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Abstract  

Artificial intelligence based on deep learning has shown to be useful in a wide range of 
applications and research areas because, in contrast to traditional machine learning 
algorithms, it can produce extremely high-level data representations from amounts of raw 
data. As a result, it has proven to be an excellent solution to a broad range of linear 
issues, and it seems to be highly for the non-linear ones  

The aim of this work is to propose a methodology to be followed in the design of deep 
learning model for non-linear regression, then developing a CNN model that can deal with 
this scenario. Thereafter, apply it to solve real world issues such as   predicting lifetime 
and mechanical performance degradation of multilayer greenhouse polyethylene films. 

we created a hybrid deep learning model capable of handling the challenge in order to 
complete this assignment. Both the training and validation phases of the DL model were 
successful, demonstrating the feasibility of using 1D CNN for nonlinear regression. 

Key words: Artificial intelligence, Machine learning, Deep learning, linear regression, 
nonlinear regression, CNN. 

 

Résumé  

L'intelligence artificielle basé sur l'apprentissage profond s'est révélée utile dans un large 
éventail d'applications et de domaines de recherche car contrairement aux algorithmes 
traditionnels d'apprentissage automatique, il peut produire des représentations de données 
de très haut niveau à partir de quantités de données brutes. Par conséquent, il s’est avérée 
être une excellente solution à un vaste éventail de problèmes linéaires et il semble qu’il est 
très efficace pour les non linéaires aussi. 

L'objectif de ce travail est de proposer une méthodologie à suivre dans la conception d'un 
modèle d'apprentissage profond pour la régression non linéaire puis de développer un 
modèle CNN qui peut traiter ce scénario. Ensuite, nous l'appliquons pour résoudre des 
problèmes du monde réel tels que la prédiction de la durée de vie et de la dégradation des 
performances mécaniques des films polyéthylène multicouches en serre.  

Pour mener à bien cette mission, nous avons créé un modèle hybride d'apprentissage 
profond capable de relever le défi. Les phases de formation et de validation du modèle DL 
ont été couronnées de succès, démontrant la faisabilité de l'utilisation de CNN 1D pour la 
régression non linéaire. 

Mots clés : Intelligence artificielle, apprentissage automatique, apprentissage profond, 
régression linéaire, régression non linéaire, CNN.  



 
 

 

من التطبيقات ومجالات البحث لأنه على  مدى واسع أثبت الذكاء الاصطناعي القائم على التعلم العميق فائدته في

عالية المستوى للغاية من كميات البيانات  يةعكس خوارزميات التعلم الآلي التقليدية ، يمكنه إنتاج تمثيلات بيان

غير الالخام.لذلك ، فقد أثبت أنه حل رائع لمجموعة واسعة من المشكلات الخطية ويبدو أنه فعال جدا للمشاكل 

 .خطية أيضا

غير خطي ومن الدف من هذا العمل هو اقتراح منهجية يجب اتباعها في تصميم نموذج التعلم العميق للانحدار اله

.ثم نطبقه لحل مشاكل العالم الحقيقي مثل التنبؤ بعمر وتدهور المشكليمكنه معالجة هذا  CNN ثم تطوير نموذج

 البيوت البلاستيكية.الأداء الميكانيكي لأفلام البولي إيثيلين متعددة الطبقات في 

، أنشأنا نموذجا هجينا للتعلم العميق قادرا على مواجهة التحدي.وكانت مرحلتا التدريب والتحقق لعملا اولتنفيذ هذ

 .غير خطيالللانحدار  CNN 1Dمن صحة النموذج ناجحتين، مما يدل على جدوى استخدام 

  CNN.غير خطيالعلم العميق، الانحدار الخطي، الانحدار الذكاء الاصطناعي، التعلم الآلي، الت الكلمات المفتاحية:
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GENERALE INTRODUCTION 
In recent years, artificial intelligence based on machine learning and deep learning has 
sparked tremendous global interest. It is considered as a leading technology of the current 
age of the fourth industrial revolution (Industry4.0 or 4IR), a new era that builds and 
extends the impact of digitization in new and unanticipated ways. Various types of AI 
such as analytical, functional, interactive, textual and visual can be applied to enhance the 
intelligence and capabilities of an application. In general, AI incorporates human behavior 
and intelligence to machines or systems based on potential techniques which are classified 
into ten categories : data mining , knowledge discovery and advanced analytics,  rule- 
based modeling and  decision-making ,fuzzy logic-based approach ,  knowledge 
representation , uncertainty reasoning  and expert   system modeling,  case-based 
reasoning ,  text mining and natural language processing ,  visual analytics, computer 
vision and pattern recognition , hybridization,  searching and optimization ,machine 
learning ,  neural networks and deep learning.  Machine learning as a part of the AI area 
represents a method to learn from data or experiences. A successful machine learning 
model depends on both the data and the performance of the learning algorithms which are 
divided into several types including supervised, unsupervised, semi-supervised, and 
reinforcement learning. Besides the deep learning (DL), which is part of a broader family 
of machine learning methods that represents also a learning method from data where the 
computation is done through multi-layer neural networks and processing, i.e. it is 
originated from an artificial neural network (ANN). As DL models gain knowledge from 
data, there is an approach to multivariate data analysis known as regression allows to 
focus on the effects of predictors on the response. When the response variable is 
continuous, the simplest approximation is a linear approximation, which assumes 
an approximate linear relationship between the response and the predictors. 
Nonlinear regression, on the other hand, is typically based on the underlying 
mechanisms which generate the data. Thus, nonlinear models are usually closer to 
the true relationships than linear models, and nonlinear model predictions are 
more reliable than linear model. However, deriving nonlinear models for many 
practical problems may be difficult. 

 

for completing our project, we have organized our work as follows 

CHAPTER I: Background on deep learning 
 
CHAPTER II: Nonlinear Regression  

CHAPTER III: Development of CNN model based on real dataset
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1.1 Introduction 
Artificial intelligence is a key component of digitalization solutions that have 

received significant attention in the digital arena. It is regarded as a core technology of 
today's fourth industrial revolution, which represents a new era of innovation in 
technology that begins with data collection, followed by AI to interpret the data. There are 
several potential AI techniques in this area that can solve problems, including machine 
learning. In recent years, ML has expanded rapidly in the context of data analysis and 
computing, allowing applications to function intelligently based on machine learning 
algorithms that analyze data. Besides, deep learning technology, which is considered a 
core part of artificial intelligence, machine learning, and data science, DL has become a 
hot topic in the context of computing due to its learning capabilities from data and is 
widely applied in various application areas such as healthcare, visual recognition, text 
analytics, cybersecurity, and many more. However, due to the dynamic nature and 
variations in real-world problems and data, developing an appropriate DL model is a 
difficult task. Furthermore, a lack of core understanding turns DL methods into black-box 
machines that impede standard-level development. Overall, the goal of this chapter is to 
provide a high-level overview of AI-based modeling with a main contribution that explains 
the principles of various machine learning techniques and their applicability. then presents 
a structured and comprehensive view on DL techniques including a taxonomy considering 
various types of real-world tasks like supervised or unsupervised with real-world 
application areas where deep learning techniques can be used. 

1.2 Artificial intelligence 
Artificial intelligence (AI) is a broad branch of computer science and engineering that 
focuses on simulating a wide range of issues and functions in the field of human intellect. 
It’s primarily concerned with comprehending and carrying out intelligent tasks such as 
acquiring new abilities, thinking and adapting to new contexts and challenges. We explore 
various types of AI that include analytical, functional, interactive, textual, and visual as 
shown in figure 1-1. 
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Figure 1-1 : various types of AI 

 

in the following section, we specify the scope of each category in terms of computing and 
real-world services: 

1.2.1 Analytical AI 
Analytics typically refers to the process of identifying, interpreting, and communicating 
meaningful patterns of data. Thus, it aims to discover new insights, patterns, and 
relationships or dependencies in data and to assist in data-driven decision-making. 

Therefore, in the domain of today’s business intelligence, has becomes a core part of AI 
that can provide insights to an enterprise and generate suggestions or recommendations 
through its analytical processing capability. Various machine learning and deep learning 
techniques can be used to build an analytical AI model to solve a particular real-world 
problem. For instance, to assess business risk, a data-driven analytical model can be 
utilized. 

1.2.2 Functional AI 
Analytical AI and functional AI work in a similar way. because functional AI also explores 
massive quantities of data for patterns and dependencies. on the other hand, it executes 
actions rather than making recommendations. For instance, a functional AI model could be 
useful in robotics and IoT applications to take immediate actions. 

1.2.3 Interactive AI 
Interactive AI is commonly used to provide efficient and interactive communication 
automation, which is well-established in many facets of people’s daily lives, particularly in 
the commercial sphere. For example, an interactive AI model could be valuable in the 
development of chatbots and smart personal assistants. While building an interactive AI 
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model, a variety of techniques such as machine learning, frequent pattern mining, 
reasoning, and AI heuristic search can be employed. 

1.2.4 Textual AI 
Textual AI typically covers textual analytics or natural language processing, through which 
businesses can enjoy text recognition, speech-to-text conversion, machine translation, as 
well as content generation capabilities. For instance, an enterprise may use textual AI to 
support an internal corporate knowledge repository to provide relevant services, e.g., 
answering consumers queries. 

1.2.5 Visual AI 
Visual AI can typically recognize, classify, and sort items, as well as convert images and 
videos into insights. Thus, it can be considered as a branch of computer science that trains 
machines to learn images and visual data in the same manner that humans do. In fields 
such as computer vision and augmented reality, this type of AI is often used.  

1.2.6 Potential AI Techniques 

A) Data mining, knowledge discovery and advanced analytics 
Over the last decade, data mining has been a common word that is interchangeable with 
terms like knowledge mining from data, data or pattern analysis, knowledge extraction, 
knowledge discovery from data (KDD), etc. [1]. Data mining is described as the process of 
extracting useful patterns and knowledge from huge volumes of data [2], which is related 

to another popular term, Data science. Data science is commonly characterized as a 
concept that combines statistics, data analysis, and related approaches to study and 
investigate realities using data. Figure 1-2 explains how the knowledge discovery process 
works in general, according to Han et al. 

 

Figure 1-2 : a general procedure for discovering knowledge [3] 

Four types of analytics including descriptive, diagnostic, predictive and prescriptive are 
highlighted below, which can be used to develop data-driven models 
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Table 1-1: Types of analytical Methods 

Analytical Methods Definition Data-driven model 
building  

Examples 

Descriptive analytics It is the study of 
historical data in 
order to gain a 
better understanding 
of how a company 
has evolved. 

Answer the 
question, What 
happened in the 
past ? 

Summarizing past 
events, e.g., sales 
business data, social 
media usage, 
reporting general 
trends, etc. 

Diagnostic analytics It's a form of 
advanced analytics 
that looks at data or 
content to determine 
"why did it 
happen?”. The 
purpose of 
diagnostic is to 
assist in the 
discovery of the 
problem’s root 
cause. 

Answer the 
question, whydidit 
happen? 
 
 
 
 
 
 
 

Identify anomalies 
and casual 
relationships in 
order to estimate 
business loss, 
determine the 
influence of 
medications, etc. 

Predictive Analytics It explores data to 
answer a 
question,the primary 
purpose of 
predictive analytics 
is to identify and, in 
most cases, answer 
this question with a 
high degree of 
confidence. 

Answer the 
question, what will 
happen in the 
future? 

Predicting customer 
preferences, staff 
and resource needs.  
Identifying possible 
security breaches, 
recommending 
products, etc. 

Prescriptive 
Analytics 

This focuses on 
advising the optimal 
course of action 
based on data to 
maximize the 
Totaloutcomes and 
profitability. 

Answer the 
question, What 
action should be 
taken? 

Improving business 
management, 
maintenance, patient 
care and healthcare 
administration, 
determining optimal 
marketing strategies, 
etc. 

B) Rule-Based modeling and decision-making 
To analyze data in a meaningful way, a rule-based system is typically utilized to store and 
modify knowledge. A rule base is a knowledge base that contains a set of rules. In most 
cases, rules are written as IF-THEN statements of the form: 

IF «antecedent » THEN « consequent ». 
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Such an IF-THEN rule-based expert system model can have the decision-making ability of 
a human expert in an intelligent system designed to solve complex problems and use 
knowledge-based reasoning [4]. The reason is that the rules in professional frameworks 
are easily understood by humans and are capable of representing relevant knowledge 
clearly and effectively.  Furthermore, rule-based models may be quickly improved 
according to the demands by adding, deleting, or updating rules based on domain expert 
information, or recency, i.e. based on recent trends [5] 

The term "rule-based system" was previously used to describe systems that used rule sets 
that were handcrafted or created by human. However, rule-based machine learning 
approaches could be more effective in terms of automation and intelligence, which include 
mainly classification and association rule learning techniques [4]. Several well-known 
classification techniques, such as decision trees, intrudTree, BehavDT, Ripple Down Rule 
Learner (RIDOR), Repeated Incremental Pruning to Produce Error Reduction, etc. exist 
with the capacity to generate rules. Based on support and confidence value, association 
rules are built by searching for frequent IF-THEN pattern data. Common association rule 
learning techniques such as AIS, Apriori, FP-Tree, RARM, Eclat, ABC-RUuleMiner, and 
others can be utilized to build a rule-based model using a given data set, e.g. provide a 
rule-based machine learning strategy for context-aware intelligent and adaptive mobile 
services. As a result, we can conclude that rule-based modeling can play an important role 
in the development of AI models as well as intelligent decision-making in a variety of 
applications to solve real-world issues. 

C) Fuzzy Logic-Based approach 
Fuzzy logic is a precise logic of imprecision and approximate reasoning [6]. This is a 
natural generation of conventional logic in which the degree of truth of a concept (known 
as membership value or degree of membership) can range from 0.0 to 1.0. Standard logic 
only applies to concepts that are either completely true (degree of truth 1.0) or completely 
false (0.0 degree of truth).It has been used to deal with the concept of partial truth, in 
which the truth may range from completely true to completely false (as 0.9 or 0.5). For 
instance, "if x is very large, do y, if x is not very large, do z". Here, the boundaries 
between very big and not too big may overlap. As a result, fuzzy logic-based model 
scanning recognizes, represents, manipulates, understands, and uses data and information 
that are vague and uncertain [6]. 

A fuzzy logic system's general architecture is depicted in Figure1-3. It usually consists of 
four sections: 

• Fuzzification: it converts inputs, i.e. crisp numbers into fuzzy sets. 

• Knowledge-base: it contains the set of rules and the IF-THEN conditions provided 
by the experts to govern the decision-making, based on linguistic information. 
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• Inference engine: it determines the matching degree of the current fuzzy input 
concerning each rule and decides which rules are to be fired according to the input 
field. Then, the fired rules are combined to form the control actions. 

• Defuzzification: transforms the fuzzy sets obtained by the inference engine into a 
crisp value. 

 

Figure 1-3 : a general architecture of a fuzzy logic system 

Although machine learning models may discriminate between two (or more) object classes 
based on their ability to learn from data, fuzzy logic is favored when distinguishing 
features are vaguely defined and rely on human expertise and knowledge. Thus, the 
system may work with any type of input data, including imprecise, distorted, or noisy 
data, as well as with limited data. It is a suitable strategy to use in scenarios with real, 
continuous-valued elements because it uses data acquired in surroundings with such 
properties [7]. Overall, we can infer that fuzzy logic can reach reasonable results in a 
world of imprecision, uncertainty, and partial data, and that it may be useful in such 
settings when developing a model. 

D) Knowledge representation, uncertainty reasoning and expert system 
modeling 

Knowledge representation is the study of how an intelligent agent’s beliefs, intents, and 
judgements may be expressed appropriately for automated reasoning. Reasoning is the 
process of using existing knowledge to conclude, make predictions or construct 
explanations. Many types of knowledge can be used in various application domains 
include descriptive, structural, procedural, meta and heuristic knowledge. As a result, an 
effective form of knowledge representation is necessary in designing an intelligent system. 
Several knowledgerepresentation approaches exist in the fields that can be utilized to 
construct a knowledge-based conceptual model including logical, semantic network, frame 
and production rules [8]. 

Potential knowledge representation strategies are summarized in the following: 
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• Ontology-based: in general, ontology is an explicit specification of 
conceptualization and a formal way to define the semantics of knowledge and 
data. [9] 

• Rule-base: it typically consists of pairs of the condition, and corresponding action, 
which means, IF « condition » THEN « action » [4]. 

• Uncertainty and probabilistic reasoning: Probabilistic reasoning is a method of 
knowledge representation in which the concept of probability is used to signify the 
uncertainty in knowledge, and where probability theory and logic are combined to 
address the uncertainty [10]. 

Thus, knowledge representation and modeling are important for developing AI models as 
well as intelligent decision-making in a variety of application. 

E) Case-basedreasoning (CBR) 
Case-based reasoning is a cognitive science and artificial intelligence paradigm that depicts 
reasoning as primarily memory-based.CBR is concerned with the smart reuse of 
information from previously solved problems, as well as its adaptation to new and 
unsolved problems. The inference is a problem-solving approach based on the similarities 
between the current condition and previously solved problems in a repository. Its idea is 
that the more the two issues are similar, the more similar their solutions will be. Thus, 
case-based reasoners deal with new problems by obtaining previously stored cases that 
describe similar previous problem-solving experiences and modifying their answers to 
match new requirements. CBR becomes increasingly intelligent as the number of saved 
examples grows, and hence may be useful in such scenarios while creating a model. 
However, the system’s efficiency will decline, as the time required to find and process 
relevant cases increases. A general design of case-based reasoning is shown in Figure 1-4. 
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Figure 1-4 : A general case-based reasoning design 

F) Text mining and Natural Language processing 
Text mining, also known as text data mining, comparable to text analytics, is the 
technique of extracting meaningful information from a variety of text or written resources. 
Information retrieval, lexical analysis to investigate word frequency distributions, 
information extraction and data mining techniques are all part of text analysis which text 
mining accomplishes them through the use of a various  analysis tools as natural language 
processing (NLP), natural language understanding (NLU) and natural language 
generation(NLG)…etc. while NLP  is a text analysis technique that allows machines to 
interpret human speech, NLU is a subset of NLP that helps the machine to understand the 
data by understanding the context, semantic, syntax, intent and sentiment of the text. 
However, NLG is also a subset of NLP, it is a domain within Artificial intelligence that 
seeks to produce intelligible text based on three major transformer models, namely GPT, 
BERT and XLNet [11]. Overall, we may deduce that by combining learning techniques 
with natural language processing, computers can effectively evaluate, understand, and 
infer meaning from human speech or text, which could be valuable for developing textual 
AI models. 

G) Visual analytics, Computer vision and pattern recognition 
Computer vision is a subset of AI that enables computers and systems to extract 
meaningful information from digital photos, videos, and other visual inputs and act or 
make recommendations based on that data. Its goal is to understand and automate the 
activities that the human visual system can perform.  As a result, this is concerned with 
the automated extraction, analysis and comprehension of relevant information from a 
single or a series of images. In terms of technology, it comprises the establishment of a 
theoretical and algorithmic foundation for achieving autonomous visual understanding by 
processing an image at the pixel level. Common tasks in the realm of visual analytics and 
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computer vision include object recognition or classification, detection, tracking, picture 
restoration, feature matching, image segmentation, scene reconstruction, video motion 
analysis, and so on. The basis for today’s computer vision algorithms is Patterns 
recognition which is the automated recognition of patterns and regularities in data, it often 
involves the categorization (supervised learning) and grouping (unsupervised learning) of 
patterns [11]. Typically, learning techniques rather than static analysis is more effective in 
terms of automation and intelligence in such visual analytics. As a result, it's critical to 
develop effective visual AI models in a variety of application domains in order to solve 
real-world problems. 

