RÈPUBLIQUE ALGÈRIENNE DÈMOCRATIQUE ET POPULAIR MINISTÈRE DE L'ENSEIGNEMENT SUPÈRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITÈ IBN KHALDOUN - TIARET FACULTÈ DES SCIENCES DE LA MATIERE DÈPARTEMENT DE PHYSIQUE LABORATOIRE DE GÈNIE PHYSIQUE

THÈSE

Présentée par :

M. NEKOUS Mohammed

En vue de l'obtention de diplôme de :

DOCTORAT en Sciences

Spécialité : Physique

THÈME

Étude du premier principe des propriétés structurales et optoélectroniques des Skuttérudites à base d'Osmium

Soutenue le 15/11/2022

Devant le Jury composé de :

Président	M. BAGHDAD Rachid	Professeur	Université de Tiaret
Directeur	M. BOUAFIA Hamza	Professeur	Université de Tiaret
Co- Directeur	M. SAHLI Belgacem	Professeur	Université de Tiaret
Examinateur	Mme. BOUDIA Keltouma	Professeur	Université de Tissemsilt
Examinateur	M. ELCHIKH Mokhtar	Professeur	Université de USTO
Examinateur	Mme. KHELFAOUI Friha	MCA	Université de Saida

Année universitaire : 2022/2023

Remerciements

Je remercie **ALLAH** le tout-puissant de m'avoir donné le courage, la volonté et la patience de mener à terme ce présent travail.

Cette thèse a été réalisée au sein du laboratoire de « GENIE PHYSIQUE » de l'université Ibn Khaldoun Tiaret.

Je tiens tout d'abord à remercier le directeur de ma thèse Monsieur **BOUAFIA Hamza**, Professeur à l'université Ibn Khaldoun de Tiaret, de m'avoir reçu au sein de l'équipe qui la dirige, pour avoir accepté de tenter l'aventure avec moi, à encadrer cette thèse, et pour ses précieux conseils qu'il m'a donnés et pour ces profondes et nombreuses connaissances en physique qu'il m'a prodigué. Il m'a guidé et assisté tout au long de ces années jusqu'à la rédaction de cette thèse. Il m'a laissé une grande liberté en me faisant l'honneur de mettre mes propres empreintes. Ses suggestions et remarques ont amélioré la qualité de cette thèse. Pour tout cela, je lui dis merci.

Je veux remercier Monsieur **SAHLI Belgacem**, Co-directeur de cette thèse, Professeur à l'université Ibn Khaldoun de Tiaret, pour avoir accepté de tenter l'aventure avec moi en co-encadrant cette thèse, pour la confiance qu'il a placé en moi et de m'avoir aidé depuis le début du projet jusqu'à sa fin.

Je tiens à remercier Monsieur **BAGHDAD Rachid** Professeur à l'université Ibn Khaldoun Tiaret pour ses qualités humaines et d'avoir accepté de présider mon jury de thèse.

Mes remerciements vont à Monsieur **ELCHIKH Mokhtar** Professeur à l'Université de USTO Oran, et Mme. **BOUDIA Keltouma**, Professeur à l'université de Tissmssilt, et Mme. **KHELFAOUI Friha**, maître de conférences « A » à l'Université de Saida, pour l'intérêt qu'ils ont porté à ce modeste travail et pour leur consentement d'examiner ce travail et de participer au jury.

DÉDICACE

A mes chers parents.

A ma femme.

A mes enfants.

A mes frères et à mes sœurs.

A tous mes collègues du laboratoire de Génie Physique.

A tous mes amis.

A tous ceux qui me sont chers.

Sommaire

CHAPITRE I : INTRODUCTION GENERALE.

I. Introduction générale1
Références Bibliographiques11
CHAPITRE II : CADRE THEORIQUE ET METHODES DE CALCUL.
II-1-Introductio
II-2. Equation de Schrödinger (1926)16
II-2-1. Approximation de Born-Oppenheimer 192718
II-2-2.Approximation de Hartree-Fock (1928-1930)19
II-3-Théorie du DFT
II-3-1. Théorèmes d'Hohenberg-Kohn (1964)21
II-3-2. Les équations de Kohn-Sham (1965)
II-4-Les différentes approximations d'échange-corrélation utilisées dans le cadre de la
DFT24
II-4-1. Approximation de la densité locale (LDA)25
II-4-2. Approximation du gradient généralisé (GGA)26
II-5- Résolutions des équations de Kohn Sham
Références Bibliographiques

CHAPITRE III : La Méthode des ondes planes augmentées linéarisées

FP-Lapw

III.1 La méthode des ondes planes augmentées linéarisées (LAPW)......32

III-1-1. Ondes planes (PW) et ondes planes augmentées (APW)	32
III.1.2 principe de la méthode LAPW	34
III.1.3 les rôles des énergies de linéarisation	36
III.1.4 Solution de l'équation de Poisson	37
III.1.5 Le potentiel d'échange et de corrélation	38
III.1.6 Développement en orbitales locales	39
III.1.6.1 La méthode LAPW+LO	40
III.1.6.2 La méthode APW + lo	41
III.1.7 Le concept de la méthode FP-LAPW	42
III.1.8Le code de calcul WIEN2k	42
Références Bibliographiques	45

CHAPITRE IV : RESULTATS ET DISCUSSIONS.

IV.1-Details de calcul et paramètres d'entrée	48
IV.2-Propriétés structurales	49
IV.3- Propriétés élastiques et mécaniques	58
IV.4 Propriétés électroniques et magnétiques	72
IV.4.1 Structures de bandes	72
IV.4.2 Densités d'états (DOS)	82
IV.5 Estimation de la température de Curie du composé DyOs ₄ P ₁₂	.87
IV.6 Stabilité dynamiques du composé DyOs ₄ P ₁₂	89
IV.7 Propriétés optiques	93
Références Bibliographiques	99
Conclusion Générale	.103

LISTE DES FIGURES

Figure I-1 : La structure skuttérudite remplie
Figure I-2 : La maille de la structure skuttérudite remplie
Figure I-3 : Skuttérudite dans la nature
Figure I-4 : Skuttérudite naturelle minéral, bien cristallisé4
Figure I-5 : Cristaux d'Osmium artificiel. 7
Figure II-1 Diagramme pour la nième itération du traitement auto-cohérent (self-consistent)
pour résoudre les équations de Hartree-Fock ou de Kohn-Sham
Figure III-1 : Potentiel «Muffin-Tin»
Figure III-2 : Diagramme de calcul du potentiel d'échange et de corrélation
Figure III-3 L'organigramme des programmes du code Wien2k44
Figure IV-1 : La variation de l'énergie totale en fonction du volume calculé par GGA- PBE
et GGA-PBEsol d'un composé GdOs ₄ P ₁₂ 51
Figure IV-2 : La variation de l'énergie totale en fonction du volume calculé par GGA- PBE et
GGA-PBEsol d'un composé DyOs ₄ P ₁₂ 52
Figure IV-3 : La variation de l'énergie totale en fonction du volume calculé par GGA- PBE et
GGA-PBEsol d'un composé NdOs ₄ As ₁₂ 53
Figure IV-4 : : La variation de l'énergie totale en fonction du volume calculé par GGA- PBE
et GGA-PBEsol d'un composé EuOs ₄ As ₁₂ 54
Figure IV-5 : La variation de l'énergie totale en fonction du volume calculé par GGA- PBE et
GGA-PBEsol d'un composé SmOs ₄ Sb ₁₂ 55
Figure IV-6 : La variation de l'énergie totale en fonction du volume calculé par GGA- PBE et
GGA-PBEsol d'un composé YbOs ₄ Sb ₁₂ 56

Figure IV-7 : La variation de l'énergie totale en fonction des déformations « Di » du composé
GdOs ₄ P ₁₂ 64
Figure IV-8 : La variation de l'énergie totale en fonction des déformations « Di » du composé
$DyOs_4P_{12}$
Figure IV-9 : La variation de l'énergie totale en fonction des déformations « Di » du composé
$NdOs_4As_{12}$
Figure IV-10 : La variation de l'énergie totale en fonction des déformations « Di » du composé
$EuOs_4As_{12}$
Figure IV-11 : La variation de l'énergie totale en fonction des déformations « Di » du composé
SmOs ₄ Sb ₁₂
Figure IV-12 : La variation de l'énergie totale en fonction des déformations « Di » du composé
YbOs ₄ Sb ₁₂
Figure IV-13 : Représentation 3D de la surface directionnelle du module de Young pour le
composé GdOs ₄ P ₁₂ 67
Figure IV-14 Représentation 3D de la surface directionnelle du module de Young pour le
$composé DyOs_4P_{12}67$
Figure IV-15 : Représentation 3D de la surface directionnelle du module de Young pour le
composé NdOs ₄ As ₁₂
Figure IV-16 : Représentation 3D de la surface directionnelle du module de Young pour le
composé EuOs ₄ As ₁₂
Figure IV-17 : Représentation 3D de la surface directionnelle du module de Young pour le
composé SmOs₄Sb ₁₂
Figure IV-18 : Représentation 3D de la surface directionnelle du module de Young pour le
composé $YbOs_4Sb_{12}$

- **Figure IV-19 :** La structure des bandes d'énergie (spin 'up' et 'dn') du composé Skuttérudite GdOs₄P₁₂ calculé par les fonctionnelles GGA PBEsol et GGA+U......76
- **Figure IV-20 :** La structure des bandes d'énergie (spin 'up' et 'dn') du composé Skuttérudite DyOs₄P₁₂ calculé par les fonctionnelles GGA PBEsol et GGA+U......77
- **Figure IV-21 :** La structure des bandes d'énergie (spin 'up' et 'dn') du composé Skuttérudite NdOs₄As₁₂ calculé par les fonctionnelles GGA-PBEsol et GGA+U......78
- **Figure IV-22 :** La structure des bandes d'énergie (spin 'up' et 'dn') du composé Skuttérudite EuOs₄As₁₂ calculé par les fonctionnelles GGA-PBEsol et GGA+U......79
- **Figure IV-23 :** La structure des bandes d'énergie (spin 'up' et 'dn') du composé Skuttérudite SmOs₄Sb₁₂ calculé par les fonctionnelles GGA-PBEsol et GGA+U......80
- **Figure IV-24 :** La structure des bandes d'énergie (spin 'up' et 'dn') du composé Skuttérudite YbOs₄Sb₁₂ calculé par les fonctionnelles GGA-PBEsol et GGA+U......81

Figure IV-26 : La densité d'états ('up' et 'dn') partielle du composé Skuttérudite

- **Figure IV-30 :** La densité d'états partielle du composé Skuttérudite YbOs₄Sb₁₂......85

Figure IV-32 :	Courbe de dispersion o	des phonons et	t celle de la	densité d'états	des phonons de
	la skuttérudite remplie	$DyOs_4P_{12}$			91

Figure	IV-33 :	Variations	des	deux	parties	de	la	fonction	diélectrique	du	composé
	C	$GdOs_4P_{12}$									95
Figure	IV-34:	Variations	des	deux	parties	de	la	fonction	diélectrique	du	composé
	Γ	$PyOs_4P_{12}$					• • • • •				95
Figure	IV-35:	Variations	des	deux	parties	de	la	fonction	diélectrique	du	composé
	Ν	MOs_4As_{12}			• • • • • • • • • • •	•••••					96
Figure	IV-36:	Variations	des	deux	parties	de	la	fonction	diélectrique	du	composé
	E	$EuOs_4As_{12}$									96
Figure	IV-37:	Variations	des	deux	parties	de	la	fonction	diélectrique	du	composé
	S	mOs_4Sb_{12}									97
Figure	IV-38:	Variations	des	deux	parties	de	la	fonction	diélectrique	du	composé
	У	bOs_4Sb_{12}									98

LISTE DES TABLEAUX

Tableau I-1 : (Etat fondamental) FM : ferromagnétique, (température de transition(K)) T_{TR} ,
(paramètre de maille) a, (densité) d, d'un composé DyOs ₄ P ₁₂ 8
Tableau I-2: (Etat fondamenta) FM : ferromagnétic ;WFM : weak ferromagnétic ;HF : heavy
fermion, (température de transition(K)) T_{TR} , (paramètre de maille) a,
(densité) d9
Tableau IV-1 : Nombre de K-Points, R _{min} K _{max} , lmax, Gmax et les rayons muffin-tin RMT
choisis pour les paramètres d'entrée49
Tableau IV-2 : Le paramètre de réseau d'équilibre \mathbf{a}_0 (Å), le module de compressibilité
\mathbf{B}_{0} (GPa) sa première dérivée B' et l'énergie totale $\mathbf{E}_{\text{TOT}}(\mathbf{R}\mathbf{y})$
Tableau IV-3 : Module de compressibilité B et les Constantes élastiques Cij (GPa) calculés
pour les Skuttérudites DyOs ₄ P ₁₂ , GdOs ₄ P ₁₂ , EuOs ₄ As ₁₂ , NdOs ₄ As ₁₂ , SmOs ₄ Sb ₁₂ ,
YbOs ₄ Sb ₁₂ comparées avec d'autres résultats70
Tableau IV-4 : Module de cisaillement $G(GPa)$, Module de Young $E(GPa)$, Coefficient de
Poisson υ calculés pour les Skuttérudites étudiés
Tableau IV-5 : Module de compression B, facteur d'anisotrope A, l'indice universel
d'anisotropie A ^U et rapport B/G calculés pour les Skuttérudites DyOs ₄ P _{12,}
GdOs4P12, EuOs4As12, NdOs4As12, SmOs4Sb12, YbOs4Sb1271
Tableau IV-6 : Les valeurs maximales E_{max} , minimales E_{min} et moyennes E_{moy} calculés pour
les composés : DyOs ₄ P _{12,} GdOs4P12, EuOs4As12, NdOs4As12,
SmOs4Sb12, YbOs4Sb1271
Tableau IV-7: Les valeurs du terme effectif d'interaction de coulomb « Ueff » (terme
d'Hubbard)75

TableauIV-8 : Les moments magnétiques partiels (μ_B /atom) et total (μ_B /cell), et lapolarisation "P"calculés pour les composés Skuttérudites DyOs₄P₁₂

GdOs₄P₁₂, EuOs₄As₁₂, NdOs₄As₁₂, SmOs₄Sb₁₂, YbOs₄Sb₁₂comparés avec les

Introduction générale

I.1 Introduction :

La physique des matériaux solides, est un domaine innovant qui offre au monde de nouvelles méthodes et moyens de recherche par le développement de nouveaux matériaux pertinents et prometteurs, d'autant plus que le monde se dirige aujourd'hui vers les énergies renouvelables.

Par conséquent, la recherche de nouveaux matériaux pour ce domaine constitue un système de recherche intégré qui fait chaque jour un pas en avant.

Les matériaux solides sont les plus étudiés et les plus utilisés aujourd'hui en raison de leur contribution efficace au domaine de la technologie numérique. Beaucoup d'études modernes vont aujourd'hui dans cette direction.

I-2 Les skuttérudites

Parmi les matériaux solides dans lesquels il y a encore peu de recherche au niveau de la technologie se trouve Les skuttérudites.

L'origine du nom skuttérudite vient du nom du minéral naturel arsenique-tricobalt (CoAs₃), qui a été découvert pour la première fois par Wilhelm Karl Ritter Von Haidinger en 1845 dans une ville Norvégienne appelée Skutterud. Les skuttérudites se divisent en des composants binaires et autres ternaires.

La formule chimique des composants binaires provient de la forme MX₃, où M est un atome de métal de transition (Co, Rh et Ir) et X est un atome de type pnictogène (P, As et Sb) [1]. Ces composants ont été établis en 1928 par Oftedal [2]. La structure skuttérudite binaire comporte du vide ou cage dans chaque cellule unitaire.

Les composants ternaires possèdent la formule chimique RM_4X_{12} avec R (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, U, Th et Sr) M (Fe, Ru et Os) et X(P, As et Sb). Pour former des éléments ternaires il faut introduire des atomes dans des cages vides des éléments binaires. En

1977, Jeitschkie et al [3] forment une skuttérudite ternaire (remplie) à partir d'une skuttérudite binaire.

Les skuttérudites sont utilisées pour la génération du courant par effet thermoélectrique.

I.2.2 skuttérudite binaire :

I.2.2.1 Structure cristalline :

Comme cité précédemment, les skuttérudites binaires sont de la forme MX_3 où M est un métal de transition et X est un atome de type pnictogène, la structure cristalline de la skutterudire binaire est constituée d'un sous réseau cubique simple et a été établie par Oftadel en 1928. Leur famille cristallise dans le groupe d'espace Im^3 (groupe numéro 224) [4], la maile élémentaire (cubique centré) de ces composés contient 32 atomes, dans cet maille il y a 8 unités MX3, les 8 atomes M occupent les positions cristallographiques C (1/4,1/4,1/4) et les 24 atomes X occupent les positions cristallographiques g(0,y,z). Par contre, la structure cristallographie est déterminée par 3 paramètres Y, Z (positions des atomes) et a (paramètre de maile).

Les atomes métalliques M forment 8 sous cubiques simples, deux des 8 cubes restent vides donnant lieu à deux cavités ou cages (dont le centre est à la position cristallographie aa) par maile élémentaire [5], et au centre des 6 cubes (le reste) se trouve un anneau rectangulaire de pnictogène. Ces anneaux sont perpendiculaires aux 3 directions cristallographiques (100, 010, 001).

I.2.3 Skuttérudites ternaires (remplies) :

I.2.3.1 structure cristalline :

Les Skuttérudites ternaires (remplies) peuvent être obtenues à partir des composés binaires, la première réalisation a été établie par Jietscko et Braun en 1977 [6] car ils ont

montré qu'ils peuvent insérer une terre-rare dans le site 2a de la skuttérudite binaire (entre les octaèdres MXs) pour former une skuttérudite ternaire (remplie) avec la forme RM_4X_{12} (R= La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Yb, U, Sr, Tb et Dy), M (Fe, Ri, Os) et X (P, Ts, Sb).

Figure 1.1: Maille de la Structure skuttérudite remplie DyOs₄P₁₂

Figure I-2 : La maille de la structure skuttérudite remplie. La terre rare est représentée en rouge, le métal de transition en vert et le pnictogène en bleu [7]

La structure cristalline des composés de la famille skuttérudite remplie est cubique centré avec 34 atomes dans la maile élémentaire [8] du groupe Im₃ (204) [9]; la position

(0,0,0) est occupée par l'ion électropositif en site 2a, et les positions $(\frac{1}{4},\frac{1}{4}), (\frac{3}{4},\frac{1}{4}), (\frac{1}{4},\frac{1}{4}), (\frac{1}{4},\frac{1}{4},\frac{1}{4}), (\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4}), (\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4}), (\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4}), (\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4}), (\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4}), (\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4}), (\frac{1}{4},$

Figure I.3 : Skuttérudite dans la nature [11].

Figure I.4 : skuttérudite naturelle minéral, bien cristallisé [12]

I.2.3.2 Propriétés des skuttérudites remplies :

Les skuttérudites remplies se composent de plusieurs types qui sont les composés magnétiques [13-14], les composés supraconducteurs [15-16], les composés semi-conducteurs

[17-18], les composés fermions lourds [19-20], le non liquide de Fermi [21-22], la valence intermédiaire [23].

• Propriété magnétique :

Les skuttérudites remplies possèdent une très grande variété de propriétés magnétiques suivant la composition chimique. Leur magnétisme est constitué de la somme de deux contributions : une contribution du réseau $[M_4X_{12}]$, et une contribution de l'ion électropositif. Ces deux contributions peuvent être indépendantes ou couplées suivant la composition. Il existe ainsi des skuttérudites remplies : paramagnétiques, ferromagnétiques, antiferromagnétiques, fermions lourds (effet Kondo) et supraconductrices.

