République Algérienne Démocratique Populaire وزارة التعليم العالي والبحيث العلمي Ministère de l'Enseignement Supérieur et de la Recherche Scientifique جاميعة ابسن خليدون - تيسارت Université Ibn Khaldoun – Tiaret

Faculté des Sciences de la Matière كلية علوم الملاة Département de Chimie قسم الكيمياء

Mémoire

Présenté par :

Boutheina Bensassi

Ismahan Ghoullam

Pour obtenir le diplôme de

Master

Filière : Chimie

Spécialité : Chimie des matériaux

Sujet :

Etude des corrélations entre les paramètres structuraux et les propriétés bioactives des dérivés du composé organique naphtoquinone.

Soutenu le : 24/06/2019 Devant le jury :

Mr M. BADAOUI	Président	UNIV .Tiaret
Mme S. SOUALMI	Examinateur	UNIV .Tiaret
Mme K. BELKASSA	Examinateur	UNIV .Tiaret
Mme M.DRISSI	Encadreur	UNIV .Tiaret

Année Universitaire : 2018/2019

Année Universitaire : 2018/2019

REMERCIEMENTS

« Tout d'abord merci à Allah»

Nous tenons à remercier toutes les personnes qui ont contribué au succès duré nos années d'études et à notre encadreur <u>Mme Drissi Mokhtaria</u>, pour sa patience, sa disponibilité et surtout ses judicieux conseils, qui ont contribué à alimenter notre réflexion.

Nous tenons à adresser nos vifs remerciements à, *Mr.M Badaoui*, qui nos a fait l'honneur d'accepter de présider le jury de cette thèse.

Nous tenons aussi à remercier ceux qui nos ont fait l'honneur de juger ce travail aux <u>Mme.S Soualmi</u> et <u>Mme</u>.<u>K</u> <u>Belkassa</u>, pour avoir accepté d'examiner ce travail et participer au Jury.

Enfin, nous voulons dire merci à toutes nos familles ; mais surtout à nos parents, pour leur soutien constant et leurs encouragements.

Dédicace

À mon grand-père Brahim Amar

À mes parents

À mes sœurs

À mes deux frères À ma belle Ghoullam Ismahan À moi-même ,à Brahim Abdelkadir

Dédicace

À moi-même À mes parents À mes deux sœurs À mon frère À ma belle Bensassi Boutheina

6

Sommaire

Liste des tableaux	04
Liste des figures	05
Liste des principales abréviations	06
Introduction générale	08

Chapitre I : Généralité sur la modalisation moléculaire

I.1 Introduction	10
I.2. Mécanique quantique	11
I.2.1. Approximations fondamentales	12
I.2.1.a. Approximation de Born-Oppenheimer	13
I.2.1.b. Fonction d'onde et orbitales moléculaires	13
I.2.1.c. Approximation Hartree-Fock (HF)	16
I.2.1.d. Approximation LCAO	18
I.2.2. Méthode "Post-Hartree-Fock" (Post-HF)	18
I.2.3. Théorie de la fonctionnelle de la densité	19
I.2.3.a. Fondement de la théorie DFT	19
I.3. Méthodes semi-empiriques	20
I.4. Mécanique Moléculaire (MM)	21
I.4.2. Forme des fonctions énergétiques dans un champ de force en mécanique	23
moléculaire	
I.4.3. Quelques champs de force	25
I.5.Conclusion	26
Références bibliographiques	

Chapitre II : Synthèse bibliographique sur des propriétés amphiphiliques

II.1.Introduction	27
II.2 Descriptions chimiques du composé	27
II.2.1. Description Cristallographiques	27
II.3. Etude de l'effet de la substitution sur le noyau de base de la molécule	30
II.4. Etude de la relation structure-activité dans une série bioactive	30
II.4.1. Méthode de corrélation quantitative (QSAR)	32
II.4.2. Paramètres caractérisant la structure moléculaire (Paramètre	31

amphiphiliques)

II.4.2.a. Volume et surface moléculaire	31	
II.4.2.b. Polarisabilité et réfractivité molaire	33	
II.4.2.c. Energie d'hydratation	33	
II.4.2.d. Coefficient de partition (Log P)	34	
II.5. Outils informatique		
II.5.1. Gaussain	36	
II.5.2. Gauss View	38	
II.5.3. Méthode de calculs accessibles sur Gaussian	38	
II.5.4. Option de calcul	38	

Références bibliographiques

Chapitre III Etude de la relation structure–Propriétés des composés dérivés de naphtaquinone.

III.1.Introduction	39				
III.2. Méthodes de calculs utilisés					
III.3. Propriétés géométriques optimisée de la molécule de base	40				
III.3. 1. Longueurs des liaisons chimiques	41				
III. 3 2. Angles de valence	42				
III.3. 3. Angles de torsion	42				
III.4. Effet de la substitution sur les propriétés géométriques de molécules dérivées	44				
III.5. Effet de la substitution sur les propriétés électrostatiques des dérives de la					
molécule de base Naphthaquinone					
III.5. 1. Charges de Mulliken	47				
III.5.2. Moment dipolaire moléculaire	51				
III.5.3. Potentiel électrostatique	52				
III.5.4. Energies des orbitales moléculaire et transfert de charge	55				
III.6. Effet de la substitution sur les paramètres amphiphiliques des molécules	58				
III.7 Conclusion	60				
Références bibliographiques					

α			
Conc	usion	général	e
Conc		Seriera	

62

Annexe

LISTE DES TABLEAUX

Liste des tableaux

Tableau II.1	Données cristallographiques et les conditions expérimentales	29
Tableau III.1	Paramètres positionnels des atomes de la molécule	41
Tableau III.2	Paramètres géométriques de la molécule obtenue par AM1et B3LYP	43
Tableau III.3	Les positions des substituants dans les dérivés de la molécule de base	44
	dans les séries 1 et 2.	
Tableau III.3	Les positions des substituants dans les dérivés de la molécule de base de	45
	la série N° 3(suite)	
Tableau III.4	Paramètres géométriques de la molécule 9 (tri-méthyle) de la série 3	46
	obtenus par AM1et B3LYP	
Tableau III.5.	Charges nettes (q) pour les différents atomes pour chaque molécule de	48
	la série 1	
Tableau III.6.	Charges nettes (q) pour les différents atomes pour chaque molécule de	49
	la série 2	
Tableau III.7.	Charges nettes (q) pour les différents atomes pour chaque molécule de	50
	la série 3	
Tableau III.8.	Les Composants du moment dipolaire de la molécule C21H13N3O2	52
	obtenus par l'affinement multipolaire, HF et DFT/B3LYP	
Tableau III.9	Orbitales moléculaire frontières (FMO) de la molécule de mère et ces	56
	dérivées dans la série 1	
Tableau III.10	Energie de gap (ΔE), le potentiel d'ionisation (IP) l'affinité électronique	57
	(EA), l'indice électrophile (ω), potentiel chimique électronique (μ),	
	électro négativité (χ) et la dureté globale (η), des composés dérivées de	
	la molécule de mère dérive de naphtaquinone	
Tableau III.11	Paramètres amphiphiles pour naphtaquinone.	58

LISTE DES ABRÉVIATIONS

Abréviations

AM1:	Austrin Model 1
AMBER:	Assisted Model Building with Energy Refinement)
CHARMM:	Chemistry Harvard Macromolecular Mechanic
CIF :	Crystallographic Information Framework.
CNDO :	Complete Neglect of Differential Overlap)
d _{hkl} :	Distance inter-réticulaire.
DFT:	La théorie de la fonctionnelle de la densité.
DM:	La dynamique moléculaire.
DRX :	La diffraction des rayons X « XRD ».
ESAM :	Méthodes telles que l'Auto-assemblage Electrostatique de
	Monocouches.
GSH :	Génération de second harmonique.
GTH :	Génération de Troisième Harmonique.
GTO:	Gaussian Type Orbitals "Les orbitales de type Gaussienne"
HF:	L'approximation de Hartree-Fock.
HOMO :	Highest Occupied Molecular Orbital, en français HO pour Haute
	Occupée.
INDO:	Intermediate Neglect of Differential Overlap
IR:	Infra-rouge
LCAO:	Combinaison Linéaired'Orbitales Atomiques.
LCM3B :	Laboratoire de Cristallographie et Modélisation des Matériaux
	Minéraux et Biologiques.
LUMO:	Lowest unoccupied molécular orbital, en français BV pour Basse
	Vacante
NAO:	Natural Atomic Orbitals
NHO:	Natural Hybrid Orbitals
NBO:	Natural Bond Orbitals
NPA:	Natural Population Analysis
<i>MM</i> :	La mécanique moléculaire.
MoPro :	MoléculairePropretés.
MQ :	La mécanique quantique.
<i>MP2 :</i>	Möller –Plesset d'ordre 2

<i>OA</i> :	Orbitales atomiques.
ОМ:	Orbitales moléculaires.
ONL:	L'optique non linéaire.
РМ3:	Parametric Method 3.
РМ6:	Parametric Method 6.
RHF:	Restricted Hartee-Fock "L'approche Hartree-Fock restreint"
RMN:	Résonance Magnétique Nucléaire
SCF :	Self-Consistent-Field ''Méthode du champ auto-cohérent''
STO:	Slater Type Orbital
UFF:	Universal Force Field.
UHF:	Unrestricted Hartee-Fock "L'approche Hartree-Fock non restreint"
UV:	Ultraviolet.
VDW:	Interactions de Van der Waals.
FMO :	Frontier Molecular Orbital

Introduction générale

Les ordinateurs sont devenus des outils indispensables en chimie pharmaceutique moderne. Leur rôle est essentiel, tant au niveau de la découverte de nouveau médicaments que du développement de ceux-ci. Les progrès rapides réalisés dans les logiciels et dans le matériel qui les accompagne fait que la plus part des opérations qui étaient réalisables par des informaticiens avertis peuvent maintenant être exécutées par des pharmaco-chimistes, avec des ordinateurs couramment employés aux laboratoires, pour autant qu'ils possèdent les notions élémentaires de mécanique quantique et autres équations qui ont trait aux molécules **[1].**

La modélisation moléculaire regroupe les techniques de visualisation, de manipulation, d'analyse et de calcul de la structure spatiale **[2,3].** Les techniques de graphisme moléculaire permettent de représenter sur un écran la structure en 2D et en 3D d'une molécule, de la manipuler de façon interactive ou d'analyser certains paramètres géométriques. Ces structures peuvent être obtenues à partir d'éléments tirés de la bibliographie, extrais d'une banque de données cristallographiques (*Cambridge Structural Database, Brookhaven Protéine Databank*) ou enfin construites sur la base d'observation expérimentale. Le deuxième volet de la modélisation moléculaire est la mise en oeuvre de méthodes permettant de réaliser des calculs d'énergie, des optimisations de géométrie, des simulations de mouvement moléculaire et d'autres. Les termes de chimie informatique ou chimie computationnelle résument clairement les objectifs de cette technique à savoir l'emploi de moyens informatiques pour la modélisation quantitative du comportement physicochimique d'espèce chimiques par un formalisme mathématique **[4]**.

Ce travail se place dans le contexte d'une étude fondamentale et originale par la modélisation moléculaire sur plusieurs composés organiques avec un noyau de base de Naphtaquinone : (E)-2-(tert-Butylamino)-4-(tert-butylamino) naphthalen-1-one.

Le principal objectif de ce travail est l'application de différentes méthodes de la modélisation moléculaire pour prédire les réactivités chimiques et les activités biologiques attendues dans des nouvelles molécules organiques.

Les composés d'une molécule de base de Naphtaquinone ont été largement investis dans plusieurs travaux de recherche **[5,6]**. Les dérivés Naphtha sont des molécules à transfert

8

de charges qui trouvent leurs applications dans divers domaines et particulièrement dans le domaine de l'activité biologique comme des antibiotiques **[7-8]**.

Les méthodes théoriques qui permettent de calculer les données relatives à la structure et aux propriétés d'une molécule peuvent être subdivisées en deux catégories la mécanique quantique et la mécanique moléculaire.

Le présent travail se divise en quatre chapitres :

□ Le premier chapitre est consacré à des rappels théoriques sur la modélisation moléculaire et les différentes bases utilisées pour effectuer cette analyse structurale.

□ Dans le deuxième chapitre, nous allons présenter une description chimique du composé sur la molécule mère de Naphtaquinone : (E)-2-(tert-Butylamino)-4-(tert-butylamino) naphthalen-1-one. Ce chapitre est consacré aussi présenter une synthèse bibliographie sur les paramètres amphiliphiques utiliser dans étude de la relation structure-activité des composés dérivées de Naphtha.

□ Dans le troisième chapitre, nous allons exploiter les résultats des calculs théoriques sur l'effet de la substitution sur les paramètres géomitriques, électrostatiques, énergitiques et amphiphiliques des molécules.

Ce manuscrit va terminera par une conclusion générale et perspective.

LISTE DES FIGURES

Liste des figures

Figure I.1	Représentation mécanique d'une liaison entre deux atomes							
Figure I.2	Interactions intramoléculaires entre atome liés et intermoléculaires							
	entre atomes non liés							
FigureII.1	Structure géométrique d'une (E)-2-(tert-Butylamino)-4-(tert-	27						
	butylamino) naphthalen- (4H)one							
Figure II.2	Empilement moléculaire de quatre molécules dans la maille	28						
	élémentaire							
Figure II.3	Deux séries des substituées.	30						
Figure II.4	Atome entouré par une grille	32						
Figure II.5	Atomes A, B et la zone de recouvrement X							
Figure II.6	Liaison hydrogène							
FigureII.7	Polarité des différents milieux cellulaire							
Figure III.1	Structure optimisée de la molécule C ₁₂ H ₁₂ N ₂ O (DFT B3LYP/6-	40						
	31G(d,p)).							
Figure III.2	Représentation des distances interatomiques	42						
Figure III.3	Représentation des angles de valence							
Figure III.4	Schéma descriptif d'un angle de torsion							
Figure III.5	Structure optimisée de la molécule C ₁₈ H ₂₃ N ₂ O(DFT B3LYP/6-	47						
	31G(d,p))							
Figure III. 6.a	Le potentiel électrostatique théorique de la molécule mère	53						
Figure III. 6.b	Les différentes cartes de potentiel électrostatique théorique des	55						
	trois séries des composés dérivées							

CHAPITRE I: GÉNÉRALITÉ SUR LA MODÉLISATION MOLÉCULAIRE

I.1 Introduction

La recherche et la synthèse de nouveaux composés chimiques sont aujourd'hui souvent associées à une étude par modélisation moléculaire. La modélisation moléculaire est une technique permettant, non seulement de représenter les propriétés et les réactions chimiques mais aussi de manipuler les modèles des structures en deux ou trois dimensions.

La modélisation par ordinateur d'une molécule implique généralement une présentation graphique de la géométrie ou de la configuration des atomes de la molécule, suivie de l'application d'une méthode théorique [1,2]. Cette technique constitue une approche scientifique novatrice, originale, qui permet de travailler in silico dans des domaines extrêmement variés, que ce soit dans un but très fondamental, ou beaucoup plus appliqué.

La modélisation moléculaire est un terme général qui englobe les différentes techniques de graphisme moléculaire et de chimie computationnelle permettant d'afficher, simuler, analyser ,calculer et stocker les propriétés des molécules [3].

En effet, les systèmes moléculaires qui sont amenés à être étudies tendent à devenir de plus en plus complexes. Cette complexité est bien sur liée à la taille des molécules envisagées (plusieurs centaines de milliers d'atomes pour les molécules biologiques par exemple) ainsi qu'à la structure intrinsèque des atomes eux-mêmes, mais aussi au degré de précision exige pour le calcul de certaines grandeurs physiques [4].

Les méthodes de calculs utilisées peuvent être relativement simples et utilisables rapidement ou au contraire elles peuvent être extrêmement complexes et demander des centaines d'heures de temps d'ordinateur, même sur un superordinateur. En plus, ces méthodes utilisent souvent des moyens infographiques très sophistiques qui facilitent grandement la transformation de quantités impressionnantes de nombres en quelques représentations graphiques facilement interprétables [6].

Il existe trois grandes familles de modèles théoriques [5]:

 Les méthodes quantiques qui décrivent le système étudié par résolution de l'équation de Schrödinger¹ (approchée, pour les systèmes supérieurs à un noyau et un électron). Parmi

¹ Erwin Rudolf Josef Alexander Schrödinger (1887 –1961) est un physicien autrichien. En imaginant l'équation d'évolution de la fonction d'onde associée à l'état d'une particule, il a permis le développement du formalisme théorique de la mécanique quantique. Cette équation d'onde qui tient compte à la fois de la quantification et de l'énergie non relativiste a été appelée par la suite équation de Schrödinger (pour laquelle il a reçu, en commun avec Paul Dirac, le prix Nobel de physique de 1933).

ces méthodes, il faut distinguer celles de type Hartree-Fock (HF), décrites par une fonction d'onde, et celles basées sur la théorie de la fonctionnelle de la densité (basée sur la densité électronique et incluant la corrélation dynamique) qui seront employées ici.

- Les méthodes Hartree-Fock ne comprennent pas de traitement de la corrélation.
- La théorie de la fonctionnelle de la densité contient la corrélation dynamique des électrons. Ces modèles nécessitent un temps de calcul important ce qui limite leur domaine d'application pour les systèmes contenant moins d'une centaine d'atomes.
- Les méthodes semi-empiriques où un traitement quantique est effectué, mais un Hamiltonien approché est utilisé, qui est paramétré de façon à reproduire des données expérimentales ou des résultats théoriques. Ces méthodes fournissent une approche de caractère plus qualitatif.
- 3. Les méthodes de mécanique moléculaire, qui décrivent les atomes comme des particules classiques (sans expliciter les électrons), elles utilisent des champs de force paramétrisés sur des valeurs expérimentales pour décrire les interactions. Elles permettent de modéliser de grands systèmes tels que les protéines mais il n'est pas applicable que dans les conditions pour lesquelles la paramétrisation a été effectuée. Ces méthodes ne peuvent rendre compte des phénomènes impliquant des ruptures de liaisons.

I.2. Mécanique quantique :

La description la plus complète d'un système physique par l'équation de Schrödinger [7] qui décrit l'évolution de l'état quantique d'un système dans le temps. Cette dernière porte le nom de son père, Erwin Schrödinger, qui l'a découverte en 1926.

Pour une seule particule, un électron par exemple, elle s'écrit de la façon suivante :

$$\widehat{H}\Psi(\vec{r},t) = i\hbar\frac{\partial}{\partial t}\Psi(\vec{r},t)....(I.1)$$

$$\widehat{H} = -\frac{\hbar^2}{2m} \nabla^2 + \mathcal{V}(\vec{r}, t).....(\mathbf{I.2})$$

 $\Psi(\vec{r}, t)$ est la fonction d'onde de la particule à la position \vec{r} et au temps t.

 \widehat{H} est l'opérateur Hamiltonien.

V est l'énergie potentiel dans lequel la particule à la position \vec{r} et au temps t. i est l'unité imaginaire.

 \hbar est la constante de Planck réduite $\left(\hbar = \frac{h}{2\pi}\right)$. ∇^2 est l'opérateur La placien, $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$. Dans le cas de plusieurs particules, comme dans un atome ou une molécule, Ψ sera fonction de leurs positions ($\vec{r_1}, \vec{r_2}, \vec{r_3}, ...$) et du temps *t*. Si *V* ne dépend pas du temps, l'équation de Schrödinger peut être simplifiée en séparant la variable de position de la variable de temps.

On peut décrire alors la fonction d'onde comme étant le produit d'une fonction d'espace et d'une fonction temporelle.

$$\Psi(\vec{r},t) = \Psi(\vec{r})\tau(t)....(I.3)$$

En outre, après avoir négligé la fonction temporelle, on aboutit à l'équation de Schrödinger indépendante du temps :

$$\widehat{H}\Psi(\vec{r}) = E\Psi(\vec{r}).....(I.4)$$

Où *E* c'est la valeur propre de \widehat{H} (l'énergie totale du système).

La résolution de cette équation appelée équation aux valeurs propres, permet d'obtenir l'énergie d'un système et d'autres propriétés.

Cette équation ne peut être rigoureusement résolue que pour les systèmes monolectroniques. La description de systèmes plus complexes nécessite la mise en œuvre d'un certain nombre d'approximations.

L'hamiltonien exact d'un système comportant N noyaux et ne électrons, où les noyaux sont désignés par A et B et les électrons par k et l, s'écrit :

I.2.1. Approximations fondamentales

I.2.1.a. Approximation de Born-Oppenheimer : L'approximation de Born² - Oppenheimer³ (1927) [8] consiste à simplifier la résolution de l'équation de Schrödinger en séparant la partie électronique de la partie nucléaire dans la fonction d'onde. Cette

² *Max Born* (1882 - 1970) est un physicien allemand, puis britannique. Il est lauréat de la moitié du prix Nobel de physique de 1954 pour ses travaux sur la théorique quantique.

³ Julius Robert Oppenheimer (1904 - 1967) est un physicien américain., il est considéré comme le père de la bombe atomique américaine. La communauté scientifique lui reconnaît également de nombreuses thèses concernant la naissance des trous noirs, thèses confortées par les dernières analyses astronomiques. En raison de ses prises de positions sur les risques d'une course à l'armement nucléaire, il est une des victimes du maccarthisme et il voit son certificat de sécurité révoqué. Il faut attendre 1963 pour qu'il soit réhabilité politiquement lorsque le gouvernement des États-Unis lui décerne le Prix Enrico Fermi

approximation est basée sur le fait que les électrons étant plus légers que les noyaux (la masse d'un proton est égale à 1836 fois celle de l'électron), ils se déplacent plus rapidement et par conséquent réagissent instantanément à toute modification de la position des noyaux.

L'équation de Schrödinger peut ainsi être séparée en une partie nucléaire et une partie électronique. La fonction d'onde approchée du système, solution de cette équation, s'écrit alors sous la forme d'un produit de deux fonctions :

Où $\chi(\vec{R})$ est la fonction d'onde nucléaire et $\psi(\vec{r}, \vec{R})$ est la fonction d'onde électronique pour des positions données des noyaux figés. Les positions des électrons et des noyaux sont désignées respectivement par r et R.

On note que l'approximation de Born-Oppenheimer n'est valable que lorsque les couplages des mouvements électroniques et nucléaires sont négligeables :

$$\widehat{H} = \widehat{H}_N + \widehat{H}_e$$

où \widehat{H}_N est l'opérateur nucléaire et \widehat{H}_e est l'opérateur électronique.

Dans ce cas, Hamiltonien peut donc se réduire à un Hamiltonien électronique :

Par suite, l'équation de Schrödinger électronique s'écrit :

$$\hat{H}_{e}(\mathbf{r},\mathbf{R}) \Psi_{e}(\mathbf{r},\mathbf{R}) = \varepsilon(\mathbf{R}) \Psi_{e}(\mathbf{r},\mathbf{R})....(\mathbf{I.8})$$

L'énergie de Born-Oppenheimer, pour un ensemble de positions R des noyaux fixés est :

I.2.1.b. Fonction d'onde et orbitales moléculaires

La fonction d'onde d'un système d'électrons dans un champ de noyaux est utile pour la valeur de l'énergie du système qu'elle nous permet de connaître. En elle-même, elle n'a aucune signification physique. Par contre, son carré est directement lié à la distribution de la densité électronique. Ainsi :

$$|\Psi(\vec{r}_1, \vec{r}_2, ..., \vec{r}_n)|^2 d\vec{r}_1 d\vec{r}_2 ... d\vec{r}_n$$
(I.10)

Une fonction d'onde qui satisfait cette équation est dite normalisée. Nous avons définis précédemment la fonction d'onde comme n'étant dépendante que des coordonnées

spatiales \vec{r} . En fait, elle comprend également une coordonnée de spin. Cette grandeur quantique est associée au mouvement de rotation inhérent à l'électron. Pour un seul électron, l'opérateur de spin \hat{s} n'accepte que deux valeurs propres : +1/2 et - 1/2.

