Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-tiaret.dz:80/handle/123456789/5383
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorTAYEBI, Imen-
dc.contributor.authorSMAILI, Hayet-
dc.date.accessioned2022-11-21T12:54:24Z-
dc.date.available2022-11-21T12:54:24Z-
dc.date.issued2020-
dc.identifier.urihttp://dspace.univ-tiaret.dz:80/handle/123456789/5383-
dc.description.abstractIn the context of recommendation systems, metadata information from reviews written for businesses has rarely been considered in traditional systems developed using content-based and collaborative filtering approaches. Collaborative filtering and content-based filtering are popular memory-based methods for recommending new products to the users but suffer from some limitations and fail to provide effective recommendations in many situations. In this paper, we present a deep learning neural network framework that utilizes reviews in addition to contentbased features to generate model-based predictions for the business-user combinations. We show that a set of content and collaborative features allows for the development of a neural network model with the goal of minimizing the rating misclassification error using stochastic gradient descent optimization algorithm. We empirically show that the hybrid approach is a very promising solution when compared to standalone memory-based collaborative filtering method.en_US
dc.language.isoenen_US
dc.publisherUniversité Ibn Khaldoun -Tiaret-en_US
dc.subjectCollaborative Filtering, Content-based Filtering, Artificial neural networks, Recommender systemsen_US
dc.titleArtificial Neural Networks for a Hybrid Recommendation Systemen_US
dc.typeThesisen_US
Collection(s) :Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
TH.M.INF.FR.2020.38.pdf2,27 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.