• Propriété thermique :

La conductivité thermique est plus faible pour les skuttérudites remplies par apport au skuttérudites binaires et cette diminution est due aux vibrations des atomes de remplissage (R) (oscillation anharmonique). L'ion électropositif (R) est faiblement lié à son environnement [24].

• Propriété thermoélectrique :

On peut générer le courant par effet thermoélectrique à haute température pour les composés de famille skuttérudite remplie avec un meilleur rendement, car la contribution des ions du réseau à la conductivité thermique est diminuée par l'effet du mouvement des ions de leur cage. Ces composés possèdent des facteurs de mérites thermoélectriques élevés. Alors on peut augmenter le dopage sur les sites M et X, ce qui permet d'optimiser la conductivité thermique et le coefficient Seebeck [25], et on peut diminuer le taux de remplissage de la cage, ce qui permet de diminuer la conductivité électrique du solide [26].

Introduction Générale

I.3 Paramètre de maille a et les paramètres internes y, z pour les skuttérudites remplies

Les propriétés structurales des skuttérudites remplies sont présentées pour la première fois par Aleksandrov et Beznosikov [27] pour obtenir ces calculs il faut utiliser des principes structuraux connus [28-29].

Le calcul obtenu des paramètres de maille a et des paramètres internes y et z :

Pour:

$$X=P, a=0.4R_R+2.8R_M+3$$
 (I-1)

$$X=As, a=0.4R_R+2.8R_M+4.14.$$
 (I-2)

$$X=Sb, a=0.4R_R+2.8R_M+4.93.$$
 (I-3)

$$Y = (0.103R_M/R_X) + 0.255.$$
 (I-4)

$$Z=0.190-0.048R_{M}/R_{X}.$$
 (I-5)

Avec a : paramètre de maille cubique calculé

R_R, R_M et R_X sont des rayons atomiques des éléments R, M et X respectivement [30].

Y et z paramètres internes des atomes X.

I.4 L'intérêt des matériaux Skuttérudites

L'une des propriétés les plus importantes des skuttérudites remplis est la diminution rapide de la conductivité thermique [31] du réseau due au remplissage de la cage de la structure cristalline, qui est contenue par des atomes de carbone. Slack prédit 1995 [32] la présence d'atomes dans les grands vides du système Skuttérudite réduira fortement la conductivité thermique Au cours de la même année, il propose le concept de PGEC (Phonon-Verre à cristaux d'électrons).

PGEC a de bonnes propriétés électroniques semi-conductrices et le caractère ouvert de la structure cristalline de Skuttérudite à la propriété de loger divers objets volumineux. Les matériaux Skuttérudites améliorés ont pu révolutionner les industries de la réfrigération et de la génération d'électricité. Actuellement, ces matériaux sont employés en tant que "refroidisseurs" utilisé dans le refroidissement de petits dispositifs.

En général, la forme thermoélectrique des avantages du matériau peut être maximisée.

I-5 Skuttérudites remplies à base d'Osmium (Os)

La formule chimique des skuttérudites remplies à base d'Osmium est ROs_4X_{12} Avec R représentant les composés de terre-rares (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Yb, Ho, Er, Tm, Lu, U, Sr et Dy), ces composés sont appelés les Lanthanides, qui sont l'une des familles du tableau périodique et contiennent deux électrons dans la dernière orbite.

Et X comporte le phosphore P, un élément non métallique et le As et Sb des éléments metalloïde (cas intermédiaire entre les éléments métalliques et non métalliques). Les trois éléments chimiques de X appartiennent à la famille des pnictogènes, qui sont situés dans le quinzième V groupe du tableau périodique et contiennent cinq électrons dans la dernière orbite.

I.5.1 L'Osmium (Os) :

L'osmium est un mot grec qui signifie odeur, a été découvert en 1803 par Smithson Tennant en l'Angleterre, l'osmium est un métal de transition, on le trouve dans les sables contenant du platine, on peut utiliser cet élément dans les pointes de stylo-plume et pour les contacts électriques...etc. L'osmium appartient au huitième groupe du tableau périodique avec le fer et le ruthénium. Ces éléments contiennent deux électrons dans la dernière orbite.

Figure I-5 : Cristaux d'osmium artificiels [33]

I-6 Skuttérudites à base d'osmium que nous avons choisis

Pour notre travail, nous avons sélectionné six composés chimiques appartenant aux skuttérudites à base d'osmium afin d'étudier leur propriétés structurale, élastique et optoélectrique à l'aide de la méthode FP-LAPW, et ces composés sont DyOs₄P₁₂, GdOs₄P₁₂, EuOs₄As₁₂, NdOs₄As₁₂, SmOs₄Sb₁₂, YbOs₄Sb₁₂.

• $DyOs_4P_{12}$

 $DyOs_4P_{12}$ est un métal ferromagnétique qui possède une température de Curie très basse de l'ordre 2K, et de paramètre de maille a d'environ 8.06, nous avons choisi ce matériau pour le soumettre au « Journal of Materials Chemistry and Physics » en raison du manque d'informations à ce sujet. Nous discuterons de nos études pour ce matériau dans le chapitre 4.

Tableau I-1 : (Etat fondamental) FM : ferromagnétique, (température de transition(K)) T_{TR} , (paramètre de maille) a, (densité) d, d'un composé DyOs₄P₁₂.

Composé	Références	Etat fondamental	Température de transition(K)	a ₀ (Å)	d(g/cm ³)
DyOs ₄ P ₁₂	Expérience	 FM ^b	2ª	8.0601 ^b	8.214 ^b
	Théorie				

^aRef[34], ^bRef[35].

Composé	Références	Etat fondamental	Température de transition(K)	a ₀ (Å)	d(g/cm ³)
	Expérience	FM ^a	5 ^a	8.0657 ^a	8.163 ^a
GdOs ₄ P ₁₂	Théorie		5 ^b	 8.074 ^c	
	Expérience	FM ^d	1.1 ^d	8.5386 ^d	
NdOs ₄ As ₁₂	Théorie		 1.6 ^f	8.5291 ^e	 9.65 ^f
EuOa Aa	Expérience	FM ^g	2.5 ^g	8.5504 ^g	
EUOS ₄ AS ₁₂	Théorie				
	Expérience		 3 ⁱ	9.3009 ^h 9.301 ⁱ	
$SmOs_4Sb_{12}$		WFM ^j	2.5 ^j		
	Théorie		 3 ¹	9.3085^{k} 9.3009^{1}	 9.79 ¹
VI O SI	Expérience	HF^{m}		9.3193 ^m	
\mathbf{Y} bOs ₄ Sb ₁₂	Théorie			9.316 ⁿ	9.91 ⁿ

Tableau I-2:(Etat fondamental) FM :ferromagnétic ;WFM :weak ferromagnétic ;HF :heavy fermion, (température de transition(K)) T_{TR}, (paramètre de maille) a, (densité) d.

^aRef[35], ^bRef[36], ^cRef[37], ^dRef[38], ^cRef[39], ^fRef[40], ^gRef[41], ^hRef[42], ⁱRef[43], ^jRef[44] ^kRef[45], ^lRef[46], ^mRef[47], ⁿRef[48].

Le but de ce travail est d'obtenir de bons résultats pour les propriétés structurale, électronique, mécanique et optique des composés DyOs₄P₁₂, GdOs₄P₁₂, EuOs₄As₁₂, NdOs₄As₁₂, SmOs₄Sb₁₂, YbOs₄Sb₁₂.

Dans ce manuscrit nous avons divisé le travail en quatre chapitres, qui sont organisés comme suit :

- ✤ Le premier chapitre est une introduction générale sur les skuttérudites remplies.
- Le deuxième chapitre présente quelques notions théoriques sur un certain nombre d'approximations, ainsi que la formulation de la théorie de la fonctionnelle de Densité (DFT).
- Le troisième chapitre est consacré à la méthode des ondes planes linéairement augmentées avec potentiel total (FP-LAPW) utilisée dans ce travail, ainsi qu'une description de l'algorithme du code de calcul WIEN2K.

- Dans Le quatrième chapitre nous présentons et discutons les résultats de nos calculs concernant les propriétés structurales, élastiques, électroniques et optique des composés DyOs₄P₁₂, GdOs₄P₁₂, EuOs₄As₁₂, NdOs₄As₁₂, SmOs₄Sb₁₂, YbOs₄Sb₁₂.
- Enfin, nous conclurons ce manuscrit en rappelant les principaux résultats que nous avons obtenus lors de ce travail de recherche.

Références bibliographiques:

- [1] A. Kjekshus and T. Rakke, Compounds with the skutterudite type crystal structure –IIIStructural data for arsenides and antimonides, *Acta Chemica Scandinavia*, Vol. 28 (1974), pp. 99.
- [2] Oftedal, I, The cristal structure of skutterudites and smaltite-chlonthite, Z.Kristallogr.A66, 517, (1928).
- [3] W. Jeitschko, D.Braun, LaFe4P12 with filled CoAs3-type strucrure and isotypic lanthanoidtransition metal polyphosphides, Acta Cryst.3401 (1977).
- [4] RUNDQVIST, STIG. "Structure and bonding in skutterudite-type phosphides." Ark. Kem. 30 (1968): 103-114.
- [5] C.chubilleau Thèse de Doctorat « Influence d'inclusions de PbTe ou de ZnO sur les propriétés thermoélectriques de matériaux skutterudites » Institut National Polytechnique de Lorraine : Science et Ingénierie des Matériaux et Métallurgie.
- [6] W. Jeitschko and D. J. Braun, LaFe4P12 with filled CoAs type structure and isotypicLnxMyPz, ActaCrystallographica, Vol. 33 (1977), 3401.
- [7] BENNADJI ABDERRAHIM, thése de doctorat « Contribution à l'étude des propriétés structurales, électroniques, élastiques, thermodynamiques et optiques des alliages EuFe4Sb12, Co2XSi(X=Mn, Fe) et Co2Fe0.5Mn0.5Si par la méthode de premier principe » . (2016).
- [8] G. Mahan, B. Sales and J. Sharp, Physics Today, 42-45 (1997).
- [9] S. Rundquist and N. O. Ersson, Structure and bonding in skutterudite type phosphides, *Ark. Kemi*, Vol. 30, No. 10 (1968), pp. 103.
- [10] http://fr.wikipedia.org.
- [11] Handbook on the Physics and Chemistry of Rare EarthsVol. 33edited by K.A. Gschneidner, Jr., J.-C.G. Bünzli and V.K. Pecharsky© 2003 Elsevier Science B.V. All

rights reserved

- [12] M.S.Torikachvili, C.Rossel, M.W.McElfresh, M.B.Maple, R. P. Guertin and G. P. Meisner, J. Magn. Magn. Matter. 54-57, 365 (1986).
- [13] E. Bauer, S. Berger, A. Galatanu, C. Paul, M. D. Mea, H. Michor, G. Hilscher, A. Grytsiv, P. Rogl, D. Kaczorowski, L. Keller, T. Hermannsdrder and P.
- [14] G. P. Meisner, Physica B+C 108, 763 (1981).
- [15] N. Takeda and M. Ishikawa, J. Phys. Soc. Jpn. 69, 868 (2000).
- [16] G. P. Meisner, M. S. Torikachvili, K. N.Yang, M. B. Maple and R. P. Guertin J. Appl. Phys. 57, 3073(1985).
- [17] E. D. Bauer, A. Slebarski, E. J. Freeman, C. Sirvent and M. B. Maple, J. Phys.: Condens. Matter 13, 4495 (2001).
- [18] D. A. Gajewski, N. R. Dilley, E. D. Bauer, E. J. Freeman, R. Chau, M. B. Maple,D.Mandrus, B. C. Sales and A. H. Lacedra, J. Phys.: Condens. Matter 10, 6973 (1998).
- [19] Y. Aoki, T. Namiki, T. D. Matsuda, K. Abe, H. Sugawara and H. Sato, Phys. Rev. B65, 064446 (2002).
- [20] N. Takeda and M. Ishikawa, Physica B 259-261, 92 (1999).
- [21] E. D. Bauer, A. Slebarski, P. R. Dickey, E. J. Freeman, C. Sirvent, V. S. Zapf, N. R.Dilley and M. B. Maple, J. Phys.: Condens. Matter 13, 5183(2001).
- [22] N. R. Dilley, E. J. Freeman, E. D. Bauer, M. B. Maple, Phys. Rev. B 58, 6287 (1998).
- [23] D. Bérardan Thèse de Doctorat « Etude de skutterudites de terres-rares (R) et de métaux d (M) du type RM4Sb12 : de nouveaux matériaux thermoélectriques pour la génération d'électricité.Université Paris XII Val de Marne, 2004.
- [24] T. J. Seebeck, Abhandlung der Deutschen Akademie des Wissenschatfen zu Berlin,265,1823.
- [25] Thermal conductivity: theory, properties, and applications, edited by Terry

Tritt, Kluwer Academic (2004).

- [26] K. S. Aleksandrov and B. V. Beznosikov, Crystllography reports Vol. 52 No. 1 pp. 28– 36 (2007).
- [27] B. V. Beznosikov, Preprint No. 632 F, IF SO AN SSSR (Kirensky Institute of Physics, Siberian Branch of the Academy of Sciences of the Soviet Union, Krasnoyarsk, 1990).
- [28] B. V. Beznosikov, Kristallografiya 38, 189 (1993) [Crystallogr. Rep. 38, 234 (1993)].
- [29] C Sekine et al J.Phys.Soc.Jpn.77(2008)
- [30] Thermal conductivity: theory, properties, and applications, edited by Terry Tritt, Kluwer Academic (2004).
- [31] G. A. Slack, "New Materials and Performance Limits for Thermoelectric Cooling" in CRC Handbook of Thermoelectrics, D.M. Rowe (Ed.) CRC Press, Boca Raton (1995).
- [32] http://fr.wikipedia.org.
- [33] K.Kihou et al . Materiels Research Bulletin 39 317-325 (2004)
- [34] I.Shirotani ,Y.Shimaya,K.Kihou,C Sekine and T Yagi J Solid State Chem 174 32(2003).
- [35] A. Shankar et al Phase Transitions A Multinational journal (2015) 10.1080/01411594.2015.1031133.
- [36] 27th International Conference on Low Temperature Physics 528 (2014) 042002
- [37] T.CICHOREK et al Phys Review B90 195123 (2014).
- [38] D.J.Braun and W.Jeitschko. J.Solid State Chem 32.357 (1980)
- [39] G.Mahan.B.Sales and J.Sharp Physics Today 42-45(1997).
- [40] C Sekine ; K Akahira, K Ito and T Yagi .J.Phys.Soc.Jpn.78 093707 (2009)
- [41] T.Yanagisawa et al J.Phys.Soc.Jpn.80 043 601 (2011)
- [42] S.SANADA et al J.Phys.Soc.Jpn.74 246 (2005)
- [43] K.TAKEGAHARA and HARIMA J.Phys.Soc.Jpn.77(2008)Suppl.A.pp.193-195

- [44] YUJI. AOKI J.Phys.Soc Jpn.80(2011)SA013
- [45] H.KOTEGAWA et al J.Phys.Soc Jpn.74(2005)2173
- [46] D.J.Braun and W.Jeitschko. J.LessCommon Metals 72 147 (1980)
- [47] Kaiser.J.W.Jeitschko.W J.AlloysCompd.291 66 (1999).
- [48]H.Kunitoshietal.J.Phys.Soc.Jpn.85.114708(2016)

Cadre Théorique Et Méthodes De Calcul.

II-1/Introduction:

La connaissance des propriétés physiques (structurales, mécaniques, électroniques et optiques) d'un matériau à l'échelle microscopique est de fait soit expérimentalement soit théoriquement. Parmi les théories on a la théorie de la fonctionnelle de la densité (DFT), elle constitue actuellement l'une des méthodes les plus utilisées dans les calculs théoriques, l'idée principale de la DFT est que les valeurs moyennes des observables, telles que l'énergie, sont déterminées par la densité électronique de l'état fondamentale des systèmes.

La DFT permet de résoudre l'équation de Schrödinger [1] pour des systèmes plus grands, car elle contient des méthodes de calcul dans lesquelles des approximations sont utilisées. Parmi ces méthodes de calcul, les méthodes dites ab-initio [2].

La DFT a été créée par Hohenberg et Kohn en 1964 [3] et améliorée par Kohn et Sham en 1965 [4].

II-2 Equation de Schrödinger (1926) :

La mécanique quantique a pu étudier attentivement le mouvement des petites particules, contrairement à la mécanique classique, et a exprimé leur mouvement avec des fonctions d'ondes.

Pour étudier un système à 2 ou 3 corps, la mécanique quantique assume différentes fonctions d'états qu'un système peut prendre. Il suppose que ces fonctions d'ondes sont la superposition de la somme des fonctions d'ondes des particules des systèmes qui les comprennent avec la spécificité de chacune.

La mécanique quantique est basée par l'équation fondamentale de Schrödinger qui s'écrit par la relation :

$$\mathbf{H}\boldsymbol{\psi} = \mathbf{E}\boldsymbol{\psi} \tag{II.1}$$

Avec :

- E : l'énergie totale du système
- Ψ : Fonction d'onde
- H : Hamiltonien

L'Hamiltonien H est donné par :

$$H = T_e + T_n + V_{n-n} + V_{n-e} + V_{e-e}$$
(II.2)

 $O\dot{u}$: T_e et T_n sont des énergies cinétiques des noyaux et des électrons

$$T_e = \sum_i T_i = \sum_i \left(-\frac{\hbar^2}{2m}\Delta_i\right) \tag{II.3}$$

$$T_n = \sum_{\alpha} T_{\alpha} = \sum_{\alpha} \left(-\frac{\hbar^2}{2M_{\alpha}} \Delta_{\alpha} \right)$$
(II.4)

 V_{n-n} : L'énergie potentille d'interaction entre les noyaux.

$$V_{n-n} = \frac{1}{2} \sum_{I \langle j} \frac{z_I z_j e^2}{\left| \overrightarrow{R_I} - \overrightarrow{R_j} \right|}$$
(II-5)

V_{n-e} : L'énergie potentille d'attraction noyau – électrons.

$$V_{n-e} = -\sum_{I,i} \frac{z_I e^2}{\left|\vec{r}_i - \vec{R}_I\right|}$$
(II-6)

V_{e-e}: L'énergie potentille de répulsion entre les électrons

$$V_{e-e} = \frac{1}{2} \sum_{i \langle j} \frac{e^2}{\left| \overrightarrow{r_i} - \overrightarrow{r_j} \right|}$$
(III-7)

Où :

$$\nabla$$
 Le vecteur gradient dont les trois composantes sont $(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})$

- m : la masse de l'électron
- M : la masse du noyau

ri, rj : définissent les positions des électrons (I) et (j) respectivement.

RI, Rj : définissent les positions des noyaux (I) et (j) respectivement.

ZI, Zj : sont les nombres atomiques des noyaux (I) et (j) respectivement.

Donc l'équation de Schrödinger s'écrit :

$$H\psi = (T_e + T_n + V_{n-n} + V_{n-e} + V_{e-e})\psi$$
(II-8).

L'équation de Schrödinger est établie en 1925 [5].

