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Résumé

Une suite (an) de nombres réels est équidistribuée sur un intervalle si la probabilité de trouver
des termes dans tout sous-intervalle est proportionnelle à la longueur de ce sous-intervalle.

On dit qu’elle est équidistribuée modulo 1 ou uniformément distribuée modulo 1 si la suite
des parties fractionnaires de an, notée (an) ou (an − banc), est équidistribuée dans l’intervalle
[0, 1].

Pour tout nombre réel donné r ≥ 0 et tout α > 0, Koksma et H. Weyl ont respectivement
prouvé que les ensembles Eα de tous les nombres réels positifs r ≥ 0 et les ensembles Wr de tous
les nombres réels positifs α > 0, pour lesquels la suite αrnn∈N n’est pas uniformément distribuée
modulo 1, ont une mesure de Lebesgue nulle.

Dans ce mémoire, nous donnons certaines propriétés algébriques de certains ensembles Eα et
montrons, entre autres choses, que les ensembles Wr sont non dénombrables.
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Abstract

A sequence (an) of real numbers is equidistributed on an interval if the probability of finding
any terms in any subinterval is proportional to the length of the subinterval. And is said to
be equidistributed modulo 1 or uniformly distributed modulo 1 if the sequence of the fractional
parts of an, denoted by (an) , is equidistributed in the interval [0, 1]. For any given real numbers
r ≥ 0 and α > 0 Koksma and H. Weyl proved respectively that the setsEα of all positive real
numbers r ≥ 0 and the setsWr of all positive real numbers α > 0, for which the sequence αrnn∈N
is not uniformly distributed modulo 1, have Lebesgue measure zero. In this memoir, we give
some algebraic properties of certain sets Eαa and show, among other things, that the sets Wr

are uncountable.
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Rating

1. N = {0, 1, 2 . . .} : designates the set of natural integers.

2. Z : designates the ring of rational or relative integers.

3. Q : designates the body of rational numbers.

4. R : designates the body of real numbers.

5. C : designates the field of complex numbers.

6. A : designates a commutative and unitary ring.

7. V \Ω : designates the set of elements of V that are not in Ω.

8. D (z0, r) : designates an open disk with center z0 and radius r.

9. D̄ (z0, r) : designates a closed disk with center z0 and radius r..

10. log : denotes the neperian logarithm.

11. E(x) : designates the integer part of x..

12. {x} : is the fractional part of x.

13. E′(x) : designates the nearest integer to x i.e..

E′(x) =

{
E(x), {x} < 1

2
E(x) + 1, {x} ≥ 1

2 .
; so: E′(1.4) = 1;E′(1.6) = 2

14. ‖x‖ : denotes the distance from the real number x to the nearest integer i.e..

‖x‖ =
∣∣x− E′(x)

∣∣ = min{|x− n|, n ∈ Z}
= min{{x}, 1− {x}}

For two real numbers x1, x2 and an integer n, we have

‖x1 + x2‖ ≤ ‖x1‖+ ‖x2‖ ,
‖nx1‖ ≤ |n| ‖x1‖ .
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15. Given a real number x, we can write x as:

x = E′(x) + ε(x) with
−1

2
≤ ε(x) <

1

2
.

16. For two integers n and k such that 0 ≤ k ≤ n we note

Ckn =

(
n

k

)
=

n!

k!(n− k)!
.

17. if f(x) and g(x) two functions defined on [x0,+∞ [ and g(x) > 0 for x ≥ x0, so

f(x) =O(g(x)) stands for (∃M > 0) so that|f(x)| ≤Mg(x) (∀x ≥ x0)(
lim sup

|f(x)|
g(x)

<∞
)

(f(x) is a big O of g(x))

f(x) =o(g(x)) stands for lim
x→+∞

|f(x)|
g(x)

= 0(f(x) is a small o of g(x))

f(x) ∼g(x) stands fo lim
x→+∞

|f(x)|
g(x)

= 1(f equivalent to g or V (+∞))

These notations are also valid in a neighbourhood V (x0), avec x0 6= +∞.



Introduction

The concept of uniform distribution modulo 1 was introduced by Hermann Weyl[7] in 1916.
A real sequence (xn)n∈N is said to be uniformly distributed modulo 1 if, for any subinterval I
of [0, 1), the proportion of its terms in I tends to the length of I as the sequence lengthens.
Weyl’s criterion states that a sequence is uniformly distributed modulo 1 if and only if the sum∑N

n=1 e
2πihxn is negligible compared to N for any h non-zero

Weyl demonstrated that arithmetic progressions are uniformly distributed modulo 1 if and
only if their common difference is irrational. For geometric progressions, it has been shown that
(λrn) is uniformly distributed modulo 1 We also know (through theresult by J. F. Koksma[3])
that for almost all λ > 0 and almost all r > 1, except in sets of Lebesgue measure zero called
"Weyl’s exceptional sets" and "Koksma’s exceptional sets."

No explicit number r > 1 is known for which (rn) is uniformly distributed modulo 1 , although
examples of r > 1 that are not uniformly distributed are known and are specific algebraic
numbers, such as Pisot-Vijayaraghavan (P.V.) numbers and Salem numbers.1 were appeared in
the article [1] by D. W. Boyd found geometric progressions with a transcendental ratio that
are not uniformly distributed modulo 1 . It is well established that there exist transcendental
real numbers r > 1 for which (rn) is not uniformly distributed modulo 1 because Koksma’s
exceptional sets are uncountable.

"Our memory is organized as follows:
The first chapter: We provided definitions and reminders of the theories used in this mem-

ory, such as rational series, integer series, convergence radius, analytic functions, holomorphic
functions, poles and residues, algebraic numbers and algebraic integers.

The second chapter: We define the concept of uniform distribution mod 1. We introduced
uniformly distributed, Weyl’s criterion, Lebesgue measure in R, Koksma’s theorem, and equidis-
tribution of geometric sequences and we gave explanatory explanations for them, and gave a
remarkable example of a sequence uniformly distributed mod 1

The the last chapter: We gave some properties of exceptional sets of real numbers as the
set of algebraic integers, then we characterized the subset S of algebraic integers and we gave
the necessary and sufficient condition to belong to the set S, then we introduced the theorem
(Weyl, 1916) and proved that the sets of Weyl are uncountable.

6



Chapter 1

Preliminaries

In this chapter, we give some reminders of definitions and necessary results relating to general
algebra, formal series complex analysis and algebraic numbers which will be used throughout
this memory.

1.1 Definitions

The structures of group, ring, field and vector space are covered first and are assumed to be
familiar to the reader. A[X] is the ring of polynomials.

+∞∑
k=0

akX
k

with coefficients ak in the ring A, whose addition and multiplication are defined below:
n∑
k=0

akX
k +

n∑
k=0

bkX
k =

n∑
k=0

(ak + bk)X
k,

(

n∑
k=0

akX
k)(

s∑
k=0

bkX
k) =

s+n∑
k=0

ckX
k, with ck =

s+n∑
p+q=k

apbq.

Let A[[X]] be the ring of formal series ∑
k>0

anX
n

into the indeterminate X with coefficients an in the ring A, whose addition and multiplication
are those of the ring A [X], generalized.

Remark 1. The ring A[X] of polynomials is a sub-ring of the ring A[[X]] of formal series; if A
is a field, the ring A[[X]] has the external law:

λ
∑
k>0

akX
k =

∑
k>0

(λak)X
k where λ ∈ A,

is a vector space on A.

Proposition 1.1. A formal series ∑
k>0

akX
k

of the ring A[[X]] is invertible in A[[X]] if and only if the coefficient a0 of this series is invertible
in the ring A.
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Proof. The series
∑
k>0

akX
k is invertible if and only if there exists a series

∑
k>0

bkX
k such

that 

a0b0 = 1

a0b1 + a1b0 = 0

a0b2 + a1b1 + a2b0 = 0

................................ = 0

a0bn + · · · + anb0 = 0.

This system implies that a0 is invertible.
On the other hand, if a0 is invertible, we can compute b0(b0 = a−10 ), then b1 = (−a1a−10 )a−10 .
and all bn by the following recurrence relation:{

b0 = a−10

bn = −a−10

∑n−1
p=0 an−pbp, n ≥ 1.

�

1.1.1 Field of rational fractions

Definition 1.1. On note

K(X) = {P (X)/Q(X) where P and Q are in A[X], Q 6= 0}

the field of fractions of the ring A[X] where A is an integral ring.

