Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-tiaret.dz:80/handle/123456789/16856
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBENALI, NOUR EL HOUDA-
dc.date.accessioned2025-11-19T14:05:10Z-
dc.date.available2025-11-19T14:05:10Z-
dc.date.issued2025-06-16-
dc.identifier.urihttp://dspace.univ-tiaret.dz:80/handle/123456789/16856-
dc.description.abstractCan we develop intelligent strategies specific to NDN networks that outperform traditional approaches and optimize the performance of these NDN networks? This question guided the course of this dissertation, driven by the inherent limits of the present IP-based Internet paradigm and the rising shift toward data-centric architectures. The significance of this question derives from the crucial role caching plays in improving latency, bandwidth utilization, and scalability in NDN, and the inability of traditional caching techniques to adapt to dynamic user behavior. This research tested and confirmed several hypotheses: (1) reinforcement learning methods can dynamically outperform fixed cache replacement strategies, and (2) combining spatial and temporal learning components—specifically CNNs and LSTMs—improves the decision-making capability of RL-based caching modelsen_US
dc.language.isoenen_US
dc.publisherUniversity of Ibn Khaldoun Tiareten_US
dc.subjectNamed data networking (NDN)en_US
dc.subjectcachingen_US
dc.subjectintelligent caching replacement policies,en_US
dc.subjectDeep reinforcement learning (DRL)en_US
dc.titleTowards intelligent caching in NDN networksen_US
dc.typeThesisen_US
Collection(s) :Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
TH.M.INF.2025.04.pdf1,98 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.