Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-tiaret.dz:80/handle/123456789/13501
Affichage complet
Élément Dublin Core | Valeur | Langue |
---|---|---|
dc.contributor.author | Fettah, Lilia | - |
dc.contributor.author | Mehloul, Hind | - |
dc.date.accessioned | 2023-10-22T08:11:55Z | - |
dc.date.available | 2023-10-22T08:11:55Z | - |
dc.date.issued | 2023-07 | - |
dc.identifier.uri | http://dspace.univ-tiaret.dz:80/handle/123456789/13501 | - |
dc.description | This dissertation focuses on the identification and prediction of diabetes using machine learning and deep learning techniques. The goal is to build a model capable of predicting whether a person is diabetic or not based on algorithms such as Decision Trees, Deep Neural Network (DNN), Support Vector Machine (SVM), Short-term memory long neural networks (LSTM). Results obtained from the Frankfurt Hospital data set in Germany demonstrated that LSTM neural networks are the most accurate algorithm for both assessment methods and performance parameters. | en_US |
dc.description.abstract | Ce mémoire se concentre sur l'identification et la prédiction du diabète en utilisant des techniques d'apprentissage automatique et profond. L'objectif est de construire un modèle capable de prédire si une personne est diabétique ou non en se basant sur des algorithmes tels que Decision Trees (Arbre de décision),Deep Neural Network (DNN),Support Vector Machine (SVM) , Les réseaux neuronaux de longue mémoire à court terme (LSTM). Les résultats obtenus à partir de l'ensemble de données de l'hôpital de Frankfort en Allemagne ont démontré que les réseaux neuronaux LSTM étaient l'algorithme le plus performant en termes de précision, aussi bien pour les méthodes d'évaluation que pour les paramètres de performance | en_US |
dc.language.iso | fr | en_US |
dc.publisher | Université Ibn Khaldoun | en_US |
dc.subject | Prédiction du diabète | en_US |
dc.subject | Arbres de décision | en_US |
dc.subject | Apprentissage profond | en_US |
dc.subject | Apprentissage automatique | en_US |
dc.title | Application de Deep Learning pour un système de santé Intelligent dans un environnement cloud | en_US |
dc.type | Thesis | en_US |
Collection(s) : | Master |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
TH.M.INF.2023.48.pdf | 4,75 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.