Rational series

Definition 1.2. Let K be a field and let S(X) be a formal series of the ring K[[X]].
The series S is said to be rational if there exist two polynomials P and Q of the ring K[X] with
Q(0) 6= 0 such that:

S = P/Q

1.1.2 Rationality of formal series

Criterion 1.1. A formal series
S(X) =

∑
n≥0

anX
n

of the ring K[[X]] is rational if and only if there exist two integers s, n0 and (s + 1) elements
q0, q1, . . . , qs with q0 6= 0, of the field K such that:

q0an + q1an−1 + . . .+ qsan−s = 0,∀n ≥ n0.

Proof. If F is a rational series, we can write

F (X) =
∑
n≥0

anX
n =

P (X)

Q(X)



with

Q(X) =
s∑

n=0

qnX
n, (P,Q) ∈ K[X]2 and deg(P ) = r.

The two formal series are equal
QF = P

and since

Q(X)F (X) =
s∑

n=0

qnX
n ×

∑
n≥0

anX
n

=
∑
n≥0

cnX
n with cn =

n∑
i=0

an−iqi.

Lets take n0 = sup(r + 1, s) since deg(P ) = r then cn = 0 for n ≥ n0, so we get

q0an + q1an−1 + . . .+ qsan−s = 0,∀n ≥ n0.

Conversely

Q(X) =
s∑

n=0

qnX
n,

the relation given in the criterion, shows that QF is of degree ≤ n0−1, so F is a rational series.�

Lemma 1. (Fatou) If S is a rational formal series of the ring ZZ[[X]], then there exist two
coprime polynomials P and Q of the ring ZZ[X], such that :

S = P/Q

with Q(0) = 1.

Proof. Let be the following non-zero coprime polynomials,

P (X) =
s∑

n=0

pnX
n and Q(X) =

k∑
n=0

qnX
n in ZZ[X],

and the fraction
F = P/Q.

If F (X) ∈ ZZ[[X]] then Q(X) is invertible in ZZ[[X]], by Proposition 1.1, q0 is invertible in ZZ we
deduce that q0 ∈ {−1, 1} and since

Q(X) = q0 + q1X + ..+ qkX
k

then Q(0) = 1 or Q(0) = −1.
In the case where Q(0) = −1, we take

F = −P/−Q

The lemma is proved. �

1.2 Integer series

Definition 1.3. Any series of the form ∑
n≥0

anz
n

where an are scalars in any field and z a variable complex is called an integer series.



radius of convergence

Definition 1.4. The radius of convergence of an integer series∑
n≥0

anz
n

is the number

ρ = sup

r ∈ R+;
∑
n≥0
|an| rn < +∞

 ∈ R+;

and convergence disk or convergence domain of the series is the ball D(0; ρ).

Theorem 1.1. The radius of convergence ρ of an integer series∑
n≥0

anz
n

is given by the formula
1

ρ
= lim sup

n→+∞
|an|

1
n

Remark 2. Let
∑

n≥0 anz
n and

∑
n≥0 bnz

n be two integer series whose radii of convergence R
and R′ respectively. Let R′′ denote the radius of convergence of the sum of integer series.∑

n≥0
(an + bn) zn

then R′′ ≥ min (R,R′).

1.2.1 Analytic functions

Definition 1.5. Let Ω be an open of C and f : Ω→ C be a function. Let t ∈ Ω. We say that f
is analytic in t if there exists a number r > 0 such that the disk D(t; r) is contained in Ω and an
integer series ∑

n≥0
anω

n

of radius of convergence ρ ≥ r such that, for z ∈ D(t; r), we have

f(z) =
∑
n≥0

an(z − t)n.

We say that f is analytic on Ω if it is analytic at any point on Ω.

Proposition 1.2. : [2] Let f(z) =
∑
n≥0

anz
n be the integer series whose radius of convergence

ρ 6= 0. Let t be a point inside the disk of convergence. Then the integer series∑
n≥0

1

n!
f (n)(t)ωn

has a radius of convergence at least equal to ρ− |t| and we have:

f(z) =
∑
n≥0

1

n!
f (n)(t)(z − t)n

for all z such that |z − t| < ρ− |t|.



Proof. Let r0 = |t|, αn = |an|. Calculate the p-th derivative of f

f (p)(t) =
∑
q≥0

(p+ q)!

q!
ap+qt

q

so that ∣∣∣f (p)(t)∣∣∣ ≤∑
q≥0

(p+ q)!

q!
αp+qr

q
0.

For r0 ≤ r < ρ, we have∑
p≥0

1

p!

∣∣∣f (p)(t)∣∣∣ (r − r0)p ≤∑
p,q

(p+ q)!

q!p!
αp+qr

q
0 (r − r0)p

the terms of the series are positive, so we can see that

∑
p,q

(p+ q)!

q!p!
αp+qr

q
0 (r − r0)p =

∑
n≥0

αn

 n∑
p=0

n!

p!(n− p)!
rn−p0 (r − r0)p

 ,

as
n∑
p=0

n!

p!(n− p)!
rn−p0 (r − r0)p = (r − r0 + r0)

n

then ∑
p≥0

1

p!

∣∣∣f (p)(t)∣∣∣ (r − r0)p ≤ n∑
p=0

αnp
n < +∞.

So the radius of convergence of the series∑
n≥0

1

n!
f (n)(t)ωn

is greater than or equal to r− r0, since we can choose r arbitrarily close to ρ, then the radius of
convergence is greater than or equal to ρ− r0.

Let z be such that |z − t| ≤ ρ− r0, the series∑
p,q

(p+ q)!

q!p!
ap+qt

q(z − t)p

converges absolutely. Fubini’s inversion theorem states that its sum can be calculated by grouping
terms arbitrarily. As before

∑
p,q

(p+ q)!

q!p!
ap+qt

q(z − t)p =
∑
n≥0

an

 n∑
p=0

n!

p!(n− p)!
tn−p(z − t)p


=
∑
n≥0

anz
n = f(z). �

Proposition 1.3. The sum S(z) of a convergent integer series∑
n≥0

anz
n,

of radius of convergence ρ > 0 is an analytic function in the disk |z| < ρ.

Proof. the series S(z) is integer, so according to proposition 1.2, it is Taylor-developable at
any point inside the disk of convergence and therefore analytic. �



1.2.2 Holomorphic functions

Definition 1.6. Ω be an open of C, a ∈ Ω. A function f : Ω → C is said to be holomorphic in
a if the limit

lim
h→0

f(a+ h)− f(a)

h

exists in C; it is said to be holomorphic in Ω if it is holomorphic at any point in Ω.
The set of holomorphic functions on an open Ω of C is denoted by H(Ω).

Remark 3. Any analytic function on an open set Ω of C is holomorphic.

1.2.3 Poles and residues

Definition 1.7. Let Ω be an open of C and z0 ∈ Ω. If the function f is holomorphic on Ω\ {z0},
it has a Laurent expansion in z0;

f(z) =
∑
n∈Z

an (z − z0)n

and the coefficient a−1 of (z − z0)−1 in this expansion is called the residual of f at z0. Further-
more, if z0 is a pole of order 1 then:

Re s (f.z0) = lim
z→z0

(z − z0) f(z).

Definition 1.8. The coefficient a−1 of the Laurent series expansion is called the residue of the
function at the pole z = z0. It is given by

a−1 ≡ Res. = lim
z→z0

1

(k − 1)!

[
dk−1

dzk−1

(
(z − z0)kf(z)

)]
(if z0 is a pole of order k)

Definition 1.9. Let Ω be an open of C, a ∈ Ω and f : Ω\{a} → C a holomorphic function. If
there exists a function g : Ω→ C and n ∈ N∗ such that:

g(a) 6= 0 et f(z) =
g(z)

(z − a)n
, ∀z ∈ Ω\{a}

then a is a pole of order n of he function f .

Definition 1.10. Let Ω be an open of C. A function f is said to be meromorphic in Ω if there
exists a discrete part z of Ω such that f ∈ H(Ω\z) and any point of z is a pole of f .
The set of meromorphic functions on Ω is denoted by M(Ω) .

Remark 4. Any meromorphic function f is the quotient of two holomorphic functions h and g
on Ω.

f =
g

h

such that the set of points z is the set of zero’s of h.

1.3 Algebraic numbers and algebraic integers

1.3.1 Algebraic numbers

Definition 1.11. The number α ∈ C is said to be algebraic if it satisfies a polynomial equation

xn + a1x
n−1 + . . .+ an

with rational coefficients ai ∈ Q. We denote the set of algebraic numbers by Q.



Examples:

1. α = 1
2

√
2 is algebraic, since it satisfies the equation x2 − 1

2 = 0.

