Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-tiaret.dz:80/handle/123456789/16860
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBelounis, Rihab-
dc.contributor.authorBelabbes, Djihad-
dc.date.accessioned2025-11-20T07:43:05Z-
dc.date.available2025-11-20T07:43:05Z-
dc.date.issued2025-06-04-
dc.identifier.urihttp://dspace.univ-tiaret.dz:80/handle/123456789/16860-
dc.description.abstractThis project focuses on the classification of potato leaf diseases using computer vision techniques. Potato crops are particularly vulnerable to various foliar diseases that can significantly reduce yield and quality. To address this challenge, we developed a system that leverages image processing and machine learning methods to automatically identify and classify infected leaves. Our approach involves data collection, preprocessing of leaf images, feature extraction, and the application of deep learning models for classification. The results demonstrate promising accuracy and effectiveness, proving that such systems can assist farmers and agricultural experts in early disease detection and decision-making. This work contributes to the broader field of precision agriculture, aiming to enhance crop health monitoring and sustainable farming practices.en_US
dc.language.isoenen_US
dc.publisherUniversity of Ibn Khaldoun Tiareten_US
dc.subjectPotato leaf diseasesen_US
dc.subjectmachine learningen_US
dc.subjectdeep learningen_US
dc.subjectimage classificationen_US
dc.titleOptimization of Machine Learning Models for Potato Disease Classificationen_US
dc.typeThesisen_US
Collection(s) :Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
TH.M.INF.2025.08.pdf12,53 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.