II-2.1 Approximation de Born-Oppenheimer(1927) :

L'idée principale de l'approximation de Born-Oppenheimer [6] est le découplage des mouvements des électrons de celui des noyaux, cette approximation a été élaborée par Max-Bohn et Robert- Oppenheimer en 1927 [7]. La masse du noyau est plus grande que la masse d'électron, alors les électrons se déplacent plus rapidement par apport aux noyaux atomiques. Pour cette approximation, les électrons restent toujours dans l'état fondamental, quel que soit la position des noyaux atomique. On peut négliger aussi l'énergie cinétique des noyaux et l'énergie potentille noyau-noyau, après la simplification de l'équation de Schrödinger par l'approximation Born-Oppenheimer.

Après cela l'Hamiltonien total devient :

$$\hat{H} = \hat{T}_e + \hat{V}_{ee} + \hat{V}_{en}$$
(II.9)

Et on peut écrire l'équation de Schrödinger de façon :

$$H\psi_e = E\psi_e \tag{II.10}$$

Avec Ψ_e et E : l'état propre et l'énergie propre du système de Ne électrons.

Et l'énergie totale du système est donnée par :

$$E_{tot} = E_e + E_{nov} \tag{II.11}$$

Chapitre II CADRE THEORIQUE ET METHODES DE CALCUL.

Après cette approximation la résolution de l'équation de Schrödinger reste toujours impossible. Pour cela il y a d'autres approximations utilisées pour résoudre effectivement l'équation de Schrödinger.

II-2.2 approximation de Hartree et Hartree-Fock (1928-1930) :

En 1928, Hartree [8] a basé son approximation sur le modèle de l'électron indépendant, c'est-à-dire qu'il existe un champ pour le mouvement d'un seul électron résultant des noyaux et du reste des électrons.

Et en 1930, Fock a conclu que les solutions Hamiltonien H violent le principe d'exclusion de Pauli parce qu'elles ne sont pas asymétriques par rapport à l'échange de deux électrons [9].

Ainsi l'asymétrie de la fonction d'onde électronique s'écrit, en échangeant deux électrons par exemple :

$$\emptyset(\overrightarrow{r_l}, r_2, \dots, \overrightarrow{r_l}, \dots, \overrightarrow{r_j}, \dots, \overrightarrow{r_{Ne}}) = -\emptyset(\overrightarrow{r_l}, \overrightarrow{r_2}, \dots, \overrightarrow{r_l}, \dots, \overrightarrow{r_{Ne}})$$
(II.12)

Si nous écrivons la fonction d'onde sous la forme d'un "déterminant de « Slater » **[10]** le principe de Pauli peut être respecté, c'est ce qu'expriment Hartree et Focke dans le concept de fonction d'onde, puisque l'électron i occupe exactement l'état i.

$$\emptyset(\overrightarrow{r_{1}} \overrightarrow{\sigma_{1}}, \overrightarrow{r_{2}} \overrightarrow{\sigma_{2}}, \dots, \overrightarrow{r_{Ne}} \overrightarrow{\sigma_{Ne}}) = \frac{1}{\sqrt{Ne!}} \begin{vmatrix} \varphi_{1}(\overrightarrow{r_{1}} \overrightarrow{\sigma_{1}}) & \overrightarrow{\varphi_{1}}(\overrightarrow{r_{2}} \overrightarrow{\sigma_{2}}) \dots & \overrightarrow{\varphi_{1}}(\overrightarrow{r_{Ne}} \overrightarrow{\sigma_{Ne}}) \\ \varphi_{2}(\overrightarrow{r_{1}} \overrightarrow{\sigma_{1}}) & \overrightarrow{\varphi_{2}}(\overrightarrow{r_{2}} \overrightarrow{\sigma_{2}}) \dots & \overrightarrow{\varphi_{2}}(\overrightarrow{r_{Ne}} \overrightarrow{\sigma_{Ne}}) \\ \dots & \dots & \dots & \dots \\ \varphi_{Ne}(\overrightarrow{r_{1}} \overrightarrow{\sigma_{1}}) & \overrightarrow{\varphi_{Ne}}(\overrightarrow{r_{2}} \overrightarrow{\sigma_{2}}) \dots & \overrightarrow{\varphi_{2}}(\overrightarrow{r_{Ne}} \overrightarrow{\sigma_{Ne}}) \end{vmatrix} \quad (II.13)$$

Où σ représente le spin.

La fonction j conduit aux équations de Hartree-Fock pour un système à une particule :

$$\left(-\frac{1}{2}\Delta_i + V_{ext}(\vec{r}) + \sum_{\substack{j=i\\(j\aleph i)}}^{Ne} \int d^3 \vec{r} \, \frac{|\varphi_j(\vec{r'})|^2}{|\vec{r} - \vec{r'}|} \right) \varphi_i(\vec{r}) - \sum_{\substack{j=i\\(j\aleph i)}}^{Ne} \delta \, \sigma_i \sigma_j \int d^3 \vec{r'} \frac{\varphi_j(\vec{r'})\varphi_i(\vec{r})}{|\vec{r} - \vec{r'}|} \varphi_j(\vec{r}) = \varepsilon_i \varphi_{i(\vec{r})}$$
(II.14)

Chapitre II CADRE THEORIQUE ET METHODES DE CALCUL.

Mais lorsqu'il y a un grand nombre d'électrons il est difficile de résoudre les équations de Hartree-Fock car les interactions électron-électron produisent des termes d'énergie supplémentaires en plus de ceux de l'approximation de Hartree-Fock (AHF), qui sont appelés termes d'énergie de corrélation selon à Wigner [11]

On trouve toujours des tentatives de résolution des équations de Schrödinger, donc cette fois-ci toute une classe de méthodes a été construite, appelée interaction de configuration (CI, configuration interaction) mais aussi malheureusement, le nombre de configurations augmente rapidement avec le nombre d'électrons impliqués, ce qui limite la gamme de calculs pour les très petits systèmes.

En principe l'*AHF* pose un problème du fait du caractère non local du potentiel d'échange. De plus, cette méthode ne tient pas compte des effets de corrélation entre électrons de spins antiparallèles.

II-3 Théorie de la fonctionnelle de densité (DFT) :

En mathématique, une fonctionnelle est ce qu'on appelle une fonction de fonction. La théorie de fonctionnelle de la densité (DFT) a été fondée par Hohenberg et Kohn [6] et d'une part Kohn et Sham [12] en 1964 et en 1965. Elle repose sue une méthode de calcul basée sur la distribution de la densité électronique ρ . Par contre la méthode de Hartree-Fock dépend de la fonction d'onde à N corps $\phi(r)$ (r_1, r_2, \dots, r_n).

Et la théorie de Thomas [13] et Fermi [14] a été utilisée pour la description des atomes. Cette théorie fait savoir que les propriétés électroniques peuvent être décrites en termes de fonctionnelle de la densité électronique. Malgré que ce principe permette de calculer toutes les propriétés de l'état fondamental dont l'énergie, la DFT ne prétend pas donner la vérité. Elle ne fournit qu'une preuve que des résultats faibles seront obtenus si l'on sait établir les relations nécessaires entre la densité et l'énergie.

La densité électronique $\rho(r)$ étant la probabilité de trouver un électron dans un volume unitaire en r.

On a
$$\rho(r) \rangle 0$$
 avec $\rho(r \to \infty) = 0$ (II-15)

Et
$$\int_{R^3} \rho(r) = N_e$$
 (II-16)

Le but de la DFT c'est de déterminer, les propriétés de l'état fondamental d'un système avec une interaction coulombienne de la densité électronique.

II.3.1 Théorème de Hohemberg-Kohn :

La théorie de Pierre Hohemberg et Walter Kohn [6] qui a été développée en 1964 repose et reformule la théorie de Thomas et Fermi, tel que l'approche de Hohemberg-kohn est applicable pour tout système à plusieurs particules en interaction évoluant dans un potentiel externe. Elle se clarifie sur deux théorèmes :

Théorème 1 :

L'opérateur hamiltonien est déterminé par la densité électronique, pour tout système de particules en interaction dans un potentiel externe et à une constante additive prés, tel que l'hamiltonien est défini par le potentiel externe et le nombre total d'électrons M, qui peut être calculé à partir de la densité électronique. Alors pour déterminer toutes les fonctions d'ondes, il faut connaitre la densité électronique.

Aussi, il y a une relation bilatérale entre le potentiel externe $V_{ext}(r)$ et la densité électronique de l'état fondamental $\rho(\vec{r}) = \rho(\vec{r}) \leftrightarrow V_{ext}(r)$.

Cette relation est représentée comme une fonction de la densité électronique, elle est donnée par :

$$E\left[\rho(\vec{r})\right] = F_{HX}\left[\rho(\vec{r})\right] + \int V_{ext}(\vec{r})\rho(\vec{r})dr \qquad (\text{II-17})$$

Où $F_{HX}[\rho(r)]$: fonctionnelle universelle de Hohemberg et Kohn

 $V_{ext}(\vec{r})$: Potentiel externe agissant sur ces particules.

Théorème 2 :

La densité électronique $\rho(\vec{r})$ minimise la fonctionnelle d'énergie. Alors Hohenberg et Kohn montrent que la fonctionnelle d'énergie est minimale par apport à la densité électronique à l'état fondamental $\rho_0(\vec{r})$

$$E(\rho_0) = \min E(\rho) \tag{II-18}$$

Après ce théorème, les autres propriétés sont aussi une fonctionnelle de cette densité. L'énergie de l'état fondamentale est déterminée par la méthode vibrationnelle. La résolution de l'équation de Schrödinger après les deux théorèmes de Hohenberg et Kohn consiste à rechercher la minimisation de $E\left[\rho(\vec{r})\right]$, $\frac{\delta E}{\delta\rho(r)} = 0$.

II.3.2 : les équations de Kohn et Sham :

En 1965, Walter Kohn et Lu Sham [12] ont continué les travaux de Hohenberg et Kohn, ils proposent une méthode pratique qui aiderait à utiliser la théorie de la fonctionnelle de la densité, l'idée principale de ce travail est de ramener le système de N_e électrons interagissant à un système fictif de N_e électrons indépendants de même densité électronique.

Le système fictif de N_e électrons subisse un potentiel effectif $V_{eff}(r)$, c'est la première équation de Kohn et Sham :

$$V_{eff}(r) = V_{ext}(r) + V_{H}(r) + V_{XC}(r)$$
 (II-19)

Avec V_H : potentiel de Hartree qui définit p

$$V_{H}(\vec{r}) = \int \frac{\rho(\vec{r}') dr'}{|r' - r|}$$
(II-20)

Et $V_{xC}(r)$: potentiel d'échange et corrélation

$$V_{\rm XC}(\vec{r}) = \frac{\delta E_{\rm XC}(\rho)}{\delta \rho(\vec{r})}$$
(II-21)

 $E_{\rm XC}(\rho)$: est la fonctionnelle d'énergie d'échange et de corrélation, qui regroupe tout ce qui est inconnue dans un seul système. Ce terme est donné par :

$$E_{xC}[\rho] = T[\rho] - T_{ind}[\rho] + V[\rho] - V_{ind}[\rho]$$
(II-22)

Avec $T_{ind}[\rho]$: l'énergie cinétique du système de N_e électrons indépendants.

 $V_{ind}[\rho]$: l'énergie potentiel classique (terme de Hartree)

$$V_{ind} \left[\rho \right] = \frac{1}{2} \int \frac{\rho(r)\rho(r')}{|r-r'|} dr.dr'$$
(II-23)

L'équation de l'énergie du système donnée par :

$$E[\rho] = T_{ind}[\rho] + V_{in}[\rho] + E_{XC}[\rho] + \int V_{e-n}(r)\rho(r) dr \qquad (II-24)$$

En minimisant cette équation on obtient l'équation d'Euler :

$$\int \left[\frac{\delta T_{ind}\left[\rho\right]}{\delta\rho(r)} + \int \frac{\rho(r')dr'}{\left|r-r'\right|} + V_{e-n}(r) + \frac{\delta E_{xc}\left[\rho\right]}{\delta\rho(r)}\right] \delta\rho(r)dr = 0$$
(II-25)

Avec

$$\delta \rho(r) dr = 0 \tag{II-26}$$

Donc le terme entre parenthèse (équation II-25) est constant.

Chapitre II CADRE THEORIQUE ET METHODES DE CALCUL.

D'après la première équation de Kohn et Sham et l'équation (II-24) on peut obtenir la deuxième équation de Kohn –Sham

$$\varepsilon_i \phi_i(r) = \left[-\frac{\hbar^2}{2m_e} \overrightarrow{\Delta^2} + V_{eff}(\vec{r}) \right] \phi_i(r)$$
(II-27)

Avec \mathcal{E}_i : les énergies Kohn-Sham

Pour un système mono électronique, on peut remplacer la fonction d'onde $\psi(\vec{r})$ par la fonction d'onde $\phi(r)$.

Et la troisième équation de Kohn-Sham :

$$\rho(r) = \sum_{i=1}^{N_e} \left| \phi_i(r) \right|^2$$
(II-28)

Tous les calculs de DFT sont basés sur la résolution de ces trois équations, pour la DFT, les états et les énergies de Kohn-Sham sont des intermédiaires de calcul, ils sont utilisés pour calculer certains grandeurs physiques come les structures de bandes. Les états Kohn-Sham sont des bonnes approximations de la fonction d'onde ψ_e de N_e électrons du système.

II.4 Les différentes approximations d'échange-corrélation utilisées dans le cadre de la DFT :

Dans l'approche de Kohn et Sham, la fonctionnelle d'échange-corrélation $E_{XC}[\rho]$ reste la seule fonctionnelle de la densité qui n'est pas connue, et pour résoudre les équations de Kohn et Sham, on a plusieurs fonctionnelles d'échange-corrélation qui ont été envisagées.

L'expression de la fonctionnelle d'échange-corrélation est basée sur plusieurs types d'approximations qui ont été développées [15].
Chapitre II

II.4.1 Approximations de la densité locale (LDA)

Pour l'approximation de la densité local (LDA) [16], le traitement de la densité électronique ce fait localement sous la forme d'un gaz d'électrons uniforme. Dans la LDA qui est la plus simple des approximations, l'expression de l'énergie d'échange-corrélation $E_{xc} \left[\rho_{e} \right]$ [17] s'écrit

$$E_{XC}^{LDA}[\rho] = \int \rho(r) \varepsilon_{XC}(\rho) dr \qquad (II-29)$$

Avec \mathcal{E}_{XC} : l'énergie d'échange-corrélation pour une particule d'un gaz d'électron uniforme de densité ρ . Elle représente une somme d'une contribution d'échange et corrélation

$$\varepsilon_{xc} = \varepsilon_c(\rho) + \varepsilon_x(\rho) \tag{II-30}$$

La contribution de l'échange électronique pour l'approximation LDA est connue, elle est donnée par la fonctionnelle d'énergie d'échange de Dirac [18]

$$\varepsilon_{X}(\rho) = -\frac{3}{4} \left(\frac{3}{\pi}\rho(r)\right)^{1/3}$$
 (II-31)

L'énergie de corrélation $\varepsilon_c(\rho)$ ne peut être exprimée de manière exacte, alors des calculs Monte-Carlo quantique de Ceperley et Alder (1980) [16] offrent des valeurs précises de $\varepsilon_c(\rho)$, et actuellement on a différentes paramétrisations numériques ou analytiques de $\varepsilon_c(\rho)$ qui peut déterminer par :

Winger [19], Perder et Zunger [20], Kohn et Sham [12], Hedin et Lundqvirt [21] et Perder et et Wang [22].

Après les travaux de Zunger et Freeman [23, 24] et de Moruzzi et al (1978) [25] (à partir des années 1977), l'efficacité de l 'approximation LDA est apparue.

Introduction de Spin :

La polarisation de Spin par l'approximation de la densité local de Spin (LSDA) est utilisée par Kohn et Sham pour les systèmes magnétiques. Alors l'énergie d'échangecorrélation \mathcal{E}_{XC} devient une fonctionnelle avec deux densités de Spin haut et bas P_{\uparrow} ,

$$E_{XC}^{LSDA}\left[P_{\uparrow},P_{\downarrow}\right] = \int \mathcal{E}_{XC}(P_{\uparrow}(\mathbf{r}),P_{\downarrow}(r))\rho(r)dr \qquad (\text{II-32})$$

Avec $P = P_{\uparrow} + P_{\downarrow}$

II.4.2 Approximation du gradient généralisée GGA :

L'approximation GGA [26, 27] est une amélioration de la LDA dans le traitement de l'échange et de corrélation, les méthodes GGA sont appelées méthodes non locales.

L'énergie d'échange-corrélation dans l'approximation GGA est donnée par :

$$E_{XC}^{GGA}[\rho] = \int \rho(r) \mathcal{E}_{XC}(\rho(r), \Delta \rho(r)) dr \qquad (II-33)$$

L'utilisation de l'approximation GGA est efficace pour des systèmes dont la densité électronique varie fortement, plusieurs calculs ont été effectués par cette approximation tel que les approximations utilisées Perder et al (1996) [28], les versions plus utilisées de GGA sont celles de Perder et Wang [29] et Perder [30].

Introduction de Spin :

Pour les systèmes magnétiques, les densités électroniques dépendent de la polarisation de Spin (P_{\uparrow} , P_{\downarrow}), l'énergie d'échange et corrélation est donnée par :

$$\varepsilon_{XC}^{GGA} \Big[P_{\uparrow}, P_{\downarrow} \Big] = \int \rho(r) \varepsilon_{XC}(P_{\uparrow}, P_{\downarrow}), \Delta P_{(r)\uparrow}, \Delta P_{(r)\downarrow} dr$$
(II-34)

Chapitre II

II.5 Résolutions des équations de Kohn Sham :

Pour résoudre les équations de Kohn et Sham (II.19, II-27 et II-28), une règle fonctionnelle pour les fonctions d'ondes doit être choisie qui peut être considérée comme une combinaison linéaire d'orbitales appelées orbitales de Kohn-Sham écrites sous la forme :

$$\varphi_i(r) = \sum C_{ia} \phi_a(r) \tag{II.35}$$

Où $\varphi_i(r)$ sont les fonctions de base, et les C_{ia} sont les coefficients de l'expansion.

Après la résolution des équations de Kohn et Sham on peut déterminer les coefficients C_{ia} pour les orbitales occupées qui minimisent l'énergie totale.

L'énergie totale étant variation elle dans la DFT, la solution self consistante des équations de KS revient à déterminer les Cia, pour les orbitales occupées qui minimisent l'énergie totale. L'énergie est réécrite en utilisant les valeurs propres Ei.

$$E[\rho] = E_{ii}[\rho] + \sum_{occ} \varepsilon_i + E_{xc}[\rho] - \int \rho(r) \left(V_{xc}(r) + \frac{1}{2} V_H(r) \right) d^3r$$
(II.36)

La simplification des calculs se fait par la résolution des équations de Kohn et Sham pour les points de symétries dans la première zone de Brillouin. Plusieurs techniques de calculs ont été mises en évidence, parmi les calculs, on trouve la méthode de Bryden (1965) [31] qui s'effectue selon l'organisme de la figure (II.2). Ce processus commence par une injection de la densité de charge initiale ρ_{in} pour diagonaliser l'équation séculaire :

$$(\mathbf{H} - \varepsilon_i S)C_{i=0} \tag{II-37}$$

Avec H : la matrice Hamiltonienne et S la matrice de recouvrement.

On peut utiliser la densité de charge totale qui peut être obtenue par une sommation sur toutes les orbitales occupées à partir d'un mélange réalisé entre la nouvelle densité de charge ρ_{out} (densité de sortie) et la densité d'entrée ρ_{in} . Ce mélange peut être formulé par une équation de la façon suivante :

$$\rho_{in}^{i+1} = (1-\alpha)\rho_{in}^{i} + \alpha\rho_{out}^{i}$$
(II-38)

Où i : la i^{ime} itération

 α : le paramètre de mélange.

