Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-tiaret.dz:80/handle/123456789/5324
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorHatem, M’hamed Amine-
dc.date.accessioned2022-11-21T08:29:34Z-
dc.date.available2022-11-21T08:29:34Z-
dc.date.issued2019-
dc.identifier.urihttp://dspace.univ-tiaret.dz:80/handle/123456789/5324-
dc.description.abstractImage classification is fundamental in the field of artificial intelligence, recently Deep Residual Learning [1] and the new coming model CapsulNet[2] have shown state-of-the-art performance for image classification tasks , they takes data-sets mostly as input in the form of RGB images even though we have many other colorspaces available. In this thesis we try to understand the impact of image color-space on the performance of CNN models in Image classification . We evaluate this on CIFAR10 [3]data-set by converting it into five other color-spaces HLS, HSV, LUV, LAB, YUV and trained each one of them in two different deep learning architecture models namely ResNet20 and CapsulNet , the results obtained show a minor change in accuracy but even a small percentage may make the difference, in the other hand LUV is good alternative it show improvement about 0.92% comparison to RGB in ResNet20 and 0.39% in CapsulNet.en_US
dc.language.isoenen_US
dc.publisherUniversité Ibn Khaldoun -Tiaret-en_US
dc.subjectDeep learning, Color-spaces, Convolutional Neural Networks, ResNet, CapsuleNeten_US
dc.titleLe deep learning pour la classification des images dans différents système de couleur.en_US
dc.typeThesisen_US
Collection(s) :Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
TH.M.INF.FR.2019.26.pdf3,13 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.