2. α =
√
3
2 + 1 is algebraic, since it satisfies the equation (x− 1)3 = 2, i.e.,

x3 − 3x2 + 3x− 3 = 0.

Lemma 2. The number α ∈ C is algebraic if and only if the vector space over Q

V = 〈1, α, α2, . . .〉

is finite-dimensional.

Proof. Suppose dimQV = d. Then the d + 1 elements 1, α, . . . , αd are linearly dependent
over Q; i.e., α satisfies an equation of degree ≤ d.
Conversely, if

αn + a1α
n−1 + . . .+ an = 0

then αn = −a1αn−1 − . . .− an ∈ 〈1, α, . . . , αn−1〉.
Now αn+1 = −a1αn − . . .− anα ∈ 〈1, α, . . . , αn−1〉; and so successively

αn+2, αn+3, . . . ∈ 〈1, α, . . . , αn−1〉.

Thus V = 〈1, α, . . . , αn−1〉 is finitely-generated.

1.3.2 Algebraic integers

Definition 1.12. The number α ∈ C is said to be an algebraic integer if it satisfies a polynomial
equation

xn + a1x
n−1 + . . .+ an

with integer coefficients ai ∈ Z. We denote the set of algebraic integers by Z.

Remark. In algebraic number theory, an algebraic integer is often just called an integer,
while the ordinary integers (the elements of Z) are called rational integers.

Examples:
1. We have α = 3

√
2 + 1 ∈ Z, since α satisfies

(x− 1)2 = 18

i.e.,
x2 − 2x− 17 = 0.

2. Again, α =
√

2 +
√

3 ∈ Z, since α satisfies

(x−
√

3)2 = (x− 2
√

3 + 3 = 2

i.e.,
x2 − 2

√
3x+ 1 = 0.

Hence
(x2 + 1)2 = 12x2

i.e.,
x4 − 10x2 + 1 = 0.



Chapter 2

The modulo 1 distribution

The (mod1) distribution of a (ϕn)n∈N sequence of real numbers is the (ψn)n∈N obtained by
reducing (mod1) each number ϕn to a number ψn belonging to a fixed interval of length 1;
practically we consider one of the two intervals [0, 1] or

[
−1

2 ,
1
2

]
.

Historically, the problem of the distribution of a sequence was first raised by Lagrange, in
connection with the calculation of the motion of the great planets.
More precisely, this calculation involved the distribution of the sequence (nα)n∈N, α ∈ R.
In 1916, H. Weyl formalized the notion of uniformly distributed (mod1) of sequences.

Definition 2.1. A sequence (un)n∈N with values in [0, 1] is said to be equidistributed if, for any
pair of real numbers a < b of [0, 1], the sequence of integers of general term

ϕ(n) = Card {k ∈ N, k < n, a ≤ uk ≤ b}

is asymptotically equivalent to n(b− a), i.e., ϕ(n) will merge with n(b− a), at infinity.
A real sequence (un)n∈N is said to be equidistributed (mod1) if the sequence of fractional parts
{un}n∈N of the elements of (un)n∈N is equidistributed

2.0.3 Weyl’s criterion

The notion of equirÃľpartition is closely linked to the Riemann integral. The following theorem
is useful for proving Weyl’s criterion.

Theorem 2.1. A sequence (un)n∈N with values in [0, 1] is uniformly distributed if and only if
for any Riemann-integrable function f , we have:

lim
n−→+∞

1

n

n−1∑
k=0

f (uk) =

∫ 1

0
f(t)dt

Proof. Let a < b be two real numbers in the interval [0, 1] and let χ[a,b] be the indicator
function for the interval [a, b], i.e. the function{

x = 1 if x ∈ [a, b]
x = 0 if not

∫ 1

0
χ[a,b](t)dt =

∫ b

a
dt = b− a

or

14



n−1∑
k=0

χ[a;b] (uk) = Card {k ∈ N, k < n, a ≤ uk ≤ b}

by definition of the function χ[a,b]. Therefore (un)n∈N and uniformly distributed if and only if,
for all real a < b

lim
n−→+∞

1

n

n−1∑
k=0

χ[a,b] (uk) =

∫ 1

0
χ[a,b](t)dt

If the sequence (un)n∈N is equirrect, we have the property announced for any function of type
χ[a,b], and we want this for any f Riemann-integrable function.

Since any staircase function can be written as a linear combination of segment-indicator
functions, the property is still true for any staircase function. Finally, any Riemann-integrable
function is the uniform limit of a sequence of staircase functions (see [6]). In other words, if f is
a Riemann-integrable function, then for any ε > 0, we can find a staircase function ϕε such that:

∀x ∈ [0, 1] we have |f(x)− ϕε(x)| < ε

Let f be such a function, for ε > 0 and ϕε in steps verifying the approximation property of f ,
we have for all n ≥ 1

∣∣∣ 1n∑n−1
k=0 f (uk)− 1

n

∑n−1
k=0 ϕε (uk)

∣∣∣ < 1
n

∑n−1
k=0 ε = ε

and ∣∣∣∣∫ 1

0
f(t)dt−

∫ 1

0
ϕε(t)dt

∣∣∣∣ < ∫ 1

0
εdt = ε

as we already have

lim
n−→+∞

1

n

n−1∑
k=0

ϕε (uk) =

∫ 1

0
ϕε(t)dt

we deduce for n ≥ n0 ∣∣∣∣∣ 1n
n−1∑
k=0

ϕε (uk)−
∫ 1

0
ϕε(t)dt

∣∣∣∣∣ < ε

So for n ≥ n0 we have:∣∣∣∣∣ 1n
n−1∑
k=0

f (uk)−
∫ 1

0
f(t)dt

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n−1∑
k=0

f (uk)−
1

n

n−1∑
k=0

ϕε (uk)

∣∣∣∣∣+

∣∣∣∣∣ 1n
n−1∑
k=0

ϕε (uk)−
∫ 1

0
ϕε(t)dt

∣∣∣∣∣
+

∣∣∣∣∫ 1

0
ϕε(t)dt−

∫ 1

0
f(t)dt

∣∣∣∣ < 3ε.

Since this is true for any real ε > 0, we deduce

lim
n−→+∞

1

n

n−1∑
k=0

f (uk) =

∫ 1

0
f(t)dt.

Conversely, if the sequence (un)n∈N verifies, for any f Riemann-integrable function.

lim
n−→+∞

1

n

n−1∑
k=0

f (uk) =

∫ 1

0
f(t)dt

15



then this is true in particular for interval indicator functions (which are Riemann-integrable),
and so the sequence is equi-distributed. �

Corollary 2.1. A sequence (un)n∈N is equidistbutrd (mod 1) if and only if, for any Riemann
integrable and 1-periodic function f, we have

lim
n−→+∞

1

n

n−1∑
k=0

f (uk) =

∫ 1

0
f(t)dt

Proof In fact, the sequence (un)n∈N is uniformly distributed (mod1) if and only if the se-
quence of the general term {un} is uniformly distributed in [0, 1], then for any f Riemann
integrable function we have

lim
n→+∞

1

n

n−1∑
k=0

f ({uk}) =

∫ 1

0
f(t)dt.

If f is 1-periodic, then f ({un}) = f (un) for all n, and so we have the result announced.
Conversely, if for any Riemann integrable and 1-periodic function f we have

lim
n−→+∞

1

n

n−1∑
k=0

f ({uk}) =

∫ 1

0
f(t)dt

then by Theorem 2.1 the sequence ({un})n∈N is uniformly distributed , and therefore (un)n∈N is
uniformly distributed (mod1)�

Criterion 2.1. (Weyl) A sequence (un)n∈N is uniformly distributed (mod 1) if and only if for
any non-zero integer m,

lim
n−→+∞

1

n

n−1∑
k=0

exp (2iπmuk) = 0

Proof. If the sequence (un)n∈N is evenly spaced (mod1), then according to the previous
corollary, for any f Riemann-integrable and 1-periodic function, we have:

lim
n−→+∞

1

n

n−1∑
k=0

f (uk) =

∫ 1

0
f(t)dt

this is the case in particular for the function

x→ exp(2iπmx) where m ∈ Z∗.

Reciprocally, if the sequence (un)n∈N verifies, for any integer m ∈ Z∗

lim
n−→+∞

1

n

n−1∑
k=0

exp (2iπmuk) = 0

and as (x→ exp(2iπmx) where m ∈ Z∗) is 1 -periodic we deduce that:

lim
n−→+∞

1

n

n−1∑
k=0

exp (2iπm {uk}) = 0

If f is a continuous and 1 -periodic function, then according to StoneWeierstrass’ theorem
(see[12]) there exists a sequence (pN )N≥0 of trigonometric polynomials that converges uniformly
to f .