H) Hybridapproach, Searching and optimization 
A hybrid approach is a blend of multiple approaches or systems to design a new and 
superior model. Thus, a hybrid strategy integrates the necessary techniques of ai 
depending on the demands. Machine learning and deep learning techniques and their 
hybridization can be used to tackle a wide range of real-world problems in a variety of 
fields including business, finance, healthcare, smart cities, cybersecurity and so on. As a 
result, combining multiple techniques could play a key role to build an effective AI model 
in the area. 

1.3 Machine Learning 
Machine learning is predominantly an area of artificial intelligence which has been a key 
component of digitalization solutions that has caught major attention in the digital arena, 
which is the study of computer algorithms that automate analytical model building, i.e. it 
usually provides systems with the ability to learn and enhance from experience 
automatically without being specifically programmed. In the current age, machine learning 
becomes popular in various application areas such as predictive analytics and intelligent 
decision-making, cybersecurity and threat intelligence, internet of things and smart cities, 
E-commerce and product recommendations, sustainable agriculture and many more 
because of its learning capabilities from the past and making intelligent decisions. In 
general, the effectiveness and the efficiency of a machine learning solution depend on the 
nature and characteristics of data and the performance of the learning algorithms. Its 
algorithms can be categorized into four major types as it is shown in figure 1-5. 
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Figure 1-5 : Various types of machine learning techniques 

The next section briefly explains each sort of learning techniques with the scope of their 
applicability to solve real-world problems. 

1.3.1 Supervised learning 
is typically the task of machine learning to learn a function that maps an input to an 
output based on sample input-output pairs [2], i.e. a task-driven approach, It infers a 
function from labeled training data and a collection of training examples.it is used when 
certain goals are determined to be achieved from a specific set of inputs. The most typical 
supervised tasks are classification that separates the data, and regression that fits the data. 
The popular techniques that can be used in supervised learning to solve various problems 
include Navies Bayes, K-nearest neighbors, Support vector machines, Decision Trees - ID3, 
C4.5, CART, BehavDT, IntrudTree, Ensemble learning, Random Forest, Linear regression, 
Support vector regression, etc.  

1.3.2 Unsupervised learning 
it analyzes unlabeled datasets without the need for human interference, i.e., data-driven 
process [2]. This is widely used for extracting generative features, identifying important 
trends and structures, groupings in results and exploratory purposes. The most prevalent 
unsupervised learning tasks are clustering, density estimation, feature learning, 
dimensionality reduction, finding association rules, anomaly detection, etc. The popular 
techniques for solving unsupervised learning tasks are clustering algorithms such as K-
means, K-Mediods, CLARA, DBSCAN, hierarchical clustering, single linkage or complete 
linkage, BOTS, association learning algorithms such as AIS, Apriori, Apriori-TID and 
Apriori-Hybrid, FP-Tree, and RARM, Eclat, ABC-Rule Miner as well as feature selection 
and extracting techniques like Pearson Correlation, principal component analysis 
 , etc. that can be used to solve various unsupervised learning-related tasks, in accordance 
with the data's nature. 
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1.3.3 Semi-supervised learning 
it can be defined as a hybridization of the supervised and unsupervised methods, as it 
operates on both labeled and unlabeled data. Thus, it falls between learning without 
supervision and learning with supervision .in the real world, labeled data could be rare in 
several contexts, and unlabeled data are numerous, where semi-supervised is useful. The 
ultimate goal of semi-supervised learning model is to deliver a better prediction result than 
that obtained from the model’s labeled data alone. Some application areas where semi-
supervised learning is used include machine translation, labeling data, fraud detection and 
text classification. 

1.3.4 Reinforcement learning 
is a type of machine learning algorithm that enables software agents and machines to 
automatically evaluate the optimal behavior in a particular context or environment to 
improve its efficiency [13]. In general, it is capable of perceiving and interpreting its 
surroundings, taking actions, and learning through trial and error, i.e., an environment-
driven approach, in which the environment is typically modeled as a markov decision 
process and decisions are made using a reward function. The most prevalent reinforcement 
learning algorithms are Monte Carlo learning, Q-learning, and Deep Q Networks. 
Reinforce learning could be applied in autonomous driving tasks such as trajectory 
optimization, motion planning, dynamic pathing, and scenario-based learning rules for 
highways.  
 
The following table summarized various types of machine learning with examples. 
Table 1-2: various types of machine learning with examples. 

Learning type Model building Examples 
Supervised Algorithms or models learn 

from labeled data (task-
driven  approach) 
 

Classification, regression 

Unsupervised Algorithms or models learn 
from unlabeled data(Data-
Driven approach) 
 

Clustering, associations, 
dimensionalityreduction 

Semi-supervised Models are built using 
combined 
data(labeled+unlabeled) 
 

Classification, clustering 

Reinforcement Models are based on reward 
or penalty(environment-
driven approach) 

Classification, control 

1.3.5 Machine Learning Tasks and Algorithms 
To efficiently develop data-driven systems, machine learning algorithms such as 
Classification analysis, regression, data clustering, feature engineering and dimensionality 
reduction, association rule learning, or reinforcement learning exist as shown in figure 1-6. 
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Thus, choosing a proper learning algorithm that is suitable for the target application in 
specific domain is challenging. The reason is that the purpose of learning algorithms is 
different, even within the same category, the results of different learning algorithms can 
differ based on the data features. 

 

Figure 1-6 : Algorithms and Tasks of Machine Learning 

A) Classification Analysis 
In machine learning, classification is a supervised learning method, referring to a problem 
of predictive modeling as well, where a class label is predicted for a given example. 
Mathematically, it maps a function(F) from input variables(X) to output variables(Y) as 
target, label or categories. The common classification problems as it is shown in figure 1-
7, include binary classification which refers to tasks having two class labels, Multiclass 
classification that refers to those classification tasks having more than two class, and 
Multi-label classification which is an important consideration where an example is 
associated with several classes or labels. Thus, it is a generalization of multiclass 
classification, where the problem’s classes are hierarchically constructed, and each 
example may simultaneously belong to more than one class in each hierarchical level. 

 

Figure 1-7 : Common classification issues 
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B) Regression Analysis 
 Regression analysis encompasses several machine learning methods for predicting a 
continuous (y) result variable based on the value of one or more (x) predictor variables. 
The most important distinction between classification and regression is that classification 
predicts distinct class labels, while regression predicts a continuous quantity as shown in 
figure 1-8. Some overlaps are frequently found between the two types of machine learning 
algorithms 

 

Figure 1-8 :  Classification vs. Regression 

C) Cluster Analysis 
Also known as clustering, is an unsupervised machine learning technique for identifying 
and grouping related data points in large datasets without concern for the specific 
outcome, it groups a collection of objects in such a way that objects in the same category, 
called a cluster, are more similar to each other than objects in other groups [2]. It is 
frequently used as a data analysis technique to find interesting trends or patterns in data, 
such as groups of consumers based on their behavior. 

The following is a brief discussion and summary of various types of clustering methods. 

Partitioning methods 
This clustering approach categorizes the data into multiple groups or clusters based on the 
features and similarities in the data. Depending on the nature of the target applications, 
data scientists or analysts typically determine the number of clusters to produce for 
clustering methods either dynamically or statically. The most common clustering 
algorithms based on partitioning methods are K-means, K-Mediods, CLARA etc. 

Density-based methods 
It uses the concept that a cluster in the data space is a contiguous region of high point 
density separated from other such clusters by contiguous regions of low point density to 
identify distinct groups or clusters and points that are not part of a cluster are considered 
as noise. The typical clustering algorithms based on density are DBSCAN, OPTICS, etc. 
Density-based methods frequently struggle with data clusters of similar density and high 
dimensionality. 
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Clustering algorithms 
Many clustering algorithms with the ability to group data have been proposed in the 
machine learning and data science literature. The popular methods that are widely used in 
various application areas are: 

-K-means clustering    -GMM clustering  

-Mean-shift clustering   -DBSCAN  

-Agglomerative hierarchical clustering      

D) Reinforcement Learning 
Reinforcement learning is a machine learning technique that allows an agent to learn 
through trial and error in an interactive environment by utilizing input from its actions and 
experiences. The RL method, in contrast to supervised learning, is based on interacting 
with the environment. The problem to be solved in reinforcement learning is defined as a 
Markov Decision Process (MDP), which is all about making decisions sequentially. An RL 
problem typically consists of four components: Agent, Environment, Rewards, and Policy. 
Model-based and Model-free techniques are the two broad categories of RL. Model-based 
RL is the process of deducing optimal behavior from an environment model by performing 
actions and observing the outcomes, which include the next state and the immediate 
reward [14]. Model-based approaches include AlphaZero and AlphaGo. A model-free 
approach, on the other hand, does not use the distribution of the transition probability and 
the reward function associated with MDP. Model-free algorithms include Q-learning, Deep 
Q Network, Monte Carlo Control, SARSA (State–Action–Reward–State–Action), and 
others. The key distinction between model-free and model-based learning is the policy 
network, which is required for model-based RL but not for model-free learning.  

popular RL algorithms are discussed further below. 

Monte Carlo methods 
Monte Carlo techniques, also known as Monte Carlo experiments, are a broad category of 
computational algorithms that rely on repeated random sampling to produce numerical 
results [13]. The underlying idea is to use randomness to solve problems that are 
deterministic in theory. The three problem classes where Monte Carlo techniques are most 
commonly used are optimization, numerical integration, and drawing from a probability 
distribution. 

Q-learning 
Q-learning is a model-free reinforcement learning algorithm that instructs an agent on 
what action to take under what conditions [13]. It does not require an environment model 

(hence the term model-free), and it can deal with stochastic transitions and rewards 
without requiring adaptations. The ‘Q’ in Q-learning usually stands for quality, as the 
algorithm calculates the maximum expected rewards for a given behavior in a given state. 
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Deep Q-learning 
The basic working step in Deep Q-Learning is that the initial state is fed into the neural 
network, which returns the Q-value of all possible actions as an output. Nonetheless, Q-
learning works well when we have a relatively simple setting to overcome. Deep learning, 
on the other hand, can be used as a function approximator as the number of states and 
actions increases. 

One of the fundamental machine learning paradigms, along with supervised and 
unsupervised learning, is reinforcement learning. Many real-world problems can be solved 
using RL, including game theory, control theory, operations analysis, information theory, 
simulation-based optimization, manufacturing, supply chain logistics, multiagent systems, 
swarm intelligence, aircraft control, robot motion control, and many others.  

E) Artificial Neural Network  
artificial neural networks are a subset of machine learning and are at the heart of deep 
learning algorithms. A typical neural network is mainly composed of many simple, 
connected processing elements or processors called neurons, each of which generates a 
series of real-valued activations for the target outcome. 

Figure 1-9 shows a schematic representation of the mathematical model of an artificial 
neuron, i.e., processing element, highlighting input (Xi), weight (w), bias (b), summation 
function (Σ), activation function (f) and corresponding output signal (y). 

 

Figure 1-9 : A schematic representation of an artificial neuron's mathematical model 

The Multi-layer Perceptron (MLP)  
a supervised learning approach [15], is a type of feedforward artificial neural, since 1986 
used algorithm "Backpropagation" [2], which is also known as the most basic building 
block of a neural network. Various optimization approaches, such as Stochastic Gradient 
Descent (SGD), Limited Memory BFGS (L-BFGS), and Adaptive Moment Estimation 
(Adam), are used during the training process. MLP necessitates the adjustment of several 
hyperparameters, including the number of hidden layers, neurons, and iterations, which 
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can make solving a complex model computationally expensive, on the other hand, has the 
advantage of learning non-linear models in real-time or online via partial fit [15]. 

 

Figure 1-10 : A structure of an artificial neural network modeling with multiple processing layers 

1.3.6 Machine learning algorithms 
A) Support Vector Machine (SVM) 

It’s a widely used learning algorithm   and one of the most powerful supervised 
classification techniques [16,17], originally introduced by Vapnik[18,19] and successively 
extended by a number of other academic. SVM can be trained to generate a model using 
training data{x1,…..xn}, where 𝑥𝑖 ∈ 𝑁 and class labels {y1, …y n} where 𝑦𝑖 ∈ {−1,1}, 
The class of new testing is predicted using this model. 

 In high or infinite-dimensional space, a support vector machine constructs a hyper-plane 
or set of hyper-planes as shown in figure 1-11. Intuitively, the hyper-plane, which has the 
largest margin from the nearest training data points in any class, achieves a strong 
separation since. Margin means the maximal width of the slab width of the slab parallel to 
the hyperplane that has no interior data points. This helps to reduce the generalization 
error for classifying a new data point, i.e.  the greater the margin, the lower the classifier’s 
generalization error. 

 

Figure 1-11 : SVM and the separating hyperplane 
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To separate data in the n-dimensional input space, Linear SVM uses the decision 
hyperplane defined as: 

𝑓(𝑥) =  𝑤𝑇𝑥 + 𝑏 = 0  (1) 

Where𝑤 is the hyperplane normal vector, 𝑤 ∈ ℝ𝑛,  and b/|| 𝑤|| is the perpendicular 
distance between the hyperplane and the origin (||. || is the 2-norm), b∈ℝ. This hyperplane 
is positioned such that the distance between the closet vectors of the opposite classes to 
the hyperplane is maximal. For two linearly separable classes (as already mentioned, with 
the class labels 𝑦𝑖 ∈ {+1, −1} , the training data must satisfy the following conditions: 

𝑤𝑇𝑥 + 𝑏 ≤ 1             𝑦𝑖 = −1. 

𝑤𝑇𝑥 + 𝑏 ≥ 1              𝑦𝑖 = +1,       

These two hyperplanes are called canonical hyperplanes. The width of the band formed by 
the canonical hyperplanes is 2/||𝑤||. To find the maximum margin separator, it is sufficient 
to search among the separators checking for all the examples 𝑦𝑖 × 𝑓(𝑥𝑖) ≥ 1, the separator 
for which ||𝜔 || is minimal. 

In cases where data points are clustered so that linear separation is not possible, the data 
points can be mapped into feature space (higher dimensional space) where a linear 
separation is possible. This hyperplane which is linear in feature space will be nonlinear in 
its corresponding input space [20]. Different kernel functions, including linear kernel 

(𝐱𝑇𝐱′), polynomial kernel ((𝐱𝑇𝐱′ + 1)𝑑), RBF kernel (exp(-𝛾||𝐱𝐱′||2)) and sigmoidal 
kernel(tanh(𝛾𝐱𝐱′ + 𝐶)) can be used in SVM for the nonlinear problem[21]. 

B) Naïve Bayes (NB) 
The naive Bayes algorithm is based on the bayes theorem with the assumption of 
independence between each pair of features, in simple terms, a Naive bayes classifier 
assumes that the presence of a particular feature in a class is unrelated to the presence of 
any other feature.it works well and can be used for both binary and multi-class categories 
in many situations. To effectively classify the noisy instances in the data and to construct a 
robust prediction model, the NB classifier can be used [22]. Compared to more 
sophisticated approaches, the key benefit is that it needs a small amount of training data 
to estimate the necessary parameters and quickly. However, because of its strong 
assumptions on features independence, its performance may be harmed. The most 
frequent NB classifier are Gaussian, Multinomial, Complement, Bernoulli, and Categorical. 

C) Linear Discriminant Analysis (LDA)  
It is a linear decision boundary classifier created by fitting class conditional densities to 
data and applying baye’s rule. Known as a generalization of fisher’s linear discriminant 
which projects a given dataset into a lower-dimensional space, i.e. a reduction of 
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dimensionality that minimizes the complexity of the model or reduces the computational 
costs of the model. The typical LDA model frequently fits each class with a Gaussian 
density. Assuming that all classes share the same covariance matrix [15]. LDA is strongly 
connected to ANOVA (analysis of variance) and regression analysis, which seek to express 
one dependent variable as a linear combination of other features or measurements. 

D) Logistic regression (LR)  
Logistic Regression is another common probabilistic based statistical model used to solve 
classification problems in machine learning. LR typically uses a logistic function to 
estimate the probabilities, which is also referred to as the mathematically defined sigmoid 
function in eq 2. It is capable of overfitting high-dimensional datasets and performs well 
when the dataset can be separated linearly. In such cases, the regularization (L1 and L2) 
techniques can be used to avoid over-fitting. The assumption of linearity between the 
dependent and independent variables is regarded as a major drawback of Logistic 
Regression. It can be applied to both classification and regression problems, but it is most 
commonly applied to classification. 

𝑔(𝑥) =  
1

1 + 𝑒𝑥𝑝−𝑥
                                        (2) 

E) K-nearest neighbors (KNN) 
KNN is an instance-based learning or non-generalizing learning, also known as a lazy 
learning algorithm. it does not concentrate on developing a general internal model, 
instead, it stores all instances corresponding to training data in n-dimensional space. KNN 
analyzes data and classifies new data points based on similarity measures (e.g., Euclidean 
distance function) [15]. Classification is determined by a simple majority vote of the K 
nearest neighbors of each point.it is quite robust to noisy training data, and accuracy 
depends on data quality’s, most difficult aspect of KNN is to choose the optimal number 
of neighbors to be considered. KNN can be used both for classification as well as 
regression.  

F) Random forest 
A random forest classifier is a well-known as ensemble classification technique used in 
machine learning and data science in a variety of application areas. This method uses 
parallel ensembling which parallelizes the fitting of several decision tree classifiers on 
various data set sub-samples and relies on majority voting or averages to determine the 
outcome or final result. It thus minimizes the over-fitting problem and increases the 
prediction accuracy and control [15]. As a result, the RF learning model with multiple 
decision trees is typically more accurate than a model based on a single decision tree. It 
combines bootstrap aggregation (bagging) and random feature selection to create a series 
of decision trees with controlled variation.  RF is applicable to classification and regression 
problems, and it works well with both categorical and continuous values. 



CHAPTER I    Background on deep learning 
   
 

   
21 

 

G) Decision tree 
a well-known non-parametric supervised learning method, it is a graph that represents 
choices and their outcomes in form of a tree. The graph ‘s nodes represent an event or 
choice, and the graph’s edges represent the decision rules or conditions. its learning 
methods are used for both classification and regression tasks. For DT algorithms, ID3, 
C4.5 and CART are well known. Furthermore, recently proposed BEhavDT and intrudTree 
are effective in relevant application domains such as user behavior analytics and 
cybersecurity analytics, respectively.  By sorting down the tree from the root to some leaf 
nodes, DT classifies the instances. Instances are classified by checking the attribute 
defined by that node, starting at the root node of the tree, then moving down the tree 
branch corresponding to the attribute as shown in figure 1-12. 

 

Figure 1-12 : An example of a random forest structure considering multiple 

H) Adaptive Boosting 
AdaBoost is an ensemble learning process that uses an iterative approach to improve poor 
classifiers by learning from their errors. This is created by Yoav Freund et al.and also 
known as metalearning. Unlike the random forest, which employs parallel ensembling, 
Adaboost uses sequential ensembling. It builds a powerful classifier by combining many 
low-performing classifiers to produce a high-accuracy classifier. AdaBoost is referred to as 
an adaptive classifier because it significantly improves the efficiency of the classifier, but 
in some instances, it can trigger overfits. AdaBoost is best used to improve the 
performance of decision trees and the base estimator [15] on binary classification 
problems, however, is sensitive to noisy data and outliers. 
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I) Extreme gradient boosting (XGBoost) 
Like Random Forests, is an ensemble learning algorithm that creates a final model based 
on a collection of individual models, typically decision trees. Similarly, to how neural 
networks use gradient descent to optimize weights, the gradient is used to minimize the 
loss function. Extreme Gradient Boosting is a type of gradient boosting that considers 
more detailed approximations when determining the best model. To minimize loss and 
advance regularization, it computes second-order gradients of the loss function (L1 and 
L2) which reduces over-fitting and improves model generalization and performance. 
XGBoost is quick to interpret and can handle large-sized datasets well. 

