Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-tiaret.dz:80/handle/123456789/16894
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBenmerzoug, Yamina-
dc.date.accessioned2025-11-23T10:52:54Z-
dc.date.available2025-11-23T10:52:54Z-
dc.date.issued2025-
dc.identifier.urihttp://dspace.univ-tiaret.dz:80/handle/123456789/16894-
dc.description.abstractIn this work, we have explored the theoretical and numerical aspects of fractional calculus, with a particular focus on fractional derivatives and their approximation using finite difference methods. The study began with foundational concepts, such as the Riemann-Liouville fractional integral and derivative, the Gamma and Beta functions,and the notion of phase space. These elements provided the essential mathematical tools required to model and analyze systems governed by fractional differential equations. The second part of the study dealt with the existence and uniqueness of solutions. By examining fixed point theorems and different types of stability, especially Ulam’s stability, we were able to build a rigorous theoretical framework ensuring the validity and reliability of the fractional models being used.en_US
dc.language.isootheren_US
dc.publisheruniversité Ibn Khaldoun-Tiareten_US
dc.subjectfractional derivativesen_US
dc.subjectfractional integralen_US
dc.subjectfractional differential equations.en_US
dc.subjectfixed point theoremsen_US
dc.titleModern technique to study Cauchy-type problem of fractional variable order differential equationsen_US
dc.typeThesisen_US
Collection(s) :Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
TH.M.MATH.2025.14.pdf2,7 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.