Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-tiaret.dz:80/handle/123456789/5743
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorDJENANE, Mouloud Amine-
dc.contributor.authorZAHI, Narimane-
dc.date.accessioned2022-11-27T13:56:31Z-
dc.date.available2022-11-27T13:56:31Z-
dc.date.issued2022-
dc.identifier.urihttp://dspace.univ-tiaret.dz:80/handle/123456789/5743-
dc.description.abstractArtificial intelligence based on deep learning has shown to be useful in a wide range of applications and research areas because, in contrast to traditional machine learning algorithms, it can produce extremely high-level data representations from amounts of raw data. As a result, it has proven to be an excellent solution to a broad range of linear issues, and it seems to be highly for the non-linear ones The aim of this work is to propose a methodology to be followed in the design of deep learning model for non-linear regression, then developing a CNN model that can deal with this scenario. Thereafter, apply it to solve real world issues such as predicting lifetime and mechanical performance degradation of multilayer greenhouse polyethylene films. we created a hybrid deep learning model capable of handling the challenge in order to complete this assignment. Both the training and validation phases of the DL model were successful, demonstrating the feasibility of using 1D CNN for nonlinear regressionen_US
dc.language.isofren_US
dc.publisherUniversité Ibn Khaldoun -Tiaret-en_US
dc.subjectArtificial intelligence, Machine learning, Deep learning, linear regression, nonlinear regression, CNN.en_US
dc.titleDEEP LEARNING FOR NONLINEAR REGRESSIONen_US
dc.typeThesisen_US
Collection(s) :Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
TH.M.INF.FR.2022.49.pdf2,74 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.