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Abstrac 
      In this work we present the definition of Mellin transformation,its 
properties,its inverse transform and the concept of convolution in 
Mellin sense.Also including some examples, then we explore the 
relation between the Mellin transform and the other transformations 
as Laplace, Fourier transform. Finally we set some applications of 
Mellin transform in classical and fractional culculus . 

 ملخص 
نعرض في ھذه المذكرة تعریف تحویل میلین وخواصھ والتحویل العكسي لمیلین مع       

الالتفاف لھ مع ذكر بعض الامثلة والعلاقة بین ملین وتحویلات الاخرى و في  ذكر مفھوم
 الاخیر نحدد بعض التطبیقات التحویلیة لمیلین في الحساب الكلاسیكي والكسري. 

Résumer  
Dans ce travaille, nous présentons la transformation de Mellin, ses 
propriétés, sa transformation inverse et le concept de convolution au 
sens de Mellin. On incluant également quelques exemples. Nous 
explorons la relation entre la transformation de Mellin et les autres 
transformations  telle que la transformation de Laplace et de Fourier. 
Enfin nous donnons quelques application de la transformation de 
Mellin en calcule classique et en calcule fractionnaire. 
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Notations

We give some notations that help us in our work.

1. sets

XC : the set of complex numbers.

XR : the set of real numbers.

XN: the set of natural integer numbers.

2. s = a + ib is a complex number, we note that the real part of s is noted by

a = Re(s) .

3. Transformations

XL: Laplace transform.

XF,f̂ : Fourier transform.

XM: Mellin transform.

4. Operators

XJ: Riemann-Liouville integral operator.

XW: Weyl integral operator .

Xf ∗ g: classical convolution.

Xf ∗ g : Mellin convolution.
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INTRODUCTION

In mathematics, the Mellin transform is an integral transform that may be re-

garded as the multiplicative version of the two-sided Laplace transform. This integral

transform is closely connected to the theory of Dirichlet series, and is often used in

number theory, mathematical statistics, and the theory of asymptotic expansions; it is

closely related to the Laplace transform and the Fourier transform, and the theory of

the gamma function and allied special functions,and it is extremely useful for certain

applications including solving Laplaces equation in polar coordinates, as well as for

estimating integrals, and occurs in many areas of engineering and applied mathemat-

ics.This transformation bears the name of its creator Hjalmar Mellin (18541933).

Our these is divided into three chapters . The first chapter constitute some concepts

and a preliminary parts (definition , propositions,theorems). The second chapter is

devoted to the study of the transformation of Mellin, of which we give five sections:

In the first and the second section we set out the definition of Mellin transforma-

tion, some examples, as well as some properties related to it. Next, the third section

contains the inverse formula of the Mellin transformation. Then, the fourth section

contains the convolution product of this transformation, and properties related to this

product . Then we finish this chapter by setting the relation between Fourier ,Laplace

transform and Mellin transform.

The last chapter is based on the applications of the Mellin transformation.Finally, a

bibliography at the end of this document.
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Chapter 1
Preliminaries

This Chapter constitutes a preliminary part, in which some concepts are recalled

and some fundamental results, which are indispensable tools in our work.In the first

section of this chapter, we start with definitions of some function spaces, and in the

second section we recall Laplace and Fourier transform. The third and the last parts

we define some integral inequalities,and some special functions and Zeta function.

1.1 spaces Some functions

1.1.1 The space of integrable functions

Definition 1.1. (see [15])

Let Ω be a measurable set of Rn, (n ≥ 1) and let 1 ≤ p ≤ ∞.We denote by Lp(Ω)1 the

class of all measurable functions, f defined on Ω , for which∫
Ω

|f(x)|pdx <∞ , if 1 ≤ p <∞

and for p =∞

ess sup|f(x)| = inf{M ≥ 0 : |f(x)| ≤M <∞ (a.e.)} <∞.

Theorem 1.1. Let Ω = [a, b] a finite or infinite interval from R

1. For 1 ≤ p < +∞ Lp(Ω) is a Banach space, so the norm is given by :

‖f(x)‖Lp(Ω) =

(∫
Ω

| f(x) |pdx
) 1

p

1(More generally ) let 1 ≤ p ≤ ∞ and (Ω, τ,m) be a measure space. we denote by Lp(Ω, τ,m) or
simply Lp(Ω) the class of measurable function for which

∫
Ω
|f(x)p|dm(x) <∞

4



1.1 spaces Some functions Preliminaries

2. For p =∞,L∞(Ω) is a Banach space with the norm:

‖f(x)‖∞ = ess sup|f(x)|.