La fonction d'onde d'un système multi- électronique doit être antisymétrique par rapport à l'échange des coordonnées d'espace et de spin de deux électrons :

$$\Psi(x_1, x_2, \dots, x_i x_j, \dots, x_n) = -\Psi(x_1, x_2, \dots, x_j x_i, \dots, x_n)$$
(I.8)

Cette propriété découle du principe d'indiscernabilité des électrons. La probabilité de trouver le système électronique dans une configuration donnée reste inchangée si on intervertit les coordonnées spatiales et de spin de deux électrons :

$$|\Psi(x_1, x_2, \dots, x_i x_j, \dots, x_n)|^2 = |\Psi(x_1, x_2, \dots, x_j x_i, \dots, x_n)|^2$$
(I.9)

Le principe d'antisymétrie de la fonction d'onde polyélectronique respecte en même temps le principe d'exclusion de Wolfgang Ernst Pauli⁴ [9]. Celui-ci interdit à deux électrons d'occuper le même espace quand ils ont le même spin :

$$\Psi(x_1, x_2, \dots, x_i x_i, \dots, x_n) = -\Psi(x_1, x_2, \dots, x_i x_i, \dots, x_n)$$
(I.10)

Cette égalité n'est possible que si $\Psi(x_1, x_2, ..., x_i x_i, ..., x_n) = 0$. L'écriture la plus simple et la plus utilisée de la fonction d'onde qui tient compte de cette propriété est celle du déterminant de John Clark Slater⁵ [10]. Celui-ci utilise l'approximation orbitalaire dont le principe est d'écrire la fonction d'onde polyélectronique à l'aide de ce que l'on appelle "orbitale moléculaire" :

$$\Psi(x) = \frac{1}{\sqrt{n!}} \begin{vmatrix} \psi_1(x_1) & \psi_2(x_1) & \psi_n(x_1) \\ \psi_1(x_2) & \psi_2(x_2) & \psi_n(x_2) \\ \psi_1(x_n) & \psi_2(x_n) & \psi_n(x_n) \end{vmatrix}$$
(I.11)

Les orbitales ψ_i sont en fait des fonctions d'ondes mono-électroniques (appelées spin-orbitales) qui décrivent les états stationnaires des électrons. Dans un atome, on parle d'orbitales atomiques.

Lorsque les orbitales atomiques de plusieurs atomes interagissent, on parle d'orbitales moléculaires. Donc, tout comme la fonction d'onde, une orbitale atomique indique la probabilité de présence d'un électron autour du noyau d'un atome isolé. Cette façon d'écrire la fonction d'onde sous la forme d'un déterminant est très astucieuse. On tient implicitement compte de toutes les permutations possibles pour les électrons et les spin-orbitales. D'autre

⁴ *Wolfgang Ernst Pauli* (1900 - 1958) était un physicien autrichien connu pour sa définition du principe d'exclusion en mécanique quantique, ce qui lui valut le prix Nobel de physique de 1945. Il est également lauréat de la Médaille Franklin en 1952.

⁵ John Clark Slater (1900 - 1976) fut un physicien et chimiste théoricien américain.

part, les propriétés d'un déterminant sont exactement celles que l'on recherche pour être en adéquation avec le principe d'exclusion de Pauli. Si on permute deux lignes ou deux colonnes, un déterminant change de signe.

Permuter deux lignes revient à changer les coordonnées de spin et d'espace de deux électrons. On a donc la propriété d'antisymétrie par rapport à cet échange. De plus, un déterminant avec deux lignes ou deux colonnes identiques est nul. Si une spin-orbitale est occupée deux fois, deux colonnes seront identiques, ce qui annule la fonction d'onde.

I.2.1.c. Approximation Hartree-Fock (HF):

Cette approximation est à la base de presque toutes les méthodes ab initio. On note qu'une solution exacte de l'équation (I.8) n'est possible que dans le cas de l'atome d'hydrogène à cause de l'absence des termes de répulsion coulombienne multiples présents dans les systèmes poly électroniques. Alors une première approximation, celle de Hartree⁶-Fock⁷ qui considère la fonction d'onde multiélectronique d'un système à N électrons comme étant le produit de fonctions à une particule (monoélectroniques). La fonction d'onde du système s'écrit sous la forme :

$$\psi(x_1, x_2 \dots x_N) = \psi(x_1)\psi(x_2) \dots \psi(x_N)$$
.....(I.12)

La fonction d'onde est appelée « produit de Hartree ». La répulsion coulombienne est considérée comme un effet moyen et le nom de cette approximation : principe du champ moyen. Donc l'équation (**I.8**) s'écrit sous la forme :

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V_e(r) + j(r) - K(x)\right]\psi_i(x) = \varepsilon_i\psi(x).....(I.13)$$

où le terme $-\frac{\hbar^2}{2m}\nabla^2$ c'est l'énergie cinétique, les termes d'interaction coulombienne électron-noyau V(r) et de répulsion coulombienne électron-électron j(r), k(x) le terme d'échange [11]

Il est à noter que la fonction d'onde change de signe au cours de la permutation de deux électrons i et k

$$:\psi(\ldots,x_i,\ldots,x_k,\ldots)=-\psi(\ldots,x_k,\ldots,x_i,\ldots)$$

⁶ Douglas Rayner Hartree (1897 –1958) était un mathématicien et physicien anglais. Il est connu pour son développement de l'analyse numérique et son application à la physique atomique.

⁷ Vladimir Aleksandrovich Fock (1898 - 1974) est un physicien théoricien russo-soviétique.

où $\Psi(..., x_i, ..., x_k,)$ est une combinaison linéaire de fonctions mono-électroniques où les électrons (des fermions), obéissent au principe d'exclusion de Pauli⁸. Une approximation consiste à utiliser un déterminant dit de Slater[12] Ce dernier est constitué de fonctions mono-électroniques appelées spin-orbitales pour les systèmes à couches fermées où les électrons sont tous appariés. Une fonction bi-électronique écrite sous la forme :

$$\psi(x_1, x_2) = \frac{[\psi_1(x_1)\psi_2(x_2) - \psi_1(x_2)\psi_2(x_1)]}{\sqrt{2}}.....(I.14)$$

En outre, on peut générer une fonction générale à N particules de la forme suivante:

$$\psi(x_1, x_2, \dots, x_n) = \frac{\det[\psi_i(x_k)]}{\sqrt{n!}}.$$
(I.15)

Ce déterminant de Slater conduit à une fonction d'onde multiélectronique et antisymétrique, respectant le principe d'exclusion de Pauli. La fonction d'onde entre les électrons de même spin est illustrée par un espace entourant l'électron dans la distribution de spins parallèles qualifié de trou d'échange appelé aussi « trou de Fermi ». Ce trou est représenté par une sphère de densité électronique constante et équivalente à la charge d'un électron. Il suit l'électron dans des déplacements et, par conséquent, tient compte de l'échange : c'est là toute la différence entre la méthode HF et celle de Hartree.

En outre, la résolution de l'équation HF appliquée à une fonction de départ Ψ^0 donne une nouvelle fonction Ψ^1 et ainsi de suite jusqu'à l'obtention d'une fonction d'onde autocohérente à l'ordre *n*, lorsque [13] Après convergence, l'énergie est à son minimum et les orbitales génèrent un champ produisant les mêmes orbitales : d'où le nom de cette méthode. Celle-ci est également variationnelle, dans la mesure où elle permet d'affirmer que pour l'état fondamental, la valeur de l'énergie associée à n'importe quelle autre fonction sera toujours supérieure à l'énergie associée à la fonction d'onde exacte $\Psi_0 : E(\Psi) \ge E_0(\Psi)$

L'énergie totale est la somme de l'énergie cinétique et de trois termes d'énergie potentielle

$$E_{tot} = E_{cin} + E_{ne} + E_{coul} - E_X \quad \text{avec} \quad E_{cin} = -\frac{\hbar^2}{2m} \sum_{i=1}^N \int \psi_i^*(r) \,\Delta^2 \psi_i(r) dr \qquad (I.39)$$
$$E_{ne} = \int v(r) \rho(r) \,dr \qquad (I.40)$$

(**I.41**)

⁸ *Wolfgang Ernst Pauli* (1900 - 1958) était un physicien autrichien connu pour sa définition du principe d'exclusion en mécanique quantique, ce qui lui valut le prix Nobel de physique de 1945. Il est également lauréat de la Médaille Franklin en 1952.

$$E_{coul} = \frac{1}{4\pi\varepsilon_0} \iint \frac{\rho(r')\rho(r)}{|r-r'|} dr' dr$$
$$E_x = \frac{e^2}{4\pi\varepsilon_0} \sum_{i,k}^N \iint \frac{\psi_{i(r)}^*\psi_{k(r')}^*\psi_i(r')\psi_k(r)}{|r'-r|} dr' dr$$
(I.42)

 E_{ne} c'est l'énergie potentielle classique d'une densité de charge $\rho(r)$ dans un potentiel externe $V_{ext}(r)$. E_{coul} est une énergie potentielle due à la répulsion électronique entre deux électrons occupant les positions r et r'. La dernière contribution à l'énergie potentielle est un terme d'échange E_x inexistant en mécanique classique.

Dans cette méthode, la « self-interaction » désignant l'interaction de l'électron avec lui-même s'annule du fait de son inclusion dans le potentiel j(r) et dans l'opérateur d'échange k. Les méthodes HF considèrent que l'électron est dans un champ moyen des N électrons [14] Le fait d'annuler cette « self-interaction » est un avantage de la méthode Hartree-Fock par rapport à la DFT.

Par ailleurs, l'échange entre deux électrons de même spin est bien décrit par une séparation spatiale (répulsion coulombienne). De plus, deux électrons voisins peuvent être de spins opposés (up \uparrow et down \downarrow). La méthode Hartree-Fock ne schématise pas la répulsion entre ces deux, par conséquent, il s'agit de la même interprétation pour les paires d'électrons de même spin et de spin différents. L'énergie se trouve généralement supérieure à la valeur exacte. De ce fait l'énergie de corrélation E_{corr} représentant la différence entre l'énergie exacte E_{exacte} et celle d'HF E_{HF} , est une quantité négative :

$$E_{corr} = E_{exactes} - E_{HF}$$

 E_{corr} sera considérée comme une mesure de l'erreur introduite par l'approximation HF. Comme il y a un trou d'échange excluant les électrons de même spin dans la même région d'espace, un autre trou peut aussi exister pour les électrons de spins opposés, et vu l'application du principe d'exclusion de Pauli, le trou de corrélation (« trou de Coulomb ») sera plus petit que celui d'échange.

Cependant, il existe deux types de corrélation, suivant la manière de séparer les électrons:

Une corrélation dynamique à courte distance, due à la répulsion entre deux électrons lors de leurs déplacements respectifs. Une corrélation non dynamique, dite statistique, liée à l'existence de déterminants de Slater relativement dégénérés en énergie. Cet effet est présent lorsque l'état fondamental d'un système électronique ne peut pas être décrit par un seul déterminant de Slater.

I.2.1.d. Approximation LCAO :

D'une façon générale, la méthode L.C.A.O. (Linear Combinaison of Atomic Orbitals) montre que chaque orbitale moléculaire peut se développer en une combinaison linéaire d'orbital atomique (L.C.A.O). L et k orbitaux moléculaires doublements occupés sont de la forme :

$$\psi_i = \sum_{\mu=1}^k C_{\mu i} \chi_{\mu} \quad i = 1, 2 \dots k$$
 (I.44)

Il s'agira de déterminer les coefficients C_{μ} . Le déterminant de Slater, solution de l'équation à *N* électrons, est construit à partir des *N*/2 orbitales de plus basses énergies.

La méthode HF peut être restreinte, *RHF* pour (« Restricted Hartree-Fock ») et concernera les systèmes à couches fermées (sans les électrons célibataires), et contraignants les spin-orbitales appariés de spin différents à avoir la même partie spatiale. Une deuxième approche, dite non restreinte, *UHF* (pour «Unrestricted Hartree-Fock») **[15]** s'appliquera aux systèmes dits à couches ouvertes. Elle consiste à traiter indépendamment les orbitales α (spin up) et β (spin down). Les orbitales n'étant plus totalement occupées, le nombre des intégrales à calculer est doublé et demande plus de temps de calcul.

Concernant la méthode HF, les électrons sont considérés comme indépendants les uns des autres et se déplace chacun dans un potentiel moyen créé par l'ensemble des électrons. L'électron se trouve sans interaction avec l'électron voisin, ce qui est un inconvénient de cette méthode. D'autres méthodes viennent remédier à ce problème de manque de corrélation

I.2.2. Méthode "Post-Hartree-Fock" (Post-HF):

Cette proposition a été faite dans le but de prendre en compte les effets de corrélation absents dans l'approche de type HF. Cette approximation fait appel à des fonctions d'ondes corrélées, solution du problème à N électrons sous la forme d'une combinaison linéaire de déterminants de Slater.

En effet, ces méthodes se répartissent par ordre croissant en ressources informatiques, d'abord la théorie de perturbation de Møller⁹-Plesset¹⁰[16] [au second ordre (MP2) ; puis les méthodes MP3 et MP4 plus sophistiquées et par suite plus gourmandes. Parmi ces méthodes, existent également les méthodes d'Interaction de Configuration (CI) [17] et les méthodes MSCF « Multi Configuration Self Consistent Field » [18]

Il est à noter, que ces dernières ne sont pas adaptées aux grands systèmes moléculaires comme les complexes à transition de spin. Une solution tenant compte de la corrélation pour de tels composés et qui permet de résoudre le système en fonction de sa densité monoélectronique, est apportée par la théorie de la fonctionnelle de densité DFT.

I.2.3. Théorie de la fonctionnelle de la densité :

Historiquement, les premiers à avoir exprimé l'énergie en fonction de la densité furent Thomas¹¹ (1927) et Fermi¹² (1927, 1928) sur le modèle du gaz uniforme d'électrons non interagissant. Le but des méthodes DFT est de déterminer des fonctionnelles qui permettent de relier la densité électronique à l'énergie. Cependant, la DFT a véritablement débuté avec les théorèmes fondamentaux de Hohenberg¹³ et Kohn¹⁴ en 1964 qui établissent une relation fonctionnelle entre l'énergie de l'état fondamental et sa densité électronique.

I.2.3.a. Fondement de la théorie DFT :

Toutes les méthodes basées sur la fonction d'onde présentées jusqu'ici (HF et post-HF) sont appelées méthodes ab initio. Nous allons maintenant introduire une méthode totalement différente et révolutionnaire qui constitue une alternative de choix aux méthodes post-HF. C'est la Théorie de la Fonctionnelle de la Densité. Elle est souvent appelée par son acronyme DFT (pour l'anglais, Density Functional Theory). Elle se retrouve souvent classée dans la famille ab initio dans le sens où c'est une méthode totalement théorique. En fait, l'existence de paramètres ajustés mathématiquement (parfois même de façon empirique) dans les fonctionnelles que nous décrirons plus loin fait dire aux puristes que la DFT n'est

⁹ Christian Møller (1904- 1980) était un chimiste et physicien danois qui a fait des contributions fondamentales à la théorie de la relativité, la théorie de la gravitation et de la chimie quantique.

¹⁰ *Milton Spinoza Plesset* (1908 - 1991) était un physicien américain qui a travaillé dans le domaine de la mécanique des fluides et de l'énergie nucléaire.

¹¹ *Llewellyn Hilleth Thomas* (1903 - 1992) était un physicien et mathématicien britannique qui a fait des contributions à la physique atomique.

¹² *Enrico Fermi* (1901 -1954) est un physicien italien. Ses recherches serviront de socle à l'exploitation de l'énergie nucléaire.

¹³ *Pierre C. Hohenberg* (1934) est un physicien théoricien français- américain, qui travaille principalement sur la mécanique statistique

¹⁴ *Walter Kohn* (1923) est un physicien autrichien, naturalisé américain. Il est lauréat de la moitié du prix Nobel de chimie de 1998.

pas une méthode ab initio. Nous n'entrerons pas dans cette polémique et réserverons ce terme aux méthodes basées sur la fonction d'onde.

La DFT s'appuie, en effet, sur un tout autre objet : la densité électronique (dans un système électronique le nombre d'électrons par unité de volume, dans un état donné, est appelée la densité électronique pour cet état). Là est justement la révolution. Quoi de plus compliqué que la fonction d'onde ? Une fonction de n électrons avec chacun quatre variables (une de spin s et trois spatiales \vec{r}). Pierre Hohenberg et Walter Kohn, nous proposent une alternative : la seule et unique densité électronique $\rho(\vec{r})$ qui n'a que trois variables quelque soit le nombre d'électrons. De plus, c'est une observable physique mesurable par la diffraction des rayons X.

$$\rho(\vec{r}) = n \int |\psi(\vec{r})|^2 d\vec{r}$$
(I.43)

L'énergie y apparaît maintenant comme une fonctionnelle (une fonction de fonction) de la densité électronique et s'écrit $E[\rho]$. Pour la retrouver, une procédure à champ autocohérent SCF sera également utilisée.

I.3. Méthodes semi-empiriques :

La plus grande partie du temps nécessaire aux méthodes ab initio est consacrée au calcul et à la manipulation des intégrales. Les méthodes semi-empiriques ont pour but de diminuer le temps imparti à ces calculs et notamment celui utilisé pour le calcul des intégrales biélectroniques. Toutes les méthodes semi-empiriques se basent sur les mêmes principes. Tout d'abord, seuls les électrons de valence sont pris en compte. On tient compte des électrons de cœur soit en atténuant la charge du noyau soit en introduisant des fonctions supplémentaires afin de modéliser les effets de répulsion combinés du noyau et des électrons de valence.

Enfin, la principale approximation des méthodes semi-empiriques est l'approximation ZDO (Zero Differential Overlap). Elle consiste à négliger les produits de fonctions de base correspondant à un même électron localisé sur des atomes différents. Cette approximation a les conséquences suivantes :

- A La matrice de recouvrement est égale à la matrice identité, donc
- Les intégrales mono-électroniques à trois centres sont nulles
- ♣ Les intégrales bi-électroniques à trois ou quatre centres sont négligées.

Pour ce travail, seules les méthodes AM1 (Austin Martin 1) et PM3 (Parametrisation Model 3) ont été utilisées. Ces deux modèles se basent sur le modèle MNDO (Modified Neglect of Diatomic Overlap) dont ils sont des paramétrisations différentes. Les méthodes semi-empiriques négligent un grand nombre des intégrales multicentriques du terme de répulsion électroniques. Cette réduction du nombre d'intégrale à calculer permet d'utiliser des fonctions de base de Slater pour développer les orbitales atomiques. En outre, seules les orbitales atomiques de la couche de valence sont utilisées. Les intégrales de recouvrement sont négligées dans la procédure SCF, ainsi que toutes les intégrales biélectroniques à trois ou quatre centres. Suivant la méthode de calcul utilisée, certaines intégrales biélectroniques sont également négligées.

Parmi les méthodes semi-empiriques existantes, nous pouvons citer les méthodes de type NDDO [19] (Neglect of Diatomic Differential Overlap) comme AM1 [20] ou PM3 [21] dans lesquelles toutes les intégrales faisant intervenir le recouvrement différentiel de deux orbitales centrées sur deux atomes différents sont négligées, ou encore la méthode CNDO [22] (Complete Neglect of Differential Overlap) dans laquelle les recouvrements différentiels sont complètement négligés.

La méthode la plus récente proposée par James J. P. Stewart en 2007 **[23]** utilisée en chimie quantique, réécrite à partir de la base avec un nouveau paramétrage plus précis pour tous les principaux éléments et les métaux de transition. De plus de 9000 composés ont été utilisés pour développer la nouvelle méthode PM6 à partir de PM3 et PM5. Cela se compare à seulement 39 composés utilisés à MNDO, environ 200 composés utilisés à AM1, et d'environ 500 composés utilisés en PM3.

Au coût d'une précision moindre, les méthodes semi-empiriques permettent le traitement quantique des systèmes dont la taille est importante. Dans cette approximation on peut également envisager de mener des études nécessitant la répétition d'un grand nombre de calculs quantiques.

I.4. Mécanique Moléculaire (MM)

L'utilisation de méthodes de la chimie quantique peut s'avérer trop coûteuse en temps de calcul ; pour des systèmes de taille importante pour ce là apparaitre la mécanique molécul aire. L'expression (*Mécanique Moléculaire*) désigne actuellement une méthode de calcul qui permet, à priori, d'obtenir des résultats de géométries et d'énergies moléculaires en se basant sur la mécanique classique.

La *MM* est apparu en 1930 **[24]**, mais s'est développée à partir des années soixante, quand les ordinateurs furent plus accessibles et plus performants. Les méthodes de mécanique moléculaire utilisent un potentiel d'interaction simplifié appelé *champ de force*,

21

et conduisent à une expression de l'énergie totale dépendante des coordonnées nucléaires. Les paramètres du champ de force sont optimisés sur des données expérimentales ou des calculs de niveau très élevés sur des fragments de molécules.

Typiquement, les modèles de mécanique moléculaires consistent en des atomes sphériques reliés par des ressorts qui représentent les liaisons (*Figure 1.1*). Les forces internes considérées dans la structure modélisée sont décrites en utilisant de simples fonctions mathématiques. Cette énergie est exprimée sous la forme d'une somme de contributions bidimensionnelles, associées aux écarts de la structure par rapport aux paramètres de références (longueur de liaison, angle de valence...) et d'une somme de contributions 3D caractéristiques d'une énergie stérique (énergie de Van der Waals, énergie coulombienne, ...). L'énergie stérique minimale calculée est la somme des contributions apportées par les énergies d'élongation, de flexion, de torsion, de Van der Waals, électrostatique.... [25].

Figure I.1 :

Représentation mécanique

d'une liaison entre deux atomes.

L'énergie du champ de force résulte de différentes contributions à l'énergie totale que l'on l'écrit :

E totale=	$E_{li\acute{e}} +$	E,	non-liés	 							(I-32)
E totale=	E liaiso	ons -	+ E angule	 E torsion	+E	van der	Waals +	E éle	ctrostatic	ue	(I-33)

Les trois premiers termes correspondent à la déformation des liaisons, des angles et des angles dièdres. Les termes $E_{van der Waals}$ et $E_{électrostatique}$ représentent respectivement les interactions de Van Der Waals et électrostatique entre les atomes non liés.

Donc il est constitué par des énergies potentielles qui décrivent les interactions intramoléculaires entre les atomes liés et intermoléculaires entre atomes non liés.

I.4.1.Champs de force

Un champ de force est un fichier de données décrivant les interactions entre atomes liés et non liés. L'élaboration d'un champ de force doit répondre à deux critères :

- ✓ Simplicité pour pouvoir être calculée rapidement.
- Précision pour calculer de maniéré acceptable les propriétés structurales et thermodynamiques des molécules.

L'expression *"champ de force"* recouvre l'ensemble des fonctions ainsi que les paramètres associés aux différents types d'atomes qu'elles contiennent. Les paramètres ne sont pas des constantes de force et sont caractéristiques d'un champ de force et non d'une molécule, ils vérifient donc le principe dit de "transférabilité" sur lequel repose l'intérêt de cette méthode. Le but est de construire un modèle mathématique qui décrive un ensemble de molécules **[26]**.

Ce modèle mathématique est établi pour représenter aussi précisément que possible les variations de l'énergie potentielle avec la géométrie moléculaire.