Afin de réaliser la convergence ; la procédure itérative peut être suivie.

Figure II-1 : Diagramme pour la nième itération du traitement auto-cohérent (self-consistent) pour résoudre les équations de Hartree-Fock ou de Kohn-Sham.

Références bibliographiques:

- [1] E. Schrödinger, Ann. Phys., 79, 489, (1926) ; E. Schrödinger, Ann. Phys., 79, (1926) 361.
- [2] P. A. Dirac, Proc. Soc (London) 123, (1929) 714.
- [3] T.L. Loucks, « The Augmented Plane Wave Methode », Benjamine, New York (1967).
- [4] E.Wimmer, H.Kramaur, M.Weinert and A.J.Freeman, Phys.Rev B 24, 864 (1981).
- [5] E. Schrödinger, Phys. Rev. 28, 1049 (1926).
- [6] P. Hohenberg, W. Kohn, Phys. Rev., 136, (1964) B864.
- [7] M. Born et R. Oppenheimer, Annalender Physik. 389, (1927) 457-484.
- [8] D.R.Hartree, Proc. Combridge Philos. Soc. 24, 89, 1928.
- [9] Samir Matar, Approches Mono électronique, Institut de Chimie de la Matière Condensé de Bordeaux ICMCB CNRS 33608 PESSAC Cedex Preprint (14/09/2004).
- [10] V. Fock, Z. Phys. 61, 126(1930); 62, 795 (1930).
- [11] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
- [12] W. Kohn and L. J. Sham. Phys. Rev., 140(4A) : A1133 A 1138, Nov 1965.
- [13] L.H. Thomas. Proc. Combridge Philos. Soc., 23,542-548, (1928).
- [14] E. Fermi I.Z. Phys., 48, 73 (1928).
- [15] H.BOUAFIA, Thèse de doctorat, Université Mohamed BOUDIAF Oran, (2014).
- [16] D.M. Ceperley and B.J.Alder, Phys.Rev. Lett. 45, (1980) 566.
- [17] L. J. Sham, W. Kohn, Phys. Rev. 145, (1966) 561.
- [18] P. A. M. Dirac, Proc. Camb. Phil. Soc. 23, (1927) 542.
- [19] E. Weigner, Phys. Rev. 46, 1001 (1934).
- [20] J.P.Perdew and A. Zunger, Phys. Rev. B23, 2048 (1981).
- [21] L.Hedin and B. Lundqvist, J. Phys. C4, 2064 (1971).
- [22] J.P. Perdew and Y. Wang, Phys. Rev. B45, 13244 (1992).
- [23] A.Zunger and A.J. Freemeen Phys. Rev. B16, (1977) 2901.

Chapitre II CADRE THEORIQUE ET METHODES DE CALCUL.

- [24] A.Zunger and A.J. Freemeen Phys. Rev. B15, (1977) 4716.
- [25] V. L. Moruzzi, J, F. Janak, and A. R. Williams, Calculated Electronic Properties of Metals, Pergamon, New York (1978).
- [26] J. P. Perdew, phys. Rev. Lett 55, (1985) 1665.
- [27] J. P. Perdew, physica B 172, (1991) 1.
- [28] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
- [29] J. P. Perdew and Wang, Phys. Rev. B33, 8800 (1986).
- [30] J. P. Perdew in 'Electronic Structure of Solids', Academy verlag, Berlin, 11 (1991).
- [31] S. Bloom and T.K. Bergestresser, Solid State Commun.6, 465 (1968).

Chapitre III

La Méthode des ondes planes augmentées linéarisées

FP-LAPW

Chapitre III La Méthode des ondes planes augmentées linéarisées FP-Lapw

Pour notre travail nous avons utilisé le code WIEN2K, ce code permet d'effectuer tous les calculs théoriques des produits physiques de matériaux avec une grande précision, il est basé sur la méthode FP-LAPW. Après cette méthode on peut résoudre les équations de Kohn et Sham pour trouver la densité de l'état fondamentale.

La méthode FP-LAPW donne de bons résultats pour les skuttérudites.

III.1 La méthode des ondes planes augmentées linéarisées (LAPW) :

III.1.1 La méthode des ondes planes augmentées (APW) :

La méthode LAPW a contribué à améliorer la méthode APW qui a été élaborée par Stater [1-2-3].

En 1937, J.C Slater propose la méthode APW afin d'introduire l'approximation muffin-tin, la maille unité pour cette approximation est divisée en deux régions : des sphères autour des atomes appelées les sphères muffin-tin, le potentiel et les fonctions d'ondes pour cette région présentant une symétrie sphérique : l'intérieur des sphères MT de rayon R_{α} est une région interstitielle entre les atomes, pour cette région le potentiel et les fonctions d'ondes peuvent être considérés comme lisses.

Figure III.1 : Potentiel «Muffin-Tin»

Aussi la fonction d'onde est de la forme :

$$\phi(r) \begin{cases} \frac{1}{\Omega^{1/2}} \sum_{G} C_{G} e^{i(G+K)r} & r > R_{\alpha} \\ \sum_{lm} A_{lm} U_{l} Y_{lm}(r) & r < R_{\alpha} \end{cases}$$
(III.1)

Où

- R_{α} : Rayon de la sphère MT
- Ω : Volume de la cellule

 C_G, A_{lm} : Coefficient du développement en harmonique sphérique Y_{lm}

La résolution régulière de l'équation de Schrödinger pour la partie radiale s'écrit sous la forme d'une fonction $U_1(r)$:

$$\left\{-\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} + V(r) - E_l\right\} r U_l(r) = 0$$
(III.2)

V(r) : Potentiel Muffin-Tin

E₁: Energie de linéarisation.

Les fonctions radiales $U_l(\mathbf{r})$ définies par (III.2) sont orthogonales à tout état propre du cœur. Cette orthogonalité disparaît en limite de sphère [4] comme le montre l'équation de Schrödinger suivante :

$$(E_2 - E_1)rU_1U_2 = U_2 \frac{d^2 r U_1}{dr^2} - U_1 \frac{d^2 r U_2}{dr^2}$$
(III.3)

 U_1, U_2 : Solutions radiales pour les énergies E_1 et E_2 .

Le recouvrement étant construit en utilisant l'équation (III.3) et en l'intégrant par partie.

L'approximation muffin-tin donne de très bons résultats pour les matériaux à structure cubique à face centrée, lorsque le potentiel est constant, Slater montre que les ondes planes sont les solutions de l'équation de Schrödinger, et pour le cas c'est un potentiel sphérique, les fonctions radiales sont des solutions lorsque E_1 est égale à une valeur propre.

Les coefficients A_{lm} sont déterminés en fonction du coefficient C_G des ondes planes.

Ces coefficients sont aussi exprimés par l'équation suivante :

$$A_{lm} = \frac{4\pi i^{l}}{\Omega^{1/2} U_{l}(R_{\alpha})} \sum_{G} C_{G} j_{l} (|K + g|R_{\alpha}) Y_{lm}^{\star}(K + G)$$
(III.4)

L'origine est au centre de la sphère.

Les ondes planes C_G et les paramètres d'énergies E_l déterminent les coefficients A_{lm} , les paramètres E_l sont appelées les coefficients variationnels de la méthode APW. Les fonctions individuelles qui sont représentées par l'indice G deviennent aussi compatibles avec les fonctions radiales dans la région sphérique, et alors on obtient des ondes planes augmentées (APW).

Les fonctions APW sont considérées comme des solutions de l'équation de Schrödinger dans les sphères.

Pour l'énergie E_l , avec E_l étant égale à celle de la bande d'indice G, ce qui veut dire que les bandes d'énergies (pour un point K) ne peuvent être obtenues par simple diagonalisation, bien que le déterminant séculaire doive être traité en fonction de l'énergie.

III.1.2 principe de la méthode LAPW :

Les fonctions de bases dans les sphères MT pour la méthode LAPW sont des combinaisons linéaires des fonctions radiales $U_l(r) Y_{lm}(r)$ et de leurs dérivées $\dot{U}_l(r) Y_{lm}(r)$ par apport à l'énergie. Les fonctions U_l sont définies de la même façon que dans la méthode APW (II.3) et la fonction $\dot{U}_l(r) Y_{lm}(r)$ satisfait l'équation suivante :

$$\left\{-\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} + V(r) - E_l\right\} r \dot{U}_l(r) = r U_l(r)$$
(III.5)

Les fonctions radiales $U_l(r)$ et $U_l(r)$, pour le cas non relativiste, sont utilisées pour assurer à la surface de la sphère « muffin-tin », la continuité avec les ondes planes de l'extérieur. Les fonctions d'ondes de la méthode FP-LAPW s'écrivent alors comme suit :

$$\phi(r) \begin{cases} \frac{1}{\Omega^{1/2}} \sum_{G} C_{G} e^{i(G+K)r} & r > R_{\alpha} \\ \sum_{lm} [A_{lm} U_{l}(r) + B_{lm} \dot{U}_{l}(r)] Y_{lm}(r) & r < R_{\alpha} \end{cases}$$
(III.6)

Où

 B_{lm} : analogues aux coefficient A_{lm} , elles correspondent à la fonction $\dot{U}_l(r)$.

La solution de l'équation de Schrödinger, peut être développée au voisinage de E_l suivant l'équation :

$$U_l(E,r) = U_l(E_l,r) + (E - E_l)\dot{U}_l(E,r) + O((E - E_l)^2)$$
(III.7)

Où : $O((\mathbf{E}-\mathbf{E}_{l})^{2})$ représente l'erreur quadratique énergétique.

La méthode LAPW assure ainsi la continuité de fonction d'onde à la surface de la sphère -MT-. Mais avec cette procédure, les calculs ne donnent pas une bonne précision par apport à la méthode APW. Le passage vers la méthode LAPW introduit des erreurs sur les fonctions d'ondes de l'ordre $(E - E_l)^2$ et une autre erreur sur les énergies de bande de l'ordre $(E - E_l)^4$.

Malgré cet ordre d'erreur, les ondes planes linéairement augmentée (LAPW) forment une bonne base qui permet avec un seul E_l , d'obtenir toutes les bandes de valence dans une grande région d'énergie.

Chapitre III La Méthode des ondes planes augmentées linéarisées FP-Lapw

Takeda et Kuber [4] ont généralisé la méthode LAPW en utilisant N fonctions radiales et leurs (N-1) dérivées. On évite l'erreur liée à la linéarisation en considérant alors que chaque fonction radiale possède son propre paramètre E_{li} . De cette façon, on peut considérer la méthode LAPW pour N=2 et E_{l1} proche de E_{l2} . Pour N>2 les erreurs peuvent être réduites. Pour utiliser une dérivée d'ordre élevé et éviter un temps de calcul beaucoup plus grand que dans la méthode LAPW, alors Singh [5] a modifié cette approche en ajoutant des orbitales locales à la base sans augmenter l'énergie de cut-off des ondes planes.

III.1.3 les rôles des énergies de linéarisation :

Pour tout état de cœur limité à la sphère MT, les fonctions U_l et \dot{U}_l sont orthogonales. Or ce choix, dans le cas où il n'y a pas d'états de cœur avec le mêmel, n'est jamais satisfait. Cela signifiait que nous risquons de confondre les états de semi-cœur avec l'état de valence. Alors la méthode APW n'est pas utilisée pour le traitement de ce problème, la non orthogonalité de quelques états de cœur dans la méthode FP-LAPW exige un choix délicat de E_l . Donc, on ne peut pas effectuer le calcul sans modifier E_l dans ce cas.

Dans de tels cas, pour donner une solution idéale, on utilise un développement en orbitales locales. Pour cela on peut choisir un rayon de la sphère le plus grand possible parce que cette option n'est pas disponible dans tous les programmes.

Enfin, il faut remarquer que les divers E_l devraient être définis indépendamment les uns des autres. Les bandes d'énergies ont des orbitales différentes. Pour donner un calcul bien précis de la structure électronique E_l , on peut choisi le plus proche possible de l'énergie de la bande si la bande à le mêmel.

III.1.4 Solution de l'équation de Poisson :

Les équations de Kohn-Sham sont utilisées avec un potentiel qui contient un terme d'échange et de corrélation et un terme de coulomb $V_c(r)$. Le terme coulombien est la somme du potentiel de Hartre $(V_H(r))$ et du potentiel nucléaire $(V_c(r))$, il est déterminé par l'équation de Poisson à partir de la densité de change (électronique et nucléaire)

$$\Delta^2 V_c(r) = 4\pi P(r) \tag{III-8}$$

La méthode de résolution dite « pseudo-échange » due à Hamam [6] et Weinert est basée sur deux observations :

Dans la région interstitielle, la densité de charge est développée en série de Fourier

$$\rho(r) = \sum_{G} \rho(G) e^{iG.r} \tag{III.9}$$

Et dans les planes $e^{iG.r}$ sont calculées à partir de la fonction de Bessel j

$$\int_{0}^{R} r^{l+2} j_{l}(Gr) dr = \begin{cases} \frac{R^{l+3} j_{l}(Gr)}{Gr} & G \neq 0\\ \frac{R^{3}}{3} \delta_{l,0} & G = 0 \end{cases}$$
(III.10)

$$e^{iG.r} = 4\pi e^{iG.r_{\alpha}} \sum_{lm} (|G \square r - r_{\alpha}|) Y_{lm}^{*}(G) Y_{lm}(r - r_{\alpha}) \qquad (III.11)$$

Où r est la coordonnée radiale, et r_{α} la position de la sphère α et R_{α} son rayon

$$V_c(G) = \frac{4\pi\rho(G)}{G^2}$$
(III.12)

Le potentiel interstitiel V_{PW} a été trouvé directement par intégration de l'équation

$$V_{PW} = \sum_{lm} V_{lm}^{PW}(r) Y_{lm}(r) = \sum_{\nu} V_{\nu}^{PW}(r) K_{\nu}(r)$$
(III.13)

Soit :

$$K_{v}(r) = \sum_{m} C_{vm} Y_{lm}(r)$$
 (III.14)

Donc :

$$V_{\nu}^{PW}(r) = \sum_{lm} C_{\nu,m} V_{lm}^{PW}(r)$$
(III.15)

On détermine le potentiel à l'intérieur de la sphère MT par l'utilisation de la fonction de Green.

$$V_{\nu}(r) = V_{lm}^{PW}(r) \left[\frac{r}{R}\right]^{l} + \frac{4\pi}{2l+1} \left\{\frac{1}{r^{l+1}} \int_{0}^{r} dr' r'^{l+2} \rho_{\nu}(r') + r^{l} \int_{r}^{R} dr' r'^{l-1} \rho_{\nu}(r') - \frac{r^{l}}{R^{2l+1}} \int_{0}^{Rr} dr' r'^{l+2} \rho \nu(r')\right\}$$
(III.16)

Où les $\rho_{\nu}(r)$ sont les parties radiales de la densité de charge.

III.1.5 Le potentiel d'échange et de corrélation :

Le potentiel d'échange et de corrélation est linéaire, contrairement au potentiel coulombien dans l'approximation LDA. Donc il doit être calculé dans l'espace réel où il est heureusement diagonal.

Pour obtenir le potentiel interstitiel d'échange et de corrélation suivant :

$$V_{XC} = -\rho^{\frac{1}{3}} \left[0.984 + \frac{0.94356 + 8.8963\rho^{\frac{1}{3}}}{(1+12.57\rho^{\frac{1}{3}})^2} \right]$$
(III-17)

On utilise la formule de Wigner [7] et à partir de la transformation de Fourier [8-9], on peut représenter le change interstitiel dans l'espace réel.

Figure III-2 : Diagramme de calcul du potentiel d'échange et de corrélation

III.1.6 Développement en orbitales locales :

L'utilisation de la méthode LAPW donne des énergies de bande précises au voisinage des énergies de linéarisation E_l [10]. On choisit ces énergies au voisinage du centre des bandes dans la majorité des matériaux.

Chapitre III La Méthode des ondes planes augmentées linéarisées FP-Lapw

Ce choix n'est pas toujours possible, la valeur unique de E_l pour quelques matériaux, n'est pas suffisante pour calculer toutes les bandes d'énergies. C'est le cas des matériaux ayant des orbitales 4 f [11-12] et des matériaux de transition [13-14].

L'intermédiaire entre l'état de valence et de cœur, c'est le problème de l'état de semicœur.

Pour cela on utilise soit le développement en doubles calculs, soit les fenêtres d'énergie multiple.

III.1.6.1 La méthode LAPW+LO :

L'utilisation de la troisième catégorie de fonction de base évite l'utilisation de nombreuses fenêtres en ajoutant la base des orbitales locales afin de développer la méthode LAPW. A partir d'une seule fenêtre d'énergie, on peut traiter l'ensemble des bandes. Singh [15] a donné ces orbitales, notées « LO » avec la combinaison linéaire de deux fonctions radiales correspondant à deux énergies différentes et de la dérivée par rapport à l'énergie de l'une de ces fonctions.

$$\emptyset(r) = \begin{cases} 0 & r > R_{\alpha} \\ [A_{lm}U_l(r, E_l) + B_{lm}U_l(r, E_l) + C_{lm}U_l(r, E_l)]Y_{lm}(r) & r < R_{\alpha} \end{cases}$$
(III.18)

 C_{lm} : sont de la même nature que les coefficients A_{lm} et B_{lm} définies précédemment.

L'orbitale locale de l et m sont pour un atome défini (tous les atomes dans la cellule unitaire sont considérés, pas seulement les atomes inéquivalents).

En utilise ces orbitales locales au-delà des traitements des états de semi-cœur pour améliorer la base vis à vis des bandes de conduction.

Le succès de la méthode linéaire basée sur la méthode LAPW permet d'étendre cette méthode à de nombreux composés.

III.1.6.2 La méthode APW + lo :

La dépendance énergétique dans la méthode LAPW + lo adaptée à la méthode APW, peut être éliminée au détriment d'une base de plus grande taille, et de ce fait des méthodes APW et LAPW + lo ont acquis respectivement une limitation importante.

Une amélioration a été apportée par Singh, Sjosted et Nordstrom [16] qui a permis de réaliser une base combinant des avantages de la méthode APW et ceux de la méthode LAPW + lo. Cette méthode est appelée « APW + lo », en ajoutant lo (orbitale locale) pour donner une indépendance de l'énergie E_l . Donc, la méthode APW + lo combine les deux bases APW et LAPW + lo, comme nous l'avons signalé, la base « APW + lo » est définie par l'association des deux types de fonctions d'onde suivantes :

• Des ondes planes APW avec un ensemble d'énergies E_l fixées.

$$\phi(r) = \begin{cases} \frac{1}{\Omega^{1/2}} \sum_{G} C_{G} e^{i(G+K)r} & r > R_{\alpha} \\ \sum_{lm} A_{lm} U_{l}(r) Y_{lm}(r) & r < R_{\alpha} \end{cases}$$
(III.19)

• Des orbitales locales différentes de celles de la méthode LAPW+LO définies par :

$$\phi(r) = \begin{cases} 0 & r > R_{\alpha} \\ [A_{lm}U_l(r, E_l) + B_{lm}U_l(r, E_l)]Y_{lm}(r) & r < R_{\alpha} \end{cases}$$
(III.20)

Pour différents atomes, une base mixte (LAPW et APW + lo) peut être utilisée dans un calcul, et même pour différentes valeurs du nombre 1. Le nombre des ondes planes peut lentement converger avec les orbitales, et les atomes de petites tailles sont décrits avec la base APW + lo et le reste avec une base LAPW [17].