3. For p = 2 , L2(Ω) is a Hilbert space2 {L2(Ω) :
∫

Ω
|f(x)|2dx <∞}.

Definition 1.2. (see [11] ) The space As

As = {f |f : R+ → C : f(x)xs−1 ∈ L1(R+) <∞} (1.1)

with it’s associated norm ‖f‖As for some s ∈ C is defined by

‖f‖As =

∫ ∞
0

|f(x)xs−1|dx <∞,

1.1.2 The space of continuous and absolutely continuous func-

tions

Definition 1.3. (see[10])

Let Ω = [a, b] ; (−∞ < a ≤ b < +∞) and n ∈ N = 0, 1, 2, .... we note Cn(Ω) the space

of continuous functions f that have their derivatives of n order or less which are also

continuous over Ω and include this norm:

‖f‖Cn :=
n∑
k=0

‖f (k)‖C , n ∈ N,

in particular if n = 0, C0(Ω) = C(Ω) the continuous functions space over Ω included

this norm :

‖f‖C := max
a≤x≤b

|f(x)|.

Definition 1.4. (see[10])

For n ∈ N = 0, 1, 2..... ,we set ACn([a, b]) the space of functions that have derivatives

(n-1) order and they are continuous over [a, b] with fn−1 ∈ AC([a, b]) it means :

ACn([a, b]) = {f : [a, b]→ C; and fn−1 ∈ AC([a, b])}

In particular AC1([a, b]) = AC([a, b]) =
{
f/∃ϕ ∈ L([a, b]) : f(x) = c+

∫ x
a
ϕ(t)dt

}
2L2(Ω) is a Hilbert space with respect to the inner product (f, g) =

∫
Ω
f(x)g(x)dx. Holder’s

inequality for L2(Ω) is actually just the Well-known Schwartz inequality |(f, g)| ≤ ‖f‖2‖g‖2 .
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1.2 Integral transformations Preliminaries

1.1.3 The weighted space of continuous functions

Definition 1.5. (see[10])

Let Ω = [a, b] a finite interval and λ ∈ C ; (0 ≤ Re(λ) < 1). we design by Cλ([a, b])

the space of functions f defined over ]a, b] and the function (x − a)λf(x) ∈ C[a, b] it

means :

Cλ([a, b]) = {f :]a, b]→ C, (.− aλ)f(.) ∈ C([a, b])} (1.2)

The space Cλ([a, b]) called the space of continuous functions with weight , provided

with the next norm

‖f‖Cλ= ‖(x− aλ)f(x)‖C= max|(x− a)λf(x)|. (1.3)

In particular C0([a, b]) = C([a, b]).

1.2 Integral transformations

The integral transformed family maps a function from its original function space into

another function space via integration, where some of the properties of the original

function might be more easily characterized and manipulated than in the original

function space.

The integral transformation is symbolized by the equation

F (s) =

∫
I

K(s, x)f(x)dx.

With K(s,x) is called the kernel of the transform.By changing the kernel we can have

several different integral transforms.

The most used transformations are : The one of LaplaceI = R+,

K(s, x) = exp(−sx), s ∈ C.

The one of Fourier I = R,

K(s, x) = exp(−2iπsx), s ∈ R.
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1.2 Integral transformations Preliminaries

And the Mellin I = R+,

K(s, x) = xs−1, s ∈ C.

1.2.1 Laplace Transform

Definition 1.6. (see [4])

Let f : R+ → C be a continuous function, Laplace transform of f is defined by :

L(f)(s) = L(s) =

∫ +∞

0

e−sxf(x)dx = lim
τ→∞

∫ τ

0

e−sxf(x)dx (1.4)

This integral converge for α <Re(s)<β , −∞ ≤ α ≤ β ≤ +∞
The inverse formula of Laplace transformation noted L−1 is given by:

f(x) = (L−1(L))(s) =
1

2πi

∫ δ+it

δ−it
esxL(s)ds. (1.5)

Remarque 1.1. the interval ]δ− it; δ+ it[ designates a parallel right to the imaginary

axis and a real coordinate δ in the plan.