J) Rule-based classification 
The term rule-based classification can be used to refer to any classification scheme that 
makes use of IF-THEN rules for class prediction. Several classification algorithms with rule 
generation capabilities exist, including Zero-R, One-R, decision trees, DTNB, Ripple Down 
Rule learner(RIDOR) and Repeated incremental Pruning to Produce Error 
Reduction(RIPPER).Among these techniques, the decision tree is one of the most common 
rule-based classification algorithms because it has several advantages such as being easier 
to interpret , the ability to handle high-dimensional data , simplicity and speed , good 
accuracy , and the ability to produce rules for human clear and understandable 
classification 

For splitting, the most popular used criteria are gini for the Gini impurity and entropy for 
information gain that can be expressed mathematically as: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 ∶   𝐻(𝑥) =  − ∑ 𝑝(𝑥𝑖
𝑛
𝑖=1 )𝑙𝑜𝑔2𝑝(𝑥𝑖) (3) 

𝐺𝑖𝑛𝑖(𝐸) = 1 − ∑ 𝑃𝑖2𝑐
𝑖=1     (4) 

1.3.7 Dimensionality Reduction and Feature Learning 
high-dimensional data processing is a challenging task for both researchers and application 
developers in machine learning and data science. Thus, dimensionality reduction, an 
unsupervised learning technique, is important because it improves human interpretations, 
reduces computational costs, and avoids overfitting and redundancy by simplifying 
models. Dimensionality reduction can be accomplished through both the feature selection 
and feature extraction processes. The primary distinction between feature selection and 

feature extraction is that feature selection retains a subset of the original features [23], 

whereas feature extraction creates entirely new ones [24]. These techniques are briefly 

discussed below. 

A) Feature selection 
The process of selecting a subset of unique features (variables, predictors) to use in 
building machine learning and data science models is known as feature selection. It 
reduces the complexity of a model by removing irrelevant or less important features, 
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allowing for faster training of machine learning algorithms. A correct and optimal subset 
of the selected features in a problem domain can reduce overfitting by simplifying and 
generalizing the model and increasing the model's accuracy [23]. Thus, feature selection is 
regarded as one of the fundamental concepts in machine learning that has a significant 
impact on the effectiveness and efficiency of the target machine learning model. Some 
popular techniques for feature selection include the Chi-squared test, the Analysis of 
variance (ANOVA) test, Pearson's correlation coefficient, and recursive feature elimination. 

B) Feature extraction: 
Feature extraction techniques in a machine learning-based model or system typically 
provide a better understanding of the data, a way to improve prediction accuracy, and a 
way to reduce computational cost or training time. The goal of feature extraction [25, 26] 
is to reduce the number of features in a dataset by creating new ones from old ones and 
then discarding the old ones. The majority of the information in the original set of features 
can be summarized using this new reduced set of features. Principal components analysis 
(PCA), for example, is frequently used as a dimensionality-reduction technique to extract a 
lower dimensional space and create new brand components from existing features in a 
dataset. 

Many algorithms for reducing data dimensions have been proposed in the machine 
learning and data science literature. The popular methods that are widely used in various 
application areas are summarized below. 

C) Variance threshold 
The variance threshold is a simple basic approach to feature selection. This excludes all 
low variance features, i.e., all features whose variance does not exceed the threshold. By 
default, it eliminates all zero-variance characteristics, i.e., characteristics that have the 
same value in all samples. This feature selection algorithm considers only the (X) features, 
not the required (Y) outputs, and can thus be used for unsupervised learning. 

D) Pearson correlation 
Pearson's correlation is another method for understanding a feature's relationship to the 
response variable and can be used to select features. This method is also used to 
determine the relationship between features in a dataset. The resulting value is [-1, 1], 
where -1 indicates perfect negative correlation, +1 indicates perfect positive correlation, 
and 0 indicates that there is no linear correlation between the two variables. If X and Y are 
represented by two random variables, then the correlation coefficient between X and Y is 
defined as 

𝑟(𝑋, 𝑌) =
∑ (𝑋𝐼−𝑋)(𝑌𝑖−𝑌̅)𝑛

𝑖=1

√∑ (𝑋𝑖−𝑋)²𝑛
𝑖=1

√∑ (𝑌𝑖−𝑌)
2𝑛

𝑖=1

  (5) 



CHAPTER I    Background on deep learning 
   
 

   
24 

 

E) ANOVA 
ANOVA is a statistical tool used to compare the mean values of two or more groups that 
differ significantly from each other. ANOVA assumes a linear relationship between the 
variables and the target, as well as a normal distribution for the variables. The ANOVA 
method employs F tests to statistically test the equality of means. The results of this test's 
'ANOVA F value’ can be used for feature selection, where certain features independent of 
the goal variable can be omitted. 

F) Chi square 
The chi-square statistic estimates the difference between the observed and expected 
effects of a series of events or variables. The magnitude of the difference between the real 
and observed values, degrees of freedom, and sample size are all proportional to 𝜒². For 
testing relationships between categorical variables, the chi-square is commonly used.  

G) Recursive feature elimination 
 RFE is a brute force method for selecting features. RFE [15] fits the model and removes 
the weakest feature before it reaches the number of features specified. The model's 
coefficients or feature significance are used to rank features. RFE aims to remove model 
dependencies and collinearity by removing a small number of features recursively per 
iteration. 

H) Model-based selection 
Linear models penalized with the L1 regularization can be used to reduce the 
dimensionality of the data. Least absolute shrinkage and selection operator (Lasso) 
regression is a type of linear regression in which some of the coefficients are reduced to 
zero [15]. As a result, that feature can be eliminated from the model. Thus, the penalized 
lasso regression method is frequently used in machine learning to select a subset of 
variables. 

I) Principal component analysis 
 In the field of machine learning and data science, principal component analysis is a well-
known unsupervised learning approach. PCA is a mathematical technique that converts a 
set of correlated variables into a set of uncorrelated variables known as principal 
components [27,28]. Figure 1-13 shows the effect of PCA on various dimensions of space, 
where Fig. 8a depicts the original features in 3D space and Fig. 8b depicts the created 
principal components PC1 and PC2 onto a 2D plane and 1D line, respectively, with the 
principal component PC1.As a result, PCA can be used as a feature extraction technique to 
reduce dataset dimensionality and to build an effective machine learning model [24].  
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Figure 1-13 : An example of a principal component analysis (PCA) and created principal components 

1.3.8 Real‑World Applications of AI and ML 
throughout the last several years, AI approaches have been effectively applied to a variety 
of issues in a variety of application areas such as cybersecurity, healthcare, business and 
social media, virtual reality and assistance, robotics, etc.  The following table appears 
several AI tasks and techniques that are utilized nowadays. 

 

Table 1-3: Real‑World Applications of AI and ML 

AI techniques Application areas Tasks References 
Machine learning 
 
 
 

Healthcare 
 

COVID-19 aid 
 

Blumenstock et al. 
[29] 
 

Cybersecurity 
 

Anomaly and Attack Detection 
 

Sarker et al. [30] 
Sarker et al. [31] 
 
 

Smartcity 
 

Smart parking pricing system 
 

Saharan et al. [32] 
 

Recommendationsystems Hotelrecommendation Ramzan et al.[33]  

Virtual Assistant 
 

An intelligent chatbot 
 

Dhyani et al. [34] 
 
 

Visual Recognition Facial expression analysis Li et al. [35] 
 

Data mining, 
knowledge 
discovery and 
advanced 

Education 
 

Decision support systems 
 

Hamed et al. [36] 
 

Business 
 

Maximisingcompetitiveadvantage 
 

Alazab et al. [37] 
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analytics Cybersecurity 
 

Human-centred data mining 
 

Afzaliseresht et 
al.[38]  
 

Diagnostic analytics 
 

To mature gasfields 
 

Poort et al. [39] 
 

Prescriptive analytics Optimizingoutpatientappointment Srinivas et al. [40] 

Rule-based 
modeling and 
decisionmaking 

Intelligent systems 
 

Mining contextualrules 
 

Sarker et. Al[41] 
 

Healthcare 
 

Identifyingriskfactors 
 

Borah et al. [42] 
 

Recommendation system 
 

Web page recommendation 
 

Bhavithra et al. 
[43] 
 

Smart systems Risk prediction Xu et al. [44] 

Fuzzylogic-
basedapproach 

Healthcare 
 

Heartdiseasediagnosis 
 

Reddy et al. [45] 
 

Agriculture 
 

Smart irrigation 
 

Krishnan et al.[46]  
 

Cybersecurity 
 

Network anomalydetection 
system 
 

Hamamoto et 
al.[47]  
 

Business Customer satisfaction Kang et al. [48] 

Knowledge 
representation, 
Uncertainty 
reasoning and 
Expert system 
modeling 

Smart systems 
 

Smart traffic monitoring 
 

Goel et al. [49] 
 

cloudcomputing 
 

Ontology data access control 
 

Kiran et al.[50]  
 

cybersecurity 
 

Vulnerability management 
 

Syed et al. [51] 
 

Mobile expert system Personalizeddecision-making Sarker et al. [52] 

Case-
basedreasoning 

Healthcare 
 

Breast cancer management 
 

Lamy et al. [53] 
 

Smart cities 
 

Energy management 
 

Gonzalez et al. [54]  
 

Smart Industry 
 

Faultdetection system 
 

Khosravani et al. 
[55]  
 

RecommendationSystems Classification and regressiontasks Corrales et al. [56]  

Text mining and 
natural language 
processing 

Sentiment analysis 
 

Sentiment analysis of tweets 
 

Phan et al. [57] 
 

Business 
 

Product reviews sentiment 
 

Onan et al. [58] 

Cybersecurity 
 

Estimatingsecurity of events 
 

Subramaniyaswamy 
et al. [59] 
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Healthcare Effectiveness of social media Nawaz et al. [60] 

Visual analytics, 
computer vision 
and 
pattern 
recognition 

Healthcare 
 

Cervical cancer diagnostics 
 

Elakkiya et al.  
[61] 

Computer vision 
 

Human falldetection 
 

Arrou et al. [62] 
 

Visual Analytics Navigation mark classification Pan et al. [63] 

Hybrid approach, 
searching and 
optimization 

Mobile application 
 

Personalizeddecision-making 
 

Sarker et al. [52] 
 
 
 
 
 

Recommendationsystems 
 

Personalizedhotelrecommendation 
 

Ramzan et al. [33] 
 

Sentiment analysis 
 

Tweet sentiment accuracyanalysis 
 

phan et al. [57] 
 

Business 
 

Customer satisfaction 
 

Kang et al. [48] 
 

Cybersecurity Optimum featureselection Onah et al. [64] 
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1.4 Deep Learning 
DL is considered as a subset of ML and AI. It can be viewed as an AI function that mimics 
the human brain's data processing and a part of a wider family of machine learning 
approaches that use artificial neural networks (ANN). It became well-known as a result of 
Alexnet's outstanding performance on Imagenet 2012 [68]. 

Deep learning provides a computational architecture for learning from data by combining 
several processing layers, such as input, hidden, and output layers [65]. The main 
advantage of deep learning over traditional machine learning methods is that it performs 
better in several situations, particularly learning from large datasets. Figure 1-14 depicts 
the general performance of deep learning over machine learning when the amount of data 
increases. However, it may vary depending on the data characteristics and experimental 
set up. 

 

Figure 1-14: Machine learning and deep learning performance in general [65] 

 

1.4.1 Various Forms of Data 
As DL models learn from data, an in-depth understanding and representation of data is 
required to build a data-driven intelligent system in a specific application area. In the real 
world, data can take various forms, which are typically represented as below for deep 
learning modeling 

A) Sequential data 
is any type of data in which the order is important, i.e. a set of sequences. When building 
the model, it must explicitly account for the sequential nature of the input data. Sequential 
data includes text streams, audio fragments, video clips, and time-series data. 

B) Image or 2D Data 
A digital image is composed of a matrix, which is a rectangular array of numbers, 
symbols, or expressions arranged in rows and columns in a 2D array of numbers. A digital 
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image's four essential characteristics or fundamental parameters are matrix, pixels, voxels, 
and bit depth. 

C) Tabular Data 
A tabular dataset is made up of rows and columns. Tabular datasets like database tables, 
contain data in a columnar format. Each column (field) must be named, and each column 
can only contain data of the specified type. Overall, it is a logical and systematic 
arrangement of data in rows and columns based on data properties or features. Deep 
learning models can efficiently learn from tabular data and allow to create data-driven 
intelligent systems. 

1.4.2 DL Properties and Dependencies 
A DL model typically goes through the same stages of processing as machine learning 
modeling. Figure 1-15 depicts a deep learning workflow for solving real-world problems, 
which includes three processing steps: data understanding and preprocessing, DL model 
building and training, and validation and interpretation. 

However, unlike ML modeling [66,67], feature extraction in the DL model is automated 
rather than manual. Machine learning techniques commonly used in various application 
areas include K-nearest neighbor, support vector machines, decision trees, random forests, 
naive Bayes, linear regression, association rules, and k-means clustering [12]. The DL 
model, on the other hand, includes convolution neural network, recurrent neural network, 
autoencoders, deep belief network and many more. The following section discuss the key 
properties and dependencies of DL techniques that must be considered before beginning 
work on DL modeling for real-world applications. 

 

Figure 1-15 : A typical DL workflow to solve real-world problems[65] 
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A) Data Dependencies 
 Deep learning is typically dependent on a large amount of data to build a data-driven 
model for a specific problem domain. Deep learning algorithms frequently perform poorly 
when the data volume is small [68]. However, if the specified rules are used, the 
performance of standard machine-learning algorithms will be improved [68, 69]. 

B) Hardware Dependencies 
 While training a model with large datasets, DL algorithms necessitate large computational 
operations. As the larger the computations, the more the advantage of a GPU over a CPU, 
the GPU is mostly used to optimize the operations efficiently. Thus, to work properly with 
the deep learning training, GPU hardware is necessary. Therefore, DL relies more on high-
performance machines with GPUs than standard machine learning methods [70,71]. 

C) Feature Engineering Process 
is the process of extracting features (characteristics, properties, and attributes) from raw 
data using domain knowledge, A fundamental distinction between DL and other machine 
learning techniques is the attempt to extract high-level characteristics directly from data 
[72, 12]. Thus, DL decreases the time and effort required to construct a feature extractor 

for each problem. 

D) Model Training and Execution time 
In general, training a deep learning algorithm takes a long time due to the large number of 
parameters in the DL algorithm, thus, the model training process takes longer. For 
example, DL models can take more than a week to complete a training session, whereas 
ML algorithms take only seconds to hours [69, 71]. When compared to other machine 
learning methods, deep learning algorithms run extremely quickly during testing [71]. 

1.4.3 Deep Learning Techniques and Applications 
in this section, various types of deep neural network techniques are discussed, which 
typically consider several layers of information-processing stages in hierarchical structures 
to learn. However, before diving into the specifics of the DL techniques, it’s a good idea 
to review the different types of learning tasks, such as (i) Supervised: a task-driven 
approach that uses labeled training data, (ii) Unsupervised: a data-driven process that 
analyzes unlabeled datasets, (iii) Semi-supervised: a hybridization of both the supervised 
and unsupervised methods, and (iv) Reinforcement: an environment driven approach. 
Thus, DL techniques broadly divided into three major categories (i) deep networks for 
supervised or discriminative learning, (ii) deep networks for unsupervised or generative 
learning, and (iii) deep networks for hybrid learning combing both and relevant others, as 
shown in Figure 1-16. 
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Figure 1-16: major categories of DL techniques 

 

Figure 1-17: DL techniques 

In the following, we briefly discuss each of these techniques shown in figure 1-17 
according to their learning capabilities. 
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A) Deep Networks for supervised or discriminative Learning 
This DL technique category is used to provide a discriminative function in supervised or 
classification applications. Typically, discriminative deep architectures are designed to 
provide discriminative power for pattern classification by describing the posterior 
distributions of classes conditioned on visible data [73]. Discriminative architectures 
mainly include Convolutional Neural Networks (CNN or ConvNet), Recurrent Neural 
Networks (RNN), Bayesian Neural Network along with their variants. 

Convolutional Neural Network (CNN or ConvNet) 
Convolutional neural networks (CNNs) have emerged as essential state-of-the-art deep 
learning algorithms in recent years. CNN is a feedforward neural network with a deep 
structure and one or more convolutional layers, modeled after the organization of animal 
visual cortex. The network employs a mathematical operation known as convolution, 
hence the name. Extraction. This is equivalent to a matrix multiplication. In contrast to the 
standard completely linked, CNN neurons have local connectivity (sparse interactions), 
therefore they do not have to be connected to all the outputs from the previous layer of 
neurons. 

CNNs are intended to process data in the form of numerous arrays. 3D CNNs are capable 
of processing 3D data such as video or volumetric images. 2D CNNs work with 2D data 
such as images or audio spectrograms, whereas 1D CNNs work with 1D data such as 
signals and sequences. 

The 1D CNNs used in this work are recent versions of the well-known 2D CNNs, having 
been introduced only a few years ago. 1D CNNs have quickly achieved state-of-the-art 
performance levels in a variety of applications, including cardiac arrhythmia classification, 
electrical motor fault detection, wind prediction, and acoustic waste sorting. 

A typical CNN, as shown in figure 1-18, is generally a convolution layer adjacent to a 
pooling layer, alternating in turn and finally output by a fully connected layer. 

 

Figure 1-18: An example of a convolutional neural network 



CHAPTER I    Background on deep learning 
   
 

   
34 

 

i) Convolution layer 
The convolution operation is the core of the CNN, in which a small square matrix of 
numbers, known as a kernel (filter), is applied across the input, which is a matrix of 
numbers known as a tensor. As shown in figure 1-19, a hadamard product between the 
kernel and the tensor is calculated and summed at each position of the input to obtain the 
output value in the corresponding position of the target tensor. For example, if we utilize 
two-dimensional data I of pxq elements as input, we will most likely also want to employ 
a two-dimensional kernel K of nxn elements, the discrete convolution, often represented 
with an asterisk, is determined by the following formula: 

𝑉(𝑖, 𝑗) = (𝐼∗𝐾)(𝑖, 𝑗) = ∑𝑥𝑛
=0 ∑𝑛𝑦=0 𝐼(𝑖 + 𝑥, 𝑗 + 𝑦)𝐾(𝑥, 𝑦).(6) 

Where V(i,j) is the output value in the corresponding position of the target tensor.  
 

 
Figure 1-19: convolution layer neuron and the discrete convolution 

A convolutional layer contains a set of kernels that need to be learned. Neurons with the 
same feature map in the same layer share the same kernel. As shown in Figure 1-19, each 
convolution layer neuron conducts a discrete convolution between the input and 
corresponding kernel to generate the neuron's input feature map, which is then passed 
through a nonlinear activation function to generate the neuron's output feature map. By 
stacking the feature maps of all kernels along the depth dimension, the convolutional 
layer's output volume is obtained. The convolutional layer's aim is to figure local 
intersections of features from the previous layer. 

