Please use this identifier to cite or link to this item: http://dspace.univ-tiaret.dz:80/handle/123456789/16894
Title: Modern technique to study Cauchy-type problem of fractional variable order differential equations
Authors: Benmerzoug, Yamina
Keywords: fractional derivatives
fractional integral
fractional differential equations.
fixed point theorems
Issue Date: 2025
Publisher: université Ibn Khaldoun-Tiaret
Abstract: In this work, we have explored the theoretical and numerical aspects of fractional calculus, with a particular focus on fractional derivatives and their approximation using finite difference methods. The study began with foundational concepts, such as the Riemann-Liouville fractional integral and derivative, the Gamma and Beta functions,and the notion of phase space. These elements provided the essential mathematical tools required to model and analyze systems governed by fractional differential equations. The second part of the study dealt with the existence and uniqueness of solutions. By examining fixed point theorems and different types of stability, especially Ulam’s stability, we were able to build a rigorous theoretical framework ensuring the validity and reliability of the fractional models being used.
URI: http://dspace.univ-tiaret.dz:80/handle/123456789/16894
Appears in Collections:Master

Files in This Item:
File Description SizeFormat 
TH.M.MATH.2025.14.pdf2,7 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.