1.2.2 Fourier Transform

Definition 1.7. (see [4])

Let f be an absolutely integrable function over R. The Fourier transformation of f

denoted F [f(t)](β) = F (β) is defined by:

F [f(t)] = F (β) =
1√
2π

∫ +∞

−∞
e−iβtf(t)dt, β ∈ R. (1.6)

And it can also be defined with F [f, β] = f̂(β)

F [f, β] = f̂(β) =

∫ +∞

−∞
f(t)e−2iπβtdt, β ∈ R. (1.7)

The inverse of Fourier transform is defined by:

f(t) = F−1[Ff(t)] =
1√
2π

∫ +∞

−∞
eiβtF (β)dβ (1.8)

3Where the limit exists (as finite number ). when its does , the integral (1.4)is said to converge.
If the limit doesn’t exist , the integral is said to diverge and there is no Laplace transform defined
for f .
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1.3 Some integrals inequalities Preliminaries

And it can be written in other formula :

F−1[f̂ , β] = f(t) =

∫ +∞

−∞
f̂(β)e2iπβtdβ. (1.9)

With F [f, β] = f̂(β) is the Fourier transform of f .

1.3 Some integrals inequalities

1.3.1 Holder inequality

If 1 < p <∞, we denote by p′ the number p
p−1

so that 1 < p′ <∞ and 1
p

+ 1
p′

= 1, p′

is called the exponent conjugate to p. If 1 < p < ∞ and f ∈ Lp(Ω), g ∈ Lp′(Ω), then

fg ∈ L1(Ω)(see [15])

(∫
Ω

|fg|pdµ
) 1

p

≤
(∫

Ω

|f |pdµ
) 1

p
(∫

Ω

|g|p
′
dµ

) 1
p′

(1.10)

1.3.2 Minkowski inequality

Let f and g be measurable (f, g ∈ Lp(Ω)) . For 1 ≤ p <∞ (see [15])

(∫
Ω

|f + g|pdµ
) 1

p

≤
(∫

Ω

|f |pdµ
) 1

p

+

(∫
Ω

|g|pdµ
) 1

p

(1.11)

1.3.3 Fubini’s theorem

Theorem 1.2. (see[13])

Let f be a continuous function over a rectangle D×[b; c] .Then :∫ ∫
D

f(x, y)dxdy =

∫
D

(∫ d

c

f(x, y)dy

)
dx

=

∫ d

c

(∫
D

f(x, y)dx

)
dy.

In particular Dirichlet formula∫
D

dx

∫ x

a

f(x, y)dy =

∫
D

f(x, y)dx.

8



1.4 Theorem of Residus Preliminaries

1.4 Theorem of Residus

Theorem 1.3. (see[1] ) Let f be an holomorphic 3 function and Ω be an open, F is

a finite set of points from Ω, c is a simple curve so∫
c

f(s)ds = 2πi
∑
s0∈F

Res(f, s0).

With f(s) =
∑

n∈z an(s− s0)n is Laurent series ,and if s0 is a pole of order k of f

then Res(f, s0) = lims→s0
1

(k−1)!
[(s− s0)kf(s)](k−1).

1.5 Some concepts in fractional calculus

1.5.1 Special functions

One of the basic tools of fractional calculus is the Gamma function which extend the

factorial to a real positive number (also to a complex number with real positive part).

Definition 1.8. (Gamma function of Euler) (see [9])

Let x ∈ R+
∗ .The Euler Gamma function is defined by the integral representation :

Γ(x) =

∫ ∞
0

e−ttx−1dt (1.12)

(this integral converge for all x > 0 )

Properties 1.1. (see [7] )

For all x > 0 , and for all n ∈ N∗ we have :

1. The gamma function generalize the factorial function

Γ(n) = (n− 1)! , (1.13)

2. Γ(1) = Γ(2) = 1 , Γ(1
2
) =
√
π,

3. Γ(x+ 1) = xΓ(x).

3Holomorphic function is a complex-valued function of one or more complex variables that is,
at every point of its domain, complex differentiable in a neighborhood of the point. The existence of
a complex derivative in a neighborhood is a very strong condition, for it implies that any holomorphic
function is actually infinitely differentiable and equal, locally, to its own Taylor series (analytic).

9



1.5 Some concepts in fractional calculus Preliminaries

Definition 1.9. (Beta function of Euler) (see [9])

Let x, y > 0, the Beta function is defined the integral representation :

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt, (Re(x) > 0, Re(y) > 0) (1.14)

Properties 1.2. For all (x, y) ∈ C with Re(x) > 0 and Re(y) > 0, we have :

1. The Beta function is symmetric (i.e) :

B(x, y) = B(y, x) ,

2. B(x+ 1, y) = xB(x, y + 1),

3. If n = y + 1 is an integer ,that gives a recurrence relation

B(x, y) = n−1
x
B(x+ 1, n− 1)

4. B(x, 1) = 1
x

5. If x = m and y = n ,we get B(m,n) = (m−1)(n−1)!
(m+n−1)!

Proposition 1.1. (see [9])

The Beta function is related with the Gamma function with the relation :

∀x, y > 0, we have

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (1.15)

Proof(see[9])

Definition 1.10. (Zeta Riemann function) (see [16]) The zeta Reimann function

is defined over ]1,+∞[ with:

(∀x > 1), ζ(x) =
∞∑
n=1

1

nx
(1.16)

For a given real x, the series of general term
1

nx
, n ≥ 1 , converge if only if x > 1.