As in all neural networks, it is also possible to add biases to the forward operations. Each 
unique kernel in a convolutional layer is associated with its own bias. Therefore, For the jth 
feature map in the ith layer of the CNN, the value at the xth row and yth column is denoted 
as vijx,y and computed by the formula below : 

𝑣𝑖𝑗𝑥,𝑦 𝑤𝑖𝑗𝑚𝑝𝑣(𝑥𝑖+−𝑝1),𝑦𝑚)  (7) 
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Where f is the activation function,   

bij the bias of the jth kernel in the ith 
layer,  

m indexes over the set of feature maps in the (i−1)th layer connected to the current feature 

map, 𝑤𝑖𝑗𝑚𝑝is the value at the position p of the convolutional kernel, and Piis the length of 

the convolutional kernel.  

 

ii) Pooling layer 
The pooling layer (subsampling layer), creates its own feature map by applying pooling 
operator to aggregate information within each small region of the input feature maps and 
then down sampling the results. The goal of a pooling layer is to produce a summary 
statistic of its input and to reduce the spatial dimensions of the feature maps [74].It is of 
note that there is no learnable parameter in any of the pooling layers. The most popular 
form of pooling operation is max pooling, which reports the maximal values in each 
rectangular neighborhood of each point (i,j), computed by the formula below: 

𝑣𝑖𝑗𝑥,𝑦= 𝑚𝑎𝑥1≤𝑞≤𝑄𝑖 (8) 

Where Qi is the length of the pooling region.  
The most common form of max pooling uses stride 2 together with pool size 2 [74], 
which corresponds to partitioning the feature map spatially into a regular grid of square 
with side 2 and taking the maximum value over such blocks for each input feature as 
shown in figure 1-20. 

 
Figure 1-20: feature map and the output 

iii) Fully connected layer 
The fully connected (dense) layer, which is similar to the layer in a regular MLP, converts 
the retrieved information into final output, such as classification. Flattening is the process 
of converting the final convolution or pooling layer's output feature maps into a one-
dimensional array of numbers (or vector) that may be used as input to the dense layer. 
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Figure 1-21: The fully connected layer 

Recurrent Neural Network (RNN) and its Variants 
A Recurrent Neural Network (RNN) is another popular neural network that uses sequential 
or time-series data and feeds the output from the previous step as input to the current 
stage [75, 76]. Recurrent networks, like feedforward and CNN, learn from training input 
but differ in that they have "memory," which allows them to influence current input and 
output by using information from previous inputs. Unlike traditional DNN, which assumes 
that inputs and outputs are independent of one another, RNN output is dependent on 
previous elements in the sequence. However, standard recurrent networks suffer from 
vanishing gradients, making learning long data sequences difficult. In following, several 
popular recurrent network variants that minimize issues and perform well in a wide range 
of real-world application domains are discussed  

Long short-term memory (LSTM) 
This is a popular type of RNN architecture that employs special units to solve the 
vanishing gradient problem, which was proposed by Hochreiter et al. [77]A memory cell 
in an LSTM unit can store data for long periods of time, and the flow of information into 
and out of the cell is controlled by three gates. For example, the 'Forget Gate' determines 
what information from the previous state cell will be memorized and what information 
will be removed that is no longer useful, while the 'Input Gate' determines which 
information should enter the cell state and the 'Output Gate' determines and controls the 
outputs. The LSTM network is considered one of the most successful RNNs because it 
solves the problems associated with training a recurrent network. 

RNN/LSTM bidirectional 
Bidirectional RNNs link two hidden layers running in opposite directions to a single 
output, allowing them to accept data from both the past and the future. Unlike traditional 
recurrent networks, bidirectional RNNs are trained to predict both positive and negative 
time directions at the same time. A Bidirectional LSTM, or BiLSTM, is an extension of the 
standard LSTM that can improve model performance on sequence classification problems 



CHAPTER I    Background on deep learning 
   
 

   
37 

 

[78]. It is a sequence processing model made up of two LSTMs, one of which moves the 
input forward and the other backward. In natural language processing tasks, bidirectional 
LSTM is a popular choice. 

Recurrent gated units (GRUs) 
Cho et al. [79] introduced a Gated Recurrent Unit (GRU), a popular variant of the 
recurrent network that uses gating methods to control and manage information flow 
between cells in the neural network. The GRU is like an LSTM, however, has fewer 
parameters, as it has a reset gate and an update gate but lacks the output gate, as shown 
in Figure 1-22. 

 

Figure 1-22: the Grus architecture 

Thus, the primary distinction between a GRU and an LSTM is that a GRU has two gates 
(reset and update gates), whereas an LSTM has three gates (input, output, and forget 
gates). The GRU's structure enables it to capture dependencies from large sequences of 
data in an adaptive manner, without discarding information from earlier parts of the 
sequence. Thus, GRU is a slightly more streamlined variant that often provides comparable 
performance while being significantly faster to compute [80]. Although GRUs have been 
shown to perform better on smaller and less frequent datasets [80, 81], both variants of 
RNN have proven their effectiveness in producing the outcome. 

 

Bayesian Neural Network 
Bayesian neural networks (BNNs) are stochastic neural networks trained using a Bayesian 
approach or inference.  it refers to the use of posterior inference to extend standard 
networks in order to control over-fitting. In general, the Bayesian approach employs 
statistical methodology to ensure that including model parameters, everything has a 
probability distribution attached to it (weights and biases in neural networks). Bayesian 
statistics offer a formalism to understand and quantify the uncertainty associated with 
deep neural network predictions. The Bayesian posterior for complex models such as 
artificial neural networks is a high dimensional and highly non-convex probability 
distribution [82]. 
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A recurrent network's basic property is that it has at least one feedback connection, which 
allows activations to loop. This enables networks to perform temporal processing and 
sequence learning tasks like sequence recognition or reproduction, temporal association or 
prediction, and so on. 

B) Deep Networks for Generative or Unsupervised Learning 
This subset of deep learning techniques is frequently used to characterize high-order 
correlation properties or features for pattern analysis or synthesis, as well as the joint 
statistical distributions of visible data and their associated classes [73]. The fundamental 
idea behind generative deep architectures is that precise supervisory information, such as 
target class labels, is irrelevant during the learning process, the precise supervisory 
information, such as target class labels, is unimportant. As a result, the methods in this 
category are primarily used for unsupervised learning, as they are commonly used for 
feature learning or data generation and representation [83, 73]. Thus, generative modeling 
can also be used as preprocessing for supervised learning tasks, ensuring discriminative 
model accuracy. Deep neural network techniques commonly used for unsupervised or 
generative learning include Generative Adversarial Network (GAN), Autoencoder (AE), 
Restricted Boltzmann Machine (RBM), Self-Organizing Map (SOM), and Deep Belief 
Network (DBN), as well as variants. 
 
Generative Adversarial Network (GAN) 
A Generative Adversarial Network (GAN), created by Ian Goodfellow [84], is a type of 
neural network architecture for generative modeling that generates new plausible samples 
on demand. It involves automatically discovering and learning regularities or patterns in 
input data so that the model may be used to generate or output new examples from the 
original dataset. GANs are made up of two neural networks. a generator G that generates 
new data with properties similar to the original data and a discriminator D that predicts 
the likelihood of a subsequent sample being drawn from actual data rather than data 
provided by the generator. Thus, in GAN modeling, both the generator and the 
discriminator are trained to compete with one another. While the generator attempts to 
fool and confuse the discriminator by creating more realistic data, the discriminator tries to 
distinguish the genuine data from the fake data generated by G. GAN network 
deployment is generally intended for unsupervised learning tasks, but depending on the 
task, it has also proven to be a better solution for semi-supervised and reinforcement 
learning [85]. GANs are also used in state-of-the-art transfer learning research to enforce 
the alignment of the latent feature space [86] Inverse models, such as Bidirectional GAN 
(BiGAN) , can learn a mapping from data to latent space in the same way that a standard 
GAN model learns a mapping from a latent space to the data distribution. Overall, GANs 
have established themselves as a comprehensive domain of independent data expansion 
and as a solution to problems requiring a generative solution. 

Auto‑Encoder (AE) and Its Variants 
An auto-encoder (AE) is a well-known unsupervised learning technique that employs 
neural networks to learn representations. Auto-encoders are typically used to work with 
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high-dimensional data, and dimensionality reduction describes how a set of data is 
represented. Encoder, code, and decoder are the three parts of an autoencoder. The 
encoder compresses the input and generates the code, which the decoder subsequently 
uses to reconstruct the input.  Recently, AEs have been used to learn generative data 
models [87]. Many unsupervised learning tasks, such as dimensionality reduction, feature 
extraction, efficient coding, generative modeling, denoising, anomaly or outlier detection, 
and so on, make extensive use of the auto-encoder. PCA, which is also used to reduce the 
dimensionality of large data sets, is fundamentally similar to a single-layered AE with a 
linear activation function. Regularized autoencoders such as sparse, denoising, and 
contractive are useful for learning representations for later classification tasks, whereas 
variational autoencoders can be used as generative models [65]. 

i) Sparse Autoencoder (SAE) 
A sparse autoencoder imposes a sparsity penalty on the coding layer as part of its training 
requirement. SAEs can have more hidden units than inputs, but only a limited number of 
hidden units can be active at the same time, resulting in a sparse model. Figure 1-23 
depicts the schematic structure of a sparse autoencoder with several active units in the 
hidden layer. 
 

 
Figure 1-23: the schematic structure of a sparse autoencoder 

This model is thus obliged to respond to the unique statistical features of the training data 
following its constraints [65]. 
ii) Autoencoder Denoising (DAE) 
 A denoising autoencoder is a variation on the basic autoencoder that attempts to improve 
representation (to extract useful features) by changing the reconstruction criterion, 
reducing the risk of learning the identity function in other words, it receives a corrupted 
data point as input and is trained to recover the original undistorted input as output by 
minimizing the average reconstruction error over the training data, i.e, cleaning the 
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corrupted input, or denoising. As a result, in the context of computing, DAEs can be 
thought of as extremely powerful filters that can be used for automatic pre-processing. For 
example, a denoising autoencoder could be used to automatically pre-process an image, 
improving its quality for recognition accuracy [65]. 

 

iii) Auto encoder Contractive (CAE) 
Rifai et al. [89] proposed a contractive autoencoder to make autoencoders robust to small 
changes in the training dataset. A CAE includes an explicit regularize in its objective 
function that forces the model to learn an encoding that is robust to small changes in 
input values. As a result, the learned representation’s sensitivity to the training input is 
reduced. While DAEs encourage the robustness of reconstruction as discussed above, 
CAEs encourage the robustness of representation 

iv) Variational Autoencoder (VAE) 
A variational autoencoder has a fundamentally unique property that distinguishes it from 
the classical autoencoder discussed above, which makes it so effective for generative 
modeling. Unlike traditional autoencoders, which map the input onto a latent vector, 
VAEs map the input data into the parameters of a probability distribution, such as the 
mean and variance of a Gaussian distribution. A VAE assumes that the source data has an 
underlying probability distribution and then attempts to discover the distribution's 
parameters. Although this approach was originally designed for unsupervised learning, its 
application in other domains such as semi-supervised learning and supervised learning has 
been demonstrated. 

Although the earlier concept of AE was typically used for dimensionality reduction or 
feature learning, as mentioned above, AEs have recently been brought to the forefront of 
generative modeling, even the generative adversarial network is one of the popular 
methods in the area. Overall, as a conclusion auto-encoders and their variants can be 
useful for unsupervised feature learning using neural network architecture. [65] 

Kohonen Map or Self‑Organizing Map (SOM) 
A Self-Organizing Map (SOM) or Kohonen Map [90] is another unsupervised learning 
technique for creating a low-dimensional (usually two-dimensional) representation of a 
higher-dimensional data set while preserving the data's topological structure. SOM is a 
neural network-based dimensionality reduction algorithm that is commonly used in 
clustering. A SOM adapts to the topological form of a dataset by repeatedly moving its 
neurons closer to the data points, allowing us to visualize enormous datasets and find 
probable clusters. The input layer is the first layer of a SOM, and the output layer or 
feature map is the second layer. In contrast to other neural networks that use error-
correction learning, such as backpropagation with gradient descent [2], SOMs use 
competitive learning, which employs a neighborhood function to retain the topological 
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features of the input space. SOM is widely used in a variety of applications, including 
pattern recognition, health or medical diagnosis, anomaly detection, and detection of virus 
or worm attacks [91, 92]. The main advantage of using a SOM is that it can make high-
dimensional data easier to visualize and analyze in order to understand the patterns. The 
dimensionality reduction and grid clustering make it simple to spot similarities in the data. 
As a result, depending on the data characteristics, SOMs can play a critical role in 
developing a data-driven effective model for a specific problem domain. 

Boltzmann Machine Restricted (RBM) 
A Restricted Boltzmann Machine (RBM) [93] is another type of generative stochastic 
neural network that can learn a probability distribution over its inputs. Boltzmann 
machines consist of visible and hidden nodes, and each node is linked to every other node, 
which helps us understand irregularities by learning how the system works normally 
circumstances. RBMs are a type of Boltzmann machine in which the number of 
connections between the visible and hidden layers is limited. This constraint allows 
training algorithms like the gradient-based contrastive divergence algorithm to be more 
efficient than Boltzmann machine training algorithms in general. RBMs have been used in 
a variety of applications, including dimensionality reduction, classification, regression, 
collaborative filtering, feature learning, topic modeling, and many more. They can be 
trained either supervised or unsupervised in the field of deep learning modeling, 
depending on the task. Overall, RBMs can automatically recognize patterns in data and 
develop probabilistic or stochastic models that are used for feature selection or extraction. 
as well as establishing a strong belief network [65]. 

Deep Belief Network (DBN) 
A Deep Belief Network (DBN) [94] is a multi-layer generative graphical model composed 
of stacking several individual unsupervised networks, such as AEs or RBMs, that use the 
hidden layer of each network as the input for the next layer, i.e. connected sequentially. 
Thus, a DBN can be divided into (i) AE-DBN which is known as stacked AE, and (ii) 
RBMDBN that is known as stacked RBM, where AE-DBN is composed of autoencoders 
and RBM-DBN is composed of restricted Boltzmann machines, discussed earlier. The 
ultimate goal is to develop a faster-unsupervised training technique for each sub-network 
that depends on contrastive divergence. Based on its deep structure, DBN can capture a 
hierarchical representation of input data. It is based on the principle of training 
unsupervised feed-forward neural networks with unlabeled data before fine-tuning the 
network with labeled input. One of the most significant advantages of DBN over 
traditional shallow learning networks is the detection of deep patterns, which allows for 
reasoning abilities and the capture of the deep difference between normal and erroneous 
data. A continuous DBN is simply a standard DBN that allows for a continuous range of 
decimals rather than binary data. Overall, due to its strong feature extraction and 
classification capabilities, the DBN model can play a key role in a wide range of high-
dimensional data applications and become one of the significant topics in the field of 
neural networks [65]. 
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To summarize, the generative learning techniques discussed above typically allow to 
generate a new data representation through exploratory analysis. As a result, deep 
generative networks can be used as preprocessing for supervised or discriminative learning 
tasks while also ensuring model accuracy, whereas unsupervised representation learning 
can improve classifier generalization. 
 

C) Deep Networks for Hybrid Learning and Other Approaches 
In addition to the deep learning categories discussed above, hybrid deep networks and 
several other approaches, such as deep transfer learning (DTL) and deep reinforcement 
learning (DRL), are popular. 

 

Hybrid Deep Neural Networks 
Generative models are adaptable, with the ability to learn from both labeled and unlabeled 
data. Discriminative models, on the other hand, are unable to learn from unlabeled data 
but outperform their generative counterparts in supervised tasks. A framework for 
simultaneously training deep generative and discriminative models can benefit from both 
models, which motivates hybrid networks. Hybrid deep learning models are typically 
composed of multiple (two or more) deep basic learning models, where the basic model is 
a previously discussed discriminative or generative deep learning model. The three 
categories of hybrid deep learning models listed below may be useful for solving real-
world problems based on the integration of various basic generative or discriminative 
models. These are as follows: 

-Hybrid Model 1: A combination of generative and discriminative models used to extract 
more meaningful and robust features. CNN+LSTM, AE+GAN, and other combinations are 
possible. 

– Hybrid Model 2: A generative model is combined with a discriminative model. 
DBN+MLP, GAN+CNN, AE+CNN, and other combinations are possible. 

– Hybrid Model 3: A generative or discriminative model is combined with a non-deep 
learning classifier. 

Examples include AE+SVM, CNN+SVM, and others. Thus, depending on the intended 
use, hybrid models can be either classification-focused or non-classification-focused. 
However, the majority of hybrid learning-related studies in the field of deep learning are 
classification-focused or supervised learning tasks that enable to improve the quality and 
quantity of training data, providing additional information for classification. 

Deep Transfer Learning (DTL) 
Transfer Learning is a technique for effectively using previously learned model knowledge 
to solve a new task with minimal training or fine-tuning. In comparison to traditional 
machine learning techniques [12], DL requires a large amount of training data. As a result, 
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the requirement for a large volume of labeled data is a significant barrier to addressing 
some critical domain-specific tasks, particularly in the medical sector, where creating 
large-scale, high-quality annotated medical or health datasets is both difficult and costly. 
Furthermore, the standard DL model demands a lot of computational resources, such as a 
GPU-enabled server, even though researchers are working hard to improve it. As a result, 
Deep Transfer Learning (DTL), a DL-based transfer learning method, may be useful in 
addressing this issue. Figure 1-24 depicts the general structure of the transfer learning 
process, in which knowledge from the pre-trained model is transferred into a new DL 
model. It's especially popular in deep learning right now because it allows you to train 
deep neural networks with very little data [65]. 

 

 

Figure 1-24 : the general structure of the transfer learning process 

 

Transfer learning is a two-stage approach to training a deep learning model that consists 
of a pre-training step and a fine-tuning step in which the model is trained on the target 
task. Since deep neural networks have gained popularity in a wide range of fields, a large 
number of DTL methods have been presented, necessitating categorization and 
summarization. DTL can be classified into four categories based on the techniques used in 
the literature. These are (i) instances based deep transfer learning that utilizes instances in 
source domain by appropriate weight, (ii) mapping-based deep transfer learning that maps 
instances from two domains into a new data space with better similarity, (iii) network-
based deep transfer learning that reuses the partial of network pretrained in the source 
domain, and (iv) adversarial based deep transfer learning that uses adversarial technology 
to find transferable features that both suitable for two domains. Adversarial-based deep 
transfer learning has exploded in popularity in recent years due to its high effectiveness 
and practicality. Depending on the circumstances between the source and target domains 
and activities, transfer learning can also be classified as inductive, transudative, or 
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unsupervised. While most current research is focused on supervised learning, how deep 
neural networks can transfer knowledge in unsupervised or semi-supervised learning may 
pique the interest of researchers in the future. Natural language processing, sentiment 
classification, visual recognition, speech recognition, spam filtering, and other fields 
benefit from DTL techniques [65]. 

Deep Reinforcement Learning (DRL) 
Reinforcement learning approaches the sequential decision-making problem differently 
than the other approaches. In reinforcement learning, the concepts of an environment and 
an agent are frequently introduced first. The agent can take a series of actions in the 
environment, each of which has an effect on the state of the environment and can result in 
possible rewards (feedback) - "positive" for good sequences of actions that result in a 
"good" state, and "negative" for bad sequences of actions that result in a "bad" state. 
Reinforcement learning's goal is to learn good action sequences through interaction with 
the environment, which is commonly referred to as a policy. Deep reinforcement learning 
(DRL or deep RL) [95] combines neural networks with a reinforcement learning 
architecture to enable agents to learn appropriate actions in a virtual environment, as 
illustrated in Figure 1-25.  