I.4.2. Forme des fonctions énergétiques dans un champ de force en mécanique moléculaire

La mécanique moléculaire a pour but de calculer l'énergie potentielle d'une molécule (ou d'un système de molécules) en fonction des coordonnées des atomes :

$$E_{P} = f(\overrightarrow{r_{1}}, \overrightarrow{r_{2}}, ..., \overrightarrow{r_{n}}) \dots (I.6)$$

Où représente le vecteur de la position de l'atome *i*. $\vec{r_i}$

L'énergie du champ de force totale peut être divisée en deux groupes selon l'expression (I.7):

- Interaction entre atomes liés par deux ou trois liaisons chimique (énergie de stretching, bending, torsions)
- Interaction entre atomes non liés (ou séparés de plus de trois liaisons chimiques) (énergie électrostatique, de liaisons hydrogènes, et de Van Der Waals).

$$E = E_{stretching} + E_{bending} + E_{torsion} + E_{vdW} + E_{elec} + E_{hydrogen}$$
(I.7)

Tel que :

Le terme « Stretching» représente l'élongation des liaisons.

Le terme « Bending » représente la variation des angles.

Le terme « Torsion » se rapporte à l'énergie de torsion des angles dièdres.

Le terme «VdW » rend compte des énergies d'interaction non covalente entre atome non liés.

Le terme « Elec »rend compte des énergies d'interaction électrostatiques entre atomes non liés.

Le terme « Hydrogen » rend compte des liaisons d'hydrogènes.

Figure I.2 : Interactions intramoléculaires entre atome liés et intermoléculaires entre atomes non liés.

✓ Elongation des liaisons « Stretching »

C'est la déformation du squelette, l'énergie d'élongation de deux"2" atomes liés d'une distance rie elle est exprimée par la fonction de Hooke :

$$E(r_i) = \frac{1}{2} \sum_{i=1}^{n} K_{r_i} (r_i - r_0)^2 \dots (I.34)$$

 K_{r_i} représente la force de la liaison raideur du ressort), et r_0 la valeur de la distance de la liaison à l'équilibre ou au repos. Chaque valeur dépend de la nature des atomes.

✓ Déformation des angles de flexion ''Bending''

C'est la déformation des angles est également faible (de l'ordre de quelques degré) et l'énergie de flexion est fonction de l'angle θ formé entre trios atomes par rapport à la valeur à l'équilibre (ou au repos) θ_0 et à la constante de force de flexion, est exprimée par la fonction au carré "cubique" suivante:

✓ Torsion des angles dièdres « Torsion »

La définition de l'angle de torsion est si on assumer les atomes coplanaires, l'énergie de cette déformation correspond à la rotation d'une liaison selon l'angle dièdre Φ_i forme par quatre atomes.

$$E_{\Phi} = \frac{1}{2} \sum_{i=1}^{n} K_{\Phi_i} [1 + \cos(n\Phi_i - \Phi_i^0)].....(I.36)$$

✓ Interactions de Van der Waals(VDW)

L'énergie d'interactions de *Van der Waals* correspond à l'interaction à une distance déterminée entre deux "2" atomes *i*, *j* non liés "distants de r_{ij} " comprend :

• Un terme attractif.

• Un terme répulsif.

✓ Interactions électrostatique

Suivant les champs de force, l'énergie d'interaction électrostatique dépend des charges atomiques q ou des moments dipolaires µ

✓ Energie des liaisons hydrogènes

A l'intérieur de de Van der Waals, il existe l'interaction de liaison hydrogène. Elle s'exerce entre un hydrogène déficient en électrons et un atome de forte densité électronique (comportant des doublets).

I.4.3. Quelques champs de force

Différents champs de force sont proposés dans la littérature, ils se distinguent les uns des autres par les termes dans le développement de l'expression de l'énergie de la molécule. Le choix d'un champ de force dépend des propriétés et de l'application du système que l'on veut étudier (Type de composé, Environnement, Type d'interaction à étudier). De tels champs de force sont apparus en début des années 1970 et continent à évaluer aujourd'hui.

* MM2 : Il a été développé par Allinger¹⁵ en 1976 [27]. Mais sa version améliorée MM3 (1989) et MM4 (1996) [28] lui permet de traiter des molécules organiques de plus en plus complexes.

* *AMBER* : (*Assisted Model Building with Energy Refinement*), est un champ de force de mécanique moléculaire mis en point par Kollman en 1981[29] dédié aux peptides et protéines.

**UFF:*(*Universal Force Field*). A.K.Rappé, C.J.Casewit et collaborateurs ont essayé de concevoir un champ de force univ ersel [30] capable de simuler des molécules contenant n'importe quelle combinaison d'atomes dans le tableau périodique.
I.4-Conclusion :

L'utilisation de méthodes théoriques pour l'obtention de modèles qui puissent prédire et comprendre les structures, les propriétés et les interactions moléculaires est connue sous le nom de « Modélisation Moléculaire » L'avantage principal de la mécanique moléculaire par rapport aux autres méthodes de calcul est la rapidité des calculs. Ceci est dû à une simplification des équations du champ de force ; il est donc possible déterminer des systèmes moléculaires très

Références bibliographiques

- [1]T. Clark, "Handbook of Computational Chemistry", Wiley, London, 1985.
- [2] P. Kollmann, Acc. Chem. Res., 29 (1996) 462.
- [4] C. Audouze, Vers une parallélisation par bandes en chimie quantique, Laboratoire de Mathématique, UMR CNRS 8628, Université Paris-Sud, 2003.
- [5] D. Liotta, Advances in Molecular Modeling, JAI Press Inc, London, 1988
- [6] H. Dugas, Principes de base en modélisation moléculaire, Aspects théoriques et pratiques, Librairie de l'Université de Montréal, Montréal, 1996.
- [7] E. Schrödinger, Ann. Phys, 79 (1926) 361.
- [8] M. Born, J. Oppenheimer, Ann. Phys, 84 (1927) 361.
- [9] W. Pauli, Z. Physik. 31, 765 (1925).
- [10] J. C. Slater, Phys. Rev. 34, 1293 (1929)
- [11] F. Jensen, Introduction to computational chemistry, 1st edn. John Wiley and Sons, 1999, NewYork.
- [12] M. Levy, Phys. Rev. A, 1982, 26, 1200.
- [13] J.L. Rivail, Éléments de chimie quantique à l'usage des chimistes, Savoirs actuels, Inter Editions, 1989, Editions du CNRS].
- [14] R.M. Dreizler, E.K.V. Gross, Density functional theory: an approach to the manybody problem, Springer, 1990, Berlin Heidelberg, New York.]
- [16] G. Berthier, J. Chem Phys, 1954,51,363
- [17] M. R. Hoffmann and H. F. Schaefer. A full coupled-cluster single double and triple models for the description of electron correlation. Adv. Quantum Chem. (1986). 18, 207–279.
- [18]J. Hinze and C. C. J. Roothaan. Multi-configuration self-consistent-field theory, Progress Theoret. Phys. Suppl. (1967). 40, 37–51.].
- [19]Pople, J. A.; Santry, D. P.; Segal, G. A., Approximate Self-consistent Molecular orbital Theory I. Invariant Procedures. J. Chem. Phys 1965, 43, 5129-5135.]
- [20] Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P., AM1: A New General Purpose Quantum Mechanical Model. J. Am. Chem. Soc. 1985, 107, 3902-3909.]
- [21] Optimisation of parameters for semiemperical methods II. Applications.J. Comput. Chem 1989, 10, 221-264.]
- [22] Pople, J. A.; Segal, G. A., Approximate Self-consistent Molecular Orbital Theory III. CNDO Results for AB2 and AB3. J. Chem. Phys 1966, 44, 3289-3296.]
- [23]Optimization of parameters for semiempirical methods V: Modication of NDDO approximations and application to 70 elements. J. Mol Model 13, 2007, 1173.]
- [24] Andrews, D. H. Phys. Rev, 36, pp.544. 1930.
- [25] N.L. Allinger, X. Zhou, J. Bergsma, J. Mol. Structr. (Theochem), 1994,312, 69.
- [26] W.C. Still, "Molecular Mechanics", Columbia Univ. Press, 1986

- [27] K. Benhamed, "Contribution A L'étude Structurale Par Diffraction Des Rx Et Par Modélisation Moléculaire Du Complexe De Ni(II) Dérive De Cinnamaldehy de Thiosemicarbazone", Mémoire de Magister En chimie physique, Université Abou-Bekr Belkaïd De Tlemcen, 2010.
- [28] N. L. Allinger, Y. H. Yuh, J-H. Lii, J. Am .Chem. Soc., 1989, 111, 8522.
- [29] S. Weiner, P. A. Kollman, T. Nguyent, D. A. Case, J. Comput .Chem, 1986, 7, 230.
- [30] A. K. Rappé, C. J. Casewit, K. S. Kolwell, W. M. Skiff, J. Am. Chem. Soc,1992, 114, 10028.

II.1.Introduction :

Dans ce chapitre, nous allons présenter une synthèse bibliographie sur la description cristallographie de la molécule du composé (E)-2-(tert-Butylamino)-4-(tert-butylamino) naphthalen-1-one qui fait l'objet de ce travail. En outre, nous tenterons de voir des rappels sur la relation structure-activité dans une série bioactive d'une molécule pour avoir étudier par la modélisation moléculaire l'effet de la substitution sur les paramètres électroniques et énergétiques et leur incidence sur la stabilité et la réactivité chimique de la molécule étudiée. Cette série comporte des molécules substituées par des substituant électro donneurs (méthyles).

II.2 Descriptions chimiques du composé

Les naphtoquinones sont structurellement liées au naphtalène et sont caractérisées par leurs deux groupes carbonyle en position 1,4 ; elles sont appelées 1,4-naphtoquinones. Des groupes carbonyle peuvent également être présents en position 1,2, avec une incidence mineure. Les naphtoquinones sont des composés organiques hautement réactifs, utilisés comme colorants naturels ou synthétiques et dont les couleurs vont du jaune au rouge. Ces composés et leurs dérivés sont des composés carbonylés α , β -insaturés. La conjugaison du carbonyle et des doubles liaisons donne naissance à la 1,4-naphtoquinone, qui présente une coloration intense. [1]

II.2.1. Description Cristallographiques :

Le composé étudie est nommé (E)-2-(tert-Butylamino)-4-(tert-butylamino) naphthalen-1(4H)-one, dont la formule Chimique est $C_{12}H_{12}N_2O$, sa masse volumique ρ (densité) étant de 1.173mg/cm³ il se cristallise à la température 100K (Figure II.1).

Figure II.1 : Structure géométrique d'une molécule (E)-2-(tert-Butylamino)-4-(tertbutylamino) naphthalen-1(4H)-one

Figure II.2 : Empilement moléculaire de quatre molécules dans la maille élémentaire

L'examen systématique du fichier des réflexions a révélé l'existence quatre conditions d'extinction systématique (annulation systématique d'une catégorie d'intensité de réflexion de Bragg¹) :

h k l: k+l= 2n

 $h \ 0 \ 1: \ 1=2n$

0 k 0: k=2n

0 0 1 : l=2n

La première condition indique que les intensités des réflexions sont systématique nulles. C'est la condition d'extinction du réseau primitive les autres conditions témoignent de l'existence d'un plan de glissement c.

Le groupe d'espace correspondant serait P 21/c, avec quatre positions générales :

(0): x, y, z
(1): -x, y+1/2, -z+1/2
(2): -x, -y, -z
(3): x, -y+1/2, z+1/2

Les paramètres cristallographiques de la maille élémentaire et les conditions expérimentales sont représentées dans le tableau II.1.

¹ William Henry Bragg (1862-1942) et William Lawrence Bragg (1890- 1971) : ils ont bombardé un cristal avec un rayonnement dont la longueur d'onde est du même ordre de grandeur que la distance inter-atomique, il se produit un phénomène de diffraction. Les conditions de diffraction donnent les directions dans lesquelles on observe de l'intensité diffractée par le cristal.

Caractéristiques de cristal	
Formule chimique	$C_{12} H_{12} N_2 O$
Masse moléculaire (g/mole)	273
Groupe d'espace	$P2_1/C$
a (Å)	14.2792 (18)
b (Å)	9.8936 (13)
c (Å)	11.4978 (13)
β (degré)	57.939 (4)
Volume (Å ³)	1610.3 (3)
Z	4
$D_x (mg m^{-3})$	1.173
Type de radiation	ΜοΚα
Longueur d'onde (Å)	0.71073
Nombre de réflexions mesurées	42010
$\mu (mm^{-1})$	0.07
Température (k°)	100
Enregistrement des données	
diffractomètre	Bruker d8 venture
Méthode d'enregistrement des données	$\theta - 2\theta$
θ_{\max}	27.6°
Nombre de réflexions mesurées	42010
Nombre de réflexions indépendants	3732
Nombre de réflexions observées	1927
Critère des réflexions observées	$I > 2\sigma (I)$
R _{int}	0.213
limites pour les valeurs h, k, l	$-18 \rightarrow h \rightarrow 18$
A	$-12 \rightarrow k \rightarrow 12$
	$-14 \rightarrow l \rightarrow 14$

Tableau II.1 : Données cristallographiques et les conditions expérimentales[1]

II.3. Etude de l'effet de la substitution sur le noyau de base de la molécule :

Pour avoir l'effet de la substitution sur les paramètres électroniques et énergétiques et leur incidence sur la stabilité et la réactivité chimique de la molécule étudiée, une séries de molécules sera étudiées (figure II.3). Cette série comporte des molécules substituées par des substituant électro donneurs (méthyles).

Figure II.3 : Trois séries des substituées.

Pour décrire l'effet de la substitution sur la molécule, on va s'intéresser à calculer les valeurs de différents paramètres énergétiques tels que la chaleur de formation Hf, le moment dipolaire μ , HOMO (l'orbitale moléculaire le plus haut occupé), LUMO (l'orbitale moléculaire le plus bas inoccupé) et la différence ΔE entre les énergies des orbitales HOMO et LUMO également les valeurs des charges nettes.

Les paramètres HOMO, LUMO, ΔE et μ serons calculés par la méthode DFT (6-31 G **) en HyperChem 8.03, par contre la chaleur de formation a été calculée par la méthode semiempirique AM1.

II.4. Etude de la relation structure-activité dans une série bioactive

Une relation quantitative structure à activité (en anglais : Quantitative structureactivity relationship ou QSAR, parfois désignée sous le nom de relation quantitative structure à propriété - en anglais : quantitative structure-property relationship ou QSPR) est le procédé par lequel une structure chimique est corrélée avec un effet bien déterminé comme l'activité biologique ou la réactivité chimique . Certain projet de recherche mettent en jeu des données biologiques et physicochimiques appropriées. Ces données peuvent être représentées et analysées de diverses manières.

Le groupement et la classification des composés, basés sur leurs propriétés, sont les éléments principaux lors d'études de similarité moléculaire. Les études de régression ou de corrélation entre les données biologiques et chimiques sont généralement utiles pour rationaliser les relations structure-activité. Deux types principaux d'études peuvent être définis :

(1) par corrélation entre les données biologiques et physicochimiques en utilisant les techniques de régression.

(2) par classification des composés ou méthodes d'identification de modèle.

Ainsi, l'activité biologique peut être exprimée de manière quantitative, comme pour la concentration de substance nécessaire pour obtenir une certaine réponse biologique. De plus lorsque les propriétés ou structures physicochimiques sont exprimées par des chiffres, on peut proposer une relation mathématique, ou relation quantitative structure à activité, entre les deux. L'expression mathématique obtenue peut alors être utilisée comme moyen prédictif de la réponse biologique pour des structures similaires.

Une caractérisation quantitative basée sur des profils physico-chimiques calculés de propriété tels que Polarisabilité, coefficient de partage (log P), hydratation Energie, Volume moléculaire, surface moléculaire et Mass moléculaire. Les paramètres physicochimiques utilisés dans l'étude sont décrits ci-dessous.

II.4.1. Méthode de corrélation quantitative (QSAR)

Le modèle QSAR (Quantitative Structure-Activity Relationship) est l'étude corrélation basé sur un calcul statistique, de paramètres physico-chimiques avec l'activité biologique **[02]**

La comparaison de l'activité biologique de certaine molécule et de leur structure a permis d'établir dans de nombreux cas des corrélations entre les paramètres structuraux et les propriétés biologiques d'une molécule. L'association de variation de l'activité aux paramètres permis d'obtenir un système d'équations qui donne, pour une série chimique donné et pour une activité définie, une équation de corrélation.

L'intérêt essentielle de cette équation est quelle doit permettre de déterminer la valeur des paramètres qui correspondant à une activité maximale et ainsi de prédire l'activité des molécules qui n'ont pas encore été synthétisées **[3]**.

La validité d'un modèle QSAR dépendra donc des choix que l'on aura faits sur les paramètres. Il est ainsi judicieux d'identifier et d'évaluer quantitativement les paramètres les plus pertinents à utiliser en fonction de l'activité et de molécule sélectionnées.

II.4.2. Paramètres caractérisant la structure moléculaire (Paramètre amphiphiliques) II.4.2.a. Volume et surface moléculaire

Le volume moléculaire est souvent calculé par la méthode des grilles. Le volume d'un atome est déterminé à partir de rayon de Van der Waals (R) donné par :

$$\frac{4}{3}\pi R^3 \tag{1}$$

La figure II.4 donne une représentation d'un atome dont le rayon de Van der Waals est R, entouré d'une grille tridimensionnelle avec même distance entre les points. Le centre de cette grille est le centre de l'atome et les bords de la grille correspondent au rayon de Van der Waals.

Figure II.4 : Atome entouré par une grille.

Pour chaque point de la grille, on calcul sa distance par rapport au centre et on détermine si le point de la grille se trouve à l'intérieur ou à l'extérieur de l'atome. Si n est le nombre total de points de grille et n_a le nombre de points qui se trouvent à l'intérieur de l'atome, le volume est donnée par :

$$\frac{V}{8R^3} = \frac{n_a}{n} \tag{2}$$

Pour un système polyatomique, nous devons donner une attention particulière aux points de la grille qui se trouvent dans la zone de recouvrement. La figure II.5 présente deux atomes A et B, avec des rayons R_A et R_B. La zone de recouvrement est marquée par X.

Figure II.5 : Atomes A, B et la zone de recouvrement X.

Nous savons que le volume de l'atome A est donné par $4/3\pi R^3$, nous entourons maintenant l'atome B par une grille comme décrit ci-dessus, et nous testons chaque point de la grille à son tour. Si le point de la grille se trouve dans la sphère B, nous testons pour voir si elle

se trouve dans la région X et donc déjà a été considérées comme faisant partie du volume d'atome A. L'algorithme se produit jusqu'à ce que tous les atomes aient été testés. Le volume moléculaire est obtenu en additionnant toutes les contributions atomiques.

II.4.2.b. Polarisabilité et réfractivité molaire

On appelle polarisabilité, la facilité avec laquelle un nuage électronique se déforme sous l'influence d'un champ électrique. La molécule subit une certains déformation et acquiert un moment électrique dipolaire induit proportionnelle au champ E [4]

$$P_{(e)} = \varepsilon_0 \alpha E \tag{3}$$

Où :

P_(e) : Coefficient de polarisabilité.

 ε_0 : Constante diélectrique.

 α : moment électrique dipolaire induit.

La réfractivité molaire (MR) est un critère important dans la mesure des facteurs stériques. Elle est généralement désignée comme une simple mesure du volume occupé soit par un atome individuel ou par un groupe d'atomes [5]

La réfractivité molaire est particulièrement importante dans une situation où le substituant possède les électrons π ou les doublets électroniques libres, la réfractivité molaire est donnée par la relation suivante :

$$MR = \frac{(n^2 - 1)}{(n^2 + 2)} \cdot \frac{MW}{d}$$
(4)

Où :

n : indice de réfraction.

MW : masse moléculaire.

d : densité.

MW/d : volume

 $(n^2 - 1) / (n^2 + 2)$: facteur correctif.

II.4.2.c. Energie d'hydratation

L'énergie d'hydratation est le facteur clé, déterminant la stabilité des différentes conformations moléculaires.

Les liaisons hydrogènes constituent un cas particulier d'une interaction dipôle-dipôle de type électrostatique. Les groupements donneurs sont : F-H, O-H, N-H, Cl-H, P-H, et parfois C-H. Les groupements accepteurs doivent obligatoirement porter un doublet disponible : F, O, N, mais aussi Cl, S et P et les entités chargées telles que l'anion carboxylate, par exemple.

La liaison hydrogène joue un rôle primordial dans la solubilité des molécules médicamenteuses et leurs interactions avec les récepteurs biologiques [6].

Figure II.6 : Liaison hydrogène.

Dans la figure II.6 l'oxygène (O) est appelé l'accepteur (accepteur de proton H+) et l'azote (N) est appelé le donneur (donneur de proton H+).

L'énergie de liaison hydrogène est généralement de 2 à 10 Kcal/mol et les longueurs des liaisons hydrogène sont intermédiaires, elles sont plus longues que les liaisons covalentes mais plus courtes que les liaisons de Van Der Waals. Comme elles sont plus faibles que les liaisons covalentes établies entre les mêmes atomes.

La solubilité des substances dans un milieu aqueux dépend fortement de leur capacité de former des liaisons hydrogènes avec l'eau.

En effet, dans les milieux biologiques, les molécules polaires s'entourent de molécules d'eau. Il s'établit des liaisons hydrogène entre une molécule d'eau et ces molécules. Les sites donneurs de proton interagissent avec l'atome d'oxygène de l'eau et les sites accepteurs de proton avec l'atome d'hydrogène.

II.4.2.d. Coefficient de partition (Log P)

Le caractère lipophile d'une molécule traduit souvent des propriétés biologiques comme la distribution dans les tissus, la liaison avec le site récepteur...

Une variation de la lipophilie entraîne ainsi une modification de la concentration de la molécule sur le site récepteur. La lipophilie est par conséquent une variable importante dans les équations de corrélation utilisées pour prédire l'activité biologique.

Log P est l'un des paramètres largement utilisées dans des études de relations structureactivité quantitatives (QSARs) dans les sciences pharmaceutiques, biochimiques, et dans les sciences de l'environnement.

Un médicament doit être caractérisé par une balance correcte entre ses propriétés hydrophiles et hydrophobes. Pendant leur parcours à travers du corps, les molécules médicamenteuses doivent se dissoudre dans les milieux aqueux de cytoplasme et des liquides extracellulaires ainsi que dans le milieu apolaires de la membrane cellulaire (figure II.7).

Figure II.7 : Polarité des différents milieux cellulaires.

Le solvant organique couramment utilisés pour mesurer expérimentalement le coefficient de partage des molécules médicamenteuses est le 1-octanol. Depuis les travaux à la fin des années 1950, puis ceux du groupe de Hansch ²quelques années plus tard, le coefficient de partage P d'une molécule dans un système biphasique constitué de deux solvants nonmiscibles (le plus souvent le système n-octanol/ eau), est reconnu pour sa faculté à mimer le passage de cette molécule à travers les membranes biologiques. Pour des solutions diluées, ce coefficient de partage n-octanol/eau est le rapport de la concentration d'une molécule de soluté dans le n-octanol sur sa concentration dans l'eau lorsque le système biphasique est en équilibre **[7].**

$$Log P = \frac{concentration \, du \, composé \, en \, solution \, dans \, l'octanol}{concentration \, du \, composé \, en \, solution \, dans \, l'eau}$$
(7)

Une valeur positive pour log P, (P>1), indique que le composé est lipophile. Une valeur négative pour log P, (P <1), indique que le composé est hydrophile.

Actuellement, dans le domaine de la conception assistée par ordinateur ou dans le domaine de la chimie combinatoire, les chercheurs travaillent sur des modèles moléculaires avant même que les molécules ont été synthétisées. Ceci explique le succès des nombreuses méthodes d'estimation de log P qui ont été décrites dans la littérature depuis plus de trente ans. Les plus anciennes sont des méthodes fragmentâtes dans lesquelles une molécule est divisée en fragments prédéfinis et les contributions correspondantes sont sommées pour conduire à une valeur estimée du log P.

²Corwin Herman Hansch (06/10/ 1918 – 08/05/2011) était professeur de chimie au Pomona Collège en Californie. Il est devenu connu comme le «père de la conception de molécules assistée par ordinateur

Parmi les méthodes utilisées dans l'estimation de log P, on trouve la méthode Hansch. Cette méthode repose sur l'utilisation de paramètre d'hydrophobicité d'un substituant qui mesure l'intensité hydrophobe du substituant en question par rapport à celle de l'hydrogène.

