Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-tiaret.dz:80/handle/123456789/14554
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorMehdi, Youssra Yamena-
dc.contributor.authorMazouzi, Wahiba-
dc.date.accessioned2024-04-15T09:26:36Z-
dc.date.available2024-04-15T09:26:36Z-
dc.date.issued2023-06-
dc.identifier.urihttp://dspace.univ-tiaret.dz:80/handle/123456789/14554-
dc.description.abstractThis study explores machine learning for crop growth prediction in Algeria using soil, and crop data. The technique has potential for accurate and efficient yield prediction for effective agricultural planning. Optimal parameter values were identified, emphasizing their importance for different datasets. Results vary depending on data characteristics. Implications for farmers, policymakers, and organizations include improved decision-making and resource allocation for increased production and food security. Further research is needed to evaluate other machine learning techniques for sustainable and resilient agricultureen_US
dc.language.isoenen_US
dc.publisherUniversité Ibn Khaldounen_US
dc.subjectMachine learningen_US
dc.subjectyield predictionen_US
dc.subjectcrop growthen_US
dc.titleCrops growth prediction using machine learning techniquesen_US
dc.typeThesisen_US
Collection(s) :Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Mémoire Mehdi_Mazouzi.pdf3,34 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.