Please use this identifier to cite or link to this item: http://dspace.univ-tiaret.dz:80/handle/123456789/8088
Full metadata record
DC FieldValueLanguage
dc.contributor.authorسطالة, آسيا-
dc.contributor.authorشريك, عائشة-
dc.date.accessioned2023-01-26T08:35:16Z-
dc.date.available2023-01-26T08:35:16Z-
dc.date.issued2019-07-
dc.identifier.urihttp://dspace.univ-tiaret.dz:80/handle/123456789/8088-
dc.descriptionConsidering the circumstances in which algerian commercial banks have limited possibilities and classic methods of predicting loan risks such as classical financial analysis, while the various international commercial banks use some modern statistical methods to assist in the decision to grant credit, which achieved very effective results. Through our study, the possibility of applying a method of artificial intelligence to estimate the risk of non-payment in commercial banks through the modeling of artificial neural network technology and the method of the loan to the reality of one of the Algerian commercial banks represented by the external bank of algeria,Tiaret agency, where the two methods achieved a correct classification rate of 100% and 95%, respectively. The study also recommends the need to adopt commercial banks for the various quantitative and statistical methods that are classified in artificial intelligence research instead of the classical methods followed.en_US
dc.description.abstractفي ظل الظروف التي تعمل فيها البنوك التجارية الجزائرية بإمكانيات محدودة و أساليب كلاسيكية في التنبؤ بمخاطر القروض كالتحليل المالي الكلاسيكي ، في حين تستخدم مختلف البنوك التجارية العالمية بعض الطرق الاحصائية الحديثة في المساعدة في اتخاذ قرار منح الائتمان ، و التي حققت نتائج جد فعالة ،و توصلنا من خلال دراستنا إلى إمكانية تطبيق طريقة من طرق الذكاء الاصطناعي لتقدير خطر عدم السداد بالبنوك التجارية من خلال نمذجة تقنية الشبكات العصبية الاصطناعية و طريقة القرض التنقيطي على واقع أحد البنوك التجارية الجزائرية و المتمثلة في بنك الجزائر الخارجي وكالة تيارت . حيث حققت الطريقتين نسبة تصنيف صحيح درت ب 100% و 95% على التوالي كما توصي الدراسة بضرورة تبني البنوك التجارية لمختلف الأساليب الكمية و الاحصائية الحديثة المصنفة ضمن ابحاث الذكاء الاصطناعي بدل الطرق الكلاسيكية التي تتبعهاen_US
dc.language.isootheren_US
dc.publisherجامعة ابن خلدون-تيارتen_US
dc.subjectالبنوك التجاريةen_US
dc.subjectمخاطر القروضen_US
dc.subjectتقنية الشبكات العصبية الاصطناعيةen_US
dc.subjectالقروض المتعثرةen_US
dc.titleالآليات المستحدثة لتسيير مخاطر القروض في البنوك التجارية باستخدام طريقة الشبكة العصبية الاصطناعيةen_US
dc.typeThesisen_US
Appears in Collections:Master

Files in This Item:
File Description SizeFormat 
TH.M.COM.AR.2019.120.pdf7,18 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.