III.1.7 Le concept de la méthode FP-LAPW :

Il n'est pas possible de se rapprocher de la forme potentielle ou de la densité de charge de la méthode des ondes planes augmentés linéarisés à potentielle totale FP-LAPW [18, 19], cela a conduit à son développement aux harmoniques de réseau dans chaque sphère atomique,

Chapitre III La Méthode des ondes planes augmentées linéarisées FP-Lapw

et la série de Fourier dans les régions interstitielles qui sont à l'origine du non « fullpotential ». A partir de là, on peut assurer la continuité du potentiel à la surface de la sphère MT, qui a été développée sous la forme suivante :

$$V(r) = \begin{cases} \sum_{K} V_{K} e^{iKr} & r > R_{\alpha} \\ \sum_{lm} V_{lm}(r) Y_{lm}(r) & r < R_{\alpha} \end{cases}$$
(III.21)

De la même manière, la densité de charge est développée sous la forme:

$$\rho(r) = \begin{cases} \sum_{K} \rho_{K} e^{iKr} & r > R_{\alpha} \\ \sum_{lm} \rho_{lm}(r) Y_{lm}(r) & r < R_{\alpha} \end{cases}$$
(III.22)

III.1.8 Le code Wien2K :

On utilise la méthode FP-LAPW qui a été implantée dans le code Wien2K [20, 21]. Le code Wien2K consiste en différents programmes indépendants. Ce code permet de traiter plusieurs composés tels les supraconducteurs [22], les minéraux [23], les métaux de transitions [24], les oxydes non ferrimagnétiques [25] et les molécules aussi bien que le gradient du champ électrique [26].

La procédure de calcul avec ce code passe par des étapes comme suit :

NN : c'est un programme qui donne les distances entre plus proche voisins, qui aide à déterminer le rayon atomique de la sphère.

LSTART : un programme qui génère les densités atomiques et détermine comment les déférentes orbitales sont traitées dans le calcul de la structure de bande, comme des états du cœur avec ou sans orbitale locale.

SYMMETRY : il génère les opérations de symétrie du groupe spatiale, détermine le groupe ponctuel des sites atomiques individuels, génère l'expansion LM pour les harmoniques du réseau et détermine les matrices de rotation locale.

KGEN : Il génère une maille k dans la zone de Brillouin.

DSTART : Il génère une densité de départ pour le cycle SCF par la superposition des densités atomiques générées dans LSTART. Alors un cycle self consistant est initialisé et répété jusqu'à ce que le critère de convergence soit vérifié. Ce cycle s'inscrit dans les étapes suivantes :

LAPW0 : génère le potentiel pour la densité.

LAPW1 : calcul des bandes de valence, les valeurs propres et les vecteurs propres.

LAPW2 : calcul des densités de valence pour les vecteurs propres.

LCORE : calcul les états des cœurs et les densités.

MIXER : mélange les densités d'entrés et de sorties.

Chapitre III La Méthode des ondes planes augmentées linéarisées FP-Lapw

Figure II-3 : L'organigramme des programmes du code Wien2k.

Références bibliographiques:

- [1] J.C. Slater, *Phys. Rev.* 51, (1937) 846.
- [2] J.C. Slater, Advances in Quantum Chemistry 1,(1964) 35.
- [3] T.L. Loucks, « The Augmented Plane Wave Method », Benjamin, New York
- [4] J.C. Slater, « Quantum Theory of Molecules and Solids », V2, Ch. 8 (1965).
- [5] T. Takeda and J. Kubler, J. Phys. F 5, (1979) 661.
- [6] D. Singh, *Phys. Rev.* B 43, (1991) 6388.
- [7] D. R. Hamann, Phys. Rev. Lett. 42, 662, 1979.
- [8] J.Korringa, Physica 13, 392 (1947)
- [9] R. C. Singleton, IEEE Trans. Audio and Electroacoustics 17,93 (1969).
- [10] A. D. Mclaren, Math. Comp. 17,361 (1963).
- [11] O.K. Andersen, *Phys. Rev.* B 12, (1975) 3060.
- [12] D. J. Singh, *Phys. Rev.* B 44, (1991) 7451.
- [13] S. Goedecker and K. Maschke, *Phys. Rev.* B 42, (1990) 8858.
- [14] D. J. Singh and H. Krakauer, *Phys. Rev.* B 43, (1991) 1441.
- [15] D. J. Singh, K Schwarz and P. Blaha, Phys. Rev. B 46, (1992) 5849.
- [16] D. Singh, *Phys. Rev.* B 43, (1991) 6388.
- [17] E. Sjösted, L. Nordström and D. J. Singh, Solid State Commun. 114, (2000) 15.
- [18] K. Schwarz, P. Blaha, G.K.H. Madsen, Comput. Phys. Commun. 147 (2002) 71.
- [19] G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sj"ostedt, L. Nordstr"om, Phys. Rev. B 64 (2001) 195134.
- P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran,
 L.D. Marks, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for
 Calculating Crystal Properties (Karlheinz Schwarz, Techn, Universit^a Wien, Austria),
 2018, ISBN 3-9501031-1-2.

- [21] P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen, L.D. Marks, J. Chem. Phys. 152 (2020), 074101.
- [22] K. Schwarz, C. Ambrosch-Draxl and P.Blaha, « Charge distribution and electricfield gradients in YbaCuo », phys. Rev. B, 42, 2051, 1990.
- [23] B. Winkler, P. Blaha and K. Schwarz, « Ab initio calaculation of electric-field -gradient tensors of forsterite », Am. Mineralogist, 81, 545, 1996.
- [24] B. Kohler, P. Ruggerone, S. Wilkeand M. Scheffler, « Frustrated H-induced instability of Mo (110) », Phys. Rev. Lett, 74, 1387, 1995.
- [25] X. G. Wang, Weiss, Sh. K. Shaikhutdinov, M. Petersen, F. Wagner, R. Schlogl and M. Scheffler, Phys. Rev.Lett, 81, 1038, 1998.
- [26] P. Dufek, P. Blaha and K. Schwarz, « Determination of the nuclear quadrupole moment of 57Fe », Phys. Rev.Lett, 75, 3545, 1995.

Chapitre IV

Résultats et Discussions

IV.1-Details de calcul et paramètres d'entrée :

Le travail réalisé est une étude comparative et complémentaire qui traite plusieurs comportements physiques des skuttérudites remplies suivantes : DyOs₄P₁₂, GdOs₄P₁₂, EuOs₄As₁₂, NdOs₄As₁₂, SmOs₄Sb₁₂, YbOs₄Sb₁₂. À notre connaissance, plusieurs de leurs propriétés physiques sont toujours méconnues, de ce fait, l'objectif principal de notre étude est de les étudier dans le but de mettre en évidence l'importance de leurs propriétés afin de les proposer pour d'éventuelles applications technologiques. Les résultats trouvés confirment d'autres propriétés qui sont déjà trouvées expérimentalement telles que leur comportement ferromagnétique et métallique/demi-métallique .

L'étude réalisée est principalement basée sur la méthode FP-(L)APW+lo [1, 2] dans le cadre de la théorie de la fonctionnelle de densité (DFT)[3, 4] implémentée dans le code WIEN2k [5, 6] qui est largement utilisé. Pour le potentiel d'échange-corrélation, et à cause de leurs précisions, deux fonctionnelles, GGA-PBE et GGA-PBEsol [6, 7], ont été choisies dans le but de sélectionner l'une d'entre elles après une comparaison avec les résultats structuraux expérimentaux disponibles. Les autres paramètres d'entrée ont été choisis judicieusement dans le but d'assurer une grande précision pour un temps de calcul raisonnable. Pour un nombre très consistant des ondes planes, et afin d'assurer une précision très élevée des résultats, le paramètre R.K_{max} a été fixé par une valeur proche de la limite qui est de 8.5, $l_{max}=10$ et $G_{max}=12$.

Pour les rayons R_{MT} , le choix a été basé principalement sur les recommandations citées dans [8], les valeurs choisies pour les différents atomes des différents composés sont représentées dans le **tableau IV-1**. Pour un maillage adéquat de la première zone de Brillouin [9], et après un test de convergence, les valeurs adoptées sont presque similaires, de ce fait, pour tous les composés, un choix très dense de 1500 k-points a été adopté. Les résultats ont été obtenus par une convergence de l'énergie d'une valeur considérée précise de 10⁻⁵ Ry.

Composé	R _{min} K _{max}	I _{max}	G _{max}	K-Points	R _{MT} (a.u)
DyOs ₄ P ₁₂	8.5	10	12	1500	2.20 2.15 1.75
GdOs ₄ P ₁₂	8.5	10	12	1500	2.30 2.20 2.00
NdOs ₄ As ₁₂	8.5	10	12	1500	2.30 2.20 2.00
EuOs ₄ As ₁₂	8.5	10	12	1500	2.30 2.20 2.00
SmOs ₄ Sb ₁₂	8.5	10	12	1500	2.50 2.26 2.00
YbOs ₄ Sb ₁₂	8.5	10	12	1500	2.50 2.26 2.00

Tableau IV.1 : Nombre de K-Points, R.K_{max}, l_{max}, G_{max} et les rayons muffin-tin R_{MT} choisis pour les paramètres d'entrée.

IV.2-Propriétés structurales :

Les skuttérudites remplies sont des matériaux de structure cubique de groupe d'espace #204 (Im-3). Pour le cas des matériaux étudiés dans ce travail (DyOs₄P₁₂, GdOs₄P₁₂, EuOs₄As₁₂, NdOs₄As₁₂, SmOs₄Sb₁₂, YbOs₄Sb₁₂), les positions des atomes non-équivalents sont : Dy (0, 0, 0), O_S (0.5, 0.5, 0.5) et P, As, Sb (0, y, z), pour les autres atomes de toute la cellule conventionnelle, leurs positions sont automatiquement générées par les 48 opérations de symétries relatives au groupe d'espace de la structure skuttérudites remplies. Ce détail montre la présence de deux directions libres (paramètres internes) des atomes P, As et Sb, d'où leurs déterminations sont basées sur une relaxation afin de trouver leurs valeurs optimales relatives à l'équilibre statique de la structure. Nous rappelons aussi que les travaux expérimentaux mentionnés dans le **tableau IV-2** ont montré que les composés DyOs₄P₁₂, GdOs₄P₁₂, NdOs₄As₁₂, EuOs₄As₁₂, SmOs₄Sb₁₂, ont un comportement ferromagnétique, de ce

fait, cette étude a été effectuée dans cette phase magnétique. Après la détermination des paramètres internes des atomes P, As et Sb, les autres paramètres structuraux tels que la constante de réseau a_0 , le module d'élasticité isostatique B_0 et sa pression dérivative B' ont été déterminés par l'ajustement de la variation de l'énergie totale en fonction du volume E=F(V) par l'équation de Murnaghan [10] donnée par l'expression suivante :

$$E(V) = E_{o} + \frac{B_{0}V}{B'} \left[\frac{(\frac{V}{V})^{B'}}{B'-1} \right] - \frac{B_{v}}{B'-1}$$
(IV-1)

B₀ : module de compressibilité à l'équilibre.

B' : la dérivée du module de compressibilité par rapport à la pression.

V₀: volume à l'équilibre de la maille élémentaire.

L'expression du module de compressibilité B est donnée par :

$$B = V \frac{\partial^2 E}{\partial V^2} \tag{IV-2}$$

Dans les figures IV-1 \rightarrow IV-6, on représente les variations E=F(V) obtenues par GGA-PBE et GGA-PBEsol avec leurs ajustements par l'équation du Murnaghan des différents composés étudiés. Les résultats obtenus des différents paramètres structuraux des différents composés étudiés sont représentés dans le **tableau IV-3**. Nous remarquons, en premier lieu, que la fonctionnelle GGA-PBE a donné des valeurs des paramètres de mailles relativement loin des valeurs expérimentales et théoriques de comparaison, de ce fait, on a aussi adopté la fonctionnelle GGA-PBEsol, d'où les valeurs trouvées par cette dernière sont très proches des valeurs de comparaison, de ce fait, on a adopté GGA-PBEsol pour la réalisation du reste de notre travail. Tous les autres résultats structuraux des paramètres internes des atomes P, As et Sb, le module de compressibilité à l'équilibre et sa dérivée sont aussi regroupés dans le **tableau IV.1**, d'où on note, qu'à notre connaissance, la littérature scientifique ne dispose d'aucune valeur de comparaison et notre étude est une première prédiction de ces propriétés.

Figures IV-1 : La variation de l'énergie totale en fonction du volume calculée par GGA-PBE et GGA-PBEsol d'un composé GdOs₄P₁₂.

Figures IV-2 : La variation de l'énergie totale en fonction du volume calculée par GGA-PBE et GGA-PBEsol du composé DyOs₄P₁₂.

Figures IV-3 : La variation de l'énergie totale en fonction du volume calculée par GGA-PBE et GGA-PBEsol du composé NdOs₄As₁₂.

Figures IV-4 : La variation de l'énergie totale en fonction du volume calculée par GGA-PBE et GGA-PBEsol du composé EuOs₄As₁₂.

Figures IV-5 : La variation de l'énergie totale en fonction du volume calculée par GGA-PBE et GGA-PBEsol du composé SmOs₄Sb₁₂.

Figures IV-6 : La variation de l'énergie totale en fonction du volume calculée par GGA-PBE et GGA-PBEsol du composé YbOs₄Sb₁₂.

Tableau IV-2: Le paramètre de réseau d'équilibre \mathbf{a}_0 (Å), le module de compressibilité \mathbf{B}_0 (GPa), sa première dérivée B' et l'énergie totale \mathbf{E}_{TOT} (Ry).

Composé	Références	a ₀ (Å)	B ₀ (GPa)	В'	uy	uz	E _{tot}
GdOs ₄ P ₁₂	GGA-PBE	8.1299	180.0982	4.6771	0.357	0.142	-169228.034925
	GGA-PBEsol	8.0586	196.3240	4.6068	0.356	0.143	-168967.207341
	Expérience	8.0657 ^a					
	Théorie	8.074 ^b					
DyOs ₄ Sb ₁₂	GGA-PBE	8.1194	177.2002	4.5613	0.3572	0.1427	-170803.688684
	GGA-PBEsol	8.0474	193.7746	4.4995	0.3564	0.1433	-170742.506383
	Expérience	8.601 ^a					
	Théorie						
NdOs ₄ As ₁₂	GGA-PBE	8.6291	137.6377	4.7983	0.348	0.148	-211782.664637
	GGA-PBEsol	8.5302	152.7340	4.7240	0.347	0.149	-211698.218046
	Expérience	8.5386 ^c			0.3485 ^c	0.1481 ^c	
	Théorie	8.5219 ^d					
EuOs ₄ As ₁₂	GGA-PBE	8.6368	134.4447	4.8388	0.349	0.149	-214227.467926
	GGA-PBEsol	8.5365	150.2430	4.7591	0.348	0.149	-214142.533315
	Expérience	8.5504 ^e					
	Théorie						
SmOs ₄ Sb ₁₂	GGA-PBE	9.4293	102.6700	4.9734	0.340	0.156	-314732.864120
	GGA-PBEsol	9.3132	115.5510	4.8602	0.340	0.156	-314618.686297
	Expérience	9.3085 ^f			0.34009 ^f	0.15589 ^f	
	Théorie	9.316 ^g					
YbOs ₄ Sb ₁₂	GGA-PBE	9.4263	102.3140	4.9687	0.340	0.156	-322015.112927
	GGA-PBEsol	9.3117	114.9066	4.8674	0.340	0.156	-321899.540474
	Expérience	9.3191 ^h					
	Théorie	9.316 ⁱ					

^aRef[11], ^bRef[12], ^cRef[13], ^dRef[14], ^eRef[15], ^fRef[16], ^gRef[17], ^hRef[18], ⁱRef[19]

IV.3- Propriétés élastiques et mécaniques :

Dans cette partie de ce travail, nous avons étudié la stabilité mécanique ainsi qu'une étude détaillée sur le comportement élastique des skuttérudites remplies étudiées : $DyOs_4P_{12}$, $GdOs_4P_{12}$, $EuOs_4As_{12}$, $NdOs_4As_{12}$, $SmOs_4Sb_{12}$, $YbOs_4Sb_{12}$. Ces études sont principalement basées sur la connaissance des constantes élastiques C_{ij} qui ont été estimées par le modèle théorique implémenté dans le package IRelast [20, 21] qui fait partie du code WIEN2k [5, 6]. Nous rappelons que pour une structure de symétrie cubique (comme celle des matériaux étudiés), il existe seulement trois constantes élastiques, notées : C_{11} , C_{12} et C_{44} . Ces dernières peuvent être estimées, selon le modèle théorique adopté, par l'application de trois distorsions D_i qui sont représentées par des matrices de déformations, d'où :

a) La première distorsion D_1 est représentée par la matrice de contrainte δ suivante :

$$D_{l} = \begin{pmatrix} 1+\delta & 0 & 0\\ 0 & 1-\delta & 0\\ 0 & 0 & \frac{1}{(1-\delta^{2})} \end{pmatrix}$$
(IV-3)

Cette distorsion transforme la structure cubique en structure orthorhombique mais le volume est préservé. Elle permet de calculer la constante C_{11} - C_{12} par une identification entre la courbe de variation $E(\delta)$ et l'équation relative du modèle théorique adopté qui est donnée par :

$$E_{D1}(\delta) = E(0) + V_0[(C_{11} - C_{12})\delta^2 + O(\delta^4)]$$
(IV-4)

Avec E(0) et O(δ^4) représentant respectivement, l'énergie de la maille sans contrainte et un terme négligeable d'ordre δ^4 .

b) La deuxième distorsion D_2 est représentée par la matrice de contrainte δ suivante :

$$\mathbf{D}_{2} = \begin{pmatrix} 1+\delta & 0 & 0\\ 0 & 1+\delta & 0\\ 0 & 0 & 1+\delta \end{pmatrix}$$
(IV-5)

Cette distorsion préserve la symétrie cubique de la structure mais le volume change avec la contrainte appliquée δ . Elle permet de calculer la constante C₁₁+2C₁₂ par la même procédure précédente. L'équation relative du modèle théorique adopté est donnée par :

$$E_{D2}(\delta^{2}) = E(0) + V_{0} \delta [\tau_{1} + \tau_{2} + \tau_{3}] + V_{0} [(3/2) (C_{11} + 2C_{12}) \delta^{2} + O(\delta^{3})]$$
(IV-6)

Avec τ_i représentant des termes liés à la contrainte.

Le calcul des constantes $C_{11}+2C_{12}$ et $C_{11}-C_{12}$ permet d'estimer les constante C_{11} et C_{12} séparément par la résolution d'un système d'équations à deux inconnus (C_{11} et C_{12}).

c) La dernière distorsion D_3 est représentée par la matrice de contrainte δ suivante :

$$D_{3} = \begin{pmatrix} 1 & \delta & 0 \\ \delta & 1 & 0 \\ 0 & 0 & \frac{1}{(1-\delta^{2})} \end{pmatrix}$$
(IV-7)

Cette dernière distorsion permet le calcul direct de la constante C_{44} . L'équation relative du modèle théorique adopté est donnée par :

$$E_{D3}(\delta) = E(0) + V_0[(2C_{44})\delta^2 + O(\delta^4)]$$
(IV-8)

En analysant la matrice D_3 , on peut constater qu'elle change la symétrie cubique en une autre monoclinique mais elle préserve le volume de la maille élémentaire.

