Please use this identifier to cite or link to this item: http://dspace.univ-tiaret.dz:80/handle/123456789/13469
Title: La proposition d’un système de détection d’intrusion efficace basée sur les anomalies du trafic réseau déséquilibré
Authors: BEHTANI, saadia kamilia
BAHLOUL, zoulikha bochra
Keywords: SYSTEME DE DETECTION D’INTRUSION
L’APPRENTISSAGE AUTOMATIQUE
DONNEES DESEQUILIBREES
PROPOSITION DU MODELE
Issue Date: 4-يول-2023
Publisher: Université Ibn Khaldoun
Abstract: Les systèmes de détection d'intrusion (IDS) jouent un rôle essentiel dans l'identification des comportements anormaux dans les environnements système et réseau. Les techniques d'apprentissage automatique ont gagné une importance dans ce domaine. Cependant, la présence de données déséquilibrées pose un défi important pour obtenir des résultats de détection précis et fiables. Cette étude se concentre sur l’optimisation des mesures de performance des IDS pour un dataset récent déséquilibré CICIDS 2017. Plus précisément, la recherche met l'accent sur l'impact des données déséquilibrées et explore les limites des approches à un classificateur unique pour classer efficacement le trafic normal et les anomalies (attaques). Pour y remédier, l'étude propose la construction d’un modèle plus sophistiqué qui combine plusieurs classificateurs basés sur les modèles d'ensemble, (Bagging et Boosting), il est évalué à l'aide de l'ensemble de données CICIDS-2017. Les résultats montrent que l’IDS est plus robuste et plus efficace avec mesure de performance de F1-score de 99.97% pour la combinaison du modèle SMOTE avec Bagging
Description: Intrusion detection systems (IDS) play an essential role in identifying anomalous behavior in system and network environments. Machine learning techniques have gained importance in this field. However, the presence of unbalanced data poses a significant challenge to obtaining accurate and reliable detection results. This study focuses on optimizing IDS performance metrics for a recent unbalanced dataset CICIDS 2017. Specifically, the research focuses on the impact of unbalanced data and explores the limitations of single-classifier approaches to effectively classify normal traffic and anomalies (attacks). To address this, the study proposes the construction of a more sophisticated model that combines several classifiers based on ensemble models, (Bagging and Boosting), it is evaluated using the CICIDS-2017 dataset. The results show that the IDS is more robust and efficient, with an F1-score performance measure of 99.97% for the model combination SMOTE with Bagging
URI: http://dspace.univ-tiaret.dz:80/handle/123456789/13469
Appears in Collections:Master

Files in This Item:
File Description SizeFormat 
TH.M.INF.2023.31.pdf2,83 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.