16



(A trigonometric polynomial P is defined by P (x) =
∑k=n

k=−n λk exp(ikx) where (λk)
−n≤k≤n

∈ lC,

x ∈ IR). Then for ε > 0, we can find a trigonometric polynomial pj,ε(x) =
∑Nj

m=−Nj λm exp(2iπmx)
such that:

∀x ∈ [0, 1] we have |f(x)− pj,ε(x)| < ε

For all n ≥ 1, we have ∣∣∣∣∣ 1n
n−1∑
k=0

f ({uk})−
1

n

n−1∑
k=0

pj,ε ({uk})

∣∣∣∣∣ < 1

n

n−1∑
k=0

ε = ε

and ∣∣∣∣∫ 1

0
f(t)dt−

∫ 1

0
pj,ε(t)dt

∣∣∣∣ < ∫ 1

0
εdt = ε

as ∫ 1

0
pj,ε(t)dt = λ0

then ∣∣∣∣∫ 1

0
f(t)dt− λ0

∣∣∣∣ < ε

and according to (∗) above

lim
n−→+∞

1

n

n−1∑
k=0

Nj∑
m=−Nj

λm exp (2iπm {uk}) = λ0

then there exists n0 ∈ N such that for n ≥ n0∣∣∣∣∣∣ 1n
n−1∑
k=0

Nj∑
m=−Nj

λm exp (2iπm {uk})− λ0

∣∣∣∣∣∣ < ε

i.e. for n ≥ n0 ∣∣∣∣∣ 1

n

n−1∑
k=0

f( {uk})−
∫ 1

0
f(t)dt | +

∣∣∣∣∫ 1

0
f(t)dt− λ0

∣∣∣∣ < 3ε.

Since this is true for every real ε > 0, we derive

lim
n−→+∞

1

n

n−1∑
k=0

f ({uk}) =

∫ 1

0
f(t)dt.

Then the sequence ({un})n∈N is uniformly distributed , so the sequence (un)n∈N is uniformly
distributed (mod1).�

Corollary 2.2. If α is an irrational number, then the sequence with the general term na is
uniformly distributed (mod1).

Proof. Let α be an irrational number.
We’ll show that the sequence (nα)n∈N satisfies Weyl’s criterion.
Notice that for two integers m and k we have

exp(2iπmkα) = (exp(2iπmα))k

17



and since
mα /∈ Z and exp(2iπmα) 6= 1,

we get
n−1∑
k=0

exp(2iπmkα) =
n−1∑
k=0

(exp(2iπmα))k

=
1− (exp(2iπmα))n

1− exp(2iπmα)

thus ∣∣∣∣1− (exp(2iπmα))n

1− exp(2iπmα)

∣∣∣∣ ≤ 1 + |(exp(2iπmα))n|
|1− exp(2iπmα)|

≤ 2

|1− exp(2iπmα)|
We derive

lim
n−→+∞

1

n

n−1∑
k=0

exp(2iπmkα) = 0.

So, according to Weyl’s criterion, the sequence (nα)n∈N is equirrepar (mod1). �

2.0.4 Measure of lebesgue in R

Definition 2.2. The exterior measure of any interval I with extrema a < b is the positive real
number b− a, denoted by m∗(I).

The exterior measure of an interval I is the same whether the interval is open, closed, or
semi-open; in the following we consider open intervals. We extend the outer measure to all open
R in the following way:

Definition 2.3. Every open of R is a disjoint countable union of open intervals ]an, bn[ for
n ∈ N. This is unique. The exterior measure of such an open is then

+∞∑
n=0

(bn − an) .

Definition 2.4. Let A ⊂ R be a bounded part. The outer measure of A is

m∗(A) = inf {m∗(ω), ω open and A ⊂ Ω}

If A ⊂ [a, b], the inner measure of A is

m∗(A) = (b− a)−m∗([a, b]\A).

If A is unbounded, then the outer and inner measures of A are

m∗(A) = limn→ +∞m∗(A ∩ [−n, n]) and m ∗ (A) = limn→ +∞m ∗ (A ∩ [−n, n])

We say that A is measurable if and only if if m∗(A) = m∗(A) and we note m(A) the common
value. m(A) is the Lebesgue measure of A.
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2.0.5 Koksma’s Theorem

Theorem 2.2. Let (fn)n∈N be a sequence of real functions continuously derivable on the interval
ba, bc. Let (m,n)be ∈ N2,m 6= n.

Fm,n(t) = fm(t)− fn(t).

Assume that the following conditions are satisfied for each pair (m,n).
(1) The derivative function F ′m,n is monotone and non-zero for all t ∈ [a, b].
(2) There exists an increasing sequence (Nv)v∈N of integers satisfying

lim
v−→+∞

Nv+1

Nv
= 1

so that if for N ≥ 2 we have

AN =
1

N2

N∑
n=2

n−1∑
m=1

max

{
1

F ′m,n(a)
,

1

F ′m,n(b)

}
,

the series
∑

v∈NANv is convergent. Then the series (fn(t))n∈N is evenly spaced (mod1) for
almost all t ∈ [a, b] (i.e., the set where the series is not evenly spaced (mod1) is of measure zero
in the Lebesgue sense). To prove this theorem, we need the following two lemmas:

Lemma 3. Let (Nv)v∈N be a strictly increasing sequence of natural numbers with

lim
v−→+∞

Nv+1

Nv
= 1;

then we can extract a subset (Nvk)k∈N with

lim
k→+∞

Nvk+1

Nvk

= 1

so that the series
∑

k∈N
1

Nvk
is convergent.

Proof For all m ∈ N∗, let Im be the interval
[
m2, (m+ 1)2[ ; We define the sequence

(Nvk)k∈N∗ as follows: If the interval Im contains at least two terms of the sequence (Nv)v∈N,
let Nvk be the smaller and Nvk+1

the larger. If it contains a single term, let Nvk be that term.
Now two terms Nvk and Nvk+1

are either consecutive in the sequence (Nv)v∈N, or they satisfy

1 <
Nvk+1

Nvk

<
(m+ 1)2

m2

then
lim

k−→+∞

Nvk+1

Nvk

= 1.

Let be the interval

Bt =
t−1⋃
m=1

Im =
[
1, t2[

we have that the interval Bt contains at most 2(t− 1) terms of the sequence (Nvk)k∈N∗ so for all
t ≥ 2 we have

Nv2t−1 ≥ t2 and Nv2t ≥ t2

and like ∑
k∈N∗

1

Nvk

=
∑
t∈N∗

(
1

Nv2t−1

+
1

Nv2t

)
∈ ≤

∑
t∈N∗

2

t2

The convergence of the series
∑

t∈N∗
2
t2

implies that the series
∑

k∈N∗
1

Nvk
is convergent. �
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Lemma 4. Let (un)n∈N be a sequence of positive real numbers such that the series
∑

n≥0 un is
convergent. Then there exists an increasing series (γn)n∈N with limn→+∞ γn = +∞, so that the
series

∑
n≥1 unγn is convergent.

Proof. Let S =
∑

n≥0 un and for any integer n,Rn =
∑

k≥n+1 uk. The sequence defined by

γn =

√
S

√
Rn−1 +

√
Rn

, n ≥ 1

and an ascending sequence with limn→+∞ γn = +∞. We have

n∑
k=1

ukγk =
n∑
k=1

uk

√
S√

Rk−1 +
√
Rk

=
√
S

n∑
k=1

uk

√
Rk−1 −

√
Rk

Rk−1 −Rk

=
√
S

n∑
k=1

(√
Rk−1 −

√
Rk

)
=
√
S
(√

S −
√
Rn

)
.