La lipophile est un facteur important dans les processus de solubilité, d'absorption, de distribution et l'activité pharmacologique. Hansch et Leo ont démontrés que les molécules très lipophiles se réparties et conservées à l'intérieur des couches lipidiques des membranes cellulaires. Donc, pour une bonne biodisponibilité orale, le log P doit être supérieur à zéro et inférieur à 3 ($0 < \log P < 3$). En effet, Pour un log P trop élevé, le médicament présente une faible solubilité aqueuse. Dans le cas d'un log P très faible, le médicament présente une difficulté de se pénétrer dans les bicouches lipidiques des membranes cellulaires.

II.5. Outils informatique :

Pour le travail présenté, nous avons essentiellement utilisé les deux programmes Gaussian et GaussView.

II.5.1. Gaussain :

La série de programmes Gaussian a été créée au début des années 70 par John Pople ³et ses collègues à l'université de Carnegie Mellon.

La compagnie Gaussian a été installée dans les années 80 pour distribuer le programme. Avant dernière version, Gaussian03 (G03), qui reflète des contributions de plus de 60 scientifiques, est un outil extrêmement puissant se composant plus de 106, lignes de code de Fortran. Actuellement c'est le programme la plus grande diffusion disponibles pour des calculs de la structure électroniques.

Gaussian est un logiciel de chimie numérique. Il a été depuis sans cesse mis à jour, être utilisé par les chimistes, les ingénieurs chimistes, les biochimistes, les physiciens et autres pour étudier les molécules et les réactions dans le cadre d'une large gamme de conditions pour accélérer le calcul facilité le développement de la chimie quantique numérique.

A partir de la base des lois de la mécanique quantique, Gaussian prédit les énergies, les structures moléculaires, les fréquences vibration, ainsi que de nombreuses propriétés moléculaires provenant de ces types de base de calcul. Il peut être utilisé pour l'étude des molécules et des réactions dans le cadre d'un large éventail de conditions, y compris les espèces

³ John Anthony Pople (31 octobre 1925 - 15 mars 2004) est un chimiste théoricien britannique. Il est lauréat de la moitié du prix Nobel de chimie de 1998

et les composés stables qui sont difficiles ou impossibles à observer expérimentalement comme la courte durée de vie des structures intermédiaires et de transition.

Les fonctionnalités de Gaussian09 permettent l'évaluation des points suivants :

- Examen de la réactivité et des spectres de grosses molécules (plus particulièrement avec la méthode ONIOM).
- Détermination des conformations via constantes de couplage spin-spin. étude de systèmes périodiques (méthodes PCB).
- Prédiction de spectres et modélisation des effets de solvant sur les réactions et les propriétés moléculaires (PM).

Gaussian 09 peut être utilisé pour modéliser un grand nombre de propriétés :

- Energies en utilisant un grand nombre de méthodes, incluant Hartree-Fock, Théorie Fonctionnelle de la Densité.
- Géométries d'équilibres ou d'états de transition (optimisée en coordonnées internes redondantes pour la vitesse).
- Spectres de vibration, incluant IR, intensités Raman ⁴non résonnantes et pré résonance, couplage de vibration-rotation.
 Propriétés magnétiques, incluant déplacements chimiques et constantes de couplage RMN.
 Spectres de molécules chirales : rotations optiques.

Gaussian 09 peut étudier composés et réactions dans une grande gamme de conditions :

- En phase gazeuse et en solution.
- A l'état solide, en utilisant la fonction de Conditions Limités Périodiques (PCB).
- Les états excités peuvent être étudiés avec plusieurs méthodes : CASSCF et RASSCF,
 DFT dépendante du temps (TDDFT) et SAC-CI.
- La méthode Atom Centered Density Matrix Propagation (ADMP) peut être utilisée pour réaliser des simulations de dynamique moléculaire, dans le but d'étudier les chemins réactionnels et les distributions des états des produits.

⁴ Sir Chandrasekhar Venkata Raman (7 novembre 1888 - 21 novembre 1970) était un physicien indien tamoul né dans l'ancienne province de Madras (Inde), actuellement dans l'État du Tamil Nadu, qui avait effectué un travail novateur dans le domaine de la diffusion de la lumière. 1930 Prix Nobel de physique. Il a découvert que lorsque la lumière traverse un matériau transparent, une partie de la lumière déviée change de longueur d'onde. Ce phénomène, appelé par la suite diffusion Raman, résulte de l'effet Raman. [4] En 1954, l'Inde lui a décerné son prix civil le plus élevé, le Bharat Ratna.

II.5.2. Gauss View :

GaussView est une interface graphique complète pour rendre l'utilisation de Gaussian plus intuitive et visualiser les résultats. Avec GaussView on peut construire les systèmes moléculaires qui nous concernent rapidement et efficacement, en utilisant la fonction de construction des molécules. On pout également l'utilisez pour mettre en place et lancer vos calculs Gaussian, et pour visualiser vos divers résultats.

GaussView comprend un excellent constructeur de molécules, permettant une construction rapide, même pour des grosses molécules :

- Construction de molécules par atomes, cycle, groupe et acide aminé.
- Importation de molécules d'autres sources, en les ouvrants tout simplement.
- Vous pouvez également ajouter automatiquement des hydrogènes aux structures provenant de fichiers PDB, avec une excellente fiabilité.
- Rotation en 3 dimensions même pour de très grosses molécules.

GaussView peut visualiser un large panneau de résultats de Gaussian, y compris :

- Structures optimisées.
- Orbitales moléculaires, avec la possibilité de les manipuler.
- Densités électroniques, potentiels électrostatiques et autres surfaces.
- Spectres IR et Raman, avec des modes normaux associés.
- Optimisation de géométrie animée, IRC (Coordonnées de Réaction Intrinsèques) et résultats de trajectoire.

II.5.3. Méthode de calculs accessibles sur Gaussian

Le processus global d'un calcul théorique peut être divisé en 3 étapes essentielles :

- 1) Création du fichier d'entrées (les données nécessaires au calcul) sur notre ordinateur.
- Gaussian gère de façon interne un fichier dit "checkpoint" contenant différentes informations concernant un calcul : la dernière géométrie calculée dans le cas d'une optimisation, les matrices de densité, les orbitales, la base utilisée, les fréquences calculées,
- 3) Lancement du calcul et production du ou des fichiers de résultats sur l'ordinateur.
- 4) Visualisation des résultats sous forme texte (ouvrir le fichier résultat) ou sous forme graphique en lançant un logiciel graphique sur l'ordinateur.

II.5.4. Option de calcul :

- 1-Choisir les Méthodologie de calcul.
- 2-Les bases disponibles pour cette méthode.
- 3-Titre de calcule effectuée.

Références bibliographiques

- [1] Guy Lamoureux, Mo´nica Alvarado-Rojasa, b & Leslie W. Pinedaa, Acta Cryst. (2018)
- [2] V. N. Viswanadhan, M. R. Reddy, R.J. Bacquet et M.D. Erion, Journal of computational chemistry, 1993,14, 1019.
- [3] [V. N. Viswanadhan, A. K. Ghose et J. N. Weinstein, Biochimica et Biophysica Acta, 1990,1039, 356].
- [4] B. Yavorski et A. Detlaf, 'Aide-mémoire de phisique'', p 376, Editions Mir, Moscou, 1980.
- [5] W.C. Still,"Molecular Mechanics", columbia Univ. press, 1986
- [6] Y. Cohen, "Pharmacologie moléculaire", Masson, paris, 1978...
- [7] A. Carpy, ANALUSIS © EDP Sciences, Wiley-VCH, 1999, 1 3, 27 :
- [8] Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery Jr. J. A., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., RegaN., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X.,Knox J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., GompertsR., Stratmann R. E., Yazyev O., Austin A. J.,Cammi R., Pomelli C., Ochterski J. W.,Ayala P. Y., Morokuma, K., Voth G. A., Salvador P.,Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D.,Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S.,Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., MartinR. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A.Gaussian09

CHAPITRE II: SYNTHÈSE BIBLIOGRAPHIQUE SUR DES PROPRIÉTÉS AMPHIPHILIQUES

Réferences bibliographiques

[1]. R. E. Taylor, Y. Chen, and A. Beatty ,J. Am. Chem. Soc., 2003, 125, 26

[2]. P. D. Mosier and P. C. Jurs, J. Chem. Inf. Comput. Sci., 2002, 42, 1460

[3]. S.Morimoto, T. Nagate, K. Sugita, T. Ono, K. Numata, Y. Miyachi, S. Omura,

J. Antibiot. Tokyo, 1990, 43, 295M.

[4]. HyperChem 7.5 (Molecular Modelling System) Hypercube, Inc., 1115 NW 4th Street, Gainesville, FL 32601; USA, (2005).

[5]. Deleu, thèse de doctorat es sciences, FUSAGx, Belgique, 2000.

[6].K. B. Lipkowitz, J. Chem. Educ, 1995, 72, 1070.

[7]. S. Belaidi, M. Omari, T. Lanez et A. Dibi, J. Soc. Alger. Chim., 2004, 14, 27.

[8].Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery Jr. J. A., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., RegaN., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H.,Klene M., Li X.,Knox J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., GompertsR., Stratmann R. E., Yazyev O., Austin A. J.,Cammi R., Pomelli C., Ochterski J. W.,Ayala P. Y., Morokuma, K., Voth G. A., Salvador P.,Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D.,Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S.,Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., MartinR. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A.,

[9].Guy Lamoureux, Mo´nica Alvarado-Rojasa,b& Leslie W. Pinedaa, Acta Cryst. (2018)

[10] M. Drissi, N. Benhalima, Y. Megrouss, R.Rahmani, A.Chouaih, F. Hamzaoui, Molecules, 20, 4042-4054, (2015).

[11]. N. Boubegra, A. Chouaih, M. Drissi, F. Hamzaoui, Chin. Phys. B 23(1), 016103, (2014).
[12]. N. K. Hansen, P. Coppens (1978), ActaCryst., A34, 909-921.

[13]. A Adejoro 1.I. Odiaka and Akinyele, O.F.2*Density Functional Theory and Reactivity Parameters of Dimethylpyridino-1-4-η-Cyclohexa-1,3-diene iron tricarbonyl Complexes Vol.4, No.1, 2014.

[14].R.S. Mulliken, J. Chem. Phy. 2,782,(1934).

[15]. R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105, 7512, (1983).

[16] R.G. Parr, W. Yang, Density functional theory for atoms and molecules, Oxford University Press, New York, (1982).

[17]. R.G. Parr, L. von Szentpaly, S. Liu, Electrophilicityindex.J. Am. Chem. Soc. 121, 1922 -1924, (1999).

[18].M. Drissi, N. Benhalima, Y. Megrouss, R. Rahmani, A. Chouaih, F. Hamzaoui, Molecules, 20, 4042-4054, (2015).

[19]. K.J. Miller, J. Am. Chem. Soc, 1990, 112, 8533.

III.1. Introduction

Les études théoriques s'orientent actuellement vers la conception rationnelle "Rational design" qui signifie que la connaissance des relations entre les propriétés physicochimiques et la structure moléculaire, permet au scientifique de mettre au point de nouvelles molécules actives, avec une assez bonne anticipation [1,2].

Cette partie du travail se place alors dans le contexte d'une recherche fondamentale sur la relation structure-activité dans des molécules antibiotiques, dans le but de contribuer à la conception de nouveaux médicaments, comme les médicaments antipaludiques.

Un paramètre caractérisant l'hydrophobicité (lipophilie) d'un composé est le coefficient de partition (Log P) entre l'octanol et l'eau ou la détermination de Log P se fait par un calcul à l'aide des constantes hydrophobiques fragmentableset par des paramètres géométriques [3].

III..2. Méthodes de calculs utilisés :

L'estimation des paramètres amphiphiles a été réalisée par la méthode QSAR en utilisant le logiciel HyperChem 8.06 [4] pour le calcul des paramètres à l'interface octanol/eau.

HyperChem est un environnement de modélisation moléculaire sophistiqué, reconnu pour sa qualité, flexibilité et facilité d'utilisation. Unification de la visualisation 3D et de l'animation avec la chimie quantique calculs, la mécanique moléculaire et la dynamique, HyperChem met plus de modélisation moléculaire outils à votre portée que tout autre programme Windows.

La méthode QSAR effectue des tentatives pour corréler entre les paramètres physicochimiques de la structure chimique et leur activité biologique. La reconnaissance est que les propriétés ont un effet majeur sur la réalisation d'expériences biologiques dans la recherche de médicaments.

La comparaison de l'activité biologique de certaines molécules et de leurs structures a permis d'établir dans de nombreux cas des corrélations entre les paramètres structuraux et les propriétés d'une molécule [5], c'est-à-dire entre l'activité biologique d'une molécule et la surface accessible de certains de ses substituant non polaires.

La surface accessible et la lipophile de groupements non polaires sont très étroitement liés [6]. La représentation volumique d'une molécule : forme, volume et surface accessible au milieu (solvant, récepteur), permet une approche de la complémentarité des interactions médicamentrécepteur est assurée lorsqu'il y a ajustement optimal de la surface de contact les deux partenaires [7].

III.3.Propriétés géométriquesoptimisée de la molécule de base.

Du point de vue général, la détermination de structures géométriques moléculaires est très intéressant pour l'étude de toutes les propriétés physico-chimiques, ces structures géométriques sont optimisées aux niveaux des méthodes semi-empiriques, ab-initio et la théorie de la fonctionnelle de la densité.

Par ailleurs, le choix de la méthode de calcul est un outil important pour attester les résultats expérimentaux ou encore pour offrir des données satisfaisantes à l'application mais le choix de la base d'orbitales atomiques est une étape importante à ne pas négliger.

L'optimisation géométrique en utilisant le logiciel GAUSSIAN 09[8] a été effectuéeavec la base d'orbitale atomique 6-31G(d,p) qui décrit une orbitale atomique par la combinaison de six fonctions gaussiennes par orbitale de cœur, de trois autres pour la description des électrons de valence et d'une dernière pour description des électrons de valence les plus éloignés du noyau.

Nous avons effectué des calculs d'optimisation de géométrie de la molécule de type la théorie de la fonctionnelle de la densité en utilisant le fonctionnelle B3LYP (DFT/B3LYP) avec la base de calcul 6-31G (d,p). Les paramètres géométriques obtenus théoriquement sont regroupés dans leTableau III.2. A noter que les calculs théoriques ont été effectués en utilisant le programme GAUSSIAN 09.

Tableau III.1: Paramètres positionnels des atomes de la molécule

atome	Symbol	Х	Y	Z
1	С	1.5325044	-0.6440899	0.0000448
2	С	0.3313494	-1.5322095	-0.0000759
3	С	-0.9922464	-0.8990064	0.0000618
4	С	-1.1139752	0.5099981	-0.0000330
5	С	0.1024166	1.3718918	-0.0000645
6	С	1.3975821	0.7213687	-0.0000728
7	Н	-2.0118229	-2.7869657	0.0002623
8	С	-2.1420234	-1.7106526	0.0001473
9	С	-2.3962416	1.0799515	-0.0000831
10	Н	2.2832208	1.3441649	-0.0000893
11	С	-3.5311689	0.2682537	-0.0000645
12	С	-3.4075930	-1.1311823	0.0000733
13	Н	-2.4709439	2.1602819	-0.0001074
14	Н	-4.5166426	0.7235480	-0.0002049
15	Н	-4.2937709	-1.7572758	0.0001217
16	0	0.4968987	-2.7796052	-0.0001846
17	N	-0.0962511	2.6634359	0.0000491
18	С	1.0388652	3.5902751	0.0000485
19	Н	1.6783898	3.4659671	-0.8872686
20	Н	0.6540615	4.6120895	-0.0002659
21	Н	1.6779095	3.4662970	0.8877460
22	N	2.7101150	-1.3266238	0.0002912
23	Н	2.6212903	-2.3350629	-0.0000120
24	С	4.0149295	-0.6946863	-0.0000784
25	Н	4.7868530	-1.4664323	-0.0002769
26	Н	4.1562000	-0.0634598	-0.8887463
27	Н	4.1566259	-0.0634659	0.8885146

A partir des positions atomiques, on calcule des paramètres qui décrivent la géométrie de notre molécule :

- Les distances interatomiques.
- ➢ Les angles de valence.
- ➤ Les angles de torsion.

III.3.1. Longueurs des liaisons chimiques :

Soient Δx , Δy , Δz les différences de coordonnées d'un atome A et d'un atome B. Le calcul de la longueur de liaison se fait aisément en plaçant l'origine du réseau en A comme le montre la figure ci-dessous. \overrightarrow{AB} sera le vecteur du réseau direct de coordonnées relatives Δx , Δy , Δz et les coordonnées absolues a Δx , b Δy , c Δz .

La longueur de la liaison AB est donnée par :

$$AB^{2} = a^{2}(\Delta x)^{2} + b^{2}(\Delta y)^{2} + b^{2}(\Delta z)^{2} + 2ab\Delta x\Delta y\cos\gamma + 2bc\Delta y\Delta z\cos\alpha + 2ca\Delta z\Delta x\cos\beta \quad (\text{III.5})$$

Figure III.2 : Représentation des distances interatomiques

III.3. 2. Angles de valence :

Soient A, B, C trois sites atomiques dans la maille, le produit scalaire entre deux vecteurs \overrightarrow{AB} et \overrightarrow{AC} est donnée par :

$$\overrightarrow{AB}. \overrightarrow{AC} = AB. AC \cos \gamma$$

$$\overrightarrow{AB}. \overrightarrow{AC} = a^2 \Delta x_B \Delta x_C + b^2 \Delta y_B \Delta y_C + c^2 \Delta z_B \Delta z_C$$
 (II.6)

Avec :

 $\Delta x_B, \Delta y_B, \Delta z_B$ sont les coordonnées de AB et $\Delta x_C, \Delta y_C, \Delta z_C$ sont les coordonnées de AC. L'angle de valence $B\hat{A}C = \gamma$ est donnée par :

$$\cos \gamma = \frac{a^2 \Delta x_B \Delta x_C + b^2 \Delta y_B \Delta y_C + c^2 \Delta z_B \Delta z_C}{ABAC}$$
(II.7)

Figure III.3 : Représentation des angles de valence.

II.5. 3. Angles de torsion :

Pour une séquence de quatre atomes A, B, C et D, l'angle de torsion φ est défini comme l'angle de rotation avec lequel un groupement moléculaire tourne autour d'une liaison chimique BC. A partir de cette définition :

$$\cos \alpha = \frac{(AB.BC).(BC.CD)}{AB(BC)^2.CD\sin\theta.\sin\theta}$$
(II.8)

H₂₇_C₂₄

1.123

1.099

Figure III.4 : Schéma descriptif d'un angle de torsion.

Les distances interatomiques, les valeurs des angles de valence et les valeurs des angles de torsion sont présentées dans **le tableau III.2**.

Distance (Å)	(AM ₁)	DFT		Angle (°)	(AM1)	DFT	Angle de torsion(°)	(AM1)	DFT
C2_C1	1.503	1.493		C ₃ _C ₂ _C ₁	115.533	117.954	C4_C3_C2_C1	18.894	0.015
C3_C2	1.471	1.467		C4_C3_C2	121.121	120.503	C5_C4_C3_C2	1.811	-0.009
$C_4 C_3$	1.406	1.414		C5_C4_C3	119.178	120.382	C6_C1_C2_C3	-21.108	-0.017
C5_C4	1.484	1.490		$C_6 C_1 C_2$	92.357	120.835	H7_C3_C2_C1	-161.3498	-179.986
$C_6 C_1$	1.360	1.372		H7_C3_C2	118.8	92.8046	C8_C3_C2_C1	-160.687	-179.990
H7_C3	1.162	2.145		C8_C3_C2	119.177	119.214	C9_C4_C3_C2	-178.623	179.991
$C_8 C_3$	1.400	1.407		C9_C4_C3	120.816	118.902	H10_C6_C1_C2	-0.280	-179.993
C ₉ C ₄	1.399	1.403		H10_C6_C1	120.342	119.472	C11_C9_C4_C3	178.609	-0.0011
H ₁₀ C ₆	1.102	1.082		C11_C9_C4	120.248	120.463	C12_C8_C3_C2	179.944	-179.990
C11 C9	1.395	1.395		C12_C8_C3	120.224	120.179	H13_C9_C4_C3	179.833	179.997
(12 (°	1 393	1 391		H13_C9_C4	119.621	117.920	H14_C11_C9_C4	-179.734	-179.993
H ₁₂ C ₀	1 101	1.082		H14_C11_C9	119.952	119.630	H15_C12_C8_C3	159.213	179.998
H ₁₄ C ₁₁	1 100	1.002		H15_C12_C8	120.350	120.156	O16_C2_C1_C6	159.445	179.988
H ₁₅ C ₁₂	1 099	1 085		O16_C2_C1	121.420	118.918	N17_C5_C4_C3	-179.388	-179.990
0_{16} 0_{2}	1 237	1.005		N17_C5_C4	119.220	116.575	N18_N17_C5_C4	48.590	179.999
N ₁₇ C ₅	1 298	1 306		C18_N17_C5	122.040	120.487	H19_C18_N17_C5	168.217	60.555
C18 N17	1.425	1.465		H19_C18_N17	113.565	112.246	C20_C18_N17_C5	-73.527	179.976
H10 C10	1 123	1 100		C20_C18_N17	106.870	108.596	H21_C18_N17_C5	-174.616	-60.605
	1 1 2 2	1.100		H21_C18_N17	111.283	112.237	N22_C1_C6_C5	-160.09	-179.987
	1.123	1.091		N22_C1_C6	124.552	125.739	H23_N22_C1_C6	-16.701	-179.977
H ₂₁ _C ₁₈	1.124	1.100		H23_N22_C1	114.037	115.062	C24_N22_C1_C6	-176.323	-0.0260
N ₂₂ _C ₁	1.390	1.361		C24_N22_C1	120.006	124.062	C25_C24_N22_C1	-55.477	-179.971
H ₂₃ N ₂₂	1.000	1.012		C25_C24_N22	108.782	109.165	H26_C24_N22_C1	65.021	-60.292
C ₂₄ _N ₂₂	1.431	1.449		H26_C24_N22	112.723	111.481	H27_C24_N22_C1	-6.701	60.3499
H25_C24	1.121	1.091		H27_C24_N22	109.4	111.477			
H ₂₆ C ₂₄	1.125	1.099	l						

Tableau III.2: Paramètres géométriques de la molécule obtenue par AM1et B3LYP

On peut noter à partir de ce tableau, que tous les paramètres calculés sont en accord avec les résultats expérimentaux de diffraction des rayons X [9]. Aussi, on peut voir que la valeur moyenne des longueurs de liaisons dans les différents cycles benzéniques obtenus par les calculs théoriquesest de l'ordre de 1,38 Å qui est le même dans la littérature. Ainsi, la longueur de la liaison C-C dans un cycle aromatique est de 1,39 Å [10, 11]. Par contre, les résultats théoriques donnent 1,39 Å par la méthode DFT et donc les résultats obtenus par la méthode DFT est en bon accord avec les résultats correspondants trouvés par DRX et ils présentent une bonne approximation.

A partir des résultats de l'analyse structurale (DRX), les angles formés par les différents atomes de carbones du cycle C-C-C varient autour de la valeur moyenne de 120° et les angles de liaison des atomes d'hydrogène n'ont pas été pris en compte.

Signalons enfin qu'il y a une similitude entre les résultats de calcul par lesméthodes semi empiriques et par la méthode de DFT pour ce noyau.

III.4. Effet de la substitution sur les propriétés géométriques de molécules dérivées.