Les valeurs trouvées des constantes élastiques C_{ij} des différents matériaux étudiés sont montrées dans le **tableau IV-4**. Nous rappelons que pour qu'un matériau soit stable

RESULTATS ET DISCUSSIONS.

mécaniquement, il faut que ces constantes élastiques C_{ij} satisfont les critères de stabilité mécaniques proposés par M. Born [22], qui sont donnés par les inéquations suivantes :

$$C_{11}-C_{12} > 0, C_{11} > 0, C_{44} > 0, C_{11}+2C_{12} > 0, C_{11} > B > C_{12}.$$
 (IV-9)

Selon les résultats obtenus (tableau IV-1), on peut confirmer que toutes les valeurs des constantes élastiques C_{ij} de tous les matériaux satisfont les conditions de stabilité mécanique de Born, ce qui permet de déduire qu'ils sont stables mécaniquement à l'état fondamental dans leur structure skuttérudite remplie. Les résultats trouvés des constantes élastiques C_{ij} pour GdOs₄P₁₂ sont relativement proches des valeurs théoriques de comparaison. Vu l'absence des résultats de comparaison sauf pour GdOs₄P₁₂, et que cette étude est la première prédiction du comportement élastique du reste des composés étudiés, il est important de vérifier la précision des résultats trouvés, d'où, on a comparé les valeurs du module de compression B obtenues dans la partie structurale avec celles obtenues par l'expression de Voigt-Reuss-Hill (qui est basée sur les constantes élastiques C_{ij}) en se basant sur l'expression suivante [23]:

$$B_V = B_R = B_H = \frac{C_{11} + 2C_{12}}{3}$$
(IV-10)

On constate, d'après les valeurs de B_0 (tableau IV-2 et tableau IV-4), une légère différence entre les deux valeurs trouvées, ce qui témoigne de la précision des résultats trouvés.

En utilisant les approximations de Voigt Reuss et Hill [24,27], il est possible d'estimer d'autres grandeurs mécaniques telles que le module de Young E, le module de cisaillement G et le coefficient de poisson v dont les équations selon les trois approximations sont respectivement données par :

$$G_V = \frac{C_{11} - C_{12} + 3C_{44}}{5}$$
(IV-11)
RESULTATS ET DISCUSSIONS.

$$G_{R} = \frac{5C_{44}(C_{11} - C_{12})}{3(C_{11} - C_{12}) + 4C_{44}}$$
(IV-12)

$$G_H = \frac{G_V + G_R}{2} \tag{IV-13}$$

D'après les relations du module de cisaillement G et du module de compressibilité B, on peut déduire, pour une approximation donnée (de Voigt, Reuss où bien Hill), celles du module de Young et du coefficient de Poisson, qui sont données par :

$$E = \frac{9BG}{3B+G}$$
(IV-14)

$$\upsilon = \frac{3B - E}{6B} \tag{IV-15}$$

Pour les différentes approximations (Voigt, Reuss et Hill), les valeurs obtenues de E, G et υ sont montrées dans le **tableau IV-5**, d'où on note l'absence des valeurs de comparaison, comme on peut constater que pour une grandeur mécanique donnée (E, G et υ), la valeur obtenue par l'approximation de Reuss, pour les différents composés étudiés, est proche de celle obtenue par Voigt et par conséquent celle de Hill, sauf pour SmOs₄Sb₁₂ et YbOs₄Sb₁₂, ce qui indique que les différents composés étudiés ont une faible anisotropie élastique (il sont presque élastiquement isotrope) et SmOs₄Sb₁₂, YbOs₄Sb₁₂ sont élastiquement anisotropes. Ce comportement physique peut être confirmé par le facteur d'anisotropie de Zener A^Z [28] ou bien par l'indice universel d'anisotropie A^U [29] qui sont respectivement donnés par :

$$A = \frac{2C_{44}}{C_{11} - C_{12}} \tag{IV-16}$$

$$A^{U} = \frac{5G_{V}}{G_{R}} + \frac{B_{V}}{B_{R}} - 6$$
 (IV-17)

Leurs valeurs obtenues sont montrées dans le **tableau IV-6**, d'où, pour A^Z, les valeurs obtenues ne sont pas trop loin de 1 (et pour A^U les valeurs trouvées sont proche de zéro) sauf

pour SmOs₄Sb₁₂ et YbOs₄Sb₁₂, ce qui indique une très faible anisotropie élastique pour DyOs₄P₁₂, GdOs₄P₁₂, EuOs₄As₁₂, NdOs₄As₁₂ et une anisotropie élastique avérée pour SmOs₄Sb₁₂ et YbOs₄Sb₁₂.

Ces comportements peuvent être étudiés en détails par la surface directionnelle du module de Young qui représente sa variation selon les trois directions de l'espace. Cette surface directionnelle a été obtenue par l'algorithme fourni par J. Nordmann et al. [30,31], d'où, son équation est donnée par [30]:

$$E(d) = [d \otimes d : \mathcal{S} : d \otimes d]^{-1}$$
(IV-18)

Avec d et S représentant respectivement le vecteur directionnel (c'est un vecteur unitaire qui dépend des cosinus directeurs) et la matrice inverse des tenseurs d'élasticité.

Les Figures IV-13 \rightarrow IV-18 montrent les surfaces directionnelles du module de Young de tous les composés étudiés, d'où on constate que celles des composés : DyOs₄P₁₂, GdOs₄P₁₂, EuOs₄As₁₂ et NdOs₄As₁₂ sont presque identiques et très proche de la forme sphérique, ce qui confirme la très faible anisotropie (ou bien l'isotropie) élastique de ces matériaux malgré la présence de très légères déformations, selon les plans (100), (010) et (001). Pour SmOs₄Sb₁₂ et YbOs₄Sb₁₂, les surfaces directionnelles du module de Young sont relativement déformées par rapport à la forme sphérique ce qui montre que le module de Young est variable avec le changement de la direction, les valeurs maximales sont selon les directions [001], [010] et [001] tandis que les valeurs minimales sont selon la direction [111]. Ces remarques confirment l'anisotropie élastique de ces deux composés et confirment les résultats précédents.

Cette analyse directionnelle est aussi confirmée par les valeurs maximales E_{max} et celles minimales E_{min} des différentes surfaces, elles sont regroupées dans le **tableau IV.6**, d'où, on constate que pour DyOs₄P₁₂, GdOs₄P₁₂, EuOs₄As₁₂ et NdOs₄As₁₂, la valeur maximale E_{max} n'est pas loin de la valeur minimale E_{min} , ce qui confirme une autre fois la très faible anisotropie (ou bien presque isotropie) élastique de ces matériaux, tandis que pour SmOs₄Sb₁₂ et YbOs₄Sb₁₂, une différence relativement large est trouvée, ce qui confirme une autre fois l'anisotropie élastique avérée de ces deux composés. D'autre part, les valeurs moyenne E_{moy} qui sont obtenues tenant compte de tous les points de chaque surface sont très proches des valeurs trouvées par les trois approximations (Voigt, Reuss et Hill) voir **tableau IV-4** ce qui confirme la précision du modèle théorique adopté.

La ductilité et la fragilité sont deux comportements mécaniques très importants qui peuvent être déduits par le rapport B/G de Pugh [32]. En se basant sur cette dernière référence, si le rapport B/G est inférieur à 1.75 le matériau est fragile et s'il est supérieur à 1.75 le matériau est ductile. D'après les résultats obtenus, nous constatons que YbOs₄Sb₁₂ est ductile tandis que les autres matériaux étudiés sont fragiles.

Figure IV.7: La variation de l'énergie totale en fonction des déformations « Di » du composé *GdOs*₄*P*₁₂.

Figure IV.8: La variation de l'énergie totale en fonction des déformations « Di » du composé DyOs₄P₁₂.

Figure IV.9: La variation de l'énergie totale en fonction des déformations « Di » du composé NdOs₄As₁₂.

Figure IV.10: La variation de l'énergie totale en fonction des déformations « Di » du composé *EuOs*₄*As*₁₂

Figure IV.11: La variation de l'énergie totale en fonction des déformations « Di » du composé SmOs₄Sb₁₂

Figure IV.12: La variation de l'énergie totale en fonction des déformations « Di » du composé *YbOs*₄*Sb*₁₂.

Figure IV.13: Représentation 3D de la surface directionnelle du module de Young pour le
composé $GdOs_4P_{12}$

Figure IV.14: Représentation 3D de la surface directionnelle du module de Young pour le composé *DyOs*₄*P*₁₂

Figure IV.15: Représentation 3D de la surface directionnelle du module de Young pour le composé NdOs₄As₁₂

Figure IV.16: Représentation 3D de la surface directionnelle du module de Young pour le composé *EuOs*₄*As*₁₂

*Figure IV.17: Représentation 3D de la surface directionnelle du module de Young pour le composé SmOs*₄*Sb*₁₂

*Figure IV.18: Représentation 3D de la surface directionnelle du module de Young pour le composé YbOs*₄*Sb*₁₂

RESULTATS ET DISCUSSIONS.

Tableau IV-3 : Module de compressibilité B et les Constantes élastiques Cij (GPa) calculés pour les Skuttérudites DyOs₄P₁₂, GdOs₄P₁₂, EuOs₄As₁₂, NdOs₄As₁₂, SmOs₄Sb₁₂, YbOs₄Sb₁₂ comparés avec d'autres résultats.

Composé	Références	В	C ₁₁	C ₁₂	C ₄₄
	GGA-PBEsol	196.907	392.7225	98.9702	137.6538
Gu054I 12	Théorie	230.46 ^a	441.45 ^a	124.96 ^a	151.57 ^a
Dr:Oc D	GGA-PBEsol	197.853	383.1430	105.2092	127.6142
$\mathbf{D}\mathbf{y}\mathbf{O}\mathbf{S}_{4}\mathbf{P}_{12}$	Théorie				
NdOs ₄ As ₁₂	GGA-PBEsol	153.699	295.0838	83.0070	98.7558
	Théorie	143.233 ^b			
EuOs ₄ As ₁₂	GGA-PBEsol	147.781	277.2101	83.0671	93.8072
	Théorie				
SmOs ₄ Sb ₁₂	GGA-PBEsol	116.115	239.4994	54.4241	64.0935
	Théorie				
YbOs ₄ Sb ₁₂	GGA-PBEsol	114.53	220.6099	61.4507	56.7036
	Théorie				
a h					

^aRef[12], ^bRef[14]

Tableau IV-4: Module de cisaillement G(GPa), Module de Young E(GPa), Coefficient de

Poisson υ calculés pour les Skuttérudites

 $DyOs_4P_{12}, GdOs_4P_{12}, EuOs_4As_{12}, NdOs_4As_{12}, SmOs_4Sb_{12}, YbOs_4Sb_{12}.$

Composé	Références	Gv	G _R	G _H	Ev	E _R	E _H	υγ	υ _R	$\upsilon_{\rm H}$
	GGA-PBEsol	141.354	141.211	141.282	342.181	341.901	342.040	0.210	0.210	0.210
$GdOs_4P_{12}$	Expérience									
	Théorie									0.230 ^a
	GGA-PBEsol	132.154	131.925	132.039	324.265	323.805	324.034	0.226	0.226	0.2265
	Expérience									
$DyOS_4P_{12}$	Théorie									
	GGA-PBEsol	101.668	101.545	101.606	249.902	249.654	249.777	0.229	0.229	0.229
NdOs ₄ As ₁₂	Expérience									
110103412312	Théorie									
	GGA-PBEsol	95.112	95.086	59.099	234.934	234.881	234.908	0.235	0.235	0.235
EuOs ₄ As ₁₂	Expérience									
	Théorie									
	GGA-PBEsol	75.470	73.078	74.274	186.092	181.217	183.661	0.232	0.239	0.236
SmOs ₄ Sb ₁₂	Expérience									
	Théorie									
	GGA-PBEsol	65.853	64.071	64.962	165.778	161.997	163.891	0.258	0.264	0.261
YbOs ₄ Sb ₁₂	Expérience									
	Théorie									

^aRef[12]

RESULTATS ET DISCUSSIONS.

Tableau IV-5 : Module de compression B, facteur d'anisotrope A, l'indice universel d'anisotropie A^U et rapport B/G calculés pour les Skuttérudites DyOs₄P₁₂, GdOs₄P₁₂, EuOs₄As₁₂, NdOs₄As₁₂, SmOs₄Sb₁₂, YbOs₄Sb₁₂.

Composé	Références	Α	A ^U	B/G
	GGA-PBEsol	0.9372	0.0085	1.393
GuOS4P ₁₂	Théorie	0.96 ^a		1.49 ^a
	GGA-PBEsol	0.9372	0.0085	1.393
$DyOS_4P_{12}$	Théorie			
	GGA-PBEsol	0.9313	0.00605	1.513
NdOS ₄ AS ₁₂	Théorie			
EuOs ₄ As ₁₂	GGA-PBEsol	0.9663	0.00136	1.554
	Théorie			
SmOg Sh	GGA-PBEsol	0.6926	0.163	1.563
$SmOs_4Sb_{12}$	Théorie			
YbOs ₄ Sb ₁₂	GGA-PBEsol	0.7125	0.139	1.763
	Théorie			
an a	1.07			

^aRef[12]

Tableau IV.6: Les valeurs maximales E_{max} , minimales E_{min} et moyennes E_{moy} calculéespour les composés : DyOs₄P₁₂, GdOs₄P₁₂, EuOs₄As₁₂, NdOs₄As₁₂, SmOs₄Sb₁₂, YbOs₄Sb₁₂.

Composé	$\mathbf{E}_{\mathbf{min}}$	\mathbf{E}_{max}	$\mathbf{E}_{\mathbf{moy}}$
DyOs ₄ P ₁₂	315.0980	337.8116	325.8841
GdOs ₄ P ₁₂	334.9177	352.9453	343.5274
NdOs ₄ As ₁₂	244.0077	258.6365	250.9808
EuOs ₄ As ₁₂	332.2749	238.9052	235.4669
SmOs ₄ Sb ₁₂	162.4014	219.3444	187.3971
YbOs ₄ Sb ₁₂	146.0103	193.8341	167.1295

IV.4 Propriétés électroniques et magnétiques :

La technologie d'aujourd'hui est principalement basée sur l'étude des propriétés électroniques et magnétiques des matériaux solides, la connaissance de ces propriétés est possible par l'analyse des structures de bandes et les courbes des densités d'états.

IV.4.1 Structures de bandes :

Pour déterminer la nature électronique et magnétique d'un matériau (isolant, métal, semiconducteur, semi-métal ou bien un demi-métal), il faut effectuer un calcul de la structure de bandes. Pour ce travail, et pour les différents composés étudiés, le calcul a été effectué dans la première zone de Brillouin.

Les travaux expérimentaux ont déjà montré que tous les composés étudiés ont un comportement métallique et sont ferromagnétiques sauf YbOs₄Sb₁₂ qui est non-magnétique. À notre connaissance, il n'existe pas de travaux théoriques détaillés sur les comportements magnétiques et électroniques de ces composés, de ce fait, cette étude nécessite la tenue en compte de plusieurs considérations. Nous notons que les différents composés étudiés contiennent des atomes avec des orbitales Os-5d et/ou (Dy,Gd,Nd,Eu,Sm)-4f qui sont partiellement remplis, ce qui indique la présence d'une forte corrélation entre leurs électrons. Ce dernier effet n'est pas tenu en compte par les fonctionnelles semilocales basées sur LDA/GGA [33,34], d'où, il est important de l'ajouter comme correction. Dans notre travail, la forte corrélation des électrons Os-5d et/ou (Dy,Gd,Nd,Eu,Sm)-4f a été ajoutée par l'estimation du terme effectif d'interaction de coulomb « U_{eff} » en utilisant la méthode LDA-contrainte «cLDA» qui a été déjà testée et adoptée dans plusieurs de nos travaux précédant [35]. Pour cette dernière méthode, l'estimation du terme effectif d'interaction de coulomb « Ueff » pour chaque orbital est basée sur l'application d'une contrainte sur son occupation électronique, par un ajout et une suppression respective d'électrons et de considérer les électrons de cette orbital comme des électrons de cœur pour éliminer toutes les hybridations avec les autres électrons des autres orbitales. Cette procédure se fait après la construction d'une supercellule (dans notre travail, on a pris la maille conventionnelle) et de considérer un seul atome de Os (ou bien : Dy, Gd, Nd, Eu et Sm) comme impureté, ce qui réduit la symétrie de la cellule. En fin, l'estimation du terme effectif d'interaction de coulomb « U_{eff} » peut être effectuée en utilisant l'équation suivante [36] :

$$U_{eff} = E_{(4f||5d)\uparrow} \left(+\frac{1}{2}e \right) - E_{(4f||5d)\uparrow} \left(-\frac{1}{2}e \right) - E_F \left(+\frac{1}{2}e \right) + E_F \left(-\frac{1}{2}e \right)$$
(IV-19)

D'où, $E_{(4f||5d)\uparrow}$ et E_F étants respectivement, les valeurs propres des états dont leurs occupations ont été modifiées et les énergies de Fermi relatives. Les valeurs du terme effectif d'interaction de coulomb « U_{eff} » trouvées sont regroupées dans le **tableau IV-9**, d'où on remarque que les valeurs relatives aux atomes : Dy, Gd, Nd, Eu et Sm sont relativement très élevées par rapport à celle de Os. Ceci peut s'expliquer par le fait que (Dy, Gd, Nd, Eu et Sm)-4f contiennent plus d'électrons non-appariés que Os-d.

Pour montrer l'effet de ces corrections, on a tracé dans les figures IV-19 \rightarrow IV-24 les structures de bandes des différents composés étudiés qui sont obtenues respectivement par GGA et GGA+U respectivement. D'après ces figures, il est clair que, pour chaque composé, les deux courbes sont différentes mais elles montrent toutes que le niveau de fermi passe en dessous du haut de la bande de valence pour les deux spins sans la présence d'un chevauchement de bandes entre le haut de valence et le bas de conduction avec la présence d'un très faible gap entre elles, ce qui montre que tous les composés étudiés ont un comportement métallique, ce qui confirme les travaux expérimentaux. D'autre part, et à partir de ces même figures, on remarque que la correction d'Hubbard (GGA+U) a modifié les positions des bandes formées par les orbitales (Dy,Gd,Nd,Eu,Sm)-4f et Os-5d, mais elle n'a pas modifié les bandes du haut de la bande de valence ni celles du bas de la bande de conduction, ce qui montre que ces bandes ne sont pas formées par ces orbitales (ou bien leurs

contributions sont faibles) ce qui explique pourquoi GGA+U a donné le même comportement que celui obtenu par GGA.