Model-based reinforcement learning (RL) is based on learning a transition model that 
allows for modeling of the environment without directly interacting with it, whereas 
model-free RL methods learn directly from interactions with the environment. Q-learning 
is a well-known model-free reinforcement learning (RL) technique for determining the best 
action-selection policy for any (finite) Markov Decision Process (MDP). MDP is a 
mathematical framework for modeling state, action, and reward decisions. Deep Q-
Networks, Double DQN, Bi-directional Learning, Monte Carlo Control, and other 
techniques are also used in this area. It incorporates DL models, such as Deep Neural 
Networks (DNN), based on the MDP principle, as policy and/or value function 
approximators in DRL methods. CNN, for example, can be used in RL agents to learn 
directly from raw, high-dimensional visual inputs [65]. 

 

Figure 1-25 : Deep reinforcement learning combination 
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1.4.4 Real‑World Applications of DL 
Deep learning has been successfully applied to numerous problems in a variety of 
application areas over the last few years. Table 1-4 summarized various deep learning 
tasks and techniques that are used to solve the relevant tasks in several real-world 
applications areas. 
 
Table 1-4: Real‑World Applications of DL 

Application areas Tasks Methods References 
Healthcare and 
Medical 
applications 

Regular healthfactorsanalysis CNN-based Ismail et al.[96] 
Identifyingmaliciousbehaviors RNN-based Xue et al.[97] 
Coronary heart disease risk 
prediction 

Autoencoderbase
d 

Amarbayasgala
n et al. [98] 

Cancer classification Transfer 
learningbased 

Sevakula et al. 
[99] 

Diagnosis of COVID-19 CNN and 
BiLSTMbased 

Aslan et al. 
[100] 

Detection of COVID-19 CNN-LSTM 
based 

Islam et al. 
[101] 

Natural 
LanguageProcessin
g 

Textsummarization Auto-encoder 
based 

Yousefi et al. 
[102] 

Sentiment analysis CNN-LSTM 
based 

Wang et al. 
[103] 

Sentiment analysis CNN and Bi-
LSTM based 

Minaee et al. 
[104] 

Aspect-level sentiment 
classification 

Attention-based 
LSTM 

Wang et al. 
[105] 

Speech recognition Distant speech recognition Attention-based 
LSTM 

Zhang et al. 
[106] 

Speech emotion classification Transfer 
learningbased 

Latif et al. [107] 

Emotion recognition from 
speech 

CNN and LSTM 
based 

Satt et al. [108] 

Cybersecurity Zero-day malware detection Autoencoders 
and GAN based 

Kim et al. [109] 

Security incidents and fraud 
analysis 

SOM-based Lopez et al. 
[110] 

Android malware detection Autoencoder and 
CNN based 

Wang et al. 
[111] 

intrusiondetection 
classification 

DBN-based Wei et al. [112] 

DoSattackdetection RBM-based Imamverdiyev 
et al. [113] 

Suspicious flow detection Hybriddeep-
learning-based 

Garg et al. 
[114] 

Network intrusion detection AE and SVM 
based 

Al et al. [115] 
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IoT and Smart 
cities 

Smart energy management CNN and 
Attention 
mechanism 

Abdel et al. 
[116] 

Particulatematterforecasting CNN-LSTM 
based 

Huang et al. 
[117] 

Smart parking system CNN-LSTM 
based 

Piccialli et al. 
[118] 

Disaster management DNN-based Aqib et al. 
[119] 

Air qualityprediction LSTM-RNN 
based 

Kok et al. [120] 

Cybersecurity in smart cities RBM, DBN, 
RNN, CNN, GAN 

Chen et al. 
[120] 

Smart Agriculture Predicting life time and 
mechanical performance 
degradation of multilayer 
Greenhouse 

CNN-SVM AidLahcene, 
Djenane 
Mouloud et 
Dehbi 
Abdelkader[121
] 

A smart agriculture IoT 
system 

RL-based Bu et al. [123] 

Plant diseasedetection CNN-based Ale et al. [124] 
Automatedsoilqualityevaluatio
n 

DNN-based Sumathi et al. 
[125] 

Business and 
Financial Services 

Predictingcustomers’ 
purchasebehavior 

DNN based Chaudhuri 
[126] 

Stock trend prediction CNN and LSTM 
based 

anuradha et al. 
[127] 

Financial loan default 
prediction 

CNN-based Deng et al. 
[128] 

Power 
consumptionforecasting 

LSTM-based Shao et al. 
[129] 

Virtual Assistant 
and Chatbot 
Services 

An intelligent chatbot Bi-RNN and 
Attention model 

Dhyani et al. 
[34] 

Virtual listener agent GRU and LSTM 
based 

Huang et al. 
[130] 

Smart blind assistant CNN-based Rahman et al. 
[131] 

Object Detection 
and Recognition 

Object detection in X-ray 
images 

CNN-based Gu et al. [132] 

Object detection for disaster 
response 

CNN-based Pi et al. [133] 

Medicine recognition system CNN-based Chang et al. 
[134] 

Face recognition in IoT-cloud 
environment 

CNN-based Masud et al. 
[135] 

Food recognition system CNN-based Liu et al. [136] 
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Affect recognition system DBN-based Kawde et al. 
[135] 

Facial expression analysis CNN and LSTM 
based 

Li et al. [35] 

Recommendation 
and Intelligent 
system 

Hybridrecommender system DNN-based Kiran et al. 
[136] 

Visual recommendation and 
search 

CNN-based Shankar et al. 
[137] 

Recommendation system CNN and Bi-
LSTM based 

Rosa et al. 
[138] 

Intelligent system for impaired 
patients 

RL-based Naeem et al. 
[139] 

Intelligent transportation 
system 

CNN-based Wang et al. 
[140] 

1.5 Conclusion 
In this chapter, we have presented a comprehensive view on AI-based modeling including 
the principles and capabilities of potential AI techniques such as Machine learning and 
Deep learning that can play an important role in developing intelligent and smart systems 
in a variety of real word application such as finance, smart cities, healthcare, agriculture 
and many others .
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2.1 Introduction 

Although the area of Artificial intelligence is huge, DL has emerged as the next 
major technological milestone, influencing the future of practically every business by 
making every process better, faster and more precise. As DL models learn from data, there 
are two general approaches to multivariate data analysis.  Approaches that treat each 
variable equally, with the goal of understanding the correlation structure between the 
variables or reducing the data space dimension, examples include component, factor and 
cluster analysis. Another approach is to treat one variable as a response and the others as 
predictors, with the goal of understanding the variation in the response that can be 
explained partially by predictors. These are known as regression models. It is widely used 
when the dependent and independent variables are linked in a linear or non-linear fashion. 

 

2.2 Regression analysis 
Regression analysis is a statistical technique for investigating and modeling the 
relationship between variables, i.e., it is an important component of multivariate analysis, 
since it allows to focus on the effects of predictors on the response. Regression models 
attempt to partially explain the variation in the response by the predictors. In another 
words, regression models attempt to find the approximate relationship between the 
response and predictors. A regression model is an effective statistical tool for determining 
such an approximation. Its Applications are numerous and occur in almost every field, 
including engineering, the physical and chemical sciences, economics, management, life 
and biological sciences, and the social sciences. In fact, regression analysis may be the 
most widely used statistical technique. 

Some common types of regression algorithms include linear, polynomial, lasso, and ridge 
regression, among others are briefly explained below. 

2.2.1 Simple and multiple linear regression 
This is a well-known regression technique as well as one of the most popular ML 
modeling techniques. In this technique, the dependent variable is continuous, the 
independent variable(s) may be continuous or discrete, and the form of the regression line 
is linear. Linear regression uses the best fit straight line to create a relationship between 
the dependent variable (Y) and one or more independent variables (X) (also known as the 
regression line). It is defined by the following equations: 

𝑦 = 𝑎 + 𝑏𝑥 + 𝑒   (9) 

𝑦 = 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑛𝑥𝑛 + 𝑒      (10) 
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Where a is the intercept, b is the slope of the line, and e is the error term. based on the 
given predictor variable(s), this equation can predict the value of the target variable. 
Multiple linear regression is an extension of simple linear regression that allows two or 
more predictor variables to model a response variable, y, as a linear function defined in 
eq9.whereassimple linear regression has only 1 independent variable, defined in eq 10. 

 

Figure 2-1 : simple, multiple and polynomial regression 

 

2.2.2 Polynomial regression 
Polynomial regression is a type of regression analysis in which the relationship 

between the independent and dependent variables x and y is not linear. However, is the 
polynomial degree of 𝑛𝑡ℎin x. Polynomial regression equation is derived from linear 
regression (polynomial regression of degree 1) equation, which is defined as follows: 

𝑦 = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2 + 𝑏3𝑥3 + ⋯ + 𝑏𝑛𝑥𝑛 + 𝑒  (11) 

Here, the predicted/target output is y,  𝑏0, 𝑏1 … 𝑏𝑛are the regression coefficients, x is an 
independent/input variable. In simple terms, if data are not distributed linearly, instead it  
is of the 𝑛𝑡ℎdegree of polynomial, we use polynomial regression to obtain the desired 
output. 

2.2.3 LASSO and ridge regression 
LASSO as shown in figure 2-2 (least absolute shrinkage and selection operator) and 

Ridge regression in figure 2-3 are well-known as powerful techniques that are commonly 
used for building learning models in presence of a large number of features, due to their 
ability to prevent over-fitting and reduce model complexity. The LASSO regression model 
uses L1 regularization technique that uses shrinkage, which penalizes absolute value of 
magnitude of coefficients (L1 penalty). As a result, it appears to render coefficients to 
absolute zero. Thus, the goal of LASSO regression is to identify the subset of predictors 
that minimizes the prediction error for a quantitative response variable. Ridge regression, 
on the other hand, employs L2 regularization, which is the "squared magnitude of 
coefficients" (L2 penalty). As a result, ridge regression forces the weights to be small 
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while never setting the coefficient value to zero, and does a non-sparse solution. Overall, 
LASSO regression can be used to obtain a subset of predictors by removing less important 
features, whereas ridge regression is useful when a data set has multicollinearity, which 
refers to predictors that are correlated with other predictors. 

 

Figure 2-2 : Lasso regression 

 

Figure 2-3 : Ridge regression 

2.2.4 Logistic regression 
The technique of logistic regression is used to investigate the relationship between one or 
more predictor variables and a response variable. It functions similarly to linear regression, 
but with a binomial response variable. i.e., Logistic regression is used to obtain odds ratio 
in the presence of more than one explanatory variable. The procedure is quite similar to 
multiple linear regression, with the exception that the response variable is binomial. The 
result is the impact of each variable on the odds ratio of the observed event of interest. 
The main advantage is to avoid confounding effects by analyzing the association of all 
variables together [141]. 
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Figure 2-4 : Logistic regression 

2.2.5 Quantile regression 
The concept of quantile regression, as introduced by Koenker and Bassett (1978), is an 
extension of classical least squares estimation of conditional mean models to the 
estimation of an ensemble of models for conditional quantile functions. The central special 
case is the median regression estimator, which minimizes the sum of absolute errors. The 
remaining conditional quantile functions are estimated by minimizing an asymmetrically 
weighted sum of absolute errors. The ensemble of estimated conditional quantile functions 
provides a much more comprehensive view of the effect of covariates on the location, 
scale, and shape of the response variable distribution. The quantiles, or percentiles, or 
fractiles, refer to the general case of dividing a dataset into parts. Quantile regression 
seeks to extend these ideas to the estimation of conditional quantile functions, i.e. models 
in which the quantiles of the conditional distribution of the response variable are 
expressed as functions of observed covariates. To estimate the conditional median 
function, the median estimator minimizes the symmetrically weighted sum of absolute 
errors and other conditional quantile functions are estimated by minimizing an 
asymmetrically weighted sum of absolute errors, where the weights are functions of the 
quantile of interest. This makes quantile regression resistant to outliers. [142] 
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Figure 2-5  : Quantile regression 

 

2.2.6 Bayesian linear regression 
Bayesian statistics and modeling are approaches to data analysis based on Bayes' theorem, 
in which existing knowledge about parameters in a statistical model is updated with 
information from observed data. [143]. Bayesian linear regression provides a useful 
mechanism for dealing with insufficient or poorly distributed data. It is possible to apply a 
prior to the coefficients and the noise so that the priors can take over in the absence of 
data. More importantly, you can ask Bayesian linear regression which parts of it fit the 
data well and which parts are uncertain (perhaps based entirely on the priors) [144]. 

2.2.7 Principal components regression 
Kendall (1957) proposed the idea of using principal components in regression in his book 
on Multivariate Analysis, as did Hotelling (1957) in an article published the same year, and 
Jeffers (1957) provided a well-known example (1967). These authors intended to use 
principal components to replace the original regressor variables with their principal 
components [145]. A large number of explanatory variables in a regression model are 
reduced to a small number of principal components using principal components regression 
(PCR). [146]. This method produces informative directions in the factor space, but they 
may not correspond to the shape of the predicted surface. [ 147] 

2.2.8 Partial least squares regression 
PLSR has proven to be a very versatile method for analyzing multivariate data. It is a 
supervised method developed to address the problem of making accurate predictions in 
multivariate problems. PLSR has no variable selection implementation in its original form 
because the method's focus is on finding the relevant linear subspace of the explanatory 
variables, not the variables themselves, but a large number of variable selection methods 
in PLSR have been proposed. [148] 
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2.2.9 Elastic Net regression 
The elastic net (ENET) is a lasso extension that is resistant to high correlations among 
predictors [149]. The ENET was proposed for analyzing high dimensional data to avoid the 
instability of lasso solution paths when predictors are highly correlated. The ENET 
employs a hybrid of the lasso and ridge regression penalties [150]. i.e., it is a type of 
regularized linear regression optimization that bridges the gap between ridge regression 
and the lasso. 

 

2.3 Linear and non-linear regression models 

2.3.1 Linear regression models 
By supposing that data are available on p+1 variables(y,𝑥1,𝑥2, … . 𝑥𝑝), where variable y is 

selected as a response based on scientific interest, and the other variables are considered 
as predictors or covariates. If the data is a sample of size n, it can be represented as 
{(𝑦𝑖,𝑥𝑖1,𝑥𝑖2, … . , 𝑥𝑖𝑝), i=1,2,…,n}. 

A linear regression model is the most basic regression model, in which the response and 
predictors are assumed to have a linear relationship. The general linear regression model is 
written as follows: 

yi  = β0   + β1xi1   + β2Xi2   + · · · +βpXip  + ε i                  i = 1,2, … , n, (12) 

Or  

𝐸(𝑦𝑖) = 𝑥𝑖
𝑇𝛽,         (13) 

where 𝑦𝑖is the response for individual i, 𝛽𝑗 's are unidentified parameters, 𝑥𝑖𝑗 is the j-th 

predictor for individual i, 𝑥𝑖= (1, 𝑥𝑖1, … . , 𝑥𝑖𝑝)𝑇 is a set of all predictors, 𝛽 = (𝛽0, … 𝛽𝑝)𝑇 is 

a vector of regression parameters, and the 𝜀𝑖 's are random errors with mean zeros with i = 
1, 2, …,n. The response and predictors are assumed to have a linear relationship in linear 
model, with the unexplained variation accounted by the random error 𝜀𝑖. [151] 

Linear regression models range from first-order models in predictor variables to more 

complex models [152] are widely used in practice because they are simple and easy to interpret, 
even though they may not accurately represent the true relationship between the response and 
covariates. 

After assuming a linear model for the variables, the next step is to estimate the unknown 
parameters and make statistical inferences using the observed data. 

2.3.2 Nonlinear regression models 
Nonlinear regression models (NLR) are similar to linear regression models in that they 
have the same form:𝑌𝑖 = 𝑓(𝑋𝑖 , 𝛾) + 𝜀𝑖 
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An observation 𝑌𝑖 is the sum of a mean response 𝑓(𝑋𝑖 , 𝛾), given by the nonlinear response 

function 𝑓(𝑋𝑖 , 𝛾)and the error term 𝜀𝑖. The error terms are typically assumed to have expectation 

zero, constant variance, and to be uncorrelated, just as for linear regression models. Often, a 
normal error model is invoked assuming that the error terms are independent normal random 
variables with constant variance. The parameter vector in the response function f (X, γ) is denoted 
by γ rather than β in the linear model. This emphasizes that the response function is nonlinear in 
the parameters. A difference between linear and nonlinear regression models is that the number of 
regression parameters is not necessarily directly related to the number of X variables in the model. 
In linear regression models, if there are p – 1, X variables in the model, then there are p regression 
coefficients in the model. If the number of X variables in the nonlinear regression model is 
denoted by q, and we continue to denote the number of regression parameters in the response 
function by p. The general form of a nonlinear regression model is expressed as: 

𝑌𝑖 = 𝑓(𝑋𝑖 , 𝛾) + 𝜀𝑖  (14) 

                

Like in linear regression models, estimation of parameters of a nonlinear regression model can be 
carried out by the method of least squares or the method of maximum likelihood. Like in linear 
regression, both methods of estimation yield the same parameter estimates when the error terms 
are independent normal with constant variance. Unlike linear regression, it is usually not possible 
to find analytical expressions for the least squares and maximum likelihood estimators for 
nonlinear regression models. Instead, numerical search procedures are used with both estimation 
procedures. For example, The Gauss-Newton method, a.k.a. as the linearization method, uses a 
Taylor series expansion to approximate the nonlinear regression model with linear terms and then 
employs ordinary least squares to estimate the parameters. Iteration of these steps generally leads 
to a solution to the nonlinear regression problem [152]. 

despite of lack of knowledge on how to construct a DL model that could be applied to 
solve nonlinear regression problems, some tries are highlighted below. 

Table 2-1: Deep learning research into non-linear problem solving 

Title  Description  Refere
nces  

 
 
Wind Speed Prediction 
Model Using LSTM 
and 1D-CNN 

This paper describes a prediction method for wind speed using a 
neural network and an investigation of the structure of the 
network. Generally, wind speed is observed as time series data, 
and the current wind speed is related to the past wind 
speed. Therefore, a prediction model was proposed using long 
short-term memory (LSTM) and a one-dimensional convolutional 
neural network (1D-CNN) in order to consider the past 
information for prediction. The prediction results of these 
networks and a fully connected neural network are compared for 
evaluation. The prediction accuracy and time delay are found to 
be improved by using LSTM and the 1D-CNN. 

[153] 

 
 
 

Cardiovascular diseases are considered the number one cause of 
death across the globe which can be primarily identified by the 
abnormal heart rhythms of the patients. By generating 

[154] 
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One-Dimensional CNN 
Approach for ECG 

Arrhythmia Analysis in 
Fog-Cloud 

Environments 

electrocardiogram (ECG) signals, wearable Internet of Things 
(IoT) devices can consistently track the patient’s heart rhythms. 
Although Cloud-based approaches for ECG analysis can achieve 
some levels of accuracy, they still have some limitations, such as 
high latency. Conversely, the Fog computing infrastructure is 
more powerful than edge devices but less capable than Cloud 
computing for executing compositionally intensive data analytic 
software. The Fog infrastructure can consist of Fog-based 
gateways directly connected with the wearable devices to offer 
many advanced benefits, including low latency and high quality 
of services. To address these issues, a modular one-dimensional 
convolution neural network (1D-CNN) approach is proposed in 
this work. 