Afin d'étudier le rôle qui peut jouer un nouveau substituant sur la stabilitéconformationnelle et son effet sur la réactivité chimique, on a introduit un radical méthyle dans diverses positions sur la molécule de base (Tableau III.3).

Composés chimiques	Substituants	Composés chimiques	Substituants
S	érie N° : 1	S	érie N° :2
Molécule1 : Mono-Méthyle		Molécule 4 : Mono-Méthyle	
Molécule 2 : Di-méthyle		Molécule 5 : Di-méthyle	
Molécule 3 : Tri-méthyle		Molécule 6 : Tri-méthyle	

 Tableau III.3: Les positions des substituants dans les dérivés de la molécule de base dans les séries 1 et 2

Tableau III.3 (suite): Les positions des substituants dans les dérivés de la molécule de base

Molécule 7 : Mono-Méthyle	Molécule 8 : Di-méthyle	Molécule 9 : Tri-méthyle

de la série N° :3

Dans ce travail, nous avons effectuée des calculs d'optimisations géométriques pour d'autres molécules qui sont les dérivées de la molécule de base. Nous avons obtenus des résultats qui décrivent les propriétés géométriques structurales de ces molécules.Ces résultats sont rassemblées dans l'annexe A. Ces paramètres seront utilisés pour étudier l'effet des substituants électrodonneurs(méthyle) de la molécule de base sur les propriétés électrostatiques et amphiphiliques des molécules concernés.A titre d'exemple, Le tableau suivant rassemble des paramètres géométriques (longueurs, angle de valence et l'angle de torsionde la molécule 9 de la série 3 (Tri-méthyle /Tri-méthyle) et la figure III.2 présente la structure optimisée de cette molécule obtenue par deux méthodes de calculs : semi empirique (AM1) et DFT (B3LYP).Nous observons qu'il y a une ressemblance entre les résultats de calcul par lesméthodes semi empiriques et par la méthode de DFT pour ce type de dérivée.

Distance (Å)	SM(AN	11) DFT	Angle(°)	SM(AM1)	DFT	Angle de torsion(°)	SM(AM1)	DFT
C2_C1	1.5039	1.5039	C3_C2_C1	115.5344	115.5344	C4_C3_C2_C1	18.8938	18.8938
C3_C2	1.4712	1.4712	C4_C3_C2	121.1199	121.1199	C5_C4_C3_C2	1.8134	1.8134
C4_C3	1.4067	1.4067	C5_C4_C3	119.4204	119.4204	C6_C1_C2_C3	-21.1088	-21.1088
C5_C4	1.4841	1.4841	C6 C1 C2	119.1795	119.1795	H7_C3_C2_C1	-161.3499	-161.3499
C6 C1	1.3603	1.3603	H7 C3 C2	92.3593	92.3593		-160.6876	-160.6876
H7 C3	2.1625	2.1625	C8 C3 C2	118.8053	118.8053		-178.0325	-178.0325
 C8 C3	1.4003	1.4003	C9 C4 C3	119.1765	119.1765		-0 2783	-177.9839
 C9 C4	1.3999	1.3999	H10 C6 C1	120 8187	120 8187	C12 C8 C3 C2	178.6084	178.6082
- H10 C6	1.1023	1.1023	C11 C9 C4	120.3425	120.3425	H13_C9_C4_C3	179.9451	179.9451
C11 C9	1.3950	1.3950		120 2488	120 2488	H14_C11_C9_C4	179.8307	179.8307
C12 C8	1.39316	1.3931	H13 C9 C4	120.2180	120.2189	H15_C12_C8_C3	-179.7348	-179.7348
H13 C9	1.10164	1.1016		110 6216	110 6216	O16_C2_C1_C6	159.2116	159.2116
H14 C11	1 10071	1 1007	H14_C11_C9	119.0210	119.6216	N17_C5_C4_C3	159.4460	159.4460
H15 C12	1.10071	1.1007	H15_C12_C8	119.9522	119.9522	N18_N17_C5_C4	-179.3900	-179.3900
016_C2	1 23795	1 2279	016_02_01	121.4224	121.4224	H19_C18_N17_C5	48.5935	48.5935
010_C2	1.23795	1.2373	N17_C5_C4	119.2105	119.2105	$120_{18}N17_{5}$	108.2103	108.2103
N17_C5	1.29854	1.2985	C18_N17_C5	122.03728	122.0372	N22 C1 C6 C5	-174 6180	-174 6180
C18_N17	1.42540	1.4254	H19_C18_N17	113.5681	113.5681	H23 N22 C1 C6	-160.0915	-160.0915
H19_C18	1.12381	1.1238	C20_C18_N17	106.8631	106.8631	C24 N22 C1 C6	-16.7011	-16.7011
H20_C18	1.1230	1.1230	H21_C18_N17	111.2847	111.2847	C25_C24_N22_C1	-55.47572	-55.4757
H21_C18	1.12449	1.1244	H22_C1_C6	124.5514	124.5514	H26_C24_N22_C1	65.0200	65.0200
N22_C1	1.3908	1.3908	H23_C22_C1	114.0384	114.0384	H27_C24_N22_C1	-176.3247	-176.3247
H23_N22	1.0001	1.0001	C24_N22_C1	120.0079	120.0079	C28_C27_C24_N22	65.79424	65.7942
C24_N22	1.4312	1.4312	C25_C24_N22	112.7238	112.7238	C29_C27_C24_N22	-174.2057	-174.2057
H25_C24	1.5400	1.1250	H26_C24_N22	108.7306	108.7306	<u>C30_C27_C24_N22</u>	-54.2057	-54.2057
H26_C24	1.0700	1.5400	H27_H26_C24	109.4712	109.4712	$(4_03_02_01)$	18.8938	18.8938
H27_H26	1.0700	1.0700	H28_H26_C24	109.4712	109.4712		-21 1088	-21 1088
H28_H26	1.0700	1.0700	H29 H26 C24	109.47123	109.4712		101 2400	161 3400
H29_H26	1.5400	1.0700	C30 C24 N22	109.40776	109.4077	H7_C3_C2_C1	-161.3499	-161.3499
C30_C24	1.0700	1.5400	H31 C30 C24	109.4712	109.4712	C8_C3_C2_C1	-160.6876	-160.6876
H31_C30	1.0700	1.0700	H32 C30 C24	109.4712	109.4712	C9_C4_C3_C2	-178.6325	-178.6325
H32_C30	1.0700	1.0700	H33 C30 C24	109.4712	109.4712	H10_C6_C1_C2	-177.9839	-177.9839
H33_C30	1.5400	1.0700	C3 C2 C1	115.53443	115.5344	C11 C9 C4 C3	-0.2783	-0.27835
C2_C1	1.5039	1.5039	C4_C3_C2	121.1199	121.1199		178 6082	178 6082
C3_C2	1.4712	1.4712	C5_C4_C3	119.4204	119.4204		178.0082	178.0082
C4_C3	1.4067	1.4067	C6_C1_C2	119.17957	119.1795	H13_C9_C4_C3	179.9451	179.9451
C5_C4	1.4841	1.4841	H7_C3_C2	92.3593	92.3593	H14_C11_C9_C4	179.8307	179.8307
C6_C1	1.36037	1.3603	C8_C3_C2	118.8053	118.8053	H15_C12_C8_C3	-179.7348	-179.7348
H7_C3	2.16251	2.1625	C9_C4_C3	119.1765	119.1765	016 C2 C1 C6	159.2116	159.2116
C8_C3	1.4003	1.4003	H10_C6_C1	120.8187	120.8187		150 4460	150 4460
C9_C4	1.3999	1.3999	C11_C9_C4	120.3425	120.3425	N17_C5_C4_C5	139.4400	139.4400
H10_C6	1.10235	1.1023		120.2488	120.2488	N18_N17_C5_C4	-179.3900	-179.3900
C11_C9	1.3950	1.3950	H13_C9_C4	120.2189	120.2189			
C12 C8	1.3931	1.3931		119.0210	119.0210	J		
			1					

Tableau III.4 : Paramètres géométriques de la molécule 9 (tri-méthyle) de la série 3 obtenuspar AM1et B3LYP

Figure III.5 :Structure optimisée de la molécule C₁₈H₂₃N₂O (DFT B3LYP/6-31G(d,p)).

III.5. Effet de la substitution sur les propriétés électrostatiques des dérives de la molécule de base Naphtha :

III.5. 1. Charges de Mulliken :

La détermination des propriétés électrostatiques des molécules peut fournir des informations importantes sur les propriétés physiques de la molécule étudiée.Le calcul des charges partielles des différents atomes à partir de la population de valence en utilisant cette formule :

$$q_i = n_i - P_V^i \tag{III.32}$$

 $Oùn_i$ est le nombretotal de l'électron de l'atomei.

Le calcul des charges atomique de Mulliken joue un rôle important dans l'application du calcul chimie quantique du système moléculaire en raison de l'effet des charges atomiques sur le moment dipolaire, la polarisabilité, la structure électronique et plusieurs autres propriétés des systèmes moléculaire.La distribution des charges sur les atomes de la molécule suggèrent la formation des paires donneur et accepteur impliquant le transfert de charge dans la molécule.

Les calculs de charges atomiques ont été obtenus par l'analyse de la population de Mulliken en utilisant un modèlede la méthode DFT (B3LYP/6-31G (d,p)). Les résultats obtenus sont présentés dans le tableau III.5 tels que le signe positif des charges nettes sur les atomes H et C et les charges nettes négatives sur les atomes d'oxygène et d'azote N2.

ATOME	Molécule mère	Molécule 1	Molécule 2	Molécule3
0	-0.414215	-0.415116	-0.414261	-0.414733
C1	0.188369	0.188559	0.185691	0.187977
C2	0.021102	0.021183	0.020800	0.020808
C3	-0.142232	-0.141129	-0.139278	-0.140738
Н3	0.166058	0.166167	0.166153	0.166412
C4	0.004268	-0.127623	-0.128707	-0.127995
H4	0.132129	0.132165	0.132016	0.131238
C5	0.017214	-0.115440	-0.113944	-0.114641
Н5	0.132293	0.132292	0.131808	0.131615
C6	-0.015898	-0.154790	-0.154686	-0.154088
H6	0.171141	0.169263	0.166957	0.166412
C7	0.110398	0.108691	0.091826	0.101027
C8	0.109309	0.117894	0.144163	0.118338
С9	-0.015478	-0.012746	-0.140277	-0.136933
H9	0.129891	0.132346	0.165758	0.166153
C10	0.338251	0.337343	0.334545	0.334359
N1	-0.700070	-0.700259	-0.702248	-0.701305
H10	0.344035	0.343959	0.343179	0.343459
C11	-0.230440	-0.230472	-0.363080	-0.231107
H11A	0.156309	0.156216	0.155511	0.156122
H11B	0.158106	0.158356	0.157471	0.157378
H11C	0.158129	0.158359	0.157216	0.157383
N2	-0.404797	-0.419472	-0.431792	-0.412352
C12	-0.296460	-0.140781	-0.125440	-0.121538
H12A	0.143305			
H12B	0.156852	0.138048		
H12C	0.143330	0.138025	0.113405	
C13		-0.388141	-0.376476	-0.363080
H13A		0.119355	0.120979	0.113801
H13B		0.143947	0.137809	0.135288
H13C		0.143942	0.142744	0.135294
C14			-0.387582	-0.396394
H14A			0.130739	0.132095
H14B			0.149362	0.145679
H14C			0.135994	0.129079
C15				-0.396400
H15A				0.132097
H15B				0.129082
H15C				0.145674

 Tableau III.5 : Charges nettes (q) pour les différents atomes pour chaque molécule de la série 1.

Dans ce tableau, nous remarquons que les charges des atomes N_2 et C_{12} ont été soumis par l'effet de la substitution de la molécule de base par les substituants électrodonneurs (méthyle) dans la série 1. La valeur de la charge de N_2 dans la molécule de base (-0.4047)

ATOME	Molecule	Molecule 1	Molecule 2	Molecule3
	mere	0.405541	0.4001.45	0.4202.40
0	-0.414215	-0.42/541	-0.430147	-0.430248
Cl	0.188369	0.203958	0.202764	0.200438
<u>C2</u>	0.021102	0.010650	0.011533	0.012088
C3	-0.142232	-0.142313	-0.142974	-0.143108
H3	0.166058	0.166217	0.166125	0.165973
C4	0.004268	-0.128063	-0.128021	-0.128148
H4	0.132129	0.134236	0.134105	0.133906
C5	0.017214	-0.121588	-0.121924	-0.121882
H5	0.132293	0.134773	0.134573	0.134382
C6	-0.015898	-0.150499	-0.150276	-0.150562
H6	0.171141	0.165623	0.165408	0.165266
C7	0.110398	0.118345	0.117936	0.117708
C8	0.109309	0.091418	0.084782	0.082647
C9	-0.015478	-0.157610	-0.133672	-0.126289
H9	0.129891	0.139302	0.129086	0.121079
C10	0.338251	0.290530	0.278355	0.278184
N1	-0.700070	-0.646937	-0.651139	-0.651376
H10	0.344035	0.322521	0.321506	0.318320
C11	-0.230440	-0.089932	0.048103	0.170894
H11A	0.156309			
H11B	0.158106	0.135300		
H11C	0.158129	0.150679	0.129539	
N2	-0.404797	-0.376391	-0.376770	-0.377770
C12	-0.296460	-0.296137	-0.296126	-0.298878
H12A	0.143305	0.134668	0.134053	0.135880
H12B	0.156852	0.156813	0.156933	0.157349
H12C	0.143330	0.146782	0.146234	0.145943
C13		-0.431927	-0.429571	-0.425253
H13A		0.146069	0.140019	0.137534
H13B		0.148104	0.146296	0.144889
H13C		0.160524	0.156799	0.152219
C14			-0.415991	-0.408484
H14A			0.145997	0.139081
H14B			0.171582	0.168991
H14C			0.138996	0.137992
C15				-0.400523
H15A				0.148810
H15B				0.135834
H15C				0.141602

Tableau III.6 : Charges nettes (q) pour les différents atomespour chaque molécule de la série 2.

ATOME	Molècule mère	Molécule 1	Molécule 2	Molécule3
0	-0.414215	-0.443583	-0.443552	-0.445790
	0.188369	0.184833	0.181599	0.172609
<u>C2</u>	0.021102	0.020350	0.020804	0.022321
	-0.142232	-0.139237	-0.139120	-0.138302
H3	0.166058	0.165456	0.165444	0.165481
	0.004268	-0.128899	-0.128869	-0.128944
H4	0.132129	0.131302	0.131250	0.131081
<u>C5</u>	0.01/214	-0.113930	-0.114104	-0.1144/2
H5	0.132293	0.130899	0.130902	0.130770
	-0.015898	-0.154722	-0.154492	-0.152995
Ho	0.1/1141	0.100194	0.10010/	0.103909
	0.110398	0.091504	0.091752	0.090555
<u>C8</u>	0.109309	0.143782	0.141/68	0.139800
(9	-0.015478	-0.142103	-0.135209	-0.119495
H9	0.129891	0.1364/1	0.134140	0.124191
	0.338251	0.343395	0.341938	0.348205
	-0./000/0	-0./21964	-0./10085	-0.739338
HIU C11	0.344035	0.341064	0.338101	0.343442
	-0.230440	-0.054730	0.062772	0.199795
HIIA	0.156309	0.148733	0.142483	
HIIB	0.158106	0.148747		
HIIC	0.158129			
<u>N2</u>	-0.404797	-0.432406	-0.432850	-0.434214
<u>C12</u>	-0.296460	0.122187	0.122223	0.122573
H12A	0.143305			
H12B	0.156852			
H12C	0.143330			
C13		-0.363067	-0.363037	-0.362931
H13A		0.113488	0.113424	0.113249
H13B		0.135163	0.135273	0.135142
H13C		0.135157	0.135066	0.135152
C14		-0.396484	-0.398647	-0.400893
H14A		0.131811	0.132171	0.132178
H14B		0.145524	0.145695	0.133357
H14C		0.129141	0.130748	0.145980
<u>C15</u>		-0.396488	-0.395953	-0.400866
H15A		0.131802	0.131635	0.132166
H15B		0.129134	0.128577	0.145978
H15C		0.145515	0.145499	0.133364
<u>C16</u>		-0.439564	-0.419804	-0.392519
HI6A		0.149472	0.144958	0.133829
H16B		0.152986	0.141098	0.143560
H16C		0.153005	0.152723	0.146719
C17			-0.391462	-0.422646
H16A			0.150650	0.143608
H16B			0.140759	0.145369
H16C			0.134162	0.145381
C18				-0.392507
H16A				0.146723
H16B				0.143543
H16C				0.133823

Tableau III.7. Charges nettes (q) pour les différents atomes pour chaque molécule de la série 3

III.5.2. Moment dipolaire moléculaire:

Généralement la notion de moment dipolaire en physique et en chimie repose sur l'existence de dipôles électrostatiques. Il s'agit d'une répartition hétéroclite de charges électriques tel que le barycentre des charges positives ne coïncide pas avec celui des charges négatives, ce moment dipolaire est décrit par le vecteur :

$$p = q.d \tag{III.34}$$

Ce vecteur étant orienté de la charge négative à la charge positive. En plus, un moment dipolaire est la somme de *n* vecteurs $p_i = q_i r_i$ où r_i et q_i sont respectivement les valeurs de *n* charges q_i ayant *n* vecteurs positions r_i .

Le moment dipolaire est exprimé en <u>coulomb</u>·mètre (C·m) mais on l'exprime souvent aussi en debye (D). Le facteur de conversion est alors : $1 \text{ D} = 3,33564 \times 10^{-30} \text{C} \cdot \text{m}$.

D'un autre point de vue, la molécule est toujours globalement neutre, puisque le nombre d'électrons n'a pas varié mais elle possède deux pôles, l'un positif et l'autre négatif et donc elle est polaire, elle est caractérisée par un moment dipolaire $\vec{\mu}$.

$$\vec{\mu} = q.\vec{r} \tag{III.35}$$

$$et\mu = \sqrt{\mu_x^2 + \mu_y^2 + \mu_z^2}$$
(III.36)

Puisque la précision de la répartition globale des électrons dans une molécule est difficile à quantifier car il implique tous les multipoles, on peut déduire que le moment dipolaire moléculaire est la plus simple mesure expérimentale de la distribution de la charge dans une molécule, nous avons calculé ce dernier à partir desparamètres de populationmultipolairesuivant la procédure décriteparHansenetCoppens(1978) [12].

$$\mu = \sum_{i} q_{i} r_{i} + \sum_{i} \frac{4n+3}{3k_{i}''} (p_{xi}i + p_{yi}j + p_{zi}k)$$
(III.37)

Où c'est la position atomique, nle nombre des électrons dans la moléculeet P_i sont les populations d'électrons dipolaires.

Nous avons calculé ces paramètres théoriquement en utilisant la méthode DFT(B3LYP)avec la base 6-31G(d,p) où les valeurs et les directions des moments dipolairesobtenues sontrésumées dans le tableauIII.2. On remarque que la valeur la plus élevée du moment

dipolairecorrespond au composé 9 de la série 3 avec le substituant Tri-méthyle (2.76Debye).Par ailleurs, ces résultats ont clairement mis en évidence le caractère donneur d'électrons des groupes C-H en combinaisonaveclecaractèreaccepteur d'électronsdesatomes O et N2et il en résulteque ces moléculespeuventdonner un aperçu de leurapplication potentielledans la synthèse denouveaux dérivésorganométalliques [13].

Tableau III.8 :.Les Composants du moment dipolaire de la molécule obtenus parDFT/B3LYP.

	Ux	Uy	U z	UTot(Debye)
Molécule mère	2.4544	0.6803	-0.0006	2.5470
Molécule 1	-1.7409	1.6584	0.0002	2.4044
Molécule 2	-1.7035	1.6459	0.0387	2.3690
Molécule 3	1.7989	1.6735	0.0003	2.4569
Molécule 4	-0.8214	-2.4956	0.0010	2.6273
Molécule 5	1.9101	1.7733	-0.0593	2.6070
Molécule 6	2.0105	1.6908	0.0004	2.6270
Molécule 7	2.2031	1.0258	1.0528	2.6484
Molécule 8	2.3158	0.9750	1.0681	2.7303
Molécule 9	2.3890	0.9048	1.0545	2.7637

III.5.3. Potentiel électrostatique :

D'une manière générale, le Potentiel électrostatiquemoléculaire (PEM) est considéré comme prédictif de la réactivité chimique et il permet de décrire les interactions intermoléculaires. Il existe des régions de potentiel négatif (nucléophiles) et l'autre de potentiel positif (électrophiles) qui sont l'origine de réactions chimiques.

Le potentiel électrostatiqueest défini à partir de la distribution de charge totale par l'expression suivante :

$$V(r') = \int \frac{\rho_{total}(r)}{|r - r'|} dr$$
(III .33)

Où ρ_{total} représente les charges nucléaires et électroniques, l'intégration est sur le volume moléculaire et r représente la position atomique par rapport à l'origine commune.

Le potentiel de la molécule4-{4-[(E)-(2-Hydroxyphenyl)iminomethyl] phenoxy}benzene-1,2-dicarbonitrile a été calculé par des méthodes de calcul théorique DFT(B3LYP/6-31G(d,p)) en utilisant le programme Gaussview.La figure (III.6.a) représente la carte du potentiel électrostatique moléculairedans le plan moyen de la moléculemère, elle montre des régions de différents couleurs qui signifiées que, les régions de couleur rouge sont des zones négatifsoù ils ont une réactivité (attaque) électrophile et la couleur jaune présente la zone positive qui a une réactivité (attaque) nucléophile. Aussi, on peut remarquer que les sites depotentielsnégatifssont situés sur des atomes les plusélectronégatifsO1et N2 tandis que les sites de potentielpositifsont situésautour desatomes d'hydrogène et de carbonedu groupe naphthaquinone

La distribution de potentiel électrostatique montre que les régions de groupe C-H sont électropositifs tandis que les régions de potentiel électrostatique négatif sont situés autour de la liaison O=C et les régions autour de C=N, donc ces propriétés éclaire bien le comportement des groupements donneur et accepteur en plus elles confirment la nature du transfert de charge intramoléculaire et l'orientation du moment dipolaire moléculaire.

Figure III.6.a : Le potentiel électrostatiquethéorique de la moléculemère

Figure III.6.b : Les différentes cartes de potentiel électrostatiquethéorique des trois séries des composés dérivées

D'après ces représentations (Figure III.6.b), pour la série 1, nous avons observées que dans la molécule mère la région négative autour de l'atome N₂ est large. Tandis que, après l'introduction des substituants électrodonneurs sur cette région, on remarque que le nuage de la distribution potentiel électronégative est étroit. La même remarque a été observée sur la région négative autour de l'atome O dans les séries 2 et 3. Donc, nous pouvons constater l'effet de la substitution des électrodonneurs sur la répartition de potentiel des composés dérivée de Naphthaquinone.

