Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-tiaret.dz:80/handle/123456789/15296
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBelkhit, Souhila-
dc.contributor.authorCheriet, Amira-
dc.date.accessioned2024-10-23T09:41:57Z-
dc.date.available2024-10-23T09:41:57Z-
dc.date.issued2024-06-12-
dc.identifier.urihttp://dspace.univ-tiaret.dz:80/handle/123456789/15296-
dc.descriptionLiver cancer, a common type of cancer that develops from liver cells, represents a major diagnostic challenge due to its often-asymptomatic nature in the early stages. Medical imaging, particularly computed tomography (CT scan), plays a crucial role in diagnosing this disease, but manual image analysis is a complex and time-consuming task. In our work, we leveraged generative adversarial networks (GAN), particularly DCGAN models, to generate synthetic liver images and improve the detection of anomalies associated with liver cancer. By using a specific GAN architecture developed for liver CT images, we were able to produce visually plausible images that resemble real CT scans, and our detection model demonstrated an effective ability to distinguish between cancerous and normal liver images. The results of our work show that GANs, particularly DCGANs, can produce high-quality synthetic images and enhance the early detection of liver anomalies, which is crucial for the effective management of liver cancer.en_US
dc.description.abstractLe cancer du foie, un type de cancer courant qui se développe à partir des cellules hépatiques, représente un défi majeur en matière de diagnostic en raison de ses symptômes souvent asymptomatiques aux premiers stades. L’imagerie médicale, notamment la tomodensitométrie (CT scan), joue un rôle crucial dans le diagnostic de cette maladie, mais l’analyse manuelle des images est une tâche complexe et chronophage. Dans notre travail, nous avons exploité les réseaux antagonistes génératifs (GAN), en particulier les modèles DCGAN, pour générer des images synthétiques de foie et améliorer la détection des anomalies associées au cancer du foie. En utilisant une architecture spécifique de GAN développée pour les images CT de foie, nous avons pu produire des images visuellement plausibles qui ressemblent aux images réelles issues des CT scans, et notre modèle de détection a montré une capacité efficace à distinguer les images de foie cancéreux des images normales. Les résultats de notre travail montrent que les GAN, et en particulier les DCGAN, peuvent produire des images synthétiques de haute qualité et améliorer la détection précoce des anomalies hépatiques, ce qui est crucial pour une prise en charge efficace du cancer du foie.en_US
dc.language.isofren_US
dc.publisherUniversité ibn khaldoun-Tiareten_US
dc.subjectImagerie médicaleen_US
dc.subjectTomodensitométrie (CT scan)en_US
dc.subjectCancer du foieen_US
dc.subjectDeep Learningen_US
dc.titleDétection d'anomalies sur les images médicales en utilisant les réseaux antagonistes génératifs(GAN)en_US
dc.typeThesisen_US
Collection(s) :Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
TH.M.INF.2024.34.pdf5,95 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.