Remarque 1.2. For a complex z and n ∈ N∗ the series of general term
1

nz
absolutely

converge if only if Re(z) > 1

Proposition 1.2. ∀s ∈ C, tq <(s) > 1, we have :

ζ(s) =
1

Γ(s)

∫ ∞
0

ts−1

et − 1
dt

10



1.5 Some concepts in fractional calculus Preliminaries

Proof

For Re(s) ≥ 1

ζ(s)Γ(s) =
∑
n≥1

Γ(s)

ns

=
∑
n≥1

∫ ∞
0

(u
n

)s−1

e−u
du

n

=
∑
n≥1

∫ ∞
0

e−ntts−1dt, with the variable change (u = nt)

=

∫ ∞
0

e−t

1− e−t
ts−1dt

=

∫ ∞
0

ts−1

et − 1
dt.

Also with, for < > 1 :

ζ(s)Γ(s) = M

[
1

et − 1

]
(s)

.

1.5.2 Riemann-Liouville fractional integral

Riemanns Liouvilles fractional integral operator is a direct generalization of Cauchys

formula for a n-fold integral

(Jna f)(x) =

∫ x

a

dt1

∫ t1

a

dt2...

∫ tn

a

f(tn)dtn =
1

(n− 1)!

∫ x

a

(x− t)n−1f(t)dt , (n ∈ N∗)

Definition 1.11. The fractional integral of order α(α > 0) of Riemann Liouville of

a function f ∈ C[a, b] is given by

(Jαa f)(t) =
1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds. (1.17)

Where Γ(α) is the gamma function.

Proposition 1.3. if α > 0 and β > 0 , then

(Jαa J
β
a f)(t) = (Jα+β

a f)(t)

= (Jβa J
α
a f)(t).

(1.18)

11



1.5 Some concepts in fractional calculus Preliminaries

Example 1.1. Let α > 0, β > (−1) and f(t) = (t− a)β,then

(Jαa f)(t) =
Γ(β + 1)

β + α + 1
(t− a)β+α.

Indeed,

(Jαa f)(t) =
1

Γ(α)

∫ t

a

(t− s)α−1(s− a)βds.

By changing the variable s = a+ u(t− a), 0 ≤ u ≤ 1, then

(Jαa f)(t) =
(t− a)α+β

Γ(α)

∫ 1

0

(1− u)α−1uβdu.

Using the properties of the Beta function, we find

(Jαa f)(t) =
B(β + 1, α)

Γ(β + α + 1)
(t− a)β+α

=
B(β + 1, α)

Γ(β + α + 1)
(t− a)β+α.

1.5.3 The Weyl fractional integral

Definition 1.12. (see[4]) The Weyl fractional integral of f(x) is defined by

W−α[f(x)] =
1

Γ(α)

∫ ∞
x

(t− x)α−1f(t)dt, 0 < Re(α) < 1, x > 0. (1.19)

Often xW
−α
∞ is used instead of W−α to indicate the limits to integration. Result (1)

can be interpreted as the Weyl transform of f(t), defined by

W−α[f(x)] = F [x, α]
1

Γ(α)

∫ ∞
x

(t− x)x−αf(t)dt. (1.20)

1.5.4 Riemann-Liouville derivative

Definition 1.13. The fractional derivate of order α(α > 0) of Riemann Liouville of

a function defined on an interval [a, b] of R is given by

(Dα
a f)(t) =(Dn

aJ
n−α
a f)(t)

=
1

Γ(n− α)

d

dt

n(∫ t

a

(t− s)n−α−1f(s)ds

)
.

(1.21)

12



1.5 Some concepts in fractional calculus Preliminaries

where n = [α] + 1, and [α] is the integer part of α.

In particular if α = 0, then

(D0
af)(t) = (J0

af)(t) = f(t)

If α = n (n ∈ N), then

(Dn
af)(t) = f (n)(t).

If 0 < α < 1, then n = 1, hence

(Dα
a f)(t) =

1

Γ(n− α)

d

dt

(∫ t

a

(t− s)−αf(s)ds

)
.