III.5.4. Energies des orbitales moléculaire et transfert de charge :

La théorie la plus utilisée par les chimistes est la théorie des orbitales moléculaires (OM). Les orbitales frontières dans une molécule sont appelés : HOMO (orbitale moléculaire occupée de plus haute énergie) et LUMO (orbitale moléculaire inoccupée de plus basse énergie). Ces dernières jouent un rôle intéressant dans les propriétés électriques, optique et dans les réactions chimiques, l'orbital HOMO agit principalement comme donneur d'électrons et l'orbital LUMO en tant que accepteur d'électron. Ainsi, le gap énergies (ΔE) est la différence entre les deux niveaux HOMO et LUMO.

les énergie des orbitales moléculaire frontières (FMO)sont très utiles pour déterminer plusieurs propriétés moléculaire tels que le potentiel d'ionisation (IP) l'affinité électronique (EA), l'indice électrophile (ω), potentiel chique électronique (μ) (3) électro négativité(χ) par Mulliken [14] et la dureté globale (η)[15-17] :

Avec: $\mu = -(\frac{I+A}{2})$; $\chi = (\frac{I+A}{2})$; $\omega = \frac{\mu^2}{2\eta}$; $A = -E_{LUMO}$; $I = -E_{HOMO}$

	Molécule mère	Série 1 Mono-méthyle	Série 1 Di-méthyle	Série 1 Tri-méthyle
номо				
LUMO				
		Série 2 Mono-méthyle	Série 2 Di-méthyle	Série 2 Tri-méthyle
номо				
LUMO				
		Série 3 Mono-méthyle	Série 3 Di-méthyle	Série 3 Tri-méthyle
номо				
LUMO				

Tableau III.9:Orbitales moléculaire frontières (FMO) de la molécule de mère et ces dérivées
	Еномо	E _{LUM0}	$\Delta \mathbf{E}$	(I) -HOMO	(A) -LUMO	(x)	(µ)	(ŋ)	(S)	(w)
Série N :1										•
Tri-methyle	-8.31	-1 .04	7.27	8.31	1.04	4.67	-4.67	3.63	0.13	3.00
Di-methyle	-8.80	-1.08	7.72	8.8	1.08	4.94	-4.94	3.86	0.129	3.16
Mono-methyle	-8.71	-1.02	7.89	8.71	1.02	4.86	-4.86	3.94	0.126	2.99
Série N :2			•							•
Tri-methyle	-8.78	-1.03	7.75	8.78	1.03	4.90	-4.9	3.87	0.129	3.09
Di-methyle	-8.93	-0.99	7 .94	8.93	0.99	4.96	-4.96	3.97	0.125	3.17
Mono-methyle	-8.90	-1.02	7.88	8.9	1.02	4.96	-4.96	3.94	0.126	3.12
Série N :3										
Tri-methyle	-8.13	-0.9	7.23	8.83	0.9	4.86	-4.86	3.95	0.13	3.00
Di-methyle	-8.78	-1.08	7.77	8.78	1.08	4.93	-4.93	3.89	0.129	3.16
Mono-methyle	-8.32	-1.03	7.29	8.32	1.03	4.67	-4.67	3.63	0.126	2.99

Tableau III.10 : Energie de gap (ΔE), le potentiel d'ionisation (IP) l'affinité électronique (EA), l'indice électrophile (ω), potentiel chique électronique (μ), électro négativité(χ) et la dureté globale (η) des composésdérivéesde la molécule de mèreNaphthaquinone.

D'après ces résultats,Nous concluons que ces énergies ont une grande importance pour la stabilité structurelle de ces molécules .Aussi, il convient de noter que l'écart entre HOMO et LUMO calculé est peut être très utile pour montrer l'activité de transfert de charge intramoléculaire [18].Quand l'écart énergétique HOMO-LUMO est élevé, l'écoulement des électrons n'est pas facile, qui rend la molécule dure et moins réactive, par contre quand le gap énergétique HOMO-LUMO est faible, il y a par conséquence un écoulement facile des électrons, ce qui rend la molécule molle et plus active chimiquement, ceci est gouverné par le principe de HSAB (Hard Soft Acid and Base).

D'après les résultats, la densité électronique del'orbitale HOMO est fortement localisée sur les fragments des substituants électrodonneursalors que ladensité électronique de l'orbitale LUMO est principalement centrée sur le groupe Naphtaquinone.

III.6. Effet de la substitution sur les paramètres amphiphiliques des molécules:

Dans cette partie du travail, nous nous intéressons à l'étude de la lipophile de naphtaquinone biologiquement actives à une interface hydrophobe/hydrophile. La première caractéristique physicochimique à prendre en compte dans cette étude est l'hydrophobicité qui signifie la tendance d'un composé à réduire son aire de contact avec une phase aqueuse. Deux paramètres caractérisant l'hydrophobicité (lipophile) d'un composé sont : le coefficient de partition (Log P) entre l'octanol et l'eau d'une part et la balance amphiphilique (hydrophile/hydrophobe) à l'interface lipide/eau d'autre part.

La manière la plus courante de caractériser le comportement d'un composé dans ce domaine est l'expression de son coefficient de partition entre l'octanol et l'eau. En effet le composé se répartie entre les deux liquides non miscibles en fonction de son affinité pour l'une et l'autre des deux phases.

La détermination de Log P se fait par un calcul à l'aide des constantes hydrophobiques fragmentâtes.La polarisabilité a été calculée à l'aide d'une formule empirique par addition d'incréments atomiques suivant la méthode de Miller [19], avec une précision sur le calcul de 3%. Dans le tableau 11, sont rassemblés les paramètres amphiphiliques.

Substituants	Volume Moléculaire (Å ³)	Masse Moléculaire (Å ²)	Log p	Energie d'hydrations (kcal /mol)	polarisabilité (ų)
Molécule mère	636.30	200.24	1.07	-4.05	22.85
Série n :1					
Mono-Met	684.02	214.27	1.26	-3.8	24.81
Di-Met	716.41	228.29	2.37	-4.09	24.9
Tri-Met	746.48	238.29	2.45	-3.57	29.44
Série n :2					
Mono-Met	684.02	214.27	1.41	-3.47	24.85
Di-Met	716.41	228.29	1.83	-2.74	26.52
Tri-Met	746.48	238.29	1.45	-1.43	26.53
Série n :3					
Mono-Met	820.81	248.40	2.25	-1.31	30.19
Di-Met	853.58	228.29	2.24	-1.14	32.02
Tri-Met	908.98	285.35	<u>2.66</u>	<u>-0.45</u>	<u>33.86</u>

Tableau III.11 : Paramètres amphiphiliquees des dérivés de napthaquinone :

A lumière de ces résultats, on remarque que les valeurs de la polarisabilité sont généralement proportionnelles aux valeurs des masses et des volumes, l'ordre décroissant de la polarisabilité pour ces molécules est : le composé 9>8>7>3>6>5>2>4>1.

D'après ces résultats, on observe aussi que l'énergie d'hydratation en valeur absolue, la plus importante est celle de le composé 2 (Série1/Di-Met) (4.09 Kcal/mol) et la plus faible est celle de le compose 9(Série3/Tri-Met)(0.45 Kcal/mol).Tous les composés possède un site donneur de protons (1 NH sur le cycle principal) et plusieurs sites accepteurs de proton : CH3, N, O sur le cycle principal.Donc, la molécule qui a la valeur d'énergie d'hydratation la plus faible est celle qu'elle a le nombre important de sites donneurs de protons.

Cette propriété favorise le dernier antibiotique, non seulement par la fixation sur le récepteur, mais en plus l'active, c'est-à-dire déclenche une série de réactions enzymatiques. Il s'agit donc d'un antagoniste par rapport au récepteur.

En effet dans les milieux biologiques, la molécule polaire s'entoure par des molécules d'eau. Il s'établit des liaisons hydrogène entre une molécule d'eau et ces molécules. Le site donneur de proton interagisse avec l'atome d'oxygène de l'eau et les sites accepteur de proton avec l'atome d'hydrogène. Ces molécules s'hydratent avant et lors de leur interaction.

Pour une bonne biodisponibilité orale, le log P doit être supérieur à zéro et inférieur à $3 (0 < \log P < 3)$. En effet, Pour un log P trop élevé, le médicament présente une faible solubilité aqueuse. Dans le cas d'un log P très faible, le médicament présente une difficulté de sepénétrer dans les bicouches lipidiques des membranes cellulaire.

A l'opposé de l'énergie d'hydratation, la lipophilie augmente proportionnellement avec le caractère hydrophobe des groupes substituants.

La molécule du composé9a une valeur la plus élevéequi est d'ordre de 2.66. Elle présente des capacités importantes à se lier aux protéines plasmatiques. Quand le coefficient de partage est assez bas, il aura pour conséquence une meilleure tolérance gastrique.

III.6 Conclusion

Dans ce travail, nous avons utilisées les paramètres géométriques pour détermines d'autres propriétés moléculaires de nos composés qui sont les dérivés de Naphtaquinoe. Nous avons remarqués que l'orbitale moléculaire la plus haute occupée (HOMO) qui mesurela capacité de donner un électron est bien localisée sur les fragments des substituants électrodonneurs et l'orbitale moléculaire la plus basse non occupée (LUMO) qui est considéré comme un accepteur d'électrons est localisé sur le groupe Naphtaquinone.

Il convient de mentionner aussi que l'analyse HOMO-LUMO a été réalisée pour visualiser les orbitales frontières moléculaires et voir le transfert de charge au sein de la molécule. D'un autre côté, il faut noter que l'énergie HOMO décrit le potentiel d'ionisation et l'énergie LUMO est l'énergie de l'affinité électronique.

Nous avons aussi effectuées des calculs sur les paramètres amphiliphiques. Nous avons observées que les valeurs de la polarisabilité sont presque proportionnelles aux valeurs des volumes dedistribution. L'énergie d'hydratation, la plus important est celle de compose 9 (-0.45Kcal/mol), il aura par conséquence des meilleures distributions dans les tissus.

La composéde la molécule mère présente le coefficient de partage (Log P) le plus bas (1.07) et le composé 9de une valeur la plus élevée de Log P (2.66), présent la capacité importantes à se lier aux protéines plasmatiques.

Ce qui explique la bonne biodisponibilité orale de ces composés qui sont caractérisés par son solubilité dans les milieux physiologiques extra et intracellulaire et par le pouvoir de traverser les bicouches lipidiques des membranes cellulaires.

Réferences bibliographiques

- [1]. R. E. Taylor, Y. Chen, and A. Beatty ,J. Am. Chem. Soc., 2003, 125, 26
- [2]. P. D. Mosier and P. C. Jurs, J. Chem. Inf. Comput. Sci., 2002, 42, 1460
- [3]. S.Morimoto, T. Nagate, K. Sugita, T. Ono, K. Numata, Y. Miyachi, S. Omura,
- J. Antibiot. Tokyo, 1990, 43, 295M.

[4]. HyperChem 7.5 (Molecular Modelling System) Hypercube, Inc., 1115 NW 4th Street, Gainesville, FL 32601; USA, (2005).

[5]. Deleu, thèse de doctorat es sciences, FUSAGx, Belgique, 2000.

[6].K. B. Lipkowitz, J. Chem. Educ, 1995, 72, 1070.

[7]. S. Belaidi, M. Omari, T. Lanez et A. Dibi, J. Soc. Alger. Chim., 2004, 14, 27.

[8].Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery Jr. J. A., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., RegaN., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H.,Klene M., Li X.,Knox J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., GompertsR., Stratmann R. E., Yazyev O., Austin A. J.,Cammi R., Pomelli C., Ochterski J. W.,Ayala P. Y., Morokuma, K., Voth G. A., Salvador P.,Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D.,Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S.,Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., MartinR. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A.,

[9].Guy Lamoureux, Mo´nica Alvarado-Rojasa,b& Leslie W. Pinedaa, Acta Cryst. (2018)

[10] M. Drissi, N. Benhalima, Y. Megrouss, R.Rahmani, A.Chouaih, F. Hamzaoui, Molecules, 20, 4042-4054, (2015).

[11]. N. Boubegra, A. Chouaih, M. Drissi, F. Hamzaoui, Chin. Phys. B 23(1), 016103, (2014).
[12]. N. K. Hansen, P. Coppens (1978), ActaCryst., A34, 909-921.

[13]. A Adejoro 1.I. Odiaka and Akinyele, O.F.2*Density Functional Theory and Reactivity Parameters of Dimethylpyridino-1-4-η-Cyclohexa-1,3-diene iron tricarbonyl Complexes Vol.4, No.1, 2014.

[14].R.S. Mulliken, J. Chem. Phy. 2,782,(1934).

[15]. R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105, 7512, (1983).

[16] R.G. Parr, W. Yang, Density functional theory for atoms and molecules, Oxford University Press, New York, (1982).

[17]. R.G. Parr, L. von Szentpaly, S. Liu, Electrophilicityindex.J. Am. Chem. Soc. 121, 1922 -1924, (1999).

[18].M. Drissi, N. Benhalima, Y. Megrouss, R. Rahmani, A. Chouaih, F. Hamzaoui, Molecules, 20, 4042-4054, (2015).

[19]. K.J. Miller, J. Am. Chem. Soc, 1990, 112, 8533.

CHAPITRE III : ETUDE DE LA RELATION STRUCTURE-PROPRIÉTÉS DES COMPOSÉ DÉRIVÉES DE NAPHTHAQUINONE

CONCLUSION GÉNÉRALE

Dans ce travail, nous avons utilisés les méthodes de la chimie informatique sur d'un type de molécule de base de Naphthaquinone : (E)-2-(tert-Butylamino)-4-(tert-butylamino) naphthalen-1-one. La méthode quantique a été utilisée pour effectuer une étude sur les propriétés structurales et électroniques des dérivées de la molécule mère afin d'effectuer une étude de l'effet de la substitution sur cette molécule pour analyser quantitativement la relation structure-activités des dérivées de Naphtha.

Dans le premier temps, nous avons pu d'obtenir les paramètres géométriques du noyau de base qui sont les longueurs des liaisons, les angles de valences, les angles de torsion et aussi les charges nettes atomiques des atomes constituants la molécule mère. Les méthodes quantiques qui sont utilisées pour cette optimisation géométriques sont : semi empirique (AM1), ab initio (HF/ 6-31G)) et DFT (B3LYP/6-311).

Pour analyser l'effet de la substitution par des éléctrodonneurs (Méthyle) sur les paramètres électroniques et énergétiques et leur incidence sur la stabilité (HOMO-LUMO) et la réactivité chimique de la molécule de Naphthaquinone, nous avons travaillés sur trois séries de substituants éléctrodonneurs. Vu de l'efficacité du modèle DFT (B3LYP/6-311) dans l'étude précédente, nous avons effectués des calculs théoriques par ce modèle pour déterminer les propriétés électroniques et énergétiques pour les composés dérivés de Naphthaquinone.

A la lumière des résultats obtenus, à partir des paramètres géométriques de différentes molécules dérivées de Naphthaquinone Nous avons calculées de différents paramètres électrostatiques notamment les charges nettes atomiques, les moments dipolaires et la distribution des charges de potentiel. Et pour les propriétés énergétiques, nous avons travaillés sur la visualisation des orbitales de frontières HOMO/LUMO et calculer de différents paramètres : Energie de gap (ΔE), le potentiel d'ionisation, l'affinité électronique, l'indice électrophile, potentiel chique électronique, électro négativité et la dureté globale des composés dérivées de la molécule de mère. Il convient de noter que l'écart entre HOMO et LUMO calculé est peut être très utile pour montrer l'activité de transfert de charge intramoléculaire

Nous avons remarqués que l'orbitale moléculaire HOMO est bien localisé sur les fragments des substituants électrodonneurs et l'orbitale moléculaire LUMO est localisé sur le groupe Naphtalène.

Dans le but d'étudier de l'effet de la substitution des éléctrodonneurs sur propriétés bioactives des composés concernés. Nous avons pu d'effectuer des calculs sur les paramètres amphiliphiques. Nous avons remarqués que les valeurs de la polarisabilité sont presque proportionnelles aux valeurs des volumes de distribution. Et l'énergie d'hydratation la plus important est celle de composé 9 (-0.45Kcal/mol). Donc ce composé a par conséquence les meilleures distributions dans les tissus.

Le composé de la molécule mère présente le coefficient de partage (Log P) le plus bas (1.07) et le composé 9 d'une valeur la plus élevée de Log P (2.66), présent la capacité importantes à se lier aux protéines plasmatiques. Ce qui explique la bonne biodisponibilité orale de ces composés qui sont caractérisés par leurs solubilités dans les milieux physiologiques extra et intracellulaire et par le pouvoir de traverser les bicouches lipidiques des membranes cellulaires. Et en particulier le composé 9.

En perspective il faut procéder à l'évaluation des indices des Fukui de ces composés et aussi à développer la méthode QSAR pour déterminer d'autre paramètres Amphiphiliques (Log K) afin de décrire les propriétés bioactives du composé 9 Tri-méthyle-Tri méthyle.

Les paramètres structuraux des molécules des dérivées de Naphthaquinone

1- Optimisation géométrique de la molécule 1/ série 1/ substituant mono-méthyle

	SM(AM ₁)	DFT	Angle	SM(AM1)	DFT	Angle DE TOROSION	SM(AM1)	DFT
C2_C1	1.5039	1.4938	C ₃ _C ₂ _C ₁	115.4825	117.9627	C4_C3_C2_C1	19.18924	0.0017
C ₃ _C ₂	1.4710	1.4672	C4_C3_C2	121.0879	120.5021	C5_C4_C3_C2	1.9237	-0.0019
C ₄ _C ₃	1.4067	1.4142	$C_5 C_4 C_3$	119.3891	120.3886	C6_C1_C2_C3	-21.4054	-0.0026
C5_C4	1.4845	1.4911	$C_6 C_1 C_2$	119.1743	120.8368	H7_C3_C2_C1	-161.0426	-179.9983
$C_6_C_1$	1.3603	1.3722	H7_C3_C2	92.3883	92.81034	C8_C3_C2_C1	-160.3617	-179.9994
H ₇ _C ₃	2.1624	2.1456	C8_C3_C2	118.8318	119.2232	C9_C4_C3_C2	-178637198	179.9840
C8_C3	1.4003	1.4073	C9_C4_C3	119.1819	118.9052	H10_C6_C1_C2	-178.97377	-179.9385
C ₉ _C ₄	1.3999	1.4031	H10_C6_C1	120.7622	119.4867	C11_C9_C4_C3	-0.29662	-0.0009
H ₁₀ _C ₆	1.1022	1.0825	C11_C9_C4	120.3343	120.4658	C12_C8_C3_C2	178.5954	-179.9564
C ₁₁ _C ₉	1.3951	1.3955	C12_C8_C3	120.2419	120.1849	H13_C9_C4_C3	179.9424	179.9905
C ₁₂ _C ₈	1.3931	1.3919	H13_C9_C4	120.2230	117.9178	H14_C11_C9_C4	179.8059	-179.7722
H ₁₃ _C ₉	1.1016	1.0829	H14 C11 C9	119.6198	119.6284	H15_C12_C8_C3	-179.7395	179.9924
H ₁₄ _C ₁₁	1.1006	1.0855		110.0533	120.1557	O16_C2_C1_C6	158.97248	179.9979
H ₁₅ _C ₁₂	1.0999	1.0850	H15_C12_C8	119.9522		N17_C5_C4_C3	158.9038	-179.9480
O ₁₆ _C ₂	1.2379	1.2583	O16_C2_C1	121.4375	118.9291	N18_C1_C6_C5	-174.7866	-179.9756
N ₁₇ _C ₅	1.2977	1.3063	N17_C5_C4	119.0796	116.6272	H19_N18_C1_C6	-159.9806	-179.9958
N ₁₈ _C ₁	1.3910	1.3611	N18_C1_C6	124.5672	125.7231	C20_N18_C1_C6	-16.7150	0.00129
H ₁₉ _N ₁₈	1.0002	1.0123	H19_N18_C1	114.0048	115.0896	H21_C20_N18_C1	-176.215	-179.9833
C ₂₀ _N ₁₈	1.4312	1.4499	C20_N18_C1	119.9892	124.0419	H22_C20_N18_C1	-55.4390	-60.3632
H ₁₃ _C ₉	1.1016	1.0829	H21_C20_N18	108.7268	109.1613	H23_C20_N18_C1	65.0647	60.31718
H ₁₄ _C ₁₁	1.1006	1.0855	H22_C20_N18	112.7307	111.4599	C24_N17_C5_C4	-179.4866	179.9991
H ₁₅ _C ₁₂	1.0999	1.0850	H23_C20_N18	109.4085	111.4588	C25_C24_N17_C5	172.9857	-179.9760
O ₁₆ _C ₂	1.2379	1.2583	C24_N17_C5	121.3669	121.1768	H26_C24_N17_C5	51.5086	58.7115
N ₁₇ _C ₅	1.2977	1.3063	C25_C24_N17	112.2500	109.8825	H27_C24_N17_C5	-66.3920	-58.6067
N ₁₈ _C ₁	1.3910	1.3611	H26_C24_N17	111.0992	110.4847	H28_C25_C24_N17	4593, 179	-179.9964
H ₁₉ _N ₁₈	1.0002	1.0123	H27_C24_N17	109.7464	110.4881	H29_C25_C24_N17	-60.9582	-59.5443
C ₂₀ _N ₁₈	1.4312	1.4499	H28_C25_C24	108.6326	110.9909	H30_C25_C24_N17	59.8261	59.5488
H ₂₁ _C ₂₀	1.1218	1.0915	H29_C25_C24	111.0817	110.3377			
H ₂₂ _C ₂₀	1.1250	1.0990	H30_C25_C24	111.1383	110.3382		. A.	
H ₂₃ _C ₂₀	1.1233	1.0990						
C ₂₄ _N ₁₇	1.4380	1.4695					I	
C ₂₅ _C ₂₄	1.5221	1.5298						
H ₂₆ _C ₂₄	1.1300	1.1029					3 -3	
H ₂₇ _C ₂₄	1.1305	1.1029				~	Ĩ	
H ₂₈ _C ₂₅	1.1164	1.0962						
H ₂₉ _C ₂₅	1.1160	1.0948					<u> </u>	
H ₃₀ _C ₂₅	1.1160	1.0948					a	
						5.0	31	

2-	Optimisation	géométrique	de la molécule 2/	/ série 1/	substituant l	Di-méthyle
----	--------------	-------------	-------------------	------------	---------------	------------

DISTANCE	SM(AM1)	DFT
C2_C1	1.5038	1.4920
C ₃ _C ₂	1.4710	1.4671
C ₄ _C ₃	1.4065	1.4142
C5_C4	1.4862	1.49371
C ₆ _C ₁	1.3602	1.3716
H7_C3	2.1624	2.1452
C ₈ _C ₃	1.4001	1.4073
C9_C4	1.3997	1.4033
H_{10} C_6	1.1022	1.0821
C ₁₁ _C ₉	1.3952	1.3952
C ₁₂ _C ₈	1.39326	1.39183
H ₁₃ _C ₉	1.10159	1.0828
H ₁₄ _C ₁₁	1.1006	1.0855
H ₁₅ _C ₁₂	1.0999	1.0850
O ₁₆ _C ₂	1.2377	1.2585
N ₁₇ _C ₅	1.2963	1.3063
N ₁₈ _C ₁	1.3915	1.3623
H ₁₉ _N ₁₈	1.0003	1.0121
C ₂₀ _N ₁₈	1.4314	1.4495
$H_{21}C_{20}$	1.121	1.0915
H ₂₂ _C ₂₀	1.1250	1.0991
H ₂₃ _C ₂₀	1.1233	1.0992
$C_{24}N_{17}$	2.4481	2.4326
H ₂₅ _C ₂₄	1.1161	1.0963
H ₂₆ _C ₂₄	1.1157	1.0949
H ₂₇ _C ₂₄	1.11576	1.0955
C ₂₈ _N ₁₇	1.4498	1.4711
C ₂₉ _C ₂₈	1.5317	1.5434
C30_C28	1.1352	1.1024
H ₃₁ _C ₂₉	1.1160	1.0960
H ₃₂ _C ₂₉	1.1160	1.0952
H ₃₃ _C ₂₉	1.11610	1.0955

