ 1

0

h(z)dz − β (b− a)3

6

]
,

where I(0; q, 1) = J(0; q, 1) =
(b− a)q+1

q + 1
, I(1; q, 1) = (b − a)q+1

(
a

q + 1
+
b− a
q + 2

)
and J(1; q, 1) = (b− a)q+1

(
b

q + 1
− b− a
q + 2

)
.

Remark 3.4.15 If β = 0, h(z) = z, q → 0, then from above inequality, we get

Hadamard’s inequality

ϑ

(
a+ b

2

)
≤ 1

b− a

∫ b

a

ϑ(ς)dς ≤ ϑ(a) + ϑ(b)

2
. (3.65)
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Conclusion and Perspectives

3.5 Conclusion

This research introduces a generalized fractional integral operator that uses

a logarithmic kernel and includes two parameters along with two non-

negative locally integrable functions. The study applies this generalized

integrals specifically to a type of function called h-convex and strongly

h-comvex functions. For these functions, the work proves new fractional

integral inequalities.

Key results include finding estimates and bounds for integral transform

of functions, providing examples. It also establishes integral inequalities

that connect the generalized operator to the classical Riemann-Liouville

fractional integrals. Furthermore, the research extends the well-known

Hermite-Hadamard inequality to work with h-convex functions within the

fractional calculus setting.

This work is important because it successfully combines the concept

of h-convexity with fractional calculus tools. It creates a bridge between

newer fractional integral inequalities and traditional classical inequalities.

The generalized operator and the proven results offer a foundation for fur-
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ther research. Future possibilities,applying the techniques to other types of

convex functions or different fractional operators like Caputo or Hadamard,

using it for solving fractional equations numerically, extending it to multi-

ple variables, applying it in physics or engineering problems, and finding

even sharper versions of the inequalities. This research opens new paths

for exploration in mathematical analysis.
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