Proposition 1.4. Let α > 0 and f ∈ C[a, b], then

(Dα
a )(Jαa f)(t) = f(t)

(Jαa )(Dα
a f)(t) 6= f(t)

1.5.5 Caputo fractional derivative

Definition 1.14. (Caputo 1969) ( see [12])

The Caputo fractional derivative of f ∈ Cm
−1 ,m ∈ N is defined

Dα
c f(x) = Jm−αDnf(x)

Dα
c f(x) =

1

Γ(m− α)

∫ x

0

(x− t)m−α−1fm(t)dt ,m− 1 < α ≤ m.

Theorem 1.4. If m− 1 < α ≤ m ∈ N,f ∈ Cm
µ , µ > −1, then the following properties

holds

(1) Dα
c [Jαc f(x)] = f(x)

(2) Jα[Dα
c f(x)] = f(x)−

∑m−1
k=0 f

k(0)
(
xk

k!

)
.
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Chapter 2
The Mellin transformation

This chapter constitutes four parts. In the first part (of this chapter), we introduce

the definition of the Mellin transform and its properties and some examples. The

second part the definition of Mellins inversion formula Thus, in the third section,

gives the definition of the Mellin convolution product and some properties related

to this product.In the last section we give the relation between Mellin, Laplace and

Fourier transformations .

Definition 2.1. (see [2])

Let f(x) be locally Lebesgue1 integrable over (0,+∞) , s ∈ C. The Mellin transforma-

tion of f(x) is defined by:

M [f(x), s] =

∫ +∞

0

xs−1f(x)dx (2.1)

This integral converges only for values which are located in the strip < α, β > (i.e) the

integral does exist only for complex values of s. The strip in some cases may extend

to a half-plane or to the whole complex s-plane.

Examples

Example 2.1. Consider:

f(x) = H(x− x0)xa

Where H is the Heaviside’s step function defined by: ∀x ∈ R

H(x) =

0, ifx < 0

1, ifx ≥ 0

1A function is called locally integrable if,around every point in the domain ,there is a neighborhood
in which the function is integrable. The space of locally Lebesgue integrable function is denoted L1

loc

any continuous function is locally Lebesgue integrable on R

14



The Mellin transformation

And let x0 be a positive number and a is complex. The Mellin transform of f is given

by:

M [f ; s] =

∫ ∞
x0

xa+s−1dx = − x
a+s
0

a+ s
using{if t ∈ R , s ∈ C , Re(s) < 0, then lim

t→∞
ts = 0}.

Example 2.2. The most simple example of The Mellin transform is provided by the

Legendre integral representation of the Gamma function. Let f be the function defined

by

f(x) = e−x,

right away we find :

M [f(x)](s) =

∫ ∞
0

e−xxs−1dx = Γ(s).

Is holomorphic for Re(s) > 0 .

Example 2.3. Consider the function:

f(x) =
1

1 + x
,

By changing the variables x = v
1−v , 1 − v = 1

1+x
, dx = dv

(1−v)2
So the transform is

expressed by:

M [f ; s] =

∫ 1

0

vs−1(1− v)(1−s)−1dv

This integral is known, it can be written by the beta function like

M [
1

1 + x
] = B(s, 1− s) = Γ(s).Γ(1− s)

Example 2.4. Consider the function:

f(x) =
1

ex − 1

The Mellin transform of f is given by

M [f ; s] =

∫ ∞
0

xs−1 1

ex − 1
dx

15



2.1 Mellin Transform properties The Mellin transformation

Using

∞∑
n=0

e−nx =
1

1− e−x
∞∑
n=1

e−nx =
1

ex − 1

M [
1

ex − 1
] =

∞∑
n=1

∫ ∞
0

xs−1e−nxdx

=
∞∑
n=1

Γ(s)

ns

= Γ(s)ζ(s).

Where the function ζ is the zeta function.

Proposition 2.1. (see [15]) Let f be a function satisfied

1.f defined and continuous for x > 0.

2.The integral (2.1) is absolutely continuous for Re(s) = α or Re(s) = β

There for it absolutely converges for α ≤ Re(s) ≤ β.Plus the function s→M [f ](s) is

continuous and limited in the closed strip and holomophic in the inside .

2.1 Mellin Transform properties

We give some of elementary properties of the Mellin integral (see[4] , [9],[2]) :

Let f,g : R→ C, M [f(s)] and M [g(s)] are the Mellin transform of the functions f and

g respectively .

P1) ”The Mellin transform is a linear transformation” α, β ∈ C :

M [αf(x) + βg(x)](s) = αM [f ](s) + βM [g](s).