It follows that the series
∑

n≥1 unγn is convergent. �

Proof (of Theorem 2.2) Assume that the conditions of Theorem 2.2 are satisfied. Let

σh(N, t) =
1

N

N∑
n=1

exp (2iπhfn(t)) where h ∈ Z∗

We now construct a zero-measure part E of the interval [a, b] in the Lebesgue sense, such that
for any t ∈ [a, b]\E,

lim
N→+∞

σh(N, t) = 0,∀h ∈ Z∗

We have:

|σh(N, t)|2 =

(
1

N

N∑
n=1

exp (2iπhfn(t))

)(
1

N

N∑
n=1

exp (−2iπhfn(t))

)

=
1

N
+

1

N2

N∑
n=2

n−1∑
m=1

[exp (2iπh (fm(t)− fn(t))) + exp (2iπh (fn(t)− fm(t)))]

=
1

N
+

2

N2

N∑
n=2

n−1∑
m=1

cos (2πhFm,n(t))

then ∫ b

a
|σh(N, t)|2 dt =

b− a
N

+
2

N2

N∑
n=2

n−1∑
m=1

∫ b

a
cos (2πhFm,n(t)) dt

We set

Im,n(h) =

∫ b

a
cos (2πhFm,n(t)) dt

Knowing that the sign of the derivative F ′m,n remains constant on the interval [a, b], then the
function Fm,n has an inverse function Φm,n, we have

Im,n(h) =

∫ β

α
Φ′m,n(u) cos(2πhu)du with α = Fm,n(a), β = Fm,n(b)
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Since the function Φ′m,n is monotone, the second formula of the mean theorem gives

|Im,n(h)| ≤ 1

π|h|
max

(∣∣Φ′m,n(α)
∣∣ , ∣∣Φ′m,n(β)

∣∣)
=

1

π|h|
max

(
1∣∣F ′m,n(a)

∣∣ , 1∣∣F ′m,n(b)
∣∣
)

and then ∫ b

a
|σh(N, t)|2 dt ≤ b− a

N
+

2

N2

N∑
n=2

n−1∑
m=1

1

π|h|
max

(
1∣∣F ′m,n(a)

∣∣ , 1∣∣F ′m,n(b)
∣∣
)

≤ b− a
N

+
1

N2

N∑
n=2

n−1∑
m=1

max

(
1∣∣F ′m,n(a)

∣∣ , 1∣∣F ′m,n(b)
∣∣
)
.

So ∫ b

a
|σh(N, t)|2 dt ≤ b− a

N
+AN

Thanks to condition (2) and Lemma 3, we can successively extract a sequence of (Nv)v∈N, again
denoted (Nv)v∈N, such that the series∑

v∈N

(
b− a
Nv

+ANv

)
converges.
According to Lemma 4, there exists an increasing (γv)v∈N such that the series∑

v∈N

(
b− a
Nv

+ANv

)
γv

converges.

We now define the set E.

To do this, let’s put: ∀v ∈ N,∀h ∈ Z∗

Ev(h) = {t ∈ [a, b]/ |σh(Nv, t)| >
1
√
γv
}

The Lebesgue measure of Ev(h) satisfies

m (Ev(h)) ≤ γv
∫ b

a
|σh (Nv, t)|2 dt ≤ γv

(
b− a
Nv

+ANv

)
Let’s say: ∀h ∈ Z∗

Fu(h) = ∪+∞v=u+1Ev(h).

It is a countable collection of measurable sets, so it is measurable and the sequence (Fu(h))u∈N
is a decreasing sequence of sets.

Let m (Fu(h) be the measure of Fu(h), then we have
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m

(
Fu(h) ≤

+∞∑
v=u+1

m (Ev(h)) ≤
+∞∑

v=u+1

γv

(
b− a
Nv

+ANv

)
and So

lim
u−→+∞

m (Fu(h) = 0

The set ∩+∞u=1Fu(h) has Lebesgue measure zero, and the same is true for the set E defined by

E = ∪h∈Z∗
[
∩+∞u=1Fu(h)

]
because E is a countable union of sets of measure zero.

If t does not belong to E, then for any h ∈ Z∗, t does not belong to ∩+∞u=1Fu(h) and there
exists some µ1(h) such that for µ ≥ µ1(h) we have

|σh (Nµ, t)| ≤
1
√
γµ

it follows that

lim
u−→+∞

σh (Nµ, t) = 0.

For any integer N ≥ N0, there exists µ such that

Nµ ≤ N < Nµ+1

then we have

|σh(N, t)| =

∣∣∣∣∣ 1

N

N∑
n=1

exp(2iπhfn(t))

∣∣∣∣∣
≤ 1

Nµ

∣∣∣∣∣
N∑
n=1

exp (2iπhfn(t))

∣∣∣∣∣
≤ 1

Nµ

∣∣∣∣∣∣
Nµ+1∑
n=1

exp(2iπhfn(t))

∣∣∣∣∣∣
≤ 1

Nµ

∣∣∣∣∣∣
Nµ∑
n=1

exp(2iπhfn(t))

∣∣∣∣∣∣+
1

Nµ

Nµ+1∑
n=Nµ+1

|exp(2iπhfn(t))|

≤ σh (Nµ, t) +
Nµ+1 −Nµ

Nµ

we get whatever h ∈ Z∗

lim
N→+∞

σh(N, t) = 0

The sequence (fn(t))n∈N is therefore evenly spaced (mod1) .�

Remark 5. In Koksma’s theorem, we replace condition (2) with the following stronger condition
(3):

(3) There exists a real K > 0 such that
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∣∣F ′m,n(t)
∣∣ ≥ K,∀t ∈ [a, b]

Let t be in [a, b]. For any integer N > 1, order the sequence (f ′n(t))1≤n≤N in ascending order.
In the new order we have

f ′n(t)− f ′n−1(t) ≥ K where 1 ≤ n ≤ N

and therefore ∀t ∈ [a, b]

f ′m(t)− f ′n(t) =
m∑

i=n+1

f ′i(t)− f ′i−1(t) ≥
m∑

i=n+1

K

≥ K(m− n) where 1 ≤ n < m ≤ N
This gives us

m−1∑
n=1

1∣∣F ′m,n(t)
∣∣ ≤ 1

K

m−1∑
n=1

1

m− n

=
1

K

m−1∑
n=1

1

n
≤ 1

K

(
1 +

N∑
n=2

∫ n

n−1

1

t
dt

)

≤ 1

K

(
1 +

∫ N

1

1

t
dt

)
≤ 1

K
(1 + logN)

and then

AN ≤
N(1 + logN)

KN2
=

(1 + logN)

KN
.

We now define the sequence (Nv)v>0 by

Nv = v2

then we have

lim
v→+∞

Nv+1

Nv
= 1

It follows that

ANv ≤
(1 + 2 log v)

Kv2

If we assume for x ≥ 1 that

f(x) =
(1 + 2 log x)

x2

we know that

fprime(x) = −4 log x

x3
< 0

then the series
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∑
v∈N∗

(1 + 2 log v)

Kv2

is of the same kind as the integral ∫ +∞

1

(1 + 2 log x)

Kx2
dx

and since ∫ +∞

1

(1 + 2 log x)

Kx2
dx =

[
−(1 + 2 log x)

Kx

]+∞
1

+

∫ +∞

1

2

Kx2
dx

=
3

K

Therefore
∑

v∈NANv is convergent, so condition (2) is satisfied.

Theorem 2.3. Let λ be a non-zero real number; the sequence (λαn)n∈N is equiregular (mod 1)
for almost all real numbers α > 1.

Proof. Assuming t > 1, fn(t) = λtn (n ∈ N∗), we have

f ′n(t)− f ′m(t) = λ
(
ntn−1 −mtm−1

)
for n 6= m

where ∣∣f ′n(t)− f ′m(t)
∣∣ ≥ |λ| > 0

Applying Koksma’s theorem, we deduce that the sequence (λtn)n∈N is (mod1) equirreparable
for almost all t ∈ [k, k + 1] (k ∈ N∗).

Let Ek ⊂ [k, k + 1] be the set of real numbers α such that: the sequence (λαn)n∈N is not
ordered (mod1), then Ek has Lebesgue measure zero. Let’s posit

E = ∪k∈N∗Ek

Since a countable union of sets of Lebesgue measure zero is of measure zero, the sequence
(λtn)n∈N is equirect (mod1) for almost all real t > 0.�
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Chapter 3

Some properties of exceptional sets

3.1 Characterization of subset S of algebraic integers

We’re going to introduce a special set of numbers, which we’ll call U. To do this, we’ll need the
following theorem:.

Theorem 3.1. [7] Let α be a real > 1. Suppose there exists a real λ ≥ 1, such that

‖λαn‖ ≤ 1

2eα(α+ 1)(1 + log λ)
,∀n ∈ N (3.1)

Then α is an algebraic integer; its conjugates have modulus less than or equal to 1 and λ belongs
to the field Q(α) , generated on Q by α.

Remark 6. We see that the sequence (λαn)n∈N verifying condition (3.1) above is non-equivalent
( mod1) : indeed since

2eα(α+ 1)(1 + log λ) > 8

then
‖λαn‖ < 1

8
,∀n ∈ N

so the sequence of integers of the general term

ϕ(n) = Card

{
k ∈ N, k < n,

1

8
≤ {uk} ≤

7

8

}
,∀n ∈ N

is zero, so ϕ(n)/n −→
n→∞

0 6= 7
8 −

1
8 = 3

4 and the sequence (λαn)n∈N is not equal to (mod1).

