Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-tiaret.dz:80/handle/123456789/5383
Affichage complet
Élément Dublin Core | Valeur | Langue |
---|---|---|
dc.contributor.author | TAYEBI, Imen | - |
dc.contributor.author | SMAILI, Hayet | - |
dc.date.accessioned | 2022-11-21T12:54:24Z | - |
dc.date.available | 2022-11-21T12:54:24Z | - |
dc.date.issued | 2020 | - |
dc.identifier.uri | http://dspace.univ-tiaret.dz:80/handle/123456789/5383 | - |
dc.description.abstract | In the context of recommendation systems, metadata information from reviews written for businesses has rarely been considered in traditional systems developed using content-based and collaborative filtering approaches. Collaborative filtering and content-based filtering are popular memory-based methods for recommending new products to the users but suffer from some limitations and fail to provide effective recommendations in many situations. In this paper, we present a deep learning neural network framework that utilizes reviews in addition to contentbased features to generate model-based predictions for the business-user combinations. We show that a set of content and collaborative features allows for the development of a neural network model with the goal of minimizing the rating misclassification error using stochastic gradient descent optimization algorithm. We empirically show that the hybrid approach is a very promising solution when compared to standalone memory-based collaborative filtering method. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Université Ibn Khaldoun -Tiaret- | en_US |
dc.subject | Collaborative Filtering, Content-based Filtering, Artificial neural networks, Recommender systems | en_US |
dc.title | Artificial Neural Networks for a Hybrid Recommendation System | en_US |
dc.type | Thesis | en_US |
Collection(s) : | Master |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
TH.M.INF.FR.2020.38.pdf | 2,27 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.