P2) ” Scaling property ” For a > 0 , α, β ∈ C we have

M [f(ax)](s) = a−sM [f(x)](s).

P3) ”Multiply by xa ” For all a ∈ R+ and <(s+ a) ∈]α, β[,(i.e) s ∈]α− a, β− a[

we have

M [xaf(x)] = M [f(x)](s+ a).

16



2.1 Mellin Transform properties The Mellin transformation

P4)”Raising the Independent variable to a real Power ” For a ∈ R+,s ∈<
aα, aβ >, so

M [f(xa)](s) =
1

a
M [f(x)](

s

a
).

P5) For s ∈< 1− β, 1− α >,so

M [
1

x
f(

1

x
)](s) = M [f(x)](1− s).

P6) ”Mellin Transforms of Derivatives ”.

The Mellin transformed of the derivative of the function f is given by the relation:

M [f ′(x)](s) = (−1)(s− 1)M [f(x)](s− 1)

Provided with [xs−1f(x)] vanishes as x→ 0 and x→∞.

In general

M [f (k)(x)](s) = (−1)k(s− k)kM [f(x)](s− k).

Where

(s− k)k =
Γ(s)

Γ(s− k)

Provided with xs−r−1f (r) → 0 as x→ 0,∞ for r = 1, 2, 3, ..., (k − 1) vanishes as

x→ 0 and x→∞.

P7) Mellin transform and derivative

Let f be Mellin transformable function defined on R+ .Then if differentiation

under the integral sign is allowed :

d

ds
M(f)(s) = M [log xf(x)].

P8) M [xf ′(x)] = −sM [f(x)](s) provided xsf(x)→ 0 as x→ 0 and x→∞

In general. M [xnf (n)(x)] = (−1)n
Γ(s+ n)

Γ(s)
M [f(x)](s).
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2.1 Mellin Transform properties The Mellin transformation

Proof

P1) For all α,β ∈ C , we have

M [αf(x) + βg(x)](s) =

∫ ∞
0

(αf + βg)(x)xs−1dx

=

∫ ∞
0

αf(x)xs−1dx+

∫ ∞
0

βf(x)xs−1dx

= α

∫ ∞
0

f(x)xs−1dx+ β

∫ ∞
0

g(x)xs−1dx

= αM [f ](s) + βM [g](s).

P2) since a > 0 and for s ∈< α, β >

M [f(ax)](s) =

∫ ∞
0

f(ax)xs−1dx

=

∫ ∞
0

(
t

a

)s−1

f(t)
dt

a

= a−sM [f(x)](s).

P3) we have

M [f(x)xa](s) =

∫ ∞
0

xs−1xaf(x)dx

=

∫ ∞
0

xs+a−1f(x)dx

= M [f(x)](s+ a).

P4) since

M [f(xa)](s) =

∫ ∞
0

f(xa)xs−1dx

=

∫ ∞
0

f(t)(t
1
a )s−1dt

a
(changing variables)

=
1

a

∫ ∞
0

f(t)(t
1
a )s−1dt

=
1

a
M [f(x)](

s

a
).

P5)we set g(x) = 1
x
f( 1

x
)

[M(g(x))](s) =

∫ ∞
0

[
1

x
f

(
1

x

)]
xs−1dx.
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2.1 Mellin Transform properties The Mellin transformation

Then

M [
1

x
f(

1

x
)](s) = −

∫ 0

∞
(t)1−stf(t)

dt

t2

=

∫ ∞
0

f(t)(t)(1−s)−1)dt

= M [f(x)](1− s).

P6) since

M [f ′(x)](s) =

∫ ∞
0

xs−1f ′(x)dx,

We use the integration by parts

M [f ′(x)](s) = [[xs−1f(x)]− (s− 1)]−
∫ ∞

0

xs−2f(x)dx,

Since limit of f will be 0 when x→ 0 and x→∞ .

so we find

M [f ′(x)](s) =

∫ ∞
0

xs−1f ′(x)dx

= (−1)(s− 1)M [f(x)](s− 1)

M [f ′′(x)](s) =

∫ ∞
0

xs−1f ′′(x)dx

= (s− 1)(s− 2)M [f(x)](s− 2)

We continue with recurrence method we find the general form

M [f (k)(x)](s) = (−1)k(s− k)kM [f(x)](s− k).

Where

(s− k)k = (s− k)(s− k + 1)(s− k + 2)........(s− 1)

=
(s− 1)!

(s− k − 1)!