To prove this theorem, we need some auxiliary results.

Let’s say:

un = E′ (λαn) , εn = ε (λαn) orun + εn = λαn,∀n ∈ N,

Let’s introduce the linear form Vn defined on Rs+1 by

Vn(x) =
s∑
i=0

un+ixi or s ∈ N∗
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and suppose there exists a = (a0, ,̇as) ∈ Zs+1\(0) and A ∈ N∗ so that

sup
0≤i≤s

|ai| ≤ A.

Lemma 5. if Vn(a) = 0 and

|εi| <
1

(s+ 1)(α+ 1)A
, ∀i ∈ N (3.2)

then Vn+1(a) = 0.

Proof. We have:

|Vn+1(a)− αVn(a)| =

∣∣∣∣∣
s∑
i=0

ai (un+1+i − αun+i)

∣∣∣∣∣
=

∣∣∣∣∣
s∑
i=0

ai
((
λαn+1+i − εn+1+i

)
− α

(
λαn+i − εn+i

))∣∣∣∣∣
or

|Vn+1(a)− αVn(a)| ≤
s∑
i=0

|ai (εn+1+i − αεn+i)| .

Or
|ai (εn+1+i − αεn+i)| ≤ A (|εn+1+i|+ α |εn+i|)

<
(1 + α)A

(s+ 1)(α+ 1)A
=

1

(s+ 1)

so

|Vn+1(a)− αVn(a)| <
s∑
i=0

1

(s+ 1)
= 1.

Since by hypothesis, Vn(a) = 0, we obtain |Vn+1(a)| < 1 and since Vn+1(a) is an integer, then
Vn+1(a) = 0. �

Lemma 6. if

|εi| <
1

(s+ 1)(α+ 1)A
,∀i ∈ IN

and

A ≥ 2λ
1
Sα− 1 (3.3)

then there exists a ∈ Zs+1\(0) such that V0(a) = 0.

Proof. Let V0 be the linear form defined by

V0(x) =
s∑
i=0

uixi

and let be the set
D(A,s) =

{
x = (x0, . . . , xs) ∈ Zs+1, 0 ≤ xi ≤ A

}
.

We have:
Card

(
D(A,s)

)
= (A + 1)s+1
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and

0 ≤ V0(x) =
s∑
i=0

(
λαi − εi

)
xi

≤
s∑
i=0

(
λαi + |εi|

)
xi ≤

s∑
i=0

(λαs + |εi|)A.

Then, according to (3.2)

0 ≤ V0(x) ≤ (s+ 1)A

(
λαs +

1

(s+ 1)(α+ 1)A

)

= (s+ 1)(A + 1)λαs − (s+ 1)λαs +
1

α+ 1
.

We also have

α ≥ 1, s ≥ 1 et λ ≥ 1,

then

1

α+ 1
≤ 1

2
and − (s+ 1)λαs ≤ −2

or

−(s+ 1)λαs +
1

α+ 1
< −1

so
0 ≤ V0(x) < (s+ 1)(A + 1)λαs − 1

and according to (3.3)

(A + 1)s+1 ≥ 2s(A + 1)λαs ≥ (s+ 1)(A + 1)λαs

or
0 ≤ V0(x) < (A + 1)s+1 − 1.

Since the linear form used above is defined on the set D(A,s) to (A+1)s+1 elements and takes its
values from the whole

{
0, . . . , (A + 1)s+1 − 2

}
to (A + 1)s+1 − 1 elements, the drawer principle

ensures that there are two different points b and b0 in
D(A,s) such as V0(b) = V0 (b0). So, for a = b − b0we obtain that a ∈ Zs+1\(0) with

sup0≤i≤s |ai| ≤ A and V0(a) = 0. �

Definitions of numbers S and A [4]

Thanks to condition (3.1), we can determine S and A and, consequently, build a a dans Zs+1\(0)
satisfying the condition

Vn(a) = 0,∀n ∈ N.
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Lets ask

s− 1 ≤ log λ < s and A < 2λ
1
sα ≤ A + 1

and consider the continuous and derivable function on [s− 1; s] :

ϕ(x) = 1− x

s
+ log

1 + x

1 + s
.

We have:

ϕ(s− 1) =
1

s
− log

(
1 +

1

s

)
> 0, ϕ(s) = 0

and

ϕ′(x) = −1

s
+

1

x+ 1
≤ 0 with x ≥ s− 1

so ϕ is strictly decreasing in the interval [s− 1; s], or

ϕ(s− 1) ≥ ϕ(log λ) > ϕ(s) = 0.

so
ϕ(log λ) = 1− log λ

s
+ log

1 + log λ

1 + s
> 0

done

log λ

s
+ log(1 + s) < 1 + log(1 + log λ)

Passing to the exponential, we find

(s+ 1)λ
1
s < e(1 + log λ) (3.4)

Let’s now check that condition (3.1) and the definition of A imply conditions (3.2) and (3.3).
We have:

2λ
1
sα ≤ A + 1 that is to say 2λ

1
sα− 1 ≤ A,or (3.3).

Also

A < 2λ
1
sα, d’oÃź A(s+ 1) < 2λ

1
sα(s+ 1),

or according to (3.4)
A(s+ 1) < 2eα(1 + log λ) (3.5)
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Furthermore, according to (3.1)

2eα(1 + log λ) <
1

(α+ 1) |εn|
, (3.6)

it follows from (3.5) and (3.6) that

|εn| <
1

(s+ 1)(α+ 1)A
,

which is fine (3.2).

Proof.(of theorem 3.1) From the two previous lemmas we can find an a = (ai)0≤i≤s, with
non-zero ai in Z, such that

a0un + a1un+1 + . . .+ asun+s = 0,∀n ∈ N.

Then according to criterion 1.1.1 and lemma 1.1.1 the series∑
n�0

unz
n

is rational, hence the existence of two polynomials B and Q prime to each other, with Q(0) = 1,
with integer coefficients such that

B(z)

Q(z)
=
∑
n�0

unz
n =

∑
n�0

(λαn − εn) zn

=
∑
n�0

λαnzn −
∑
n�0

εnz
n.

We have:

|εn|
1
n ≤

(
1

2

) 1
n

then

lim sup
n−→+∞

|λαn|
1
n = α and lim sup

n−→+∞
|εn|

1
n ≤ 1.

Thus, the series ∑
n�0

λαnzn and
∑
n�0

εnz
n

are convergent on disks D(0.1/α) and D(0.1) respectively, then

B(z)

Q(z)
=

λ

1− αz
−
∑
n�0

εnz
n,∀z ∈ D(0, 1/α).
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The series, ∑
n�0

εnz
n

and being analytic on D(0, 1), the function f such that

f(z) =
B(z)

Q(z)

has the number 1/α as its unique pole (of order 1) on D(0, 1).
Thus the polynomial Q(z) has the unique zero 1/α in the disk D(0, 1), the number α and an
algebraic integer; the conjugates 1/αi of 1/α, being outside D(0, 1) in C, the αi are of modulus
≤ 1.
Moreover, the residue of f in 1

α is

Res

(
f,

1

α

)
= lim

z−→ 1
α

(
z − 1

α

) λ

1− αz
−
∑
n�0

εnz
n

 = −λ
α
, (3.7)

on the other,

Res

(
f,

1

α

)
= lim

z→ 1
α

(
z − 1

α

)
B(z)

Q(z)
= lim

z→ 1
α

B(z)
Q(z)

z− 1
α

=
B
(
1
α

)
Q′
(
1
α

) . (3.8)

From (3.7) and (3.8) we obtain

λ = −α
B
(
1
α

)
Q′
(
1
α

) .
So the number λ is indeed an element of Q(α). �

3.2 Sab set of integer numbers

Definition 3.1. [5] A Pisot number is any real algebraic integer greater than 1 whose conjugates
have modulus strictly less than 1 .
The set of Pisot numbers is denoted S; it is a subset of the set U introduced earlier.

Remark 7. Any relative integer greater than 1 belongs to S.

3.2.1 Of theus numbers

Proposition 3.1. Let θ ∈ S. The sequence (‖θn‖)n∈IN converges to 0 .

Proof. Let P (X) = Xs + cs−1X
s−1 + . . . + c0 be the irreducible polynomial in ZZ[X] such

that P (θ) = 0.

Consider its companion matrix
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C =


0 0 . . . 0 −c0
1 0 . . . 0 −c1
0 1 . 0 −c2
: : . . :
0 0 .. 1 cs−1

 .

