
Please use this identifier to cite or link to this item:
http://dspace.univ-tiaret.dz:80/handle/123456789/16893| Title: | Méthode d’itérations monotones appliquée aux systèmes d'équations différentielles fractionnaires |
| Authors: | RAHMOUNI, Leila |
| Keywords: | calcul fractionnaire équations differentielles iterations monotones. derivees fractionnaires |
| Issue Date: | 2025 |
| Publisher: | université Ibn Khaldoun-Tiaret |
| Abstract: | Nous presentons dans ce memoire, l'existence de solutions extr^emes pour des equations differentielles a derivees fractionnaires au sens de Riemann-Liouville avec condition integrale aux limites, et pour un systeme couple d'equations differentielles non lineaires a derivees fractionnaires au sens de Riemann-Liouville avec des conditions initiales. Aussi, nous presentons l'existence de solutions extr^emes pour un systeme couple d'equations differentielles non lineaires a derivees fractionnaires au sens de -Caputo avec conditions initiales. Ces resultats sont obtenus gr^ace a la technique iterative monotone combinee a la methode des sous et sur solutions. |
| Description: | In this work, we present existence of extremal solutions for nonlinear Riemann-Liouville fractional di erential equations with integral boundary conditions (nonlocal conditions) and for coupled systems of nonlinear Riemann-Liouville fractional di erential equations with initial conditions. Also, we present the existence of extremal solutions for a coupled system of nonlinear fractional di erential equations involving the -Caputo derivative with initial conditions. Our results will be obtained by using the monotone iterative technique combined with the method of upper and lower solutions. |
| URI: | http://dspace.univ-tiaret.dz:80/handle/123456789/16893 |
| Appears in Collections: | Master |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| TH.M.MATH.2025.13.pdf | 847,69 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.