Deep Learning for 
Event-Driven Stock 

Prediction 

deep learning method was proposed for eventdriven stock market 
prediction. First, events are extracted from news text, and 
represented as dense vectors, trained using a novel neural tensor 
network. Second, a deep convolutional neural network is used to 
model both short-term and long-term influences of events on 
stock price movements 

[155] 

STOCK PRICE 
PREDICTION USING 

LSTM,RNN AND 
CNN-SLIDING 

WINDOW MODEL 

Stock market or equity market have a profound impact in today’s 
economy. A rise or fall in the share price has an important role in 
determining the investor’s gain. The existing forecasting methods 
make use of both linear and non-linear algorithms),but they focus 
on predicting the stock index movement or price forecasting for a 
single company using the daily closing price. a deep learning 
based formalization was proposed  for stock price prediction. It is 
seen that deep neural network architectures are capable of 
capturing hidden dynamics and are able to make predictions 

[156] 

 

2.4 Conclusion  
Overall, we drawn a big picture on regression as one of the most widely used techniques 
for analyzing multifactor data. we briefly review both linear and nonlinear regression 
models focusing on the nonlinear ones with basic principles necessary to apply 
regression models in a wide variety of application environments. 
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3.1 Introduction 
Functions are common conceptions in sciences and engineering that quantify the 
dependence or interaction between one variable and the others. Functions are classified as 
linear functions and nonlinear functions from the superposition principle prospective. 
Linear functions are analytical, easy to analyze mathematically, and satisfy the 
superposition principle, while nonlinear functions are complicated and even nonanalytical. 
Neural networks and its various models can provide a robust solution to our problems, but 
there is a lack of knowledge on how to construct a model that could be applied to solve 
the regression problems. Indeed, one of the most crucial issues is how to solve the 
problem of how to design a reasonable model for continuous input and output, targeting 
the nonlinear regression problems such as wind speed prediction, ECG analysis, 
localization in smart cars, stock prediction. 

in this chapter, We will seek to find a DL approach that can handle non-linear problems, 
then utilize it to address a real world problem which is the mechanical degradation of 
greenhouse LDPE films, The model will forecast both the full stress-strain curves and the 
material lifetime under real-world conditions. 

The convolutional neural network was almost certainly the model to choose. It's typically 
employed in the extraction of picture features scenario. However, the same filters can 
exploit temporal correlation in raw data.  

3.2 Case of study 
Low-density polyethylene (LDPE) is a widely utilized substance in polymers, and it is 
commonly employed as agricultural greenhouse covers. Its lightness and transparency, in 
particular, have contributed to its success. 

Co-extrusion, which has emerged as a new technology in recent years, allows the 
combination of multiple layers of polymers. Each layer has its unique characteristics, such 
as increased strength, improved appearance, cold resistance, improved welding or sealing, 
and barrier properties [157].    

Despite developments in film formulation, most LDPE films in use today are expected to 
last for a relatively short amount of time, ranging from one to five cultivating seasons. 
Typically, film producers promise a maximum functional lifetime of four seasons (i.e., four 
winters and three summers). Even this predicted lifetime is heavily influenced by the 
actual environmental conditions that the film will be subjected to throughout its use. 

Polyethylene (PE) environmental degradation is a complex process in which numerous 
degradation mechanisms work together to completely destroy the material. Degradation is 
a complex non-linear time-dependent process that affects numerous properties of the 



CHAPTER III    Deep learning for nonlinear real-world problem 
   
 

   
59 

 

material that are related to its functional features directly or indirectly. A material does not 
match its functional requirements and is easily prone to mechanical breakdown in its 
ultimate stage of degradation [158]. 

The essential degradation in the mechanical characteristics (modulus of elasticity, fracture 
stress and elongation at break) has been evaluated in our previous work [157].  

The stress-strain curve provides the fundamental information required to comprehend and 
forecast the mechanical degradation of greenhouse LDPE films. Indeed, the stress–strain 
curve of greenhouse LDPE films derived from tensile testing provides information about 
the material's elastic characteristics, the nature and degree of its plastic deformation, as 
well as its yield and tensile strength. Furthermore, to gain a thorough understanding of the 
effect of ageing time on film properties (e.g., mechanical performance) under various 
ageing conditions, plot the film property value after exposure to ageing conditions 
normalized with the corresponding property value of the unaged material against ageing 
time. This will also provide information about the service duration limit based on the 
criterion of 50% loss in the original property [159]. Furthermore, we require a model for 
analyzing their final lifespan, that is, a model for predicting the material lifetime under use 
conditions. This will assist manufacturers in improving their products and will be beneficial 
to engineering designers. 

However, in order to enhance the lifetime of greenhouse LDPE films, it is necessary to 
forecast stress-strain curves for a certain ageing time, despite the fact that experimentally 
examining LDPE mechanical qualities can be costly and time intensive. 

Deep neural networks have been demonstrated to outperform typical statistical techniques 
and human performance in making predictions about outcomes in a variety of fields, 
including computer vision, self-driving automobiles, speech recognition, natural language 
processing, and pattern identification [160]. 

Deep neural networks' applicability in material science are relatively limited. It is mostly 
due to the challenges of compiling large datasets in material science [161]. Indeed, few 
works in this area have been published, including material classification [162], defect 
classification [163], microstructure reconstruction [164], and microstructure image 
recognition [165]. 

The main goal of this work is to combine a recent deep learning-based algorithm and a 
traditional classifier SVM (Support Vector Machine) to forecast both the full stress-strain 
curves and the material lifetime under real-world conditions. To the best of the 
researchers’ knowledge, no previous machine learning-based methodology has been 
employed to forecast stress-strain curves of LPDE films. 

In addition, our goals in this work are to (1) demonstrate the application of deep 
convolutional neural networks (CNN) in the field of polymer characterization, (2) capture 
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the nonlinear relationship between the ageing of polymeric greenhouse covers and their 
stress-strain curves, and (3) demonstrate the feasibility of training CNN models with small 
datasets. 

3.3 Materials and methods 

3.3.1 Materials 
Agrofilm SA (Setif-Algeria) manufactures the LDPE film utilized in this study utilizing a 
three-layer co-extrusion technology that is employed in a variety of industrial applications. 
The three-layered coextruded film has a total thickness of 180 µm with proportions of 1/4, 
1/2, and 1/4 over the total film thickness. Without a stabilizer, the LDPE melt flow index is 
0.33 g/10 min, while with a stabilizer, it is 10 g/10 min. Before extrusion, the density of 
LDPE is 0.923 g/cm3. The film's original hue is a milky yellow. The real composition of 
the film is kept confidential by the supplier. 

3.3.2 Dataset 
In this study, we used the dataset from our previous work [166], The mechanical behavior 
of unaged/virgin, naturally and artificially aged films was evaluated in different combined 
conditions of temperatures (10,25,40, and 50 C), water, and UV-A radiations by 
conducting the tensile test, the tensile tests were performed according to ISO 527-3. The 
weight on the specimen was applied in a direction parallel to the average molecular 
orientation acquired after film processing. For each film, the engineering stress has been 
recorded as a function of engineering strain. 120, 550, 1010, 2040, and 4000 hours were 
regarded as ageing durations. In other words, a 4072-point dataset of the five stress-strain 
curves in the temperature 10° without the use of water or UV radiation was obtained. 

3.3.3 The Proposed model 
A deep Convolutional Neural Network (CNN) and a Support Vector Machine (SVM) are 
merged in this part to present a hybrid model, called hybrid SVM-CNN, for predicting 
both the whole stress-strain curves and the material lifetime under the conditions of use. 
The prediction of a stress-strain curve consists of two problems: one is a classification 
problem that separates each point on the curve as a function of strain values, i.e., material 
fracture classification, and the other is a regression problem that predicts stress values. 

Figure 3-1 shows the hybrid SVM-CNN model, which is composed of two submodels: the 
SVM submodel and the CNN submodel. The two submodels were trained independently 
before being put to the test together. 

In the proposed model, SVM serves as classifier, whereas CNN serves as a feature 
extractor. 
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Figure 3-1: The proposed hybrid SVM-CNN model architecture. 

The implementation code was written in Python 3.8 on a PC (Intel(R) Core(TM) i5-6200U 
CPU 2.4GHz, 8 Gbyte RAM) while for the CNN submodel we have used Keras deep 
learning framework with a TensorFlow backend [167], and Scikit-learn library [168] was 
used for the SVM submodel.  

 

A) The CNN submodel 
The topology of a deep convolutional neural network and the hyperparameters that 
determine the learning process have a substantial influence on its performance. Deep CNN 
is most commonly utilized in the extraction of picture features. However, there is a 
scarcity of information about how to build a deep CNN model that can be used to handle 
regression problems. One of the most important challenges is how to tackle the difficulty 
of designing a suitable model for continuous input and output, which is a nonlinear 
regression problem. On the one hand, applying deep CNN to tiny datasets remains 
difficult. Despite the fact that our dataset has 4072 coordinate points, only five stress-
strain curves are represented. To increase prediction result, on the other hand, the model 
must implement efficient feature extraction. After experimenting with numerous 
structures, we discovered that the needed structure has its own distinct properties for the 
prediction of stress-strain curves. The final deep learning architecture of the 1D CNN 
submodel is shown in Figure 3-2. 
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Figure 3-2: 1D CNN submodel architecture. 

Figures 3-2 shows the suggested 1D CNN submodel, which includes an input layer, two 
convolutional layers, a pooling layer, a fully connected layer, and an output layer. This 
neural network's two convolutional layers can be viewed as feature extractors, while the 
next layer combines semantically similar features into one, and the final layer maps the 
extracted features into final output. This 1D CNN submodel estimates the relevant stress 
using the percent strain and ageing time as inputs. For an optimally built 1D CNN, the 
hyperparameters filter sizes, stride, padding, pool size, and number of filters were 
optimized by experience. Table 3-1 shows the selected hyperparameter values. 
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Table 3-1: A list of hyperparameters in the 1D CNN submodel. 

 Hyperparameters 

Convolution layer Kernel size = 1, filters = 64, strides = 1, padding = valid, activation = relu 

Convolution layer Kernel size = 1, filters = 32, strides = 1, padding = valid, activation = relu 

Pooling layer Pooling method: maxpooling, pool size: 2, stride = 2, padding = valid 

Fully connected layer Neurons = 50, activation function = relu 

 

The model was trained with the log hyperbolic cosine (log-cosh) loss function. In fact, log-
cosh approach has been widely used in regression-based problem for smoothing the curve 
[39].  The log-cosh loss formula is given as follows: 
𝐿(𝑋) =

1

𝑁
∑  𝑁

𝑖=1 log (cosh(𝑦𝑖 − 𝑓𝑖(𝑋)))   (15)  

𝑒𝑥+𝑒−𝑥 

Where fi(x) is the predicted values, yiis the true values, 𝑐𝑜𝑠ℎ𝑐𝑜𝑠ℎ (𝑥) = 
𝑒𝑥+𝑒−𝑥

2
   and N the number 

2 of samples.  
Three well-known activation functions have been tested successively, and they are 
hyperbolic tangent (tanh), sigmoid and rectified linear unit (ReLU). We have used the 
same activation function in all layers, except the output layer where we have used linear 
activation function. The performances are displayed in figure 3-3 and table 3-2. We can 
see that the model converges much faster using ReLU as activation function. A ReLU of x 
is simply the maximal value of 0 and x, meaning that it will return a 0 if the input is 
negative or the raw input otherwise. In symbols : f(x) = max (x, 0). 
 

 

Figure 3-3: Comparison of loss curves during the training progress 
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Table 3-2: Effect of activation functions on model convergence 

  Log-cosherror 

Epochs Tanh Sigmoid ReLU 

1  2,42  3,4792  11,23  

2  1,0521  1,204  5,8434  

4  0,4482  1,1971  5,2444  

8  0,2173  1,1816  3,5787  

16  0,0849  0,8108  1,1814  

32  0,0305  0,7495  0,9528  

64  0,0496  0,745  0,2367  

128  0,002  0,5894  0,0167  

256  0,0019  0,2051  0,0092  

512  0,0144  0,1062  0,0017  

1024  0,147  0,0195  0,0009691 

 

To provide a more stable error gradient, we used batch gradient descent for training [169]. This 
resulted in more stable convergence. The error is estimated for each example in the training 
dataset in batch gradient descent, but the model is updated only after all training examples have 
been evaluated. This process is repeated until convergence is achieved. An epoch is a 
hyperparameter that represents a single pass across the whole training dataset. 

Four of the five available stress-strain curves (80 % of the dataset) were used to train the 1D CNN 
submodel. The test set is the data which was never used by the model during training. However, 
the fifth curve (20 % of the dataset) was used to test the submodel. In other words, the trained 1D 
CNN was requested to predict the fifth curve and the output of the network is compared with the 
available experimental data to check the validity of the submodel.  
The Adam optimizer [170] was used to update the parameters during backpropagation. The 
prediction model was trained with up to 1750 epochs. Early stopping was applied using Callback 
functions to prevent overfitting (i.e., network shows high accuracy during training but less 
accuracy when new data is given during testing). At the end of the training process, the training 
error value was 0.0001302.  
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We have evaluated the quality of the prediction model using the three metrics of mean squared 
error (MSE), root-mean squared error (RMSE) and mean absolute error (MAE). These metrics are 
widely used to evaluate the error rates for prediction using regression models. The results obtained 
are shown in Table 3-3. All the evaluation metrics were calculated using Python package keras-
metrics [167]. Let 𝑦𝑖

∗ represent the values of variables for n prediction samples of stress, and let 𝑦𝑖 
represent the observed values. Eqs. 16 to 18 then represent the MSE, RMSE and MAE, 
respectively.  

𝑀𝑆𝐸 =
1

𝑛
∑  𝑛

𝑖=1 (𝑦𝑖 − 𝑦𝑖
∗)2  (16)  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑  𝑛

𝑖=1 (𝑦𝑖 − 𝑦𝑖
∗)

2
  (17)  

 

𝑀𝐴𝐸 =
1

𝑛
∑  𝑛

𝑖=1 |𝑦𝑖 − 𝑦𝑖
∗|  (18)  

 

Table 3-3: Evaluation metrics for 1D CNN submodel 

Activation 
functions in 

hidden layers 

Evaluation metrics 

MSE RMSE MAE 

tanh 1.46 1.21 0.69 

Sigmoid 1.51 1.23 1.4 

ReLU 0.0002 0.0155 0.02 

 
The trained network was asked to simulate a stress-strain curve of ageing time1010 hours for each 
activation function, and the results were compared to the existing experimental data to ensure the 
submodel's validity. It's worth noting that this curve was not seen by the network during the 
training phase. 

As shown in figure 3-4, the most accurate prediction is obtained using the ReLU activation 
function. The curves exactly coincide with each other, but the predict curve exceeds the fracture 
point, even for the training curves while the simulation is stopped manually. For this reason, we 
have decided to add another submodel to predict the fracture point using SVM. Once the fracture 
point is predicted, the simulation will stop automatically without any human action. This hybrid 
model automatically extracts features from raw data and generates the predictions. The data is first 
passed via the SVM submodel, where the percent strain value is categorized into the appropriate 
class based on the ageing time (i.e., the material is fractured or not). The process finishes if the 
material is broken, otherwise, data is passed through the CNN submodel for predicting the stress 
value, the procedure is then repeated from the beginning, with only the percent strain value being 
incremented. 
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Figure 3-4: Graphical comparison between predicted and unseen experimental stress-strain curve 

 

 

B) The SVM submodel 
Figure 3-5 shows the fracture point or fracture stress, which is the final point in the stress-
strain curve. To estimate the fracture stress of aging films, a support vector machine 
submodel was suggested. Each point on the stress-strain curve was treated as individual 
binary classification problem. Therefore, the first class on the stress-strain curve was 
designated '1', which corresponded to strain values ranging from zero to breaking strain. 
Exceeding this value, the second class was labeled ‘0'.  

Figure 3-5: The two classes of stress-strain curve 
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The inputs to the SVM submodel are percent strain and ageing time as shown in figure 3-
6, the target output is a binary value 1 or 0 corresponding to not fractured or fractured. 
The SVM submodel was trained using a set of 4072 coordinate points of the stress-strain 
curves, automatically labeled with a script. 

 

Figure 3-6: The SVM submodel. 

To evaluate the SVM submodel we have used the most popular metrics [171], which are 
accuracy and AUC. Accuracy is basically the proportion of correct results among all 
predictions. If 𝑦𝑖∗ is the predicted value of the ith sample and 𝑦𝑖 is the corresponding true 
value, then the fraction of correct predictions over N samples is defined as:   

accuracy(𝑦, 𝑦∗) =
1

𝑁
∑  𝑁−1

𝑖=0  1(𝑦𝑖
∗ = 𝑦𝑖)   (19)  

  
Where 1(x) is the indicator function.  

Area under the curve (AUC) is a combined measure of sensitivity and specificity. Assume 
we are given dataset D = {(xi, yi)} i=1,...,N with N examples, class labels 𝑦𝑖∈ {−1,+1}, and 
input vectors xi, the number of positive examples (i.e., where yi = +1) is Npos, and the 
number of negative examples is Nneg= N −Npos.   

The AUC of a predictor f is defined as [172]:  

 𝐴𝑈𝐶(𝑓, 𝐷) =
1

𝑁
∑  𝑁neg 

𝑗=1 ∑  𝑁pos 

𝑘=1 1[𝑓(𝑥𝑗) < 𝑓(𝑥𝑘)]    (20)  

Where 1(a) is the indicator function, 1(a) = 1 if a is true and 0 otherwise. 

The AUC and the accuracy were calculated using Python 3.8 with Sklearn.metrics [168]. 
We have obtained 0.969 as AUC and 0.98 as accuracy, which means that the submodel 
performs well ,i.e., the material is fractured or not is well predicted.  

3.4 Results and discussion 
 Our results for the hybrid SVM-CNN model are shown in Figure 3-7. All figures in this 
work were generated using Matplotlib [172]. For each ageing time (120, 550, 1010, 2040, 
and 4000 h), the model was requested to predict the stress-strain curve and the output of 
the model was compared with the available experimental data. It can be seen that the 
curves exactly coincide with each other. One can notice that the model demonstrated 
strong ability to simulate the trend of the curves.  The mechanical properties such as yield 
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strength and fracture stress and strain are predicted with accuracy that is very close to the 
maximum of 100%. In addition, from the predicted stress-strain curves, one can calculate 
other mechanical properties such as tensile strength, strain at break, percent elongation, 
young modulus, toughness and the ratio of tensile strength to young’s modulus.  

 
Figure 3-7: Graphical comparison between experimental and predicted stress-strain curves for different 

ageing time. 

Designing and tuning deep neural networks require large efforts from developers, 
especially with a small dataset like ours. Indeed, unlike typical CNN, we have used two 
convolutional layers successively, this makes the 1D CNN submodel perform well. Our 
dataset is composed by five ageing periods up to 4000 h, although the hybrid SVM-CNN 
model can exceed these periods and predicts the stress-strain curves for any given ageing 
time. For example, as shown in figure 3-8, the model can easily predict the curves for 
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5000, 6000 and 9000 h. This revealed the powerful ability of learning high-level feature 
representations of deep CNN.  

 

 

 
Figure 3-8: Predicted stress-strain curves for different ageing time. 