=
Γ(s)

Γ(s− k)
.

p7) We have by definition

M [(logx)f(x)] =

∫ ∞
0

xs−1(log x)f(x)dx,
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2.2 The inverse of the Mellin transform : The Mellin transformation

In the another part we have

M [f(x)](s) =

∫ ∞
0

xs−1f(x)dx,

d

ds
M [f(x)] =

∫ ∞
0

d

ds
(x)s−1f(x)dx,

Using d
ds

(ax) = (log a).ax we get

d

ds
M [f(x)] =

∫ ∞
0

xs−1(log x)f(x)dx,

= M [(log x)f(x)].

P8)

M [xf ′(x)] =

∫ ∞
0

xsf ′(x)dx,

= [xsf(x)]∞x=0 − s
∫ ∞

0

f(x)dx,

= −sM [f(x)](s).

M [x2f ′′(x)] = (−1)2s(s+ 1))M [f(x)](s),

In general

M [xnf (n)(x)] = (−1)n
Γ(s+ n)

Γ(s)
M [f(x)](s).

2.2 The inverse of the Mellin transform :

Definition 2.2. (see[4])

Let f : [0,+∞] → C be a continuous function, M [f ; s] is the Mellin transform of f ,

so we denote its inverse by M−1 :

f(x) = M−1[M [f(x); s]] =
1

2πi

∫ c+i∞

c−i∞
M [f(x); s]x−sds (2.2)

proof

For s = c+ iβ with c > 0 , we have
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2.2 The inverse of the Mellin transform : The Mellin transformation

M [f(x); s] =

∫ ∞
0

f(x)xs−1dx,

=

∫ ∞
0

f(x)es log xds

x
,

=

∫ ∞
0

f(x)ec log xeiβ log xdx

x
,

By changing the variable log x = u we get

M [f(x); s] =

∫ +∞

−∞
f(eu)ecueiβudu,

And with another variable change u = −2πx we have

M [f(x); s] = 2π

∫ +∞

−∞
f(e−2πx)e−2πiβxe−2πcxdx

With β ∈ R and with the Fourier transform (1.7) of the real function, then , we have:

M(s) = 2πF [f(e−2πx)e−2πcx, β].

We use the inverse formula of Fourier transform (1.9), we get

e−2πcxf(e−2πx) =
1

2π

∫ +∞

−∞
M(s)e2iπβxdβ,

if we put e−2πx = t, we find

f(t) = t−c
1

2π

∫ +∞

−∞
M(s)t−iβdβ,

In another part

f(t) =
1

2πi

∫ +∞

−∞
M(s)t−(c+iβ)idβ,

Finally the inverse formula is given by:

f(t) =
1

2πi

∫ c+i∞

c−i∞
M(s)t−sds.

Example 2.5. We consider the Cahen-Mellin 2 integral

1

2πi

∫ c+i∞

c−i∞
Γ(s)x−sds;x > 0

2Cahen is a surname and/or a first name that refer to the integral in the example
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2.2 The inverse of the Mellin transform : The Mellin transformation

we check out for every c > 0 and Re(s) > 0 :

1

2πi

∫ c+i∞

c−i∞
Γ(s)x−sds = e−x.

plus,the function x → Γ(s)x−s admits a simple poles and with theorem of residue we

get:

1

2πi

∫ c+i∞

c−i∞
Γ(s)x−sds =

∞∑
k=1

Res(x−sΓ(s), s = −k),

=
∞∑
k=1

(−1)k

k!
xk,

= e−x,

so M−1[Γ(s)](x) = e−x.

Corollary 2.1. (see [2],[9]) Let M [f ; s]and M [g; s] be the Mellin transforms of the

functions f and g with strips of convergence sf and sg respectively, and suppose that

c is a real number exist such that c ∈ sf and 1− c ∈ sg, the Parseval formula holds∫ +∞

0

f(x)g(x)dx =
1

2πi

∫ c+i∞

c−i∞
M [f ; 1− s]M [g; s]ds. (2.3)

Proof : we have

J =
1

2πi

∫ c+i∞

c−i∞
M [g](s)M [f ](1− s)ds,

=
1

2πi

∫ c+i∞

c−i∞
M [f ](1− s)

(∫ +∞

0

xs−1g(x)dx

)
ds,

=

∫ ∞
0

g(x)

(
1

2πi

∫ c+i∞

c−i∞
xs−1M [f ](1− s)ds

)
dx.

we use the inverse formula for the function f in (2.2), we find∫ ∞
0

f(x)g(x)dx =
1

2πi

∫ c+∞

c−∞
M [f ](1− s)M [g](s)ds

=
1

2πi

∫ c+∞

c−∞
M [f ; 1− s]M [g; s]ds
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2.3 The convolution product The Mellin transformation

2.3 The convolution product

Definition 2.3. let f, g be two integrable functions, the classical convolution is defined

with

(f ∗ g)(x) =

∫
Rn
f(y)g(x− y)dy.