- 1	Angle	SM(AM1)	DFT
)	C3_C2_C1	115.3525	117.9028
1	C4_C3_C2	120.9946	120.5285
	C5_C4_C3	119.3924	120.5134
2	C6_C1_C2	119.176	120.9541
71	H7_C3_C2	92.4659	92.75079
5	C8_C3_C2	118.9039	119.1752
	C9_C4_C3	119.1878	118.8442
2	H10_C6_C1	120.7479	119.1528
3	C11_C9_C4	120.3207	120.5168
	C12_C8_C3	120.2197	120.2043
3	H13_C9_C4	120.2238	117.8986
L	H14_H11_H9	119.6182	119.6295
2	H15_C12_C8	119.9495	120.1675
22	O16_C2_C1	121.4973	119.0257
53	N17_C5_C4	118.7231	116.1858
3	N18_C1_C6	124.5852	125.6455
5	H19_N18_C1	113.9126	115.0548
	C20_N18_C1	119.9163	124.0667
)	H21_C20_N18	108.7242	109.1553
5	H22_C20_N18	112.7527	111.4638
3	H23_C20_N18	109.3922	111.5532
2	C24_N17_C5	151.6126	147.8297
,	H25_C24_N17	142.4268	145.8196
L	H26_C24_N17	91.4874	91.2846
5	H27_C24_N17	93.1861	89.9875
;	C28_N17_C5	122.1076	123.1457
	C29_C28_N17	113.0633	108.7760
L	H30_C28_N17	110.5410	112.1569
2	H31_C29_C28	108.9913	110.4498
5	H32_C29_C28	110.7386	109.8593
3	H33_C29_C28	110.9960	111.0405
-			

Angle DE TOROSION	SM(AM1)	DFT
C4_C3_C2_1	19.8408	0.0870
C5_C4_C3_2	2.1413	0.2463
C6_C1_C2_3	-22.0231	-0.2245
H7_C3_C2_1	-160.3461	-179.9298
C8_C3_C2_1	-159.5848	-179.9077
C9_C4_C3_2	-178.3565	-179.9677
H10_C6_C1_2	-178.4019	179.5082
C11_C9_C4_3	-0.3471	0.027
C12_C8_C3_2	178.3718	179.9532
H13_C9_C4_3	179.9139	-179.9535
H14_H11_H9_4	179.8312	179.9647
H15_C12_C8_3	-179.7344	179.9966
O16_C2_C1_6	158.4212	179.8297
N17_C5_C4_3	157.4502	179.8643
N18_C1_C6_5	-174.9461	-179.8417
H19_N18_C1_6	-159.8002	179.8517
C20_N18_C1_6	-16.9503	-0.3270
H21_C20_N18_1	-176.0433	-179.2214
H22_C20_N18_1	-55.1789	-59.5694
H23_C20_N18_1	65.3238	61.1024
C24_N17_C5_4	-146.8562	-138.9946
H25_C24_N17_5	-46.6654	-67.2943
H26_C24_N17_5	77.5272	59.46083
H27_C24_N17_5	-173.7241	167.4924
C28_N17_C5_4	-178.6913	179.9650
C29_C28_N17_5	-83.6221	-94.4654
H30_C28_N17_5	36.7041	25.4963
H31_C29_C28_17	178.9375	-176.0307
H32_C29_C28_17	-61.6304	-56.1639
H33_C29_C28_17	59.1737	63.4817

3- Optimisation géométrique de la molécule 3 / série 1/ substituant Tri-méthyle

DISTANCE	SM(AM ₁)	DFT	Angle	SM(AM1)	DFT	1	Angle DE TOROSION	SM(AM1)	DFT
C2_C1	1.5034	1.4911	C3_C2_C1	114.8760	117.7809	1	C4_C3_C2_C1	21.9002	-0.0011
C ₃ _C ₂	1.4712	1.4660	C4_C3_C2	120.7066	120.5506	1	C5_C4_C3_C2	3.0688	0.0038
$C_4 C_3$	1.4064	1.4144	C5_C4_C3	119.2311	120.8558	1	C6_C1_C2_C3	-24.1121	-0.0014
C ₅ _C ₄	1.4908	1.5003	C6_C1_C2	119.0849	121.1150		H7_C3_C2_C1	-158.1413	179.9992
$C_6 C_1$	1.3602	1.3720	H7_C3_C2	92.7219	92.6173	1	C8_C3_C2_C1	-157.1528	-180.0000
H ₇ C ₃	2.1622	2.1451	C8_C3_C2	119.1408	119.0533		C9_C4_C3_C2	-177.7435	-179.9980
C ₈ C ₃	1.3996	1.4076	C9_C4_C3	119.2112	118.6551		H10_C6_C1_C2	-179.5616	-179.9993
$C_9 C_4$	1.3991	1.4034	H10_C6_C1	120.6427	118.8188		C11_C9_C4_C3	-0.4521	0.0002
H ₁₀ C ₆	1.10118	1.07919	C11_C9_C4	120.2744	120.6388		C12_C8_C3_C2	177.8148	179.9976
C_{11} C_9	1.3955	1.3952	C12_C8_C3	120.1570	120.2304		H13_C9_C4_C3	179.8623	-179.9999
Can Ca	120 1578	1 3916	13_C9_C4	120.2342	117.7356		H14_C11_C9_C4	179.79772	179.9984
H ₁₂ C ₀	120.1378	1.0826	H14_C11_C9	119.6102	119.6090		H15_C12_C8_C3	-179.7127	180.0000
H ₁₁₅ _C ₉	119 6102	1.0020	H15_C12_C8	119.9378	120.2010		H16_C2_C1_C6	156.7054	179.9995
	1 0000	1.0050	H16_C2_C1	121.6943	119.0431		N17_C5_C4_C3	153.5340	180.0000
0	1.0333	1.0850	N17_C5_C4	117.6371	115.1408		N18_C1_C6_C5	-175.7131	179.9985
0 ₁₆ _C ₂	1.2372	1.2365	N18_C1_C6	124.6578	125.526		H19_N18_C1_C6	-158.9440	-179.9928
N ₁₇ _C ₅	1.2923	1.3043	H19_N18_C1	113.6522	115.0092		C20_N18_C1_C6	-17.2732	-0.0010
N ₁₈ _C ₁	1.3928	1.3623	C20_N18_C1	119.6003	124.1327		C21_C20_18_C1	-174.3230	-179.9982
H ₁₉ _N ₁₈	1.0006	1.0122	C21_C20_18	108.7915	109.1528		H22_C20_N18_C1	-53.3513	-60.3446
C ₂₀ _N ₁₈	1.4319	1.4494	H22_C20_N18	112.7750	111.5178		H23_C20_N18_C1	67.0501	60.3490
H ₂₁ _C ₂₀	1.1217	1.0915	H23_C20_N18	109.3120	111.5178		C24_N17_5_C4	-162.9022	-179.9764
H ₂₂ _C ₂₀	1.1252	1.0992	C24_N17_5	162.7676	165.9152		H25_C24_N17_C5	-22.2180	-0.0365
H ₂₃ _C ₂₀	1.1233	1.0992	H25_C24_N17	143.7427	147.7748		H26_C24_N17_C5	103.9005	125.9874
C ₂₄ _N ₁₇	2.4250	2.4036	H26_C24_N17	91.7889	89.3524		H27_C24_N17_C5	-147.2159	-126.0478
H ₂₅ _C ₂₄	1.1156	1.0965	H27_C24_N17	91.1487	89.3460		C28_C24_N17_C5	-56.4400	-35.5648
H_{26}_{24}	1.1153	1.0947	C28_C24_N17	61.3070	61.4859		H29_C28_C24_N17	160.3057	164.5219
H ₂₇ _C ₂₄	1.1153	1.0947	H29_C28_C24	87.8060	88.3414		H30_C28_C24_N17	-91.1354	-87.3164
$C_{28}C_{24}$	2.4734	2.5113	H30_C28_C24	90.4692	91.1205		H31_C28_C24_N17	37.4702	41.4384
H ₂₉ _C ₂₈	1.1162	1.0961	H31_C28_C24	148.3691	148.4984		C32_N17_C5_C4	-178.5752	-179.9951
H ₃₀ _C ₂₈	1.1162	1.0953	C32_N17_C5	126.2044	127.4498		C33_C32_N17_C5	54.3713	62.8869
H ₃₁ _C ₂₉	1.1144	1.0930	C33_C32_N17	114.2241	111.6870		H34 C33 C32 N17	175.6701	171.5796
C ₃₂ N ₁₇	1.4555	1.4873	H34_C33_C32	109.1808	109.7028				
C ₃₃ _C ₃₂	1.5380	1.5509	H35_C33_C32	111.4423	112.8104		H35_C33_C32_N17	-64.5125	-67.9167
H ₃₄ _C ₃₃	1.1162	1.0961	H36_C33_C32	110.4192	109.8903		H36_C33_C32_N17	56.4224	52.7600
H ₃₅ _C ₃₃	1.1150	1.0930							
H ₃₆ _C ₃₃	1.1161	1.0953							

4- Optimisation géométrique de la molécule 4 / série 2/ substituant mono-méthyle

DISTANCE	SM(AM ₁)	DFT		Angle	SM(AM1)	DFT		Angle de torsion	SM(AM1)	DFT
C2_C1	1.5039	1.5039	1	C3_C2_C1	115.5344	115.5344		C4_C3_C2_C1	18.8938	18.8938
C3_C2	1.4712	1.4712	1	C4_C3_C2	121.1199	121.1199	1	C5_C4_C3_C2	1.8134	1.8130
C4_C3	1.4067	1.4067	1	C5_C4_C3	119.4204	119.4204	1	C6_C1_C2_C3	-21.1088	-21.1088
C5_C4	1.4841	1.48411	1	C6_C1_C2	119.1795	119.1795	1	H7_C3_C2_C1	-161.3499	-161.3499
C6_C1	1.3603	1.3603		H7 C3 C2	92.3593	92.35934			-160.6876	-160.6876
H7 C3	2.1625	2.1625		C8 C3 C2	118.8053	118.8053			-178.63253	-178.0325
 C8 C3	1.4003	1.4003		C9 C4 C3	119.17655	119.1765		$10_{0}_{0}_{0}_{0}_{0}_{0}_{0}_{0}_{0}_{0$	-177.98399	-0 27835
 C9_C4	1.3999	1.3999		H10 C6 C1	120.8187	120.8187	-	C12 C8 C3 C2	178.60825	178.6082
H10 C6	1.1023	1.1023		C11 C9 C4	120 3425	120 3425		H13_C9_C4_C3	179.94514	179.9451
C11 C9	1.3950	1.3950			120.3123	120.3 123	-	H14_C11_C9_C4	179.83071	179.8307
C12 C8	1 3931	1 3931			120.24883	120.2488	-	H15_C12_C8_C3	-179.73488	-179.7348
H12 C0	1.016	1.016		H13_C9_C4	120.21890	120.2189	-	O16_C2_C1_C6	159.21163	159.2116
H14 C11	1.1010	1.1010		H14_C11_C9	119.6216	119.6216	-	N17_C5_C4_C3	159.4460	159.4460
	1.1007	1.1007		H15_C12_C8	119.95221	119.9522	_	N18_N17_C5_C4	-179.3900	-179.3900
	1.0999	1.0999		016_C2_C1	121.42244	121.4224		H19_C18_N17_C5	48.5935	48.5935
016_02	1.2379	1.2379		N17_C5_C4	119.2105	119.2105		C20_C18_N17_C5	168.21635	168.2163
N17_C5	1.2985	1.2985		C18_N17_C5	122.0372	122.0372		H21_C18_N17_C5	-73.5308	-73.5308
C18_N17	1.4254	1.4254		H19_C18_N17	113.56817	113.5681		H23 N22 C1 C6	-174.01805	-174.0180
H19_C18	1.1238	1.1238		C20_C18_N17	106.86311	106.8631		C24 N22 C1 C6	-16 70112	-16 7011
H20_C18	1.1230	1.1230		H21_C18_N17	111.28471	111.2847		C25 C24 N22 C1	-55.47572	-55.4757
H21_C18	1.1244	1.1244		H22_C1_C6	124.5514	124.5514		H26_C24_N22_C1	65.0200	65.020
N22_C1	1.3908	1.3908		H23_C22_C1	114.0384	114.0384		H27_C24_N22_C1	-176.3247	-176.3247
H23_N22	1.0001	1.0001		C24_N22_C1	120.0079	120.0079		C28_C27_C24_N22	65.7942	65.7942
C24_N22	1.4312	1.4312		C25 C24 N22	112.72382	112.7238		C29_C27_C24_N22	-174.2057	-174.205
H25_C24	1.1250	1.1250		H26 C24 N22	109.40776	109.4077		C30_C27_C24_N22	-54.2057	-54.2057
H26_C24	1.1234	1.1234		H27 C24 N22	108.7306	108.7306		C4C3C2C1	18.8938	18.8938
H27_C24	1.5400	1.5400		C28 C27 C24	109.47120	109.4712		<u>C5_C4_C3_C2</u>	1.81349	1.8134
C28_C27	1.0700	1.0700		(29 (27 (24	109 47120	109 4712	-	0_01_02_03	-21.1088	-21.1088
C29_C27	1.07000	1.0700		$C_{20} C_{27} C_{24}$	109.47123	109.4712	-	H7_C3_C2_C1	-161.3499	-161.3499
C30_C27	1.0700	1.0700		$C_{3}^{-}C_{2}^{-}C_{2}^{+}$	115 5344	105.4712		C8_C3_C2_C1	-160.6876	-160.6876
C2_C1	1.5039	1.5039			121 1100	121 1100	-	C9_C4_C3_C2	-178.6325	-178.6325
C3 C2	1.4712	1.4712			121.1199	121.1199	-	H10 C6 C1 C2	-177 9839	-177 9839
 C4_C3	1.4067	1.4067		$C5_C4_C3$	119.4204	119.4204	-		0.0700	0.0700
C5 C4	1.4841	1.4841		H7 C3 C2	92 3593	92 3593	-	011_09_04_03	-0.2783	-0.2783
C6_C1	1.3603	1.3603		C8 C3 C2	118.80530	118.8053		C12_C8_C3_C2	178.6082	178.6082
H7 C3	2,1625	2.1625		C9 C4 C3	119.1765	119.1765		H13_C9_C4_C3	179.9451	179.9451
(8 (3	1 4003	1 4003		H10_C6_C1	120.8187	120.8187		H14 C11 C9 C4	179.8307	179.8307
	1 3000	1 3000		C11_C9_C4	120.3425	120.3425			170 72/8	170 7249
	1.3333	1.3333		C12_C8_C3	120.2488	120.2488		1115_012_08_03	-179.7348	-179.7348
C11_C0	1,1025	1.1025		H13_C9_C4	120.2189	120.2189		016_C2_C1_C6	159.21163	159.2116
C11_C9	1.3950	1.3950		H14_C11_C9	119.6216	119.62160	4	N17_C5_C4_C3	159.44601	159.4460
012_08	1.3931	1.3931		H15_C12_C8	119.95221	119.9522	-	N18_N17_C5_C4	-179.3900	-179.3900
H13_C9	1.1016	1.1016		N17 C5 C4	121.4224	121.4224	-			
H14_C11	1.1007	1.1007		N1/_C5_C4	119.2105	119.2105			- 1	
H15_C12	1.0999	1.0999							9 4	
O16 C2	1.2379	1.2379	1							

DISTANCE	SM(AM ₁)	DFT	Angle	SM(AM1)	DFT		Angle de torsion	SM(AM1)	DFT
C2_C1	1.5039	1.5039	C3_C2_C1	115.53443	115.5344		C4_C3_C2_C1	18.8938	18.8938
C3_C2	1.47122	1.4712	C4_C3_C2	121.1199	121.1199		C5_C4_C3_C2	1.81349	1.813493
C4_C3	1.4067	1.4067	C5_C4_C3	119.4204	119.4204		C6_C1_C2_C3	-21.1088	-21.1088
C5_C4	1.4841	1.4841	 C6_C1_C2	119.1795	119.1795		H7_C3_C2_C1	-161.3499	-161.3499
C6 C1	1.3603	1.3603	H7 C3 C2	92,3593	92,3593			-160.6876	-160.6876
 H7_C3	2.1625	2.1625	(8 (3 (2	118 8053	118 8053			-178.6325	-178.0325
<u></u> C8_C3	1,4003	1,4003	<u>co_c1_c2</u>	110.0055	110.0055	-		-177.9839	-177.9839
C9 C4	1 3999	1 3999	09_04_03	119.1765	119.1765	_		178 6082	178 6082
	1.000	1.0005	H10_C6_C1	120.8187	120.81874	_	H13 (9 (4 (3	179 9451	179 9451
H10_C0	1.1025	1.10255	C11_C9_C4	120.3425	120.3425		H14 C11 C9 C4	179.8307	179.8307
012_09	1.3950	1.3950	C12_C8_C3	120.2488	120.2488		H15 C12 C8 C3	-179.7348	-179.7348
C12_C8	1.3931	1.3931	H13_C9_C4	120.2189	120.2189		016 C2 C1 C6	159.2116	159.2116
H13_C9	1.1016	1.1016	H14_C11_C9	119.6216	119.6216		N17 C5 C4 C3	159.4460	159.4460
H14_C11	1.1007	1.1007	H15 C12 C8	119.9522	119.9522		N18_N17_C5_C4	-179.3900	-179.3900
H15_C12	1.0999	1.0999	016 C2 C1	121,4224	121,4224		H19_C18_N17_C5	48.5935	48.5935
O16_C2	1.2379	1.2379	N17 C5 C4	110 2105	110 2105	-	C20_C18_N17_C5	168.2163	168.2163
N17_C5	1.2985	1.2985	C19 N17 CE	122 0272	113.2103	-	H21_C18_N17_C5	-73.5308	-73.5308
C18_N17	1.4254	1.4254	C18_N17_C3	122.0372	122.0372	_	N22_C1_C6_C5	-174.6180	-174.6180
H19 C18	1.1238	1.1238	H19_C18_N17	113.56817	113.5681		H23_N22_C1_C6	-160.0915	-160.0915
– H20 C18	1.1230	1.123	C20_C18_N17	106.8631	106.8631	_	C24_N22_C1_C6	-16.7011	-16.7011
H21_C18	1,1244	1.1244	H21_C18_N17	111.2847	111.2847		C25_C24_N22_C1	-55.4757	-55.4757
N22_C1	1 3908	1 3908	H22_C1_C6	124.5514	124.5514		H26_C24_N22_C1	-176.3247	-176.3247
H22_C1	1.0001	1.0001	H23_C22_C1	114.0384	114.0384		H27_H26_C24_N22	65.7942	65.7942
C24 N22	1.0001	1.0001	C24_N22_C1	120.00792	120.0079		H20 H26 C24 N22	-174.2057	-1/4.2057
U25_024	1.4312	1.4312	C25 C24 N22	108.73062	112.7238		C30 C24 N22 C1	65 0200	65 0200
H25_C24	1.1250	1.1250	H26 C24 N22	109 4712	108 7306	-	H31 C30 C24 N22	-104.3503	-104.3503
H26_C24	1.5400	1.5400	H27 H26 C24	109.4712	109 4712	-	H32 C30 C24 N22	15.6497	15.6497
H27_H26	1.0700	1.0700	1127_1120_024	100.4712	100.4712	-	H33 C30 C24 N22	135.6496	135.6496
H28_H26	1.0700	1.0700	H28_H26_C24	109.4712	109.4712			18 8938	18 8938
H29_H26	1.0700	1.0700	H29_H26_C24	109.40776	109.4712	_		10.0550	1.01240
C30_C24	1.5400	1.5400	C30_C24_N22	109.47120	109.4077	_	15_14_13_12	1.8134	1.81349
H31_C30	1.0700	1.0700	H31_C30_C24	109.47120	109.4712		C6_C1_C2_C3	-21.1088	-21.1088
H32_C30	1.0700	1.0700	H32_C30_C24	109.47123	109.4712		H7_C3_C2_C1	-161.3499	-161.3499
H33_C30	1.0700	1.0700	H33_C30_C24	112.72382	109.4712		C8 C3 C2 C1	-160.6876	-160.6876
C2_C1	1.50392	1.5039	C3_C2_C1	115.5344	115.5344		<u> </u>	170 (225	170 0000
C3_C2	1.4712	1.4712	C4_C3_C2	121.1199	121.1199	_	<u> (9_</u> (4_(3_(2	-178.6325	-178.0325
C4_C3	1.4067	1.4067	<u>C5_C4_C3</u>	119.4204	119.4204	-	H10_C6_C1_C2	-177.9839	-177.9839
C5_C4	1.484	1.4841		92 3593	119.1795 02.3503	_	C11_C9_C4_C3	-0.2783	-0.2783
C6_C1	1.3603	1.3603	C8 C3 C2	118.8053	118.8053	-	C12_C8_C3_C2	178.6082	178.6082
H7_C3	2.1625	2.1625	C9 C4 C3	119.17655	119.1765		H13 C9 C4 C3	179,9451	179,9451
C8_C3	1.40031	1.4003	H10_C6_C1	120.8187	120.8187	1		170 9207	170 0207
C9_C4	1.39997	1.3999	C11_C9_C4	120.3425	120.3425		H14_C11_C9_C4	1/9.8307	1/9.830/
H10 C6	1.1023	1.1023	C12_C8_C3	120.2488	120.2488		H15_C12_C8_C3	-179.7348	-179.7348
C11 C9	1,3950	1.3950	H13_C9_C4	120.2189	120.2189				
C12 C8	1 3931	1 3931	H14_C11_C9	119.62160	119.6216			30	
L12_C0	1 1016	1 1016						-	
пт <u>з</u> сэ	1.1010	1.1010							

