Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-tiaret.dz:80/handle/123456789/770
Affichage complet
Élément Dublin Core | Valeur | Langue |
---|---|---|
dc.contributor.author | MOSTEFAOUI, Sid Ahmed+ Mokhtar | - |
dc.date.accessioned | 2022-05-11T08:55:45Z | - |
dc.date.available | 2022-05-11T08:55:45Z | - |
dc.date.issued | 2010 | - |
dc.identifier.uri | http://dspace.univ-tiaret.dz:8080/jspui/handle/123456789/770 | - |
dc.description.abstract | L’apprentissage du support vector machine (SVM) mène à un problème d’optimisation quadratique sous contraintes linéaires bornées. Malgré ce problème est claire, Il devient impossible, en termes de stockage mémoire et temps d’apprentissage, d’être résolu pour un nombre d’exemples d’apprentissage très élevé. Pour l’objectif de réduire le temps d’apprentissage, on propose ici un algorithme qui s’inspire de la méthode de décomposition proposé par Osuna dédié à l’optimisation des SVMs : il segmente le problème d’optimisation initial en sous problèmes calculable par la machine en terme de temps CPU et stockage en mémoire, la solution obtenue s'avère en pratique plus parcimonieuse que celle trouvée par l’approche d’Osuna en qualité de temps d’apprentissage , tout en offrant des performances similaires. | en_US |
dc.language.iso | fr | en_US |
dc.publisher | Université Ibn Khaldoun -Tiaret- | en_US |
dc.subject | Représentation vectorielle, Classification, Apprentissage, Support Vector Machines (SVM), Optimisation quadratique, Décomposition. | en_US |
dc.title | classification des documents par apprentissage . | en_US |
dc.type | Thesis | en_US |
Collection(s) : | Magister |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
MAGISTER INFO MOSTEFAOUI SID AHMED MOKHTAR-2010_New1.pdf | 33,62 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.