In addition, the hybrid SVM-CNN model could eventually be used to predict the maximum 
degradation time under the condition of use. Indeed, using python loop, we have 
increased the ageing time until 18000 h (2 years). The model was requested to predict the 
stress for each value of ageing time. The maximum degradation time (ageing time) was 
14325 h, from this value the model does not predict the stress and displays “material 
fractured”. This means that the material is completely destroyed. On the other hand, the 
predicted curve represent stress-strain curve of the LDPE film during degradation at 
selected period. Therefore, one can plot, on the same graph, both the predicted curve and 
the corresponding stress-strain curve for the unaged material, as we have done. This will 
also provide information about the limit of use service time according to the criterion of 
the 50% loss in the original property [159]. 

In the following, we will compare the model performance to the most commonly used 
type of neural networks for supervised learning.  

3.4.1 Comparison with MLP model 
The multilayer perceptron (MLP) is a Feedforword Neural Network (FNN) with one or 
more layers of neurons between the input and output layers [174]. The architecture of an 
MLP can be represented as an acyclic graph, so that neurons in any layer are connected to 
all neurons in the next layer and no feedback between layers.   
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Many studies [175-177] have shown that MLP with one hidden layer can approximate 
arbitrarily well any continuous function of several real variables. Therefore, our MLP 
model developed to predict the stress-strain curves has one hidden layer between the input 
and output layers. The output neuron has a linear activation function, while the ReLU 
activation function has been chosen for neurons in the hidden layer. The model inputs are 
the percent strain and ageing time, while the output is the stress. We have trained several 
MLP networks. In fact, we have increased the number of neurons in the hidden layer up to 
100. We found that over 80 hidden neurons, network becomes too complex and 
generalization ability becomes very poor. The MLP networks were trained with batch 
gradient descent. The Adam optimizer was used to update the MLP weights during 
backpropagation, while the log-cosh was used as loss function. Each network was trained 
with 80 % of dataset, i.e., four stress-strain curves and then evaluated with the stress-
strain curve of ageing time1010 hours (20% of the dataset).  The performances of the best 
networks are shown in table 3-4. The outputs of each MLP network after simulation 
process are shown in figure 3-9. The MLP networks were implemented using Keras [167].  

 

Table 3-4: MLP Networks having best performances 

 log-cosh  
error 

MAE MSE RMSE 

MLP 30 neurons 0.63 1.07 2.11 1.45 

MLP 50 neurons 0.62 1.11 2.06 1.44 

MLP 80 neurons 0.50 0.92 1.65 1.29 
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Figure 3-9: Graphical comparison between MLP-predicted curves 

A comparison between the two models (1D CNN and MLP) is done in terms of training 
error and testing error as illustrated in Table 3-5.  From the table, we can see that the best 
performance has been obtained with the 1D CNN model. 
 

 

Table 3-5: Comparison of the two metrics for different models 

 Training error  
(log-cosh) 

Testing error  
(MSE) 

1D CNN 0.0001 0.0002 

MLP 80 neurons 0.50 1.65 

MLP 50 neurons 0.62 2.06 

MLP 30 neurons 0.63 2.11 

   

From a structural point of view, both models (1D CNN and MLP) contain one fully 
connected layer, apply ReLu function as hidden activation function, use Linear function as 
the activation function of the output layer and Log-cosh as the loss function, whereas, the 
results show that the MLP performs worse than the 1D CNN.   
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As demonstrated in Figure 3-7, the 1D CNN-based method predict very well the target 
stress-strain curves. 1D CNN performs well on unseen data by efficiently learning from 
small dataset. The failure of the MLP network, as shown in figure 3-9, results from the 
inability to extract features from raw data and the low size of dataset. 

3.5 Software 
After reaching our goal of developing an efficient hybrid model capable of predicting both 
the entire stress-strain curve and the material lifespan under actual usage circumstances, 
we must provide the user with an efficient and user-friendly program. 

3.5.1 User interaction and design 
We understand that using a CLI (command-line interface) is difficult and complicated for 
most people, thus we chose PySimpleGUI to create a simple and easy-to-use GUI. 

PySimpleGUI is a python package that transforms the tkinter, Qt and WxPython GUI 
frameworks into a simpler interface. And that what we’re seeking for a simple interface. 

The main window will look like this: 

 

Figure 3-10: main window 

We have a canvas that takes up the majority of the window space, with an initial curve of 
virgin film to compare to the stress strain curves provided by the model. at the bottom We 
have an input for the ageing time that we want to draw its curve for. We simply need to 
type in the desired time and click the draw button, and the model will predict and plot the 
stress strain curve. 
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Figure 3-11: plot the stress strain curve 

Multiple stress strain curves can also be drawn adjacent to each other: 

 

Figure 3-12: multiple stress strain curves adjacent to each other 

For a more detailed look at the chart we can click the show button, where we can zoom 
and move on the chart as well as save it as an image on our disk. 
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Figure 3-13: detailed vue at the chart 

We can also save the model's predicted stress strain curve to an excel file by clicking the 
save button in the main window. 

 

Figure 3-14: saving to excel 

 

We implemented a cache file system to save time and increase efficiency, so that the 
model doesn't have to predict strain stress curves of ageing times which it has already 
predicted. 

3.6 Conclusion 
We have developed and validated a hybrid deep learning model capable of solving a 
nonlinear problem which was the mechanical performance degradation of greenhouse tri-
layer LDPE films. The DL model was successful in both training and validation phases and 
demonstrate the capability of using 1D CNN for nonlinear regression. 
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Though CNN (2D or 3D) with big datasets is the optimal solution, 1D CNN with small 
datasets can be a reasonable choice when big datasets are unavailable in material study. 
The attractive feature of 1D CNN is its ability to exploit temporal correlation in raw data.  

The hybrid SVM-CNN model predicts the stress-strain curves as a function of ageing time. 
This can save time and cost, and provide easy tools to predict both the mechanical 
properties of greenhouse coverings and their lifetime under the conditions of use. This will 
help manufacturers to create materials capable of long-term use and be useful for 
engineering designers.  

This work leads to the conclusion that 1D CNN is a promising model method that can 
provide a significant solution to nonlinear challenges. 
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General conclusion 
Due to the development of various efficient learning methods and network structures in 
the late 1980s, neural networks became a popular topic in the fields of Machine Learning 
and Artificial Intelligence. While neural networks are successfully used in many 
applications, interest in this topic has waned. Following that, Hinton et al introduced Deep 
Learning in 2006, which was based on the concept of artificial neural network.  

This study on deep learning-based solutions opens up an intriguing direction and showed that 
DL is a beneficial method for solving non-linear problems Just like linear ones. 
Overall, this work on deep learning and non-linear regression by choosing the prediction of 
lifetime and mechanical performance degradation of Multilayer Greenhouse Polyethylene films as 
real-world problem in a promising path and can be utilized as a reference guide for future research 
and implementations in relevant application domains. 
 

Perspective 
• We were able to create a hybrid model that can forecast both the lifetime and 

mechanical performance degradation of LDPE films. However, the model can only 
forecast stress-strain curves under certain real-world conditions (10° and without 
the usage of water or UV rays).so our next challenge is to implement a DL model 
that can predict the stress-strain curves in any conditions. 

• And we can go even further and try to solve more nonlinear problems with 
deferent DL models. 
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Abstract—Stress-strain curves of greenhouse LDPE films represent the mechanical properties of materi-
als, such as tensile strength, strain at break, percent elongation, Young modulus and toughness. Stress-
strain curves of aged greenhouse LDPE films give a general description to evaluate the degradation of
mechanical performance. The aim of this work is to predict both the lifetime and the mechanical perfor-
mance degradation of the LDPE films. A key element, to handle this kind of difficult and challenging
problem, is the use of deep learning techniques that attempts to learn high-level features in data by using
structures composed of multiple non-linear transformations. Indeed, based on an experimental dataset,
a novel hybrid deep learning model that integrates a deep convolutional neural network and support vec-
tor machine is developed, able to predict both the entire stress-strain curves and the material lifetime
under the conditions of use. The model performance was validated using several evaluators and compared
to a multilayer perceptron neural network. The results revealed that the hybrid deep learning model has
high prediction performance.

DOI: 10.1134/S1560090421060117

INTRODUCTION
Low-density polyethylene (LDPE) is one of the

most used materials in plasticulture and its utilization
as agricultural greenhouse covers is a common appli-
cation. The main properties that have ensured its suc-
cess are especially its lightness and transparency.
Owing to the co-extrusion, one can combine several
layers of polymers together. Each layer has its own
qualities; increased strength, improved appearance,
resistance to cold, improving the welding or sealing,
barrier properties [1]. It is known that despite all the
advances in the formulation of the films, most of the
LDPE films in use today are expected to last for a
rather limited period, between one and five cultivating
seasons. The maximum useful lifetime usually adver-
tised by film producers is four seasons (i.e., four win-
ters and three summers). Even this expected lifetime is
significantly affected by the actual environmental
conditions the film will face during its use.

Polyethylene (PE) environmental degradation is a
complex process, as many degradation mechanisms
act together toward the total destruction of the mate-
rial. The degradation is the complicated non-linear
time-dependent process that affects directly, or indi-
rectly several properties of the material related to its

functional characteristics. In its final stage of degrada-
tion, a material does not meet its functional require-
ments and is easily prone to mechanical failure [2].
The essential degradation in the mechanical charac-
teristics (modulus of elasticity, fracture stress, and
elongation at break) has been evaluated in our previous
work [1].

S. N. Zhurkov [3] has study the time to failure for
uniaxial tensile specimens of some 50 materials,
measured in some cases over test decades of time. He
has suggested a universal rate relation between life-
time, stress, and temperature of the form τ =
τ0exp[(U0 − γσ)/RT]. The constant τ0 is essentially
the reciprocal of the natural oscillation frequency of
atoms in the solid, U0 is the binding energy on the
atomic scale, and γ is proportional to the disorienta-
tion of the molecular structure. Assuming the
kinetic nature of bond destruction through the ther-
mof luctuation mechanism, direct experimental ver-
ification of the phenomenon for polymers has been
obtained using electron paramagnetic resonance.
Yu. M. Boiko et al. [4] have studied the potentials of
the multi-stage hot-zone drawing technique for
enhancing the tensile strength σ of ultra-high-
molecular-weight polyethylene (UHMWPE) gel-
964



A HYBRID DEEP LEARNING MODEL 965
cast highly oriented film threads, the applicability of
the Weibull statistics to the σ distribution, and the
solvent role in the film thread strength are presented.
E. Damaskinskaya et al. [5] have developed an anal-
ysis of data obtained in laboratory investigations of
deformation of rocks by acoustic emission and
X-Ray microtomography. We found that defect
accumulation occurs in fundamentally differing
manners during loading. At first, defects are gener-
ated randomly and have a specific size determined
by a typical structural element of a material (e.g., a
grain in granite). Then the defects with sizes not dic-
tated by the material structure are generated.
D. Briassoulis et al. [6] have attempted to collect
and compare the standards of plastic films for use as
greenhouse cover. They have noted about the dis-
parity of the results and the lack of coordination in
the field of greenhouse covering. M. Turmine et al.
[7] have investigated the effect of water on PE films
used in greenhouses. The water that condenses
forms round droplets because this is the shape that
minimizes the contact area between the water and
the film. The reason why water condenses in that
form is the difference between the surface tensions of
the water and the hydrophobic polymer. These
droplets reduce the light transmission. A. Dehbi et
al. [8, 9] investigated the behavior of PE under nor-
mal usage conditions (temperature, sand wind etc.)
The qualitative and quantitative effects of the vari-
ous ageing factors on the degradation of the film are
usually monitored by measuring selected critical
properties of the material. Chemical changes in the
PE polymer structure can explain the degradation
mechanisms. Changes in selected critical properties
(e.g. mechanical, physical and chemical) can be
used to monitor the evolution of ageing.

The basic information needed to understand and
predict the degradation of mechanical performance
of greenhouse LDPE films is the stress-strain curve.
Indeed, the stress–strain curve of greenhouse LDPE
films obtained from a tensile test gives information
concerning the material’s elastic properties, the
character and extent of its plastic deformation, and
its yield and tensile strength. Also, to get deep insight
on the effect of the ageing time on the film proper-
ties (e.g., mechanical performance) under the differ-
ent ageing conditions, one can plot the film property
value after exposure to ageing conditions normalized
with its corresponding property value of the unaged
material against ageing time. This will also provide
information about the limit of use service time
according to the criterion of the 50% loss in the orig-
inal property [10]. Furthermore, we need a model
for examining their ultimate lifetime; in other words,
a model for the prediction of the material lifetime
under the conditions of use. This will help manufac-
turers to improve their products and be useful for
engineering designers.
POLYMER SCIENCE, SERIES B  Vol. 63  No. 6  2021
However, to increase the lifetime of the green-
house LDPE films it is important to predict stress-
strain curves for a given ageing time, knowing that
the process of experimentally investigating LDPE
mechanical properties can be costly and time-con-
suming. Deep learning (DL) is a major concept in
machine learning, which is a subset of artificial
intelligence (AI) that enables computers to learn
from raw data, gather insights, and make predictions
about new data using the information learned. DL
has been able to develop so rapidly in recent years
mainly due to the rapid development of computer
hardware that provides a powerful computing power
[11]. Deep neural networks have been shown to have
high degrees of accuracy and precision that exceed
the abilities of standard statistical techniques and
human performance to make predictions about out-
comes in various domains, such as computer vision,
self-driving cars, speech recognition, natural lan-
guage processing, and pattern detection [12]. The
applications of deep neural networks in material sci-
ence are still limited. It is mainly due to the difficul-
ties of assembling big dataset in material science
[13]. Indeed, few works have been done in this area,
such as material classification [14], defect classifica-
tion [15], microstructure reconstruction [16], and
microstructure image recognition [17].

The principal aim in this work is to combine a
recent deep learning based method and a traditional
classifier Support Vector Machine (SVM) to predict
both the entire stress-strain curves and the material
lifetime under the conditions of use. To the best of the
author’s knowledge, machine learning based method-
ology has not previously been used to predict stress-
strain curves of LPDE films. In addition, our goals in
this work are to demonstrate that deep convolutional
neural networks (CNN) can be applied in the field of
polymer characterization, capture the nonlinear rela-
tionship between the ageing of the polymeric green-
houses covers and their stress-strain curves, and show
the feasibility of training CNN model with a small
dataset.

Background

In recent years, the convolutional neural network
has become an important state-of-the-art deep learn-
ing algorithm. CNN is a feedforward neural network
with a deep structure that has one or more convolu-
tional layers, which is inspired by the organization of
animal visual cortex [18]. The network employs a
mathematical operation called convolution, hence the
name, used for feature extraction. This can be viewed
as multiplication by a matrix [19]. Unlike the tradi-
tional fully connected neural networks, CNN neurons
have local connectivity (sparse interactions), so they
do not have to be connected to all the outputs from the
previous layer of neurons. CNNs are designed to pro-
cess data that come in the form of multiple arrays [11].
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3D CNNs process 3D data such as video or volumetric
images; 2D CNNs operates on 2D data like images or
audio spectrograms; 1D CNNs process 1D data such
as signals and sequences. 1D CNNs, used in this work,
are the recent variants of the well-known 2D CNNs,
they were introduced only a few years ago [20, 21]. 1D
CNNs have immediately achieved the state-of-the-art
performance levels in various applications such as car-
diac arrhythmia classification [22], electrical motor
fault detection [23], wind prediction [24], and acous-
tic waste sorting [25].

A typical CNN, as shown in Scheme 1, is generally
a convolution layer adjacent to a pooling layer, alter-
nating in turn and finally output by a fully connected
layer.

The core of the CNN is the convolution operation,
where a small square matrix of numbers, called a ker-
nel (filter), is applied across the input, which is a
matrix of numbers, called a tensor. At each location of
the input, a Hadamard product between the kernel
and the tensor is calculated and summed to obtain the
output value in the corresponding position of the tar-
get tensor, as shown in Scheme 2. For example, if we
use two-dimensional data I of p × q elements as our
input, we probably also want to use a two-dimensional
kernel K of n × n elements, the discrete convolution,
typically denoted with an asterisk, is calculated by the
following formula [26]:

(1)

where V(i, j) is the output value in the corresponding
position of the target tensor.

A convolutional layer contains a set of kernels to be
learned. In the same layer, neurons with the same fea-
ture map share the same kernel [27]. Each neuron of
the convolution layer performs a discrete convolution
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between the input and corresponding kernel to gener-
ate the input feature map of the neuron, which is then
passed through a nonlinear activation function to gen-
erate the output feature map of the neuron. The out-
put volume of the convolutional layer is obtained by
stacking the feature maps of all kernels along the depth
dimension. The role of the convolutional layer is to
detect local conjunctions of features from the previous
layer [11].

As in all neural networks, it is also possible to add
biases to the forward operations. Each unique kernel
in a convolutional layer is associated with its own bias.
Therefore, for the jth feature map in the ith layer of the
CNN, the value at the xth row and yth column is
denoted as  and computed by the formula below
[28]:

(2)

where f is the activation function, bij the bias of the jth
kernel in the ith layer, m indexes over the set of feature
maps in the (i − 1)th layer connected to the current
feature map,  is the value at the position p of the
convolutional kernel, and Pi is the length of the convo-
lutional kernel.

The pooling layer (subsampling layer), creates its
own feature map by applying pooling operator to
aggregate information within each small region of the
input feature maps and then downsampling the
results. The goal of a pooling layer is to produce a sum-
mary statistic of its input and to reduce the spatial
dimensions of the feature maps [29]. It is of note that
there is no learnable parameter in any of the pooling
layers. The most popular form of pooling operation is
max pooling, which reports the maximal values in
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each rectangular neighborhood of each point (i, j),
computed by the formula below:

(3)

where Qi is the length of the pooling region.

The most common form of max pooling uses stride
2 together with pool size 2 [29], which corresponds to
partitioning the feature map spatially into a regular
grid of square with side 2 and taking the maximum
value over such blocks for each input feature as shown
in Scheme 3.

The fully connected (dense) layer, identical to the
layer of a typical Multilayer Perceptron (MLP), maps
the extracted features into final output, such as classi-
fication. Flattening is the process of converting the
output feature maps of the final convolution or pool-

( )
+

≤ ≤ −=v v
, ,

1   1( ),x y x q y
ij q Qi i jmax
POLYMER SCIENCE, SERIES B  Vol. 63  No. 6  2021
ing layer into a one-dimensional array of numbers (or
vector), which is presented as input to the dense layer.

CNN hyperparameters shape how the network
functions and must be tuned in order to obtain optimal
model performance. Tuning model hyperparameters
are usually fixed settings. Two key hyper parameters
that define the convolution operation are size and
number of kernels, whereas pool size, stride, and pad-
ding are hyperparameters in pooling operations.
Stride is the distance between two successive kernel
positions, while padding adds rows and columns of
zeros on each side of the input tensor.

The loss function compares the target and pre-
dicted phases in the final output layer, while the ker-
nels in convolution layers and weights in fully con-
nected layers are updated based on back propagation
and gradient descent algorithm in a way that the value
of the loss function is minimized, as illustrated in
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Scheme 4. All CNN hyperparameters should be set
before the training process starts. It should be noted
that the back propagating gradients through a CNN is
as simple as through a regular network [11].

Support Vector Machines (SVM) is a learning
algorithm originally introduced by Vapnik [30, 31] and
successively extended by many other
researchers. SVM is a widely used and one of the most
powerful supervised classification techniques [32, 33].
Based on the training data {x1, …, xn}, where xi  N,
together with class labels {y1, …, yn} where yi  {‒1, 1},
SVM can be trained to create a model [34]. Using this
model, it predicts the class of new testing sample.
SVM creates a hyperplane with the
largest margin between two classes as shown in
Scheme 5. Margin means the maximal width of the
slab parallel to the hyperplane that has no interior data
points. This helps to reduce the generalization error
for classifying a new data point.