Donc, on peut conclure que la prise en considération de l'effet de la forte corrélation a changé la topologie des bandes du haut de la bande de valence et celles du bas de la bande de conduction, ce qui confirme la forte présence de cet effet pour Os, (Dy,Gd,Nd,Eu,Sm) et l'importance de prendre cette correction en considération. D'après ces figures, on remarque, pour les composés DyOs₄P₁₂, GdOs₄P₁₂, EuOs₄As₁₂, NdOs₄As₁₂, SmOs₄Sb₁₂, YbOs₄Sb₁₂, de légers décalages entre les bandes des deux spins qui s'aggravent près du haut de la bande de valence et le bas de la bande de conduction, ce qui confirme le fort comportement ferromagnétique de ces composés et confirme les travaux expérimentaux. Pour YbOs₄Sb₁₂, les bandes des deux spins sont identiques avec un moment magnétique nul, ce qui confirme son comportement non-magnétique. Ces comportements, peuvent être confirmés par les valeurs des moments magnétiques totaux et partiels ainsi-que les valeurs de la polarisation de spin qui est donnée par :

$$P = \frac{\rho \uparrow (E_F) - \rho \downarrow (E_F)}{\rho \uparrow (E_F) + \rho \downarrow (E_F)}$$
(IV-20)

D'où, $\rho \uparrow (E_F)$ et $\rho \downarrow (E_F)$ étants respectivement les densités d'états des deux spins au niveau de Fermi. D'après les résultats obtenus, on constate que toutes les valeurs de la polarisation P de tous les composés, sauf YbOs₄Sb₁₂ qui sont montré dans le **tableau IV-8**, sont différentes de 0 % et de 100% ce qui confirme, à la fois, le comportement métallique et ferromagnétique de ces composés. Pour YbOs₄Sb₁₂ une valeur nulle est obtenue, c'est évident, car ce composé est non-magnétique. Pour les valeurs des moments magnétiques, on constate que les résultats obtenus par GGA et GGA+U sont légèrement différentes et que les moments totaux, pour tous les composés sauf YbOs₄Sb₁₂ qui est non-magnétique, sont principalement dû à la contribution de atomes Gd, Dy, Nd, Eu et Sm avec une très faible contribution

(presque nulle) de l'atome d'osmium.

Tableau IV-7 : Les valeurs du terme effectif d'interaction de coulomb « U_{eff} » (terme

d'Hubbard).

Atome	Dy	Gd	Nd	Eu	Sm	Yb
$\mathbf{U}_{\mathbf{eff}}$	6.68	5.226	6.116	6.367	4.29	/
U _{eff} /Os	1.8996	1.787	1.198	1.727	0.716	0.540

FigureIV.19: La structure des bandes d'énergie (spin 'up' et 'dn') du composé Skuttérudite GdOs₄P₁₂ calculée par les fonctionnelles GGA PBEsol et GGA+U.

FigureIV.20: La structure des bandes d'énergie (spin 'up' et 'dn') du composé Skuttérudite DyOs₄P₁₂ calculée par les fonctionnelles GGA PBEsol et GGA+U.

FigureIV.21 : La structure des bandes d'énergie (spin 'up' et 'dn') du composé Skuttérudite NdOs₄As₁₂ calculée par les fonctionnelles GGA-PBEsol et GGA+U.

FigureIV.22 : La structure des bandes d'énergie (spin 'up' et 'dn') du composé Skuttérudite EuOs₄As12 calculée par les fonctionnelles GGA-PBEsol et GGA+U.

FigureIV.23 : La structure des bandes d'énergie (spin 'up' et 'dn') du composé Skuttérudite SmOs₄Sb₁₂ calculée par les fonctionnelles GGA-PBEsol et GGA+U.

FigureIV.24 : La structure des bandes d'énergie du composé Skuttérudite YbOs₄Sb₁₂ calculée par les fonctionnelles GGA-PBEsol et GGA+U.

IV.4.2 Densités d'états (DOS):

Pour une analyse détaillée de la composition des bandes du haut de la bande de courbes de densités d'états partielles des différents atomes, d'où on constate une similarité de contribution pour tous les composés étudiés. Les bandes du haut de valence sont principalement dues aux contributions des états Nd-f (spin Up) pour NdOs₄As₁₂, Eu-f (spin Up) pour EuOs₄As₁₂, Sm-f (spin Up) pour SmOs₄Sb₁₂ et Yb-f pour YbOs₄Sb₁₂ et pour tous les composés, on note aussi une forte contribution des états Os-d avec une contribution presque similaire entre Os-d-up et Os-d-dn et une présence de symétrie (qui n'est pas parfaite) entre les pics de ces états pour les deux spins, ce qui justifie le moment magnétique presque nul et la faible corrélation de l'atome d'osmium. On note aussi une faible contribution des états P-p, As-p et Sb-p qui sont en hybridation avec les états Os-d ce qui indique la présence d'une liaison covalente entre ces deux atomes. Le bas de la bande de conduction est constitué d'une mixture des états de tous les éléments avec une forte contribution des états Gd-f (spin dn) et Gd-d (les deux spins), Nd-f (spin up) et Nd-d (les deux spins) pour GdOs₄P₁₂ et NdOs₄As₁₂, Eu-d (les deux spins) pour EuOs₄As₁₂, Sm-d (les deux spins) pour SmOs₄Sb₁₂, Dy-f (spin dn) et Dy-d (spin up) pour DyOs₄P₁₂, Yb-d pour YbOs₄Sb₁₂, et Os-d (les deux spin) pour tous les composés avec une contribution relativement faible des états As, Sb, P-p, s.

Figure IV.25: La densité d'états ('up' et 'dn') partielle du composé Skuttérudite GdOs₄P₁₂.

Figure IV.26: La densité d'états ('up' et 'dn') partielle du composé Skuttérudite DyOs₄P₁₂.

Figure IV.27: La densité d'états ('up' et 'dn') partielle du composé Skuttérudite NdOs₄As₁₂.

Figure IV.28: La densité d'états ('up' et 'dn') partielle du composé Skuttérudite EuOs₄As₁₂.

Figure IV.29: La densité d'états ('up' et 'dn') partielle du composé Skuttérudite SmOs₄Sb₁₂.

Figure IV.30: La densité d'états partielle du composé Skuttérudite YbOs₄Sb₁₂.

RESULTATS ET DISCUSSIONS.

Tableau IV-8 : Température de Curie (T_c), les moments magnétiques partiels (μ_B /atom) et total (μ_B /cell), et la polarisation "P" calculés pour les composés Skuttérudites DyOs₄P₁₂, GdOs₄P₁₂, EuOs₄As₁₂, NdOs₄As₁₂, SmOs₄Sb₁₂, YbOs₄Sb₁₂ comparés avec les résultats antérieurs disponibles.

Composé	Références	T _c	µ _{Gd} , _{Dy} , _{Nd} ,	μ_{Os}	μ _{Totale}	Inerstitiel	P%
compose	Kererences		Eu ₂ Sm ₂ Yb				
	GGA-PBEsol		6.80	-0.01	6.60	0.00	
	GGA+U		6.98	-0.02	6.84	0.05	8.27
GuOs4F ₁₂	Expérience				8.54 ^a		
	Théorie						
	GGA-PBEsol	2.94	4.63	0.04	5.05	0.18	
$\mathbf{D}\mathbf{v}\mathbf{O}\mathbf{s}_{4}\mathbf{P}_{12}$	GGA+U		4.28	0.00	4.24	0.01	91.95
· · · ·	Expárionco	2 ^a			13.55 ^b		
	Experience				10.60 [°]		
	Théorie						
	GGA-PBEsol		3.19	-0.01	3.35	0.22	
	GGA+U		3.00	-0.01	3.03	0.09	69
$MaOs_4As_{12}$	Expérience						
	Théorie						
	GGA-PBEsol		6.54	-0.09	5.78	-0.12	
EuOa Aa	GGA+U		6.81	-0.04	6.59	0.06	23
EuOs4As ₁₂	Expérience				7.29 ^d		
	Théorie						
	GGA-PBEsol		5.62	-0.12	4.55	-0.31	
SmOa Sh	GGA+U		5.65	-0.12	4.62	-0.30	39
SmOs ₄ Sb ₁₂	Expérience						
	Théorie						
	GGA-PBEsol		0.00	0.00	0.00	0.00	0.00
	GGA+U		0.00	0.00	0.00	0.00	0.00
1 008450 ₁₂	Expérience						
	Théorie						
$a_{ref}[37] = b_{ref}[10] = c_{ref}[11] = d_{ref}[14]$							

ref [37] bref [10] cref [11] cref [14]

IV.5 Estimation de la température de Curie du composé DyOs₄P₁₂

Il a été déjà déduit expérimentalement que DyOs₄P₁₂ est ferromagnétique à très basses températures avec une faible température de curie (2 K) [11, 38], dans ce travail, dans le but de confirmer théoriquement cette valeur et le comportement ferromagnétique de ce composé, on a estimé les variations des paramètres d'échange Jij de l'hamiltonien du système des spins du modèle classique d'Heisenberg en utilisant le code « spin polarized relativistic Korringa-Kohn-Rostoker (SPR-KKR) » [39, 40]. Les valeurs de ces paramètres d'échange Jij entre chaque deux atomes (i et j) du DyOs₄P₁₂ ont été déterminée par le modèle théorique de Liechtenstein et al [41] en utilisant l'approche de l'espace réel. Nous rappelons que le signe des paramètres d'échange Jij peut nous informer sur la nature parallèle (ferromagnétique) ou bien antiparallèle (antiferromagnétique ou bien ferrimagnétique) de l'interaction entre les deux atomes i et j [42]. À partir de la figure IV.31 on peut voir clairement que, malgré sa faible valeur, l'interaction la plus dominante est de signe positive entre les deux atomes Dy les plus proches {(Dy(0,0,0) et Dy(0.5,0.5,0.5) qui sont séparés d'une distance de $(\sqrt{3}/2)a_0$)} à cause de sa large valeur du moment magnétique, relativement à celles des atomes Os et P. Sa faible valeur peut être justifiée par le fait que cette interaction est indirecte vu la présence d'un atome de Os au milieu de la distance Dy-Dy qui représente un écran entre ces deux atomes Dy en interaction. Malgré que la distance entre ces atomes (Dy-Dy) est plus large que celle entre Dy-Os et Dy-P, les interactions Dy-Os et Dy-P qui sont directes sont relativement très faibles et aussi de signe positive, ce qui confirme leurs faibles moments magnétiques et confirme qu'ils sont parallèles à celui du Dy, ce qui confirme le fort comportement ferromagnétique de DyOs₄P₁₂. Toutes les interactions deviennent relativement négligeables au-delà d'une distance proche de $3 \times a_0$, ce qui signifie que notre choix de la dimension du super-réseau (cluster) (4a0) est largement suffisant.

RESULTATS ET DISCUSSIONS.

La connaissance des valeurs des paramètres d'échange Jij entre les différents atomes permet d'estimer la température de curie T_C en employant l'approximation du champ moyen [43, 44]. Dans un système de plusieurs atomes, de différents types, en interaction, la température de transition (Curie dans notre cas) peut être estimée par la relation suivante :

$$\frac{3}{2}k_B T_C^{MFA} = \sum_{r \neq 0} J_r^{\mu\nu} = J_0^{\mu\nu}$$
(IV-21)

Où $J_0^{\mu\nu}$ est la valeur propre maximale de la matrice $\begin{bmatrix} J_0^{\mu\nu} \end{bmatrix}$ définie par les interactions d'échange Jij entre le sous-système μ de l'atome i et celui ν de l'atome j. La valeur trouvée de la température de Curie T_C (**tableau IV-8**) est de 2.94 qui est très proche de celle estimée expérimentalement [11, 38], ce qui justifie la précision de nos résultats. L'étude des propriétés électroniques et magnétiques du DyOs₄P₁₂ confirment parfaitement le comportement ferromagnétique et sa faible température de curie qui ont été déjà déduit expérimentalement.

Figure IV.31: Variation des paramètres d'échanges J_{ij} en fonction de la distance atomique de la skuttérudite remplie $DyOs_4P_{12}$.

IV.6 Stabilité dynamiques du composé DyOs₄P₁₂

L'étude dynamique est importante car elle fournit un moyen très performant pour prédire la présence d'un matériau donné dans une structure donnée à l'état fondamental. Il a été déjà déduit expérimentalement que $DyOs_4P_{12}$ est ferromagnétique pour des basses températures mais il n'y a aucune information sur son comportement dynamique à l'état fondamental, de ce fait, dans cette partie de ce travail, on a étudié sa stabilité dynamique qui est basée sur la méthode directe [45] implémentée dans le code PhononA [46, 47]. Le calcul est basé sur l'estimation des forces de Hellmann-Feynman HFF [48, 49] afin de créer la matrice dynamique. Cette dernière a été obtenue par 10 calculs SCF qui correspondent à dix déplacements des différents atomes de $DyOs_4P_{12}$ (6 déplacements pour l'atome P, 2 pour Dy et 2 pour Os). La précision des résultats est aussi basée sur la dimension du système, qui exige une dimension plus large, de ce fait, la maille conventionnelle a été choisie comme une supercellule, elle contient 34 atomes. Les calculs des forces de Hellmann-Feynman HFF ont été effectués par la méthode FP-LAPW [1, 2] avec une convergence des forces de 0.01 mRy/Bohr.

L'analyse de la courbe de dispersion des phonons et celle de la densité d'états des phonons sont montrées parallèlement dans la **figure IV.32.** Nous rappelons que l'absence des modes imaginaires (branches avec des fréquences négatives) signifie que le matériau est stable dynamiquement [50], d'où, pour DyOs₄P₁₂ on constate que toutes les branches ont des fréquences réelles, ce qui confirme la stabilité dynamique de ce composé et sa présence dans la structure skuttérudite remplie à l'état fondamental. En analysant les résultats obtenus, on constate la présence de N_B=51 branches, ce qui est évident, car ce nombre dépend du nombre d'atomes dans la cellule élémentaire (N_B= $3 \times N_{at}$), par conséquent, on a 48 branches optiques et 3 acoustiques.

En analysant la figure IV.32. on remarque la présence de 4 zones de branches de vibrations séparées par trois gaps : Zone 1 : qui représente les branches acoustiques avec un intervalle de fréquence qui varie entre 0 THz et 1.292 THz qui sont principalement dues aux vibrations des atomes Dy, car ils sont les plus lourds. Zone 2 : qui est large étalée entre 1.394 THz et 5.045 THz, elle est due, pour les fréquences supérieures, à une forte contribution des vibrations des atomes d'osmium avec une faible contribution des vibrations des atomes de P. Pour les fréquences inférieures qui sont proches de la limite minimale (1.394), on trouve une contribution des vibrations des atomes de Dy seulement. Zone 3 est relativement moins large qui commence de la fréquence 6.665 THz jusqu'à 8.495 THz, cette région intermédiaire est dominée par une mixture de des vibrations des atomes de P et Os avec une contribution légèrement plus dominante des atomes de P. Zone 4 : est la plus large zone qui représente les branches des fréquences entres 9.121 THz et 15.224 THz. Cette dernière fréquence représente celle maximale du DyOs₄P₁₂ qui est localisé au point de haute symetrie H. Cette large zone est, pour des fréquences proches de celle minimales, dominée par les vibrations des atomes de P avec une faible contribution de l'atome Os, mais pour des fréquences supérieures, on trouve seulement la contribution des atomes de P. D'autre part, la présence des gaps entre les différentes zones est due principalement aux différences de masses entres les différents atomes de DyOs₄P₁₂. Ces résultats fournissent aussi des informations très précieuses sur les modes de vibration au centre de la zone de Brillouin Γ , qui permet de connaitre le comportement vibratoire du DyOs₄P₁₂, d'où, pour ce composé, les fréquences des modes acoustiques sont nulles tandis que les fréquences des modes optiques de vibration sont données selon le représentation irréductible relative suivante [51] :

$$\Gamma_{opt} = 8T_{u}(I) + 2A_{u}(S) + 2E_{u}(S) + 4T_{g}(R) + 2E_{g}(R) + 2A_{g}(R)$$
(IV-22)

Pour cette expression, les lettres I et R indiquent les modes active en spectroscopie Raman et infrarouge respectivement, tandis que la lettre S indique que le mode est silencieux. D'autres parts, les lettres T, E et A indiquent respectivement les modes triplement, doublement et singulièrement dégénérés. Les fréquences des différents modes du centre de la zone de Brillouin sont montrées dans le **tableau IV-9** avec le nombre de dégénérescence de chaque mode. Malheureusement, il n'y a aucune valeur expérimentale de comparaison. Par l'analyse de tous les modes en Γ , nous notons qu'il existe, pour chaque mode, la contribution de 17 atomes, donc pour les 48 modes, il existe 17×48 vecteur de polarisations des différents atomes pour les différents modes, de ce fait, les résultats obtenus montent que le plus large vecteur de polarisation et celui de la vibration de l'atome Dy, d'un module de |P|= 0.926288pour la fréquence 1.394 THz, ce mode (**T**_u(**I**)) est actif en infrarouge.

Figure IV.32: Courbe de dispersion des phonons et celle de la densité d'états des phonons de la skuttérudite remplie $DyOs_4P_{12}$.

Tableau IV.9: Valeurs calculées des fréquences (THz) des modes optiques des phonons au centre de la zone de Brillouin et leurs multiplicités de la skuttérudite remplie DyOs₄P₁₂.

Irreducible Representations	Multiplications	Frequences (THz)
T _u (I)	3	1.394
A _u (S)	1	3.404
T _u (I)	3	4.463
E _u (S)	2	4.868
T _u (I)	3	5.045
T _u (I)	3	7.063
T _g (R)	3	7.307
T _u (I)	3	7.989
$T_g(\mathbf{R})$	3	9.416
E _g (R)	2	9.976
T _u (I)	3	10.760
$A_g(\mathbf{R})$	1	11.366
T _g (R)	3	11.423
A _u (S)	1	11.427
E _u (S)	2	11.781
T _u (I)	3	11.885
T _u (I)	3	12.102
A _g (R)	1	12.914
E _g (R)	2	13.290
$T_g(\mathbf{R})$	3	13.575

IV.7 Propriétés optiques :

Le comportement optique des différents composés skuttérudites remplies a été étudié dans cette partie de ce travail. Ces propriétés sont principalement basées sur les transitions électroniques directes (interbandes) entre le haut de la bande de valence et le bas de la bande de conduction, mais Il faut savoir aussi que les transitions intra-bandes (dans la même bande) sont aussi très contribuantes pour les métaux [52]. De ce fait, ce dernier effet a été aussi pris en considération dans cette étude. Nous rappelons que ces transitions électroniques sont décrites par la fonction diélectrique donnée par l'expression suivante [53]:

$$\varepsilon(\omega) = \varepsilon_1(\omega) + i \varepsilon_2(\omega)$$
 (IV.23)

Où ε_1 et ε_2 étants respectivement les parties réelle et imaginaire de la fonction diélectrique [54, 55].

Il existe un lien direct entre les propriétés optiques et les propriétés électroniques, de ce fait, cette partie est parfaitement liée aux propriétés électroniques étudiées dans ce travail. Nous avons tracé, dans les **figuresIV-33** \rightarrow **IV-38**, les variations de la fonction diélectrique des différentes Skuttérudites étudiées en utilisant GGA+U. D'après les figures de la partie imaginaire, on constate, pour tous les matériaux, une forte présence des pics de transition pour les faibles énergies qui sont proches de la valeur statique $\varepsilon_2(0)$, ces transitions sont principalement dues aux transitions intra-bandes ce qui confirme le fort comportement métallique de tous les composés étudiés. Ces pics décroissent avec l'augmentation de l'énergie, ce qui est dû à la diminution des contributions des transitions intra-bande et l'augmentation des transitions interbandes.

Pour estimer l'indice de réfraction, il faut déterminer les deux constantes diélectriques ε_1 et ε_2 , en utilisant la relation suivante [56]:

$$n(\omega) = \frac{1}{\sqrt{2}} \left[\varepsilon_1(\omega) + \sqrt{\varepsilon_1(\omega)^2 + \varepsilon_2(\omega)^2} \right]^{\frac{1}{2}}$$
(IV-24)

RESULTATS ET DISCUSSIONS.

Les valeurs de l'indice de réfraction statique n(0), obtenues sans et avec contribution intra-bande, sont représentées dans le **tableau IV-10**, d'où, on constate une large différence entre les valeurs qui sont obtenues avec contribution intra-bande en comparaison avec celles obtenues tenant en compte cette contribution. Ces résultats montrent l'importance de prendre ces contributions en considération et confirment le fort caractère métallique des différents composés étudiés. À notre connaissance, la littérature scientifique ne dispose d'aucune valeur de comparaison.