It’s a matrix with integer coefficients, and its characteristic polynomial is P .
Since P is split in C[X], we can triangularize C and obtain the following matrix:

D =


θ a1,2 .. a1,s−1 a1,s
0 θ2 .. . a2,s
0 0 . : :
: : . . as−1,s
0 0 .. 0 θs

 .

Or (θj)j∈{2,..,s} are the conjugates of θ and by construction θ and (θj)j∈{2,..,s} are the eigenvalues
of the matrix. We then obtain that:

Tr(C) = Tr(D) and Tr (Cn) = Tr (Dn) .

We deduce that:

Tr (Dn) ∈ Z and Tr (Dn) = θn +
s∑
j=2

θnj .

Note that

d = sup
2≤j≤s

|θj | < 1,

we have

|Tr (Dn)− θn| ≤
s∑
j=2

∣∣θnj ∣∣ ≤ (s− 1)dn.

Now
lim

n→+∞
(s− 1)dn = 0

therefore θn tends to wards an integer, which means by definition of εn that ‖θn‖ will tend
towards 0. �

This Proposition leads us to the following question: could we find a necessary and sufficient
condition for membership of S through a convergence of the same type as in proposition 3.1?

To answer this question, we will first demonstrate a proposition borrowed from complex anal-
ysis.

Proposition 3.2. Let ϕ be a meromorphic function on an open Ω containing D̄(0, 1).
Suppose ϕ has a Taylor series expansion in 0 on the disk D(0, 1)

ϕ(z) =
∑
n≥0

anz
n with lim

n→+∞
an = 0.
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Then ϕ has no pole on the circle C(0, 1).

Proof. From Proposition 1.1.3, the function ϕ is analytic on D(0, 1), so we deduce that the
radius of convergence of the series is R ≥ 1.

1eer case: if R > 1 then ϕ has no pole on the circle C(0, 1).

2eme case: if R = 1 then ϕ has at least one singular point on the circle C(0, 1). (otherwise,
R > 1 and by hypothesis, this is not the case).

We can assume, without loss of generality, that this singularity lies at z = 1. Let ε > 0, there
exists n0 such that for n ≥ n0, |an| < ε. So for 0 < r < 1, we have:

|ϕ(z)| ≤

∣∣∣∣∣
n0−1∑
n=0

anz
n

∣∣∣∣∣+
+∞∑
n=n0

|an| rn ≤M + ε
rn0

1− r
,

with M a constant. We therefore have:

|ϕ(z)|(1− r) ≤M(1− r) + ε

hence

lim
r→1,
|ϕ(r)|(1− r) = 0.

This contradicts the fact that 1 is a pole of ϕ. Indeed, if 1 is a pole of order m ≥ 1 of the function
ϕ, we have on a neighborhood of 1

ϕ(r) =
g(r)

(r − 1)m
where g(1) 6= 0

and the limit gives us that limr→1
g(r)

(1−r)m−1 = 0 then g(1) = 0. This is absurd, so we have R > 1.�

We can now state the following theorem:

Theorem 3.2. An algebraic real number theta > 1 belongs to S if and only if there exists a real
λ 6= 0 such that

lim
n→+∞

‖λθn‖ = 0

Proof. Since θ is algebraic, we can find a polynomial with integer coefficients that cancels
out at θ. Let

∑s
0 qiX

i be this polynomial. Then we have:

s∑
0

qiθ
i = 0 and

s∑
0

qiλθ
n+i = 0, ∀n ∈ N.
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By decomposing λθn+i into the sum of un+i = Eprime
(
λθn+i

)
and εn+i = ε

(
λθn+i

)
, we can

write

s∑
0

qiun+i = −
s∑
0

qiεn+i, ∀n ∈ N.

We have, by hypothesis,

lim
n→+∞

εn = 0.

So, for n ≥ n0 we have: ∣∣∣∣∣
s∑
0

qiun+i

∣∣∣∣∣ < 1

And consequently
s∑
0

qiun+i = 0 where n ≥ n0

then the series ∑
n≥0

unX
n

is rational. As in the proof of theorem 3.1.8, the set is equal B/Q with B and Q polynomials
with integer coefficients. with B and Q polynomials with integer coefficients, prime to each other
with Q(0) = 1. We then have:

B(z)

Q(z)
=
∑
n≥0

unz
n =

λ

1− θz
−
∑
n≥0

εnz
n, ∀z ∈ D(0, 1/θ)

Using the previous property, from the condition

lim
n−→+∞

εn = 0

it follows that the series
∑

n≥0 εnz
n has no pole on D̄(0, 1). Q has a unique zero in D̄(0, 1) and

θ ∈ S, the other part of the demonstration is given by theorem 3.1. �
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3.3 Appendix: Table of Pisot numbers below 1.6

The table below gives the 12 Pisot numbers below 1.6 in ascending order and their minimal
polynomials.

Number of Pisots Polyn Ã′ me minimal
1 1.3247179572447460260 x3 − x− 1

2 1.3802775690976141157 x4 − x3 − 1

3 1.4432687912703731076 x5 − x4 − x3 + x2 − 1

4 1.4655712318767680267 x3 − x2 − 1

5 1.5015948035390873664 x6 − x5 − x4 + x2 − 1

6 1.5341577449142669154 x5 − x3 − x2 − x− 1

7 1.5452156497327552432 x7 − x6 − x5 + x2 − 1

8 1.5617520677202972947 x6 − 2x5 + x4 − x2 + x− 1

9 1.5701473121960543629 x5 − x4 − x2 − 1

10 1.5736789683935169887 x8 − x7 − x6 + x2 − 1

11 1.5900053739013639252 x7 − x5 − x4 − x3 − x2 − x− 1

12 1.5911843056671025063 x9 − x8 − x7 + x2 − 1

3.4 On the exceptional Weyl set

We denote µ the Lebesgue measure on R. Further, given (xn)n∈N a sequence of real numbers, N
a positive integer and E a subset of [0, 1 [ , we set:

A (E;N ; (xn)) := # {n ∈ N | n ≤ N and < xn >∈ E} .

For r > 1, let Er, Dr and Wr denote respectively: the set of the real positive numbers λ
satisfying

‖λrn‖ ≤ 1

r − 1
(∀n ∈ N)

the set of the real positive numbers λ for which the sequence (λrn)n∈N is not dense modulo
1 and the set of the real positive numbers λ for which the sequence (λrn)n∈N is not uniformly
distributed modulo 1.

Theorem 3.3. (Weyl, 1916) : Let x > 1 be a real number. Then for almost any real ξ, the
sequence {xixn} is equidistributed.

Theorem 3.4. [6] For any real number r > 1, the set Er is uncountably infinite.

proof. When r ≤ 3, it is obvious that Er =] 0,+∞[ is indeed uncountably infinite.
Let’s assume that r > 3. To show that the set Er in the theorem is uncountably infinite, we will
construct an injective function σ from N to 0, 1 into Er.
Initially, to any f ∈ {0, 1}N, we associate the sequence of positive integers un(f) defined by:
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u0(f) = 1

un+1(f) = br · un(f)c+ f(n) (∀n ∈ N) (1)

Given f ∈ {0, 1}N fixed, set un = un(f) for all n ∈ N. Equation (1) implies that we have:

run − 1 < un+1 ≤ run + 1 (∀n ∈ N)

Then, using this last double inequality, we can easily verify that the two real sequences (xn)n
and (yn)n defined by : 

xn :=
un
rn
− 1

rn(r − 1)

yn :=
un
rn

+
1

rn(r − 1)

(∀n ∈ N)

are adjacent, more precisely: (xn)n is increasing, (yn)n is decreasing, and xn − yn → 0 as n
tends to infinity. These two sequences thus converge to the same limit λ = λ(f) (depending on
f), which necessarily satisfies:

xn ≤ λ ≤ yn (∀n ∈ N)

This gives:

|λrn − un| ≤
1

r − 1
(∀n ∈ N) (2)

Now since r is assumed to > 3, we have 1
r−1 <

1
2 , and equation (2) shows that for any n ∈ N,

the integer un is the integer closest to the real number λrn. Consequently, we have:

‖λrn‖ = |λrn − un| ≤
1

r − 1

that clearly demonstrates that λ = λ(f) belongs the set Er of the theorem. We have thus
established a application

σ : {0, 1}N → Er

which associates any f ∈ {0, 1}N with the real number λ(f). By equipping the set {0, 1}N
with the usual lexicographic order and the set Er with the induced order from the usual order of
R, we will show in the following that σ is strictly increasing with respect to these orders, which
will imply its injectivity and conclude this demonstration. Let f and g be two arbitrary elements
of {0, 1}N such that f < g in the lexicographic order. Therefore, there exists k ∈ N such that