Linear SVM separate data in the n-dimensional
input space with the use of the decision hyperplane
defined as:

(4)

where w is the hyperplane normal vector, w ∈ , and
b/||w|| is the perpendicular distance between the hyper-
plane and the origin (||·|| is the 2-norm), b ∈ . This
hyperplane is positioned such that the distance
between the closest vectors of the opposite classes to
the hyperplane is maximal. For two linearly separable
classes (as already mentioned, with the class labels yi ∈

∈   
∈ 

( ) = + = 0,Tf x w x b

n
R
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{+1, −1}), the training data must satisfy the following
conditions:

(5)

(6)
These two hyperplanes are called canonical hyper-

planes. The width of the band formed by the canonical
hyperplanes is 2/||w||. To find the maximum margin
separator, it is sufficient to search among the separa-
tors checking for all the examples yi × f(xi) ≥ 1, the sep-
arator for which ||w|| is minimal.

In cases where data points are clustered so that lin-
ear separation is not possible, the data points can be
mapped into feature space (higher dimensional space)
where a linear separation is possible. This hyperplane
which is linear in feature space will be non linear in its
corresponding input space [35]. Different kernel func-
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Scheme 6.
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tions, including linear kernel (xT x'), polynomial ker-
nel ((xT x' + 1)d), RBF kernel (exp(−γ||xx'||2)) and sig-
moidal kernel (tanh(γxx' + C)) can be used in SVM for
the nonlinear problem [36].

EXPERIMENTAL
The LDPE film used in this study is manufactured

by Agrofilm SA (Setif-Algeria) using the three-layer
co-extrusion technology which is used in several
industrial applications. The total thickness of the three
layered coextruded film is 180 μm with proportions of
1/4, 1/2, and 1/4 over the total film thickness. The
LDPE melt f low index has a value of 0.33 g/10 min
without stabilizer and 10 g/10 min with stabilizer. The
density of LDPE before extrusion is 0.923 g/cm3. The
initial color of the film is milky yellow. The real com-
position of the film is kept confidential by the supplier.

In this study, we used the dataset from our previous
work [37], where the mechanical behavior of the
unaged/virgin and naturally and artificially aged films
was evaluated in different combined condition of tem-
peratures (10, 25, 40 and 50°C) water and UV-A radi-
ations by conducting the tensile test.

The LDPE films were photooxidized with UV-A
lamp of 40 W power (Philips: TL-K 40W UV-A). This
lamp gives radiation with wavelengths of between 315
and 380 nm (equivalent to that of the UV-A of the
solar radiation). The distance between the lamp and
the sample is 40 cm. Samples were irradiated for the
different periods. The same materials were also sub-
jected to thermal aging at the different temperatures
and times. A greenhouse of 32 m length, 8 m width and
3.50 m height was specially design, built and equipped
with a tri-layer LDPE film of 180 μm total thickness.
The greenhouse was located in the neighborhood of
Oran region of Algeria at 31° 40' N latitude, 00° 36'
longitude and 120 m altitude with an east/west orien-
tation. The samples have been taken from each side of
the greenhouse roof to represent the north side film
POLYMER SCIENCE, SERIES B  Vol. 63  No. 6  2021
and south side film. The samples have been taken
every month over the total ageing period.

The tensile tests were performed according to ISO
527-3 [38, 39]. The load was applied on specimen in a
direction parallel to the average molecular orientation
obtained during the film processing. The engineering
stress as a function of the engineering strain has been
recorded for each film. Five ageing periods were con-
sidered, namely, 120, 550, 1010, 2040, and 4000 h.
In other words, a dataset of 4072 coordinate points of
the five stress-strain curves was created.

A deep CNN and SVM are combined to propose a
hybrid model to predict both the entire stress-strain
curves and the material lifetime under the conditions
of use, called hybrid SVM-CNN. The prediction of
stress-strain curve consists of two problems: one is a
classification problem to separate each point in the
curve as a function of strain values, i.e., material’s
fracture classification; the second is a regression prob-
lem to predict the stress values.

The hybrid SVM-CNN model, as shown in
Scheme 6, is composed of two sub models namely
SVM sub model and CNN sub model. The two sub
models were trained separately and were then tested
together.

In the proposed model, SVM works as a classifier
and CNN performs as a features extractor. This hybrid
model automatically extracts features from the raw
data and generates the predictions. As can be seen
in Scheme 6, the hybrid SVM-CNN model
has two inputs: the percent strain and the ageing time.
The data first passes through the SVM submodel, in
which the value of percent strain is classified, accord-
ing to the ageing time, to the appropriate class (i.e., the
material is fractured or not). If the material is frac-
tured, the process ends; otherwise, data passes
through the CNN submodel for predicting the stress
value, then only the percent strain value is incre-
mented and the procedure is repeated from the begin-
ning.
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Scheme 7.

Input
layer

Convolu-
tion layer

Convolution
layer

Pooling
layer

Fully connected
layer

Output
layer
The implementation code was written in Python
3.8 on a PC (Intel(R) Core(TM) i5-6200U CPU
2.4 GHz, 8 Gbyte RAM) while for the CNN sub-
model we have used Keras deep learning framework
with a Tensor Flow backend [40], and Scikit-learn
library [41] was used for the SVM submodel.

The performance of a deep convolutional neural
network is strongly linked to its structure and the
choice of the hyperparameters that define the learning
process. Deep CNN is mostly used in image feature
extraction scenarios. However, there is a lack of
knowledge on how to construct a deep CNN model
that could be applied to solve the regression problems.
Indeed, one of the most crucial issues is how to solve
the problem of how to design a reasonable model for
continuous input and output, targeting the nonlinear
regression problem. On the one hand, the use of deep
CNN remains challenging in small datasets. Our data-
set has 4072 coordinate points, but they represent only
five stress-strain curves. The model needs to imple-
ment efficient feature extraction to improve the pre-
diction results. After tried many structures, we eventu-
ally found that, for the prediction of stress-strain
curves, the required structure has its own unique char-
acteristics. The final deep learning architecture of the
1D CNN submodel is shown in Scheme 7. The pro-
posed 1D CNN submodel has an input layer, two con-
PO

Table 1. A list of hyperparameters in the 1D CNN submodel

Convolution layer Kernel size = 

Convolution layer Kernel size = 

Pooling layer Pooling metho

Fully connected layer Neurons = 50
volutional layers, a pooling layer, a fully connected
layer and an output layer. The two convolutional layers
of this neural network can be viewed as features
extractors, the next layer merge semantically similar
features into one and the last layer maps the extracted
features into final output. This 1D CNN submodel
takes as inputs the percent strain and ageing time, and
predicts the corresponding stress. The hyperparame-
ters: filter sizes, stride, padding, pool size and number
of filters were tuned by experiences for an optimally
designed 1D CNN. The selected hyperparameter val-
ues are shown in Table 1.

The model was trained with the log hyperbolic
cosine (log-cosh) loss function. In fact, log-cosh
approach has been widely used in regression based
problem for smoothing the curve [42].

The log-cosh loss formula is given as follows:

(7)

where fi(x) is the predicted values, yi is the true values,

 and N is the number of samples.

( ) ( )
=

= −
1

1 log(cosh( )),
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x xe ex
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Hyperparameters

1, filters = 64, strides = 1, padding = valid, activation = relu

1, filters = 32, strides = 1, padding = valid, activation = relu

d: maxpooling, pool size: 2, stride = 2, padding = valid

, activation function = relu
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Fig. 1. Comparison of loss curves during the training progress: (1) ReLU, (2) tanh, (3) sigmoid.
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Three well-known activation functions have been
tested successively, and they are hyperbolic tangent
(tanh), sigmoid and rectified linear unit (ReLU). We
have used the same activation function in all layers,
except the output layer where we have used linear acti-
vation function. The performances are displayed in
Fig. 1 and Table 2. We can see that the model con-
verges much faster using ReLU as activation function.
A ReLU of x is simply the maximal value of 0 and x,
meaning that it will return a 0 if the input is negative or
the raw input otherwise. In symbols: f(x) = max(x, 0).

We have used batch gradient descent for training to
provide a more stable error gradient, which resulted in
more stable convergence [43]. In batch gradient
POLYMER SCIENCE, SERIES B  Vol. 63  No. 6  2021

Table 2. Effect of activation functions on model conver-
gence

Epochs
log-cosh error

tanh Sigmoid ReLU

1 2.42 3.48 11.2

2 1.05 1.20 5.84

4 0.45 1.20 5.24

8 0.22 1.20 3.58

16 0.08 0.81 1.18

32 0.03 0.75 0.95

64 0.05 0.74 0.24

128 0.002 0.59 0.02

256 0.002 0.20 0.01

512 0.01 0.11 0.002

1024 0.15 0.02 0.001
descent, the error is computed for every example
within the training dataset, but the model will be
updated only after the evaluations of all training exam-
ples are completed. This is repeated until there is con-
vergence. A single pass through the complete training
dataset is called an epoch, which is a hyperparameter
to be set.

Four of the five available stress-strain curves (80%
of the dataset) were used to train the 1D CNN sub-
model. The test set is the data that was never used by
the model during training. However, the fifth curve
(20% of the dataset) was used to test the submodel. In
other words, the trained 1D CNN was requested to
predict the fifth curve and the output of the network is
compared with the available experimental data to
check the validity of the submodel.

The Adam (Adaptive Moment estimation) opti-
mizer [44] was used to update the parameters during
back propagation. The prediction model was trained
with up to 1750 epochs. Early stopping was applied
using Callback functions to prevent over fitting (i.e.,
network shows high accuracy during training but less
accuracy when new data is given during testing). At the
end of the training process, the training error value was
0.0001302.

We have evaluated the quality of the prediction
model using the three metrics of mean squared error
(MSE), root-mean squared error (RMSE) and mean
absolute error (MAE). These metrics are widely used
to evaluate the error rates for prediction using regres-
sion models. The results obtained are shown in
Table 3. All the evaluation metrics were calculated
using Python package keras-metrics [40].

Let  represent the values of variables for n predic-
tion samples of stress, and let  represent the observed

*iy
iy
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Table 3. Evaluation metrics for 1D CNN submodel

Activation 
functions 

in hidden layers

Evaluation metrics

MSE RMSE MAE

tanh 1.46 1.21 0.69

Sigmoid 1.51 1.23 1.4

ReLU 0.0002 0.0155 0.02
values. Eqs. (8) to (10) then represent the MSE,
RMSE and MAE, respectively:

(8)

(9)

(10)

For each activation function, the trained network
was requested to simulate stress-strain curve of ageing
time1010 hours and the results was compared against
the available experimental data to check the validity of
the submodel. It should be noted that the network has
not seen this curve during the training phase.

As shown in Fig. 2, the most accurate prediction
is obtained using the ReLU activation function. The
curves exactly coincide with each other, but the pre-
dict curve exceeds the fracture point, even for the
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Fig. 2. Graphical comparison between (1) predicted and (2) un
function, (b) model with sigmoid activation function, (c) model
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training curves while the simulation is stopped man-
ually. For this reason, we have decided to add
another submodel to predict the fracture point using
SVM. Once the fracture point is predicted, the simu-
lation will stop automatically without any human
action.

The final point in the stress-strain curve, as shown
in Scheme 8, is known as fracture point or fracture
stress. A support vector machine submodel was
designed to predict the fracture stress of aged films.
LYMER SCIENCE, SERIES B  Vol. 63  No. 6  2021

seen experimental stress-strain: (a) model with tanh activation
 with ReLU activation function. The ageing time is 1010 h.
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Scheme 8.

Strain

Stress

Fracture

Class 1 Class 0

Scheme 9.

Percent strain

Ageing time
Each point in stress-strain curve was treated as indi-
vidual binary classification problem. Therefore, in the
stress-strain curve, the first class was labeled ‘1’ corre-
sponding to strain values, from zero up to the breaking
strain. Exceeding this value, the second class was
labeled ‘0’ as shown in Scheme 8. The inputs to the
SVM submodel are percent strain and ageing time as
shown in Scheme 9, the target output is a binary
value 1 or 0 corresponding to not fractured or frac-
tured. The SVM submodel was trained using a set of
4072 coordinate points of the stress-strain curves,
manually labeled. To evaluate the SVM submodel we
have used the most popular metrics [45], which are
accuracy and AUC. Accuracy is basically the propor-

tion of correct results among all predictions. If  is
the predicted value of the ith sample and yi is the cor-
responding true value, then the fraction of correct pre-
dictions over N samples is defined as:

(11)

where 1(x) is the indicator function.
Area under the curve (AUC) is a combined mea-

sure of sensitivity and specificity. Assume we are given
dataset D = {(xi, yi)}, I = 1, …, N with N examples,
class labels , and input vectors xi; the
number of positive examples (i.e., where yi = +1) is
Npos, and the number of negative examples is Nneg =
N − Npos. The AUC of a predictor f is defined as [46]:

(12)

where 1(a) is the indicator function; 1(a) = 1 if a is
true and 0 otherwise. The AUC and the accuracy were
calculated using Python 3.8 with Sklearn metrics [41].
We have obtained 0.969 as AUC and 0.98 as accuracy,
which means that the submodel performs well, i.e., the
material is fractured or not is well predicted.

RESULTS AND DISCUSSION

Our results for the hybrid SVM-CNN model are
shown in Fig. 3. All figures in this work were generated
using Matplotlib [47]. For each ageing time, the model
was requested to predict the stress-strain curve and the
output of the model was compared with the available
experimental data. It can be seen that the curves
exactly coincide with each other. One can notice that
the model demonstrated a strong ability to simulate
the trend of the curves. The mechanical properties
such as yield strength and fracture stress and strain are
predicted with accuracy that is very close to the maxi-
mum of 100%. Besides, from the predicted stress-
strain curves, one can calculate other mechanical
properties such as tensile strength, percent elongation,
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young modulus, toughness and the ratio of tensile
strength to young’s modulus.

Designing and tuning deep neural networks
require large efforts from developers, especially with
a small dataset like ours. Indeed, unlike typical
CNN, we have used two convolutional layers succes-
sively, this makes the 1D CNN submodel perform
well. Our dataset is composed by five ageing periods
up to 4000 h, although the hybrid SVM-CNN model
can exceed these periods and predicts the stress-
strain curves for any given ageing time. For example,
as shown in Fig. 4, the model can easily predict the
curves for 5000, 6000, and 9000 h. This revealed the
powerful ability of learning high-level feature repre-
sentations of deep CNN. In addition, the hybrid
SVM-CNN model could eventually be used to pre-
dict the maximum degradation time under the condi-
tion of use. Indeed, using python loop, we have
increased the ageing time until 18000 h (2 years). The
model was requested to predict the stress for each
value of ageing time. The maximum degradation
time (ageing time) was 14325 h, from this value the
model does not predict the stress and displays “mate-
rial fractured”. This means that the material is com-
pletely destroyed.

On the other hand, the predicted curve represents
stress-strain curve of the LDPE film during degrada-
tion at selected period. Therefore, one can plot, on the
same graph, both the predicted curve and the corre-
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Fig. 3. Graphical comparison between stress-strain curves for (1) virgin film, (2) predicted and (3) experimental curves for dif-
ferent ageing time: (a) 120, (b) 550, (c) 1010, (d) 2040, (e) 4000 h.
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sponding stress-strain curve for the unaged material,
as we have done. This will also provide information
about the limit of use service time according to the cri-
terion of the 50% loss in the original property [9].

In the following, we will compare the model per-
formance to the most commonly used type of neural
networks for supervised learning.
PO
The multilayer perceptron (MLP) is a Feedforward
Neural Network (FNN) with one or more layers of
neurons between the input and output layers [48]. The
architecture of an MLP can be represented as an acy-
clic graph so that neurons in any layer are connected to
all neurons in the next layer and no feedback between
layers. Many studies [49–51] have shown that MLP
LYMER SCIENCE, SERIES B  Vol. 63  No. 6  2021
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Fig. 4. Predicted stress-strain curves for (1) virgin film and for different ageing time: (2) 5000, (3) 6000, (4) 9000 h.
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with one hidden layer can approximate arbitrarily well
any continuous function of several real variables.
Therefore, our MLP model developed to predict the
stress-strain curves has one hidden layer between the
input and output layers. The output neuron has a lin-
ear activation function, while the ReLU activation
function has been chosen for neurons in the hidden
layer. The model inputs are the percent strain and age-
ing time, while the output is the stress.

We have trained several MLP networks. In fact, we
have increased the number of neurons in the hidden
layer up to 100. We found that over 80 hidden neurons,
network becomes too complex and generalization
ability becomes very poor. The MLP networks were
POLYMER SCIENCE, SERIES B  Vol. 63  No. 6  2021

Table 4. MLP Networks having best performances

log-cosh 
error MAE MSE RMSE

MLP 30 neurons 0.63 1.07 2.11 1.45

MLP 50 neurons 0.62 1.11 2.06 1.44

MLP 80 neurons 0.50 0.92 1.65 1.29

Table 5. Comparison of the two metrics for different models

Training error 
(log-cosh)

Testing error 
(MSE)

1D CNN 0.0001 0.0002

MLP 80 neurons 0.50 1.65

MLP 50 neurons 0.62 2.06

MLP 30 neurons 0.63 2.11
trained with batch gradient descent. The Adam opti-
mizer was used to update the MLP weights during
backpropagation, while the log-cosh was used as loss
function. Each network was trained with 80% of data-
set, i.e., four stress-strain curves and then evaluated
with the stress-strain curve of ageing time 1010 hours
(20% of the dataset). The performances
of the best networks are shown in Table 4. The outputs
of each MLP network after simulation process are
shown in Fig. 5. The MLP networks were imple-
mented using Keras [40]. A comparison between the
two models (1D CNN and MLP) is done in terms of
training error and testing error as illustrated in Table 5.
From the table, we can see that the best performance
has been obtained with the 1D CNN model.

From a structural point of view, both models (1D
CNN and MLP) contain one fully connected layer,
apply ReLu function as hidden activation function,
use Linear function as the activation function of the
output layer and log-cosh as the loss function; whereas,
the results show that the MLP performs worse than the
1D CNN. As demonstrated in Fig. 3, the 1D CNN-
based method predict very well the target stress-strain
curves. 1D CNN performs well on unseen data by effi-
ciently learning from small dataset. The failure of the
MLP network, as shown in Fig. 5, results from the
inability to extract features from raw data and the low
size of dataset.

CONCLUSIONS

We have developed and validated a hybrid deep
learning model to predict both the lifetime and the
mechanical performance degradation of greenhouse
tri-layer LDPE films. The DL model was successful in
both training and validation phases and demonstrate
the capability of the prediction of stress-strain curve of
an aged LDPE film in different periods. Though CNN
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Fig. 5. Graphical comparison between MLP (1) predicted and (2) experimental curves with (a) 30, (b) 50, (c) 80 neurons. The
ageing time is 1010 h.
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(2D or 3D) with big datasets is the optimal solution,
1D CNN with small datasets can be a reasonable
choice when big datasets are unavailable in material
study. The attractive feature of 1D CNN is its ability to
exploit temporal correlation in raw data. The hybrid
SVM-CNN model predicts the stress-strain curves as
a function of ageing time. This can save time and cost,
and provide easy tools to predict both the mechanical
properties of greenhouse coverings and their lifetime
under the conditions of use. This will help manufac-
turers to create materials capable of long-term use and
be useful for engineering designers. This work leads to
the conclusion that DL is a promising model approach
that can greatly motivate the research community to
extend its applications in the field of polymer charac-
terization.
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