Figure IV.33: Variations des deux parties de la fonction diélectrique du composé GdOs₄P₁₂

Figure IV.34: Variations des deux parties de la fonction diélectrique du composé DyOs₄P₁₂

Figure IV.35: Variations des deux parties de la fonction diélectrique du composé NdOs₄As₁₂.

Figure IV.36: Variations des deux parties de la fonction diélectrique du composé EuOs₄As₁₂.

Figure IV.37: Variations des deux parties de la fonction diélectrique du composé SmOs₄Sb₁₂.

Figure IV.38: Variations des deux parties de la fonction diélectrique du composé YbOs₄Sb₁₂.

RESULTATS ET DISCUSSIONS.

Tableau IV.10: Les valeurs obtenues de l'indice de réfraction statique n(0) d'absorption calculées pour les composés Skuttérudites DyOs₄P₁₂, GdOs₄P₁₂, EuOs₄As₁₂, NdOs₄As₁₂, SmOs₄Sb₁₂, YbOs₄Sb₁₂.

Composé	n(0) avec contribution intra-bande	n(0) sans contribution intra-bande
$DyOs_4P_{12}$	26.3673	18.9134
GdOs ₄ P ₁₂	16.6175	5.43183
NdOs ₄ As ₁₂	24.7735	8.66397
EuOs ₄ As ₁₂	22.8277	15.395
SmOs ₄ Sb ₁₂	20.6892	13.2833
YbOs ₄ Sb ₁₂	25.5677	12.2069

Reference:

- [1] K. Schwarz, P. Blaha, G.K.H. Madsen, Comput. Phys. Commun. 147 (2002) 71.
- [2] G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sj"ostedt, L. Nordstr"om, Phys. Rev. B 64 (2001) 195134.
- [3] Ohenberg, P., Kohn, W.: Phys. Rev. B136, 864, 1964.
- [4] Kohn, w., Sham, L.J.: Phys. Rev. A140, 1133, 1965.
- [5] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran, L.D. Marks, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn, Universit^a Wien, Austria), 2018, ISBN 3-9501031-1-2.
- [6] P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen, L.D. Marks, J. Chem. Phys. 152 (2020), 074101.
- [7] J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin.
- [8] [http://www.wien2k.at/reg_user/faq/rmt.html].
- [9] P. Blochl, O. Jepsen, and O. K. Andersen / Phys. Rev. B, 49 (1994) 16223.
- [10] F. D. Murnaghan, Natl. Acad. Sci. U. S. A 30(1994) 5390.
- [11] K. Kihou et al. Materiels Research Bulletin 39 317-325 (2004).
- [12] A. Shankar et al Phase Transitions A Multinational journal (2015).
- [13] T.CICHOREK et al Phys Review B90 195123 (2014).
- [14] D. J. Braun and W. Jeitschko. J. Solid State Chem 32.357 (1980).
- [15] C. Sekine ; K. Akahira, K Ito and T Yagi .J.Phys.Soc.Jpn.78 093707 (2009).
- [16] W. M. Yuhasz, N. A. Frederick, P.-C. Ho, N. P. Butch, B. J. Taylor, T. A. Sayles, M. B. Maple, J. B. Betts, A. H. Lacerda, P. Rogl, and G.Giester: Phys. Rev. B 71 (2005) 104402.
- [17] K. TAKEGAHARA and HARIMA J.Phys.Soc.Jpn.77(2008)Suppl.A.pp.193-195.

- [18] H. Kunitoshi et al. J.Phys.Soc.Jpn.85. 114708 (2016).
- [19] Kaiser. J. W. Jeitschko.W J.AlloysCompd.291 66 (1999).
- [20] M. Jamal, et al., Comput. Mater. Sci. 95 (2014) 592–599.
- [21] M. Jamal, et al., J. Alloys Compd. 735 (2018) 569–579.
- [22] D.C. Wallace, Thermodynamics of Crystals, Willey, New York, 1972.
- [23]: C.Kittel, Introduction to Solid State Physics, 7th edition (John Wiley and Sons, Hoboken, New Jersey (1996).
- [24] M.J. Mehl, B.K. Klein, D.A. Papaconstantopoulos, Intermetallic compound: principle and practice, in: J.H. Westbrook, R.L. Fleischeir (Eds.), Principles, vol. I, John Wiley and Sons, 1995.
- [25] W. Voigt, Lehrbush der Kristallphysik, Taubner, Leipzig, 1928.
- [26] E. Schreiber, O.L. Anderson, N. Soga, Elastic Constants and Their Measurements, McGraw-Hill, New York, NY, 1973.
- [27] B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, P. C. Schmidt, Intermetallics 11(2003) 23.
- [28] C. Zener, Elasticity and Anelasticity of Metals, University of Chicago Press, Chicago, 1948.
- [29] S.I. Ranganathan, M. Ostoja-Starzewski, Physical Review Letters, 101 (2008) 055504.
- [30] J. Nordmann, M. Aßmus, H. Altenbach, Continuum Mech. Thermodyn. 30 (2018)689– 708.
- [31] https://marcusassmus.github.io/visualising-elastic-anisotropy/
- [32] S.F.Pugh, Philo.Mag.45 (1954) 823.
- [33] O. L Anderson, J. Phys. Chem. Solids 24, (1963) 909.
- [34] Vladimir I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, J. Phys. Condens. Matter 9 (1997) 767–808.

- [35] T. Djaafri, et al., J. Magn. Magn Mater. 493 (2020) 165730.
- [36] V.I. Anisimov, et al., Phys. Rev. B 44 (1991) 943.
- [37] I.Shirotani ,Y.Shimaya,K.Kihou,C Sekine and T Yagi J Solid State Chem 174 32(2003).
- [38] Chihiro Sekine, et al., J. Phys. Soc. Jpn. 77 (2008) 135–141.
- [39] The Munich SPR-KKR package, version 7.7, H. Ebert et al, http://ebert.cup.uni muenchen.de/SPRKKR.
- [40] H. Ebert, D. K. odderitzsch, J. Min'ar, Rep. Prog. Phys. 74 (2011), 096501.
- [41] A.I. Liechtenstein, M.I. Katsnelson, V.P. Antropov, V.A. Gubanov, J. Magn. Magn. Mater. 67 (1987) 65–74.
- [42] H Moussa, H Bouafia, B Sahli, A Dorbane, Ş Uğur, G Uğur. Journal of Magnetism and Magnetic Materials 518, 167435 (2021)
- [43] Philip W. Anderson, Solid State Phys. 14 (1963) 99–214.
- [44] H.E. Stanley, Mean Field Theory of Magnetic Phase Transitions: Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, 1971.
- [45] K. Parlinski, Z.Q. Li, Y. Kawazoe, Phys. Rev. Lett. 78 (1997) 4063.
- [46] K. Parlinski, Software PhononA, 2017. Cracow.
- [47] K. Parlinski, Phys. Rev. B 98 (2018), 054305.
- [48] H. Hellmann, J. Chem. Phys. 3 (1) (1935) 61.
- [49] J. Ihm, A. Zunger, M.L. Cohen, J. Phys. C 12 (21) (1979) 4409.
- [50] H Bouafia, G Uğur, M Güler, E Güler, Ş Uğur. Materials Science in Semiconductor Processing 146, 106659 (2022)
- [51] H.M. Tütüncü, E. Karaca, G.P. Srivastava, Phys. Rev. B 95 (2017) 214514.
- [52] B Boughoufala, H Bouafia, B Sahli, B Djebour, S Mokrane, S Hiadsi. Journal of Superconductivity and Novel Magnetism 32 (12), 4005-4020 (2019)

RESULTATS ET DISCUSSIONS.

[53] Smith, N.V.: Phys. Rev. B. 3, 1862 (1971)

[54]Ehrenreich, H., Philips, H.R.: Phys. Rev. 128, 1622 (1962)

[55] Wooten, F.: Optical properties of solids. Academic press, New York (1972)

[56] Saha, S., Sinha, T.P.: And Abhijit Mookerjee. Phys. Rev. B. 62, 8828 (2000)

D'après une recherche bibliographique approfondie, les composés skuttérudites remplies étudiés ont été sélectionnés sur la base de leurs utilisations dans l'industrie et la technologie, car ils sont utilisés comme "refroidisseurs" pour les petits dispositifs, et des générateurs d'électricité, en outre, plusieurs de leurs propriétés physiques sont toujours inconnues, ce qui nous a motivé à les étudier.

Dans ce travail nous avons étudié les propriétés structurales, stabilité mécanique et propriétés optoélectroniques des composés skuttérudites : DyOs₄P₁₂, GdOs₄P₁₂, EuOs₄As₁₂, NdOs₄As₁₂, SmOs₄Sb₁₂ et YbOs₄Sb₁₂ dans le but de complémenter et faire une comparaison avec les autres études théoriques et expérimentales disponibles.

Pour cela, nous avons utilisé la méthode FP-LAPW implémentée dans le code WIEN2k. En adjoignant plusieurs fonctionnelles récentes pour l'évaluation du potentiel d'échange et de corrélation : GGA-PBE et GGA-PBEsol sont utilisées pour la partie structurale, et GGA-PBEsol, GGA+U (correction Hubbard) pour la partie optoélectronique.

1. Propriétés structurales :

D'après nos calculs, la fonctionnelle GGA-PBEsol a donné des valeurs des paramètres de maille relativement proche des valeurs expérimentales et théoriques de comparaison.

Et pour les autres résultats structuraux des paramètres internes des atomes P, As et Sb, le module de compressibilité à l'équilibre statique et sa dérivée, on note, qu'à notre connaissance, la littérature scientifique ne dispose d'aucune valeur de comparaison et notre étude est une première prédiction de ces propriétés.

2. Propriétés élastiques et mécaniques :

Nous avons constaté une absence presque totale des résultats théoriques et expérimentales de comparaison pour les constantes élastiques C_{ij} et les grandeurs mécaniques liées (le module de Young, le module de cisaillement, le facteur d'anisotropie et le coefficient

de Poisson) sauf pour le matériau de GdOs4P12. Les valeurs des constantes élastiques trouvées confirment la stabilité mécanique de tous les composés étudiés. D'après les résultats du rapport de B/G qu'on a obtenus, nous avons trouvé un seul matériau ductile (YbOs4Sb₁₂) tandis que les autres sont fragile. D'après l'indice d'anisotrope élastique de Zener A^Z et l'indice universel d'anisotropie A^U , on peut dire que tous les matériaux sont élastiquement isotropes sauf les composés SmOs₄Sb₁₂ et YbOs₄Sb₁₂ qui sont anisotropes. Et nous avons confirmé l'anisotropie élastique par la surface directionnelle du module de Young, d'où on constate que celles des composés : DyOs₄P₁₂, GdOs₄P₁₂, EuOs₄As₁₂ et NdOs₄As₁₂ sont presque identiques et très proches de la forme sphérique, ce qui confirme la très faible anisotropie (ou bien l'isotropie), et pour les composés SmOs₄Sb₁₂, YbOs₄Sb₁₂, les surfaces directionnelles du module de Young sont relativement déformées par rapport à la forme sphérique ce qui montre que ces composés sont élastiquement anisotrope.

3. Propriétés électroniques et magnétiques:

Pour déterminer la nature électronique et magnétique d'un matériau, il faut faire le calcul de la structure de bandes. D'après nos résultats, on peut conclure que la prise en considération de l'effet de la forte corrélation a changé la topologie des bandes du haut de la bande de valence et celles du bas de la bande de conduction, ce qui confirme la forte présence de cet effet pour les atomes Os, Dy, Gd, Nd, Eu et Sm et l'importance de prendre cette correction en considération. On constate aussi que pour les composés DyOs₄P₁₂, GdOs₄P₁₂, EuOs₄As₁₂, NdOs₄As₁₂, SmOs₄Sb₁₂, YbOs₄Sb₁₂ la présence de légers décalages entre les bandes des deux spins qui s'aggravent proches du haut de la bande de valence et le bas de la bande de conduction, ce qui confirme le fort comportement ferromagnétique de ces composés et confirme les travaux expérimentaux. Pour YbOs₄Sb₁₂, les deux bandes des deux spins sont

identiques avec un moment magnétique nul, ce qui confirme son comportement nonmagnétique.

D'après le calcul de la polarisation P de tous les composés, sauf le YbOs₄Sb₁₂, nous avons constaté des valeurs différentes de 0 % et de 100%, ce qui confirme, à la fois, le comportement métallique et ferromagnétique de ces composés. Pour YbOs₄Sb₁₂, une valeur obtenue est nulle, c'est évident, car ce composé est non-magnétique.

Pour les composés Skuttérudites étudiés, les bandes du haut de valence sont principalement dues aux contributions des états Nd-f (spin Up) pour NdOs₄As₁₂, Eu-f (spin Up) pour EuOs₄As₁₂, Sm-f (spin Up) pour SmOs₄Sb₁₂ et Yb-f pour YbOs₄Sb₁₂ et pour tous les composés, on note aussi une forte contribution des états Os-d avec une contribution presque similaire entre Os-d-up et Os-d-dn et une présence de symétrie (qui n'est pas parfaite) entre les pics de ces états pour les deux spins ce qui justifie le moment magnétique presque nul et la faible corrélation de l'atome d'osmium. On note aussi une faible contribution des états P-p, As-p et Sb-p qui sont en hybridation avec les états Os-d ce qui indique la présence d'une liaison covalente entre ces deux atomes.

4. Estimation de la température de Curie du composé DyOs₄P₁₂

Après l'estimation des paramètres d'échange Jij par l'hamiltonien du système des spins du modèle classique d'Heisenberg en utilisant le code « spin polarized relativistic Korringa-Kohn-Rostoker (SPR-KKR) », nous avons trouvé une valeur de la température de Curie de 2.94 K, cette dernière est très proche de la valeur expérimentale trouvée. Cette étude a confirmé le comportement ferromagnétique à très basse température de DyOs₄P₁₂.

5. Stabilité dynamiques du composé DyOs₄P₁₂

Nous avons étudié la stabilité dynamique du composé $DyOs_4P_{12}$ en utilisant l'analyse de la courbe de dispersion des phonons qui est obtenue par la méthode directe implémentée

dans le code PhononA. Le calcul est basé sur l'estimation des forces de Hellmann-Feynman HFF. Après l'analyse de la courbe de dispersion des phonons et celle de la densité d'états des phonons, nous avons obtenu une absence des modes imaginaires (branches avec des fréquences négatives) ce qui signifie que le matériau est stable dynamiquement.

6. Propriétés Optique :

Il existe un lien direct entre les propriétés optiques et les propriétés électroniques, et d'après nos études de la partie imaginaire, on constate, pour tous les matériaux, une forte présence des pics de transition pour les faibles énergies. Ces transitions sont principalement dues aux transitions intra-bandes ce qui confirme le fort comportement métallique de tous les composés étudiés. Ces pics décroissent avec l'augmentation de l'énergie, ce qui est dû à la diminution des contributions des transitions intra-bande et l'augmentation des transitions interbandes.

D'après les valeurs de l'indice de réfraction statique n(0), obtenues sans et avec contribution intra-bande, on constate une large différence entre les valeurs qui sont obtenues avec contribution intra-bande en comparaison avec celles obtenues tenant en compte de cette contribution. Ces résultats montrent l'importance de prendre ces contributions en considération et confirment le fort caractère métallique des différents composés étudiés. À notre connaissance, la littérature scientifique ne dispose d'aucune valeur de comparaison.

Résumé :

Le travail de cette thèse est une étude complémentaire et comparative des propriétés physiques des skuttérudites remplies DyOs₄P₁₂, GdOs₄P₁₂, EuOs₄As₁₂, NdOs₄As₁₂, SmOs₄Sb₁₂ et YbOs₄Sb₁₂. Ces matériaux ont été sélectionnés suite à leur intérêt technologique et industriel ainsi que le manque d'information sur plusieurs de leurs propriétés physiques. Les propriétés structurales ont été étudiées en employant deux fonctionnelles (GGA-PBE et GGA-PBEsol).

L'étude élastiques a montré que tous les composés étudiés sont stables mécaniquement. Plusieurs grandeurs mécaniques liées aux constantes élastiques ont été aussi étudiées. L'anisotropie élastique a été analysée en détail par les surfaces directionnelles du module de Young.

L'étude électronique et magnétique a montré que tous les matériaux sont des métaux et ils ont tous un comportement ferromagnétique, sauf YbOs₄Sb₁₂ qui est non-magnétique. La température de Curie du composé DyOs₄P₁₂ a été estimé par la méthode SPR-KKR et la valeur trouvée est très proche de celle expérimentale. L'étude des propriétés optiques a confirmé le fort caractère métallique de tous les composés étudiés.

Mots-clés :

Skuttérudites, FP-(L) APW+lo, DFT, Propriétés structurales, Propriétés optoélectroniques.

ملخص:

يعتبر عمل هذه الاطروحة دراسة تكميلية للخصائص الفيزيائية المختلفة للسكوتروديت المملوء بالأوزميوم و الخاصة بالمركبات DyOs₄P₁₂ و GdOs₄P₁₂ و EuOs₄As₁₂ و NdOs₄As₁₂ و NdOs₄As₁₂ و YbOs₄Sb₁₂ و اصافة الى ذلك تمت هذه الدراسة من اجل مقارنة نتائجنا بالعمل التجريبي المتاح، وكان الدافع وراء اختيار هذه المركبات، هو الأهمية الصناعية والتكنولوجية لها من جهة، ومن جهة اخرى لنقص المعلومات والدراسات عن بعض الخصائص الفيزيائية لها.

تم اختيار وظيفتين هما(GGA-PBE و GGA-PBEsol) من اجل دراسة الخصائص الهيكلية، تؤكد قيم الثوابت المرنة الاستقرار الميكانيكي لجميع المركبات المدروسة. وبالنسبة للتباين المرن A استعملنا مساحات معامل يونغ.

أظهرت الدراسة الإلكترونية والمغناطيسية أن جميع المواد عبارة عن معادن وجميعها لها سلوك مغناطيسي حديدي، باستثناء المركب YbOs₄Sb₁₂ والذي يعتبر غير مغناطيسي.

تم قياس درجة حرارة (Curie) للمركب DyOs₄P₁₂ بواسطة طريقة SPR-KKR والقيمة المتحصل عليها قريبة جدًا من القيمة التجريبية.

كما أكدت در اسة الخواص الضوئية الطابع المعدني القوي لجميع المركبات المدروسة.

Abstract:

This work is a complementary and comparative study of several physical properties of DyOs₄P₁₂, GdOs₄P₁₂, EuOs₄As₁₂, NdOs₄As₁₂, SmOs₄Sb₁₂ and YbOs₄Sb₁₂ filled-skutterudites. These materials have been selected due to their technological and industrial interest as well as the lack of information on several of their physical properties. The structural properties have been studied using two functionals (GGA-PBE and GGA-PBEsol).

The elastic study has shown that all the studied compounds are mechanically stable. Several mechanical quantities related to elastic stiffness constants have also been studied. The elastic anisotropy has been analyzed in detail by the directional surfaces of Young's modulus. The electronic and magnetic study has shown that all the materials are metals and they all have a ferromagnetic behavior, except YbOs₄Sb₁₂ that is non-magnetic.

Curie temperature of $DyOs_4P_{12}$ has been estimated by SPR-KKR method and the found value is very close to the experimental one. The study of the optical properties has confirmed the strong metallic.