Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-tiaret.dz:80/handle/123456789/14718
Affichage complet
Élément Dublin Core | Valeur | Langue |
---|---|---|
dc.contributor.author | AOUNALLAH, Helima | - |
dc.contributor.author | BERREZOUG, Hichem | - |
dc.date.accessioned | 2024-07-18T08:39:23Z | - |
dc.date.available | 2024-07-18T08:39:23Z | - |
dc.date.issued | 2024-06-23 | - |
dc.identifier.uri | http://dspace.univ-tiaret.dz:80/handle/123456789/14718 | - |
dc.description.abstract | A sequence (an) of real numbers is equidistributed on an interval if the probability of finding any terms in any subinterval is proportional to the length of the subinterval. And is said to be equidistributed modulo 1 or uniformly distributed modulo 1 if the sequence of the fractional parts of an, denoted by (an) , is equidistributed in the interval [0; 1]. For any given real numbers r 0 and > 0 Koksma and H. Weyl proved respectively that the setsE of all positive real numbers r 0 and the sets Wr of all positive real numbers > 0, for which the sequence rn n2N is not uniformly distributed modulo 1, have Lebesgue measure zero. In this memoir, we give some algebraic properties of certain sets E a and show, among other things, that the sets Wr are uncountable. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Ibn Khaldoun University | en_US |
dc.subject | rational fractions | en_US |
dc.subject | The modulo 1 distribution | en_US |
dc.subject | exceptional sets | en_US |
dc.title | On The Equidistributed(mod1) Of Real Sequences | en_US |
dc.type | Thesis | en_US |
Collection(s) : | Master |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
TH.M.MATH.2024.11.pdf | 6,64 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.