5- Optimisation géométrique de la molécule 5/ série 2/ substituant DI-méthyle

DISTANCE	SM(AM1)	DFT	Angle	SM(AM1)	DFT	1	Angle de torsion	SM(AM1)	DFT
C2_C1	1.5039	1.5039	C3_C2_C1	115.5344	115.5344		C4_C3_C2_C1	18.8938	18.8938
C3_C2	1.4712	1.4712	C4_C3_C2	121.1199	121.1199		C5_C4_C3_C2	1.8134	1.8134
C4_C3	1.4067	1.4067	C5_C4_C3	119.4204	119.4204		C6_C1_C2_C3	-21.1088	-21.1088
C5_C4	1.4841	1.4841	C6 C1 C2	119.1795	119.1795		H7_C3_C2_C1	-161.3499	-161.3499
C6 C1	1.3603	1.3603	H7 C3 C2	92.3593	92.3593	┥┝	<u>C8_C3_C2_C1</u>	-160.6876	-160.6876
H7 C3	2.1625	2.1625	C8 C3 C2	118.8053	118.8053	┥┝		-1/8.6325	-178.6325
C8 C3	1.4003	1.4003	<u> </u>	119 1765	119 1765	-		-177.9839	-177.9839
C9 C4	1.3999	1.3999	H10 C6 C1	120 8187	120 8187	-	C12 C8 C3 C2	178.6084	178.6082
H10 C6	1 1023	1 1023		120.3137	120.8187	-	H13 C9 C4 C3	179.9451	179.9451
C11 C9	1 3950	1 3950		120.3423	120.3425	- [H14_C11_C9_C4	179.8307	179.8307
C12 C9	1 20216	1.3530		120.2400	120.2488	- [H15_C12_C8_C3	-179.7348	-179.7348
L12_C0	1.39310	1.3931	H13_C9_C4	120.2189	120.2189	- [O16_C2_C1_C6	159.2116	159.2116
H13_C9	1.10104	1.1010	H14_C11_C9	119.6216	119.6216	_ [N17_C5_C4_C3	159.4460	159.4460
H14_C11	1.10071	1.1007	H15_C12_C8	119.9522	119.9522		N18_N17_C5_C4	-179.3900	-179.3900
H15_C12	1.09990	1.0999	016_C2_C1	121.4224	121.4224		H19_C18_N17_C5	48.5935	48.5935
016_C2	1.23795	1.2379	N17_C5_C4	119.2105	119.2105		C20_C18_N17_C5	168.2163	168.2163
N17_C5	1.29854	1.2985	C18_N17_C5	122.03728	122.0372		H21_C18_N17_C5	-73.5308	-73.5308
C18_N17	1.42540	1.4254	H19_C18_N17	113.5681	113.5681		N22_C1_C6_C5	-174.6180	-174.6180
H19_C18	1.12381	1.1238	C20_C18_N17	106.8631	106.8631		H23_N22_C1_C6	-160.0915	-160.0915
H20_C18	1.1230	1.1230	H21_C18_N17	111.2847	111.2847		C24_N22_C1_C0	-10.7011	-10.7011
H21_C18	1.12449	1.1244	H22_C1_C6	124.5514	124.5514		H26 C24 N22 C1	65.0200	65.0200
N22_C1	1.3908	1.3908	H23 C22 C1	114.0384	114.0384		H27 C24 N22 C1	-176.3247	-176.3247
H23_N22	1.0001	1.0001	C24 N22 C1	120.0079	120.0079		C28_C27_C24_N22	65.79424	65.7942
C24_N22	1.4312	1.4312	C25 C24 N22	112 7238	112 7238	- [C29_C27_C24_N22	-174.2057	-174.2057
H25_C24	1.5400	1.1250	H26 C24 N22	108 7306	108 7306	- [C30_C27_C24_N22	-54.2057	-54.2057
H26 C24	1.0700	1.5400	H27 H26 C24	109.4712	109.4712	┥╽	C4_C3_C2_C1	18.8938	18.8938
H27 H26	1.0700	1.0700		100.4712	100.4712	-	C5_C4_C3_C2	1.8134	1.8134
– H28 H26	1.0700	1.0700		109.4712	109.4712	- [C6_C1_C2_C3	-21.1088	-21.1088
H29 H26	1.5400	1.0700	H29_H26_C24	109.47123	109.4712		H7_C3_C2_C1	-161.3499	-161.3499
C30 C24	1.0700	1.5400	C30_C24_N22	109.40776	109.4077	_ [C8_C3_C2_C1	-160.6876	-160.6876
H31_C30	1.0700	1.0700	H31_C30_C24	109.4712	109.4712	_	C9 C4 C3 C2	-178.6325	-178.6325
H32 C30	1 0700	1 0700	H32_C30_C24	109.4712	109.47120	┛┝		177.0820	177.0820
H33_C30	1.5700	1.0700	H33_C30_C24	109.4712	109.4712	_	HI0_C6_C1_C2	-177.9839	-177.9839
C2_C1	1.5400	1.0700	<u>C3_C2_C1</u>	115.53443	115.5344	_	C11_C9_C4_C3	-0.2783	-0.27835
C2_C1	1.3039	1.5059		121.1199	121.1199	- [C12_C8_C3_C2	178.6082	178.6082
C3_C2	1.4/12	1.4712	$C5_C4_C3$	119.4204	119.4204	-	H13 C9 C4 C3	179.9451	179.9451
C4_C3	1.4067	1.4067	H7 C3 C2	92 3593	92 3593	-		170 9207	170 9207
C5_C4	1.4841	1.4841	C8 C3 C2	118.8053	118.8053		H14_C11_C9_C4	1/9.830/	1/9.8307
C6_C1	1.36037	1.3603	C9 C4 C3	119.1765	119.1765		H15_C12_C8_C3	-179.7348	-179.7348
H7_C3	2.16251	2.1625	H10_C6_C1	120.8187	120.8187	_	O16_C2_C1_C6	159.2116	159.2116
C8_C3	1.4003	1.4003	C11_C9_C4	120.3425	120.3425		N17_C5_C4 C3	159.4460	159.4460
C9_C4	1.3999	1.3999	C12_C8_C3	120.2488	120.2488	┛┠	N18 N17 C5 C4	-179 3900	-179 3900
H10_C6	1.10235	1.1023	H13_C9_C4	120.2189	120.2189	_ L	N10_N1/_C3_C4	-1/9.3900	119.3900
C11_C9	1.3950	1.3950	H14_C11_C9	119.6216	119.6216				
C12_C8	1.3931	1.3931						500	
H13_C9	1.1016	1.1016							7

6- Optimisation géométrique de la molécule 6 / série 2/ substituant Tri-méthyle

DISTANCE	SM(AM ₁)	DFT	Angle	SM(AN	/11)	DFT	A	Angle de torsion	SM(AM1)	DFT
C2_C1	1.5037	1.4914	C3_C2_C1	114.	9454	117.8024		C4_C3_C2_C1	21.7096	0.0039
C ₃ _C ₂	1.4712	1.4660	C4_C3_C2	120.	7355	120.5481		C5 C4 C3 C2	3.01951	0.0057
C4_C3	1.4064	1.4142	C5_C4_C3	119.	2108	120.8631		<u> </u>	22.4052	0.0000
C ₅ _C ₄	1.4907	1.5004	C6_C1_C2	119.	0766	121.0705		0_01_02_03	-23.4952	0.0000
C ₆ _C ₁	1.3607	1.3726	H7_C3_C2	92.7	060	92.5987		H7_C3_C2_C1	-158.3330	-179.9972
H ₇ _C ₃	2.1623	2.1450	C8_C3_C2	119.	1253	119.0369		C8_C3_C2_C1	-157.3530	-179.9962
C ₈ _C ₃	1.3997	1.4076	C9C4C3	119.	22450	118.6423		C9_C4_C3_C2	-177.7694	-179.9956
C ₉ _C ₄	1.3991	1.4035	H10_C6_C	.1 120.	/011	118.7870		H10 C6 C1 C2	179,5864	179,9785
H ₁₀ _C ₆	1.1011	1.0792	C11_C9_C	4 120.	2716	120.6364			-0.4429	-0.0017
C11_C9	1.3954	1.3951	<u>C12_C8_C</u>	3 120.	1621	120.2260		011_09_04_03	-0.4433	-0.0017
C ₁₂ _C ₈	1.3934	1.3915	H13_C9_C	4 120.	2258	117.7349		C12_C8_C3_C2	177.8376	179.9965
H ₁₃ _C ₉	1.1014	1.0826	H14_C11_	C9 119.	0141	119.0004		H13_C9_C4_C3	179.8651	-179.9991
H ₁₄ _C ₁₁	1.1006	1.0856	016 C2 C	1 121	9302 6743	110.2007		H14_C11_C9_C4	179.7972	179.9973
H ₁₅ _C ₁₂	1.0999	1.0850	N17 C5 C	4 117	6668	115.0822		H15 C12 C8 C3	-179.7159	-179.9994
O ₁₆ C ₂	1.2373	1.2585	N18 C1 C	6 124.	5736	125.5567		016 C2 C1 C6	157.3891	-179.9947
N ₁₇ C ₅	1.2924	1.3043	H19 N18	C1 114.	0104	115.1687		N17 C5 C4 C3	153 / 507	-170 0087
N ₁₈ C ₁	1.3916	1.3618	C20_N17_	C5 162.	6509	166.003		N17_C5_C4_C5	155.4507	-175.5587
H ₁₉ N ₁₈	1.0008	1.0134	H21_C20_	N17 143.	7468	147.766		N18_C1_C6_C5	-176.2648	179.9954
C ₂₀ N ₁₇	2.4251	2.4028	H22_C20_	N17 91.8	225	89.3287		H19_N18_C1_C6	-161.2773	179.9751
H ₂₁ C ₂₀	1,11562	1.0965	H23_C20_	N17 91.1	1260	89.3389		C20_N17_C5_C4	-162.4674	-179.9408
H ₂₂ C ₂₀	1,11539	1.0947	C24_C20_	N17 61.2	974	61.4945		H21 C20 N17 C5	-22.9255	-0.0617
H ₂₃ C ₂₀	1,11539	1.0947	H25_C24_	C20 87.8	525	88.1927		H22 C20 N17 C5	103 2572	125 9576
C ₂₄ C ₂₀	1.1153	2.5112	H26_C24_	C20 90.4	263	91.2912			105.2572	125.5570
H25 C24	1.1162	1.0962	H27_C24_	C20 148.	3574	148.4979		H23_C20_N17_C5	-147.8616	-126.0976
H ₂₆ C ₂₄	1.1162	1.0953	C28_N17_	C5 126.	1422	127.5143		C24_C20_N17_C5	-57.0332	-35.6153
H ₂₇ C ₂₄	1.11443	1.0930	H30 C29	C28 109	1794	109 7291		H25_C24_C20_N17	160.2501	164.8436
C ₂₈ N ₁₇	1.45559	1.4869	H31_C29	C28 111.	4537	112,8260		H26 C24 C20 N17	-91.1881	-87.0069
C ₂₉ C ₂₈	1.53804	1.5505	C32 H32	C28 110.4	4195	109.8809		H27 C24 C20 N17	27 2169	12 1162
H ₃₀ _C ₂₉	1.11627	1.0962	C33_N32	C1 119.	0598	124.6354		C28 N17 C5 C4	170 540	170 0069
H ₃₁ _C ₂₉	1.1151	1.0933	(34 (33	N18 113	4203	110,7395		C20_N17_C5_C4	-1/8.549	1/9.9908
C ₃₂ _H ₃₂	1.1161	1.0953	<u> </u>	N10 107	2005	100 0054		C29_C28_N17_C4	54.1080	62.8842
C ₃₃ _N ₃₂	1.4443	1.4556	H35_C33_	N18 107.	3055	109.6854		H30_C29_C28_N17	175.5146	171.1793
C ₃₄ _C ₃₃	1.5196	1.5302	H36_C33_	N18 110.	8061	109.6802		H31_C29_C28_N17	-64.6431	-68.3263
H ₃₅ _C ₃₃	1.1290	1.1014	H37_C34_	C33 108.	6533	110.4446		C32 H32 C28 N17	-64.6779	52.3579
H ₃₆ _C ₃₃	1.1314	1.1014	H38 C34	C33 111.	2006	110.9652		C33 N32 C1 C6	-20 2045	-0.0055
H ₃₇ _C ₃₄	1.1165	1.0942	H30 C24	(33 111	2/12/	110 9627		C34 C33 N18 C1	-163.8944	-179.971
H ₃₈ C ₃₄	1.11651	1.0959	1139_034_		2724	110.9037		H35 C33 N18 C1	75 4772	58 / 093
H ₃₉ C ₃₄	1.11660	1.0959						H36 C33 N18 C1	-41 1634	-58,3542
								H37 C34 C33 N18	-178.0605	179.9811
								H38 C34 C33 N18	-58.6257	-60.3076

7- Optimisation géométrique de la molécule 7/ série 3/ substituant mono-méthyle

DISTANCE	SM(AM ₁)	DFT	Angle	SM(AM1)	DFT	Angle de torsion	SM(AM1)	DFT
C2_C1	1.5049	1.4937	C3_C2_C1	115.1408	117.9582	C4_C3_C2_C1	21.2085	-0.0318
C ₃ _C ₂	1.4711	1.4659	C4 C3 C2	120.8102	120.5639	C5_C4_C3_C2	2.8819	-0.0969
C ₄ _C ₃	1.4063	1.4139	 	119 1968	120 7786	C6_C1_C2_C3	-22.3309	0.45529
	1 4905	1 4998		119.1900	120.7730	H7_C3_C2_C1	-158.8491	179.9060
	1 3611	1 3731	C6_C1_C2	118.9549	120.7326	C8_C3_C2_C1	-157.8988	179.8821
	2 1624	2 1/51	H7_C3_C2	92.6466	92.6084	C9_C4_C3_C2	-177.8409	179.9188
11/_C3	1 2000	2.1451	C8 C3 C2	119.0684	119.0424	H10_C6_C1_C2	178.3602	179.2323
$C_8 C_3$	1.3999	1.4077	(9 (4 (3	119 2304	118 6752	C11_C9_C4_C3	-0.4347	0.0009
C9_C4	1.5992	1.4034	05_04_05	115.2504	110.0752	C12_C8_C3_C2	177.9074	-179.9260
H ₁₀ _C ₆	1.1014	1.0787	H10_C6_C1	120.6496	118.8985	H13_C9_C4_C3	179.8669	-179.9929
C ₁₁ _C ₉	1.3954	1.39519	C11_C9_C4	120.2783	120.6277	H14_C11_C9_C4	179.8054	179.9977
C ₁₂ _C ₈	1.3933	1.3915	C12_C8_C3	120.1767	120.2261	H15_C12_C8_C3	-179.7240	179.9984
H ₁₃ _C ₉	1.1014	1.0826	H13 C9 C4	120 2222	117 7334	016_C2_C1_C6	158.69809	-179.5173
H ₁₄ _C ₁₁	1.1006	1.0856		110.0100	110.0112	N17_C5_C4_C3	153.7963	179.9113
Her Can	1 0998	1.0850	H14_C11_C9	119.6196	119.6112	N18_C1_C6_C5	-177.4188	178.6964
	1.0336	1.0050	H15_C12_C8	119.9426	120.1992	H19_N18_C1_C6	-166.9650	179.3305
N ₁₆ _C ₂	1.2370	1.2007	016_C2_C1	121.6122	119.0288	C20_N17_C5_C4	-162.3496	-179.5370
N ₁₇ _C ₅	1.2920	1.3047	N17_C5_C4	117.6713	115.0674	H21_C20_N17_C5	-23.2478	-0.1701
	1.3695	1.5052	N18 C1 C6	124,7492	126,3163	H22_C20_N17_C5	102.9650	125.7101
□19_IN18	1.0000	1.0144		111.2000	1111 1057	H23_C20_N17_C5	-148.1537	-126.3296
C ₂₀ N ₁₇	2.4251	2.4031	H19_N18_C1	114.2869	114.4957	C24_C20_N17_C5	-57.2980	-35.9462
H ₂₁ _C ₂₀	1.1156	1.0965	C20_N17_C5	162.5991	165.9789	H25_C24_C20_N17	160.2797	165.1224
H ₂₂ _C ₂₀	1.1153	1.0947	H21_C20_N17	143.7517	147.7880	H26_C24_C20_N17	-91.1573	-86.7234
H ₂₃ _C ₂₀	1.1153	1.0947	H22 C20 N17	91,8383	89,2562	H27_C24_C20_N17	37.3839	42.8908
C ₂₄ _C ₂₀	2.4736	2.5109	1122_020_1127	01.00420	00.4022	C28_N17_C5_C4	-178.6147	-179.8573
H ₂₅ _C ₂₄	1.1162	1.0962	H23_C20_N17	91.09429	89.4033	C29_C28_N17_C5	53.9866	62.7649
H ₂₆ _C ₂₄	1.11619	1.0953	C24_C20_N17	61.2947	61.5162	H30_C29_C28_N17	175.3980	171.7932
H ₂₇ _C ₂₄	1.1145	1.0931	H25_C24_C20	87.8371	87.98404	H31_C29_28_N17	-64.8042	-67.6911
C ₂₈ _N ₁₇	1.4555	1.4870	H26_C24_C20	90.44271	91.49847	C32_H32_C28_N17	56.1454	52.9608
C ₂₉ _C ₂₈	1.53805	1.5506	H27 C24 C20	148.3550	148.4874	C33_N18_C1_C6	-60.6304	-34.2543
H ₃₀ _C ₂₉	1.11627	1.0962	C28 N17 C5	126 1138	127 4957	H34_C33_N18_C1	60.7109	49.8373
H ₃₁ _C ₂₉	1.1152	1.0930	C20_C28_N17	114 2704	111 7228	H35_C33_N18_C1	-172.5592	175.8218
C32 H32	1.1161	1.0953	C29_C28_N17	114.2734	111.7228	H36_C33_N18_C1	-63.5807	-75.6716
C ₃₃ _N ₁₈	2.4763	2.4417	H30_C29_C28	109.1828	109.7224	C37_N18_C1_C6	-24.2305	0.9091
H ₃₄ _C ₃₃	1.1161	1.0945	H31_C29_28	111.4419	112.7782	C38 C37 N18 C1	95.7012	78.8806
H35 C33	1.1164	1.0976	C32_H32_C28	110.4240	109.8827	H39_C37_N18_C1	-23.0204	-40,1696
	1 11624	1 0048	C33_N18_C1	143.3441	156.4543	H40 C28 C27 N18	E7 0056	EE 2059
□36_C33	1.11034	1.0948	H34_C33_N18	141.8196	145.0788	H40_C38_C37_N18	-37.9930	-55.2058
C ₃₇ _N ₁₈	1.4547	1.4651	H35_C33_N18	93.7418	92.1825	H41_C38_C37_N18	62.6230	64.5073
C ₃₈ _C ₃₇	1.5310	1.5428	H36_C33_N18	92.1799	91.1037	H42_C38_C37_N18	-177.6814	-175.6345
H ₃₉ _C ₃₇	1.1358	1.1003	C37_N18_C1	120.3306	126.0531			
H ₄₀ _C ₃₈	1.1161	1.0947	C38_C37_N18	111.9873	111.7141			
H ₄₁ _C ₃₈	1.1157	1.0960	H39_C37_N18	108.9318	107.3985			
H ₄₂ _C ₃₈	1.1160	1.0961	H40_C38_C37	110.8409	111.1781			
			H41_C38_C37	110.8687	110.2057			
			H42_C38_C37	108.9090	110.5950	· · · · · · · · · · · · · · · · · · ·		

8- Optimisation géométrique de la molécule 8/ série 3/ substituant Di-méthyle

DISTANCE	SM(AM1)	DFT	Angle	SM(AM1)	DFT	Angle de torsion	SM(AM1)	DFT
C2_C1	1.5104	1.4996	C3_C2_C1	115.0768	118.3978	C4_C3_C2_C1	23.3939607	0.0043
C ₃ _C ₂	1.4700	1.4653	C4_C3_C2	120.5011	120.5794	C5_C4_C3_C2	3.0478	0.0041
C ₄ _C ₃	1.4055	1.4129	C5 C4 C3	119.0561	120.5796	C6_C1_C2_C3	-26.9396	-0.0037
C5_C4	1.4911	1.4984	<u> </u>	117 9720	119 9252	H7_C3_C2_C1	-156.7109	-179.9958
C ₆ _C ₁	1.3604	1.3741		02 9670	02 6124	C8_C3_C2_C1	-155.7004	-179.9947
H ₇ _C ₃	2.1625	2.1455	H7_C3_C2	92.0070	92.0124	C9_C4_C3_C2	-177.7145	-179.9971
C ₈ _C ₃	1.3996	1.4080	L3L2	119.2693	119.0347	H10_C6_C1_C2	-177.2558	179.9937
C ₉ C ₄	1.39936	1.4034	C9_C4_C3	119.1913	118.7324	C11_C9_C4_C3	-0.4838	-0.0005
H ₁₀ C ₆	1.09960	1.0760	H10_C6_C1	120.8887	119.1968	C12_C8_C3_C2	177.7823	179.9969
C ₁₁ _C ₉	1.3954	1.3950	C11_C9_C4	120.2519	120.5926	H13_C9_C4_C3	179.8359	-179.9988
C12_C8	1.3933	1.3914	C12_C8_C3	120.1043	120.2059	H14_C11_C9_C4	179.8025	179.9993
H ₁₃ _C ₉	1.1014	1.0825	H13_C9_C4	120.2591	117.7432	H15_C12_C8_C3	-179.6990	-179.9989
H ₁₄ _C ₁₁	1.1006	1.0856	H14 C11 C9	119.6090	119.6196	N17 CE CA C2	153.8418	179.9956
H ₁₅ _C ₁₂	1.0998	1.0850	H15 C12 C8	119.9477	120.1923	N17_C5_C4_C3	172,0000	170.0066
O ₁₆ _C ₂	1.2373	1.2589	016 C2 C1	121 6148	118 9789	H10 N18 C1 C6	-172.0090	179.9966
N ₁₇ _C ₅	1.2925	1.3051	010_02_01	117 2270	110.5765	C20 N17 C5 C4	-166 2254	179.9970
N ₁₈ C ₁	1.3877	1.3654	N17_C5_C4	117.2278	114.9361	$H_{21} C_{20} N_{17} C_{5} C_{4}$	-100.2334	-179.9024
H ₁₉ N ₁₈	1.0025	1.0159	N18_C1_C6	127.2502	128.4388	H21_C20_N17_C5	109 2137	125 9446
C ₂₀ N ₁₇	2.4242	2.4024	H19_N18_C1	112.7478	112.3914	H23_C20_N17_C5	-1/1 9053	-126.091/
H ₂₁ C ₂₀	1.1156	1.0965	C20_N17_C5	163.5306	166.2373	C24 C20 N17 C5	-52 0995	-35 5872
H ₂₂ C ₂₀	1.1154	1.0947	H21_C20_N17	143.7380	147.8074	H25 C24 C20 N17	162,1246	164,8973
H ₂₃ C ₂₀	1.1153	1.0947	H22 C20 N17	91.2204	89.3155	H26 C24 C20 N17	-89 4091	-86 9262
C24 C20	2.4719	2.5108	H23 C20 N17	91,7201	89,2978	H27 C24 C20 N17	41.8298	42.3769
H25 C24	1.1164	1.0962	C24 C20 N17	61 4411	61 5297	C28 N17 C5 C4	-178.8907	179.9902
H ₂₆ C ₂₄	1.1161	1.0953		96 5049	99 1240	C29 C28 N18 C5	56.2283	62.9276
H ₂₇ C ₂₄	1.1145	1.0931	H25_C24_C20	00.5940	88.1340	H30 C29 C28 N17	178.2935	170.9966
C20 N17	1 45462	1 4866	H26_C24_C20	91.6775	91.3781	H31 C29 C28 N17	-61.7629	-68.5807
C20_111/	1 5376	1 5507	H27_C24_C20	148.3526	148.4839	C32_H32_C28_N17	58.9754	52.1199
H ₃₀ C ₂₉	1.11607	1.0962	C28_N17_C5	126.6124	127.7250	C33_N18_C1_C6	-39.5873	-0.0322
H ₃₁ C ₂₉	1.1149	1.0931	C29_C28_N18	113.9947	111.7871	H34_C33_N18_C1	28.6608	0.0707
C32 H32	1.1162	1.0953	H30_C29_C28	109.2569	109.7278	H25 C22 N19 C1	152 0297	125 7226
C ₃₃ N ₁₈	2.4464	2.4113	H31_C29_C28	111.2748	112.8030	1135_035_1118_01	155.0587	123.7320
H ₃₄ _C ₃₃	1.1156	1.0941	C32_H32_C28	110.3740	109.9106	H36_C33_N18_C1	-97.8159	-125.6310
H ₃₅ _C ₃₃	1.1158	1.0963	C33_N18_C1	160.3976	168.6046	C37_N18_C1_C6	62.4242	32.7316
H ₃₆ _C ₃₃	1.1161	1.0963	H34_C33_N18	143.3291	146.5175	H38_C37_N18_C1	-43.5300	-10.3262
C ₃₇ _N ₁₈	2.4722	2.4951	H35_C33_N18	91.2166	90.6849	H39 C37 N18 C1	88,4449	97,7542
H ₃₈ _C ₃₇	1.1142	1.0932	H36_C33_N18	92.6892	90.7047		1 60 0070	100 1100
H ₃₉ _C ₃₇	1.1161	1.0949	C37_N18_C1	60.7436	108.8577	H40_C37_N18_C1	-162.9078	-139.1180
H ₄₀ _C ₃₇	1.1165	1.0958	H38_C37_N18	148.3737	94.5072	H41_N18_C1_C6	-20.5328	-0.0028
H ₄₁ N ₁₈	1.4632	1.4805	H39_C37_N18	92.1580	90.5180	C42 C41 N18 C1	-50.7333	-62.0311
C ₄₂ _C ₄₁	1.5369	1.5476	H40_C37_N18	86.0905	143.5618	HA3 CA2 CA1 N10	-178 0100	-177 2101
H43_C42	1.11612	109.9628	H41_N18_U1	112 0124	130.5218	11+3_C+2_C41_N10	-170.9109	-1//.2191
H44_C42	1.11608	110.1476	$H_{42} C_{41} N_{18}$	109 1825	109 9628	H44_C42_C41_N18	-59.4728	-57.6890
H ₄₅ _C ₄₂	1.11621	112.2207	H44 CA2 CA1	110 5664	110 1476	H45_C42_C41_N18	61.3742	62.6483
			H45 C42 C41	111 32/0	112 2206		1	I]
			1173_072_071	111.3240	112.2200		•	

9- Optimisation géométrique de la molécule 9/ série 3/ substituant Tri-méthyle