35



we have f(i) = g(i) for 0 ≤ i ≤ k − 1 and f(k) < g(k). Hence, we certainly have f(k) = 0 and
g(k) = 1. Consequently, a simple recurrence starting from the very definition of the sequences
(un(f))n and (un(g))n shows that we have:

un(f) = un(g) for n ∈ {0, . . . , k} and
uk+1(f)− uk+1(g) = f(k)− g(k) = −1

Hence:

σ(f)− σ(g) =
σ(f)rk+1 − uk+1(f)

rk+1
− σ(g)rk+1 − uk+1(g)

rk+1
− 1

rk+1

≤
∣∣σ(f)rk+1 − uk+1(f)

∣∣
rk+1

+

∣∣σ(g)rk+1 − uk+1(g)
∣∣

rk+1
− 1

rk+1

≤ 2

rk+1(r − 1)
− 1

rk+1
(using (2) With n = k + 1 For f and g)

=
3− r

rk+1(r − 1)
< 0 (car r > 3)

This gives σ(f) < σ(g), demonstrating that σ is strictly increasing as required. The proof is
complete.�

Corollary 3.1. For any real numberr ∈
[
3,+∞

[
∪
{

2, 52
}
, "The set Dr is infinite and uncount-

able.

proof We distinguish the following four cases:"

• Case r > 3: In this case, the result of corollary 3.1.1is an immediate consequence of that
of Theorem 3.4 . Indeed, let r > 3 be a fixed real number and λ be an arbitrary element of the
set Er from Theorem 3.4 . By the very definition of Er, each term of the sequence (λrn)n∈N is

congruent modulo 1 to some real number in the closed interval
[
− 1
r−1 ,

1
r−1

]
. Since this latter

interval has a length of 2
r−1 < 1 (because r > 3), its complement in ] − 1/2, 1/2 [ is indeed

a non-empty open set disjoint from the set of representatives (in [−1/2, 1/2[) of the modulo 1
classes of the terms of the sequence (λrn)n. Consequently, the sequence (λrn)n∈N is not dense
modulo 1. This implies that Er ⊂ Dr and since Er is infinite and uncountable (according to
Theorem 3.4), then the same holds (a fortiori) for Dr.

• Case r = 2: It is easily verified (by distinguishing the cases of even and odd n) that any
real number λ > 0 can be written in the form

λ =
∞∑
i=0

ai
4i

(with ai ∈ {0, 1} for all i ∈ N ) satisfying < λ2n >≤ 2
3(∀n ∈ N ). Such a λis therefore an element

of Dr. Since the set { ∞∑
i=0

ai
4i

∣∣∣∣∣ ai = 0.or1 for all i

}
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is evidently infinite and uncountable, then Dr is consequently infinite and uncountable.

• Case r = 3: It is immediately verified that any real number λ > 0 can be written in the
form λ =

∑∞
i=0

ai
3i

(with ai ∈ {0, 1} for all i ∈ N)satisfying < λ3n〉 ≤ 1
2(∀n ∈ N). Such a λis

therefore an element of Dr. Since the set{ ∞∑
i=0

ai
3i

∣∣∣∣∣ ai = 0.or1 for all i

}

is evidently infinite and uncountable, then the same holds a fortiori for Dr.

• Case r = 5
2 : Let s := r3 > 15. We will show in what follows that Dr contains Es. Since Es

is infinite and uncountable (according to Theorem 3.4), we will conclude that Dr is also infinite
and uncountable. Let λ be an arbitrary element of Es. By the very definition of the set Es, we
have: ∥∥λr3n∥∥ = ‖λsn‖ ≤ 1

s− 1
(∀n ∈ N)

This implies that the sequence
(
< λr3n

〉)
n∈N traverses the union of the two intervals

[
0, 1

s−1

]
and

[
1− 1

s−1 , 1[ whose sum of lengths is 2
s−1 . Now, using the elementary fact asserting that:

"When the fractional part of a real number x traverses a finite union of intervals whose sum of
lengths is ≤ α(α > 0), then, given p, q ∈ N∗, the fractional part of the real number p

qx traverses
a finite union of intervals whose sum of lengths is" ≤ pα",

we deduce that the sequence
(〈
λr3n−1

〉)
n∈N∗ traverses a finite union of intervals whose sum

of lengths is ≤ 4
s−1 and that the sequence

(
< λr3n−2

〉)
n∈N∗traverses a finite union of intervals

whose sum of lengths is ≤ 4
s−1 and that the sequence (< λrn〉)n∈N traverses a finite union of

intervals whose sum of lengths is ≤ 2
s−1 + 4

s−1 + 8
s−1 = 14

s−1 < 1 (because s > 15 ). It follows
from this that there exists a non-empty open ⊂ [0, 1 [ which does not meet the set

{< λrn >| n ∈ N}

Therefore the sequence (λrn)n∈N is not dense modulo 1, i.e. λ ∈ Dr. The inclusion Es ⊂
Dr is thus proved, which completes the proof of the corollary for this case and ends this
demonstration.�

Corollary 3.2. For any real number r > 1, the set Wr is infinite and uncountable.

proof Given a real number r > 1, let’s choose an integer k ≥ 1 such that

rk > 2k + 1

According to Theorem 3.4, the set Erk is infinite and uncountable. We will show in the following
that this latter set is included in Wr, which will consequently imply the uncountable infinitude
of the set Wr. Let λ be an arbitrary element of Erk . For any positive integer n that is a multiple
of k, say n = km for some m ∈ N, we have:

‖λrn‖ =
∥∥∥λ(rk)m∥∥∥ ≤ 1

rk − 1
(carλ ∈ Erk)
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In other words :
< λrn >/∈] 1

rk−1

, 1− 1

rk − 1
[

Therefore, we conclude that for

I =]
1

rk − 1
, 1− 1

rk − 1
[

we have :

lim sup
N→+∞

A (I;N ; (λrn))

N
≤ 1− 1

k
< 1− 2

rk − 1
= µ(I)

(
car rk > 2k + 1

)
.

This implies that the sequence (λrn)n∈N is not equidistributed modulo 1, hence λ ∈Wr. There-
fore, we indeed have Erk ⊂Wr, completing this demonstration. �

If we restrict the assumption of Corollary 3.1 to r > 2, a similar approach to that of the
proof of Theorem 3.4 allows us to show that the set of real numbers λ > 0 for which the sequence
(λrn)n∈N is not dense modulo 1 is infinite; however, it does not indicate whether this set is
countable or uncountable.

Theorem 3.5. For any real number r > 2, the set Dr is infinite.

proof.- We associate with every k ∈ N, the sequence of positive integers (un(k))n∈N defined
by:

u0(k) = 1

un+1(k) = br · un(k)c+ k (∀n ∈ N)

This last relation implies that we have:

run(k) + k − 1 < un+1(k) ≤ run(k) + k (∀k, n ∈ N)

This allows us to easily verify that for any k ∈ N, the two sequences with general terms

αn(k) :=
un(k)

rn
+

k − 1

rn(r − 1)

and

βn(k) :=
un(k)

rn
+

k

rn(r − 1)

are respectively strictly increasing and decreasing. Furthermore, since (for all k ∈ N)αn(k) −
βn(k) → 0 when n ttends to infinity, these two sequences (αn(k))n and (βn(k))n are adjacent,
and consequently, they have the same limit λ(k) satisfying:

αn(k) < λ(k) ≤ βn(k)(∀n ∈ N)

. This implies:
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k − 1

r − 1
< λ(k)rn − un(k) ≤ k

r − 1
(∀k, n ∈ N) (3)

This shows that for any k ∈ N, each term of the sequence (λ(k)rn)n∈N is congruent modulo

1 to some real number in the interval
]
k−1
r−1 ,

k
r−1

]
; but since this interval has a length of 1

r−1 < 1

(because r > 2), then the sequence (λ(k)rn)n∈N is not dense modulo 1 for any value of k ∈ N.
Finally, by setting n = 0 in (3), we see that

λ(k) ∈
]
1 +

k − 1

r − 1
, 1 +

k

r − 1

]
(for all k ∈ N). Since the intervals ]

1 +
k − 1

r − 1
, 1 +

k

r − 1

]
(for k ∈ N) are evidently pairwise disjoint, the real numbers λ(k) (for k ∈ N) are pairwise
distinct, and consequently, the set of real numbers λ > 0 for which the sequence (λrn)n∈N is not
dense modulo 1 is indeed infinite. This completes the proof..�
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