Please use this identifier to cite or link to this item: http://dspace.univ-tiaret.dz:80/handle/123456789/13619
Title: Classification des signaux ECG en utilisant l'intelligence artificielle
Authors: KERIA Amir, Abdelkader
KAID, Mohamed Riadh
Keywords: ECG
Intelligences artificielles
classification
Deep Learning
Issue Date: 21-يون-2023
Publisher: Université Ibn Khaldoun
Abstract: Ce mémoire présente une investigation approfondie sur la classification des signaux ECG en utilisant l'intelligence artificielle. L'accent est mis sur l'exploitation de la base de données MIT-BIH pour développer un modèle de classification performant. Les résultats obtenus révèlent la capacité du modèle à discriminer efficacement entre les différentes catégories de battements cardiaques, offrant ainsi de nouvelles perspectives pour un diagnostic précoce et précis des troubles cardiaques. Cette recherche apporte une contribution significative au domaine de la médecine et ouvre des opportunités prometteuses pour améliorer les soins de santé cardiovasculaire
Description: This brief presents a thorough investigation of the classification of ECG signals using artificial intelligence. The focus is on the exploitation of the MIT-BIH database to develop a powerful classification model. The results reveal the ability of the model to effectively discriminate between different categories of heartbeats, offering new perspectives for the early and accurate diagnosis of heart disorders. This research makes a significant contribution to the field of medicine and opens up promising opportunities to improve cardiovascular health care
URI: http://dspace.univ-tiaret.dz:80/handle/123456789/13619
Appears in Collections:Master

Files in This Item:
File Description SizeFormat 
TH.M.GE.2023.40.pdf1,95 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.