Definition 2.4. (see[3])

Let f, g be two functions defined in R+
∗ .The Mellin Convolution product of f and g is

defined as :

(f ∗ g)(x) =

∫ ∞
0

(
1

y

)s
f(y)g

(
x

y

)
ys
dy

y
=

∫ ∞
0

f(y)g(
x

y
)
dy

y
. (2.4)

Proposition 2.2. If F and G are the Mellin transforms of the functions f and g re-

spectively, then α < Re(s) < β, and for a real number c well defined

we have : ∫ ∞
0

f(x)g(x)xs−1dx =
1

2πi

∫ c+i∞

c−i∞
F (s− z)G(z)dz. (2.5)

In particular for: s = 1 , we get∫ ∞
0

f(x)g(x)dx =
1

2πi

∫ c+i∞

c−i∞
F (1− z)g(z)dz.

For more

M−1[F (s)G(s)](x) =

∫ ∞
0

f(y)g(
x

y
)
dy

y
. (2.6)

It means

M [f ∗ g(x)](s) = F (s)G(s). (2.7)

Proof

to prove (2.5) we choose a real number c with c ∈ Ic(s) =]Sup(αf , Re(s)−βg), inf(βf , Re(s)−
αg)[.And with the inversion theorem, we get∫ ∞

0

f(x)g(x)xs−1dx =

∫ ∞
0

f(x)xs−1dx
1

2πi

∫ c+i∞

c−i∞
G(z)x−zdz,

=
1

2πi

∫ c+i∞

c−i∞
G(z)dz

∫ ∞
0

f(x)xs−z−1dx (withFubini)

=
1

2πi

∫ c+i∞

c−i∞
F (s− z)G(z)dz
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2.3 The convolution product The Mellin transformation

Its the same for proving (2.6), we use the inverse theorem :

M−1[F (s)G(s)](x) =
1

2πi

∫ c+i∞

c−i∞
F (z)G(z)x−sds,

=
1

2πi

∫ c+i∞

c−i∞
G(s)x−s

(∫ ∞
0

f(u)us−1du

)
ds,

=

∫ ∞
0

f(u)
du

u

1

2πi

∫ c+i∞

c−i∞
G(s)

(x
u

)−s
ds,

=

∫ ∞
0

f(u)g
(x
u

) du
u
.

And that what we wanted.

2.3.1 Properties of the Mellin convolution:

The Mellin convolution product admit the next properties (see[3]) :

1. Commutative:

Let f,g be two functions defined on R+
∗ , then (f ∗ g)(x)(s) = (g ∗ f)(x)(s)

2. Associative: Let f,g,h be three functions defined on R+
∗ , (f ∗ g) ∗ h = f ∗ (g ∗ h)

3. Unit element:

Let f be a continuous function, so (f ∗ δ(x − 1)) = f. Where δ is the Dirac
3delta function.

4. The action of the operator x d
dx(

x
d

dx

)k
(f ∗ g) =

((
x
d

dx

)k
f

) ∗

g

= f ∗

((
x
d

dx

)k
g

)
.

5. Multiplication by lnx :

Let f ,g be two continuous functions , so

(lnx)(f ∗ g) = [(ln x)f ] ∗ g + f ∗ [(lnx)g].

6. If f, g ∈ As(defined in (1.1))then he convolution (f ∗ g)(x) exists almost every

where on R+,and belongs to the space As and further

3The Dirac delta function is defined as

δ(x) =

{
+∞, x = 0

0, x 6= 0
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2.3 The convolution product The Mellin transformation

‖(f ∗ g)(x)‖As ≤ ‖f‖As .‖g‖As .

proof

1. Commutative: we have

(f ∗ g)(x) =

∫ ∞
0

f(y)g(
x

y
)
dy

y

By the variable change u = x
y{
du = − x

y2
dy,−du

u
= dy

y

So we have

(f ∗ g)(x) =

∫ +∞

0

f(y)g(
x

y
)
dy

y

=

∫ +∞

0

f(
x

y
)g(u)

du

u

Finally we get (f ∗ g)(x)(s) = (g ∗ f)(x)(s).

2. Associative: Let f, g, h be a continuous functions

(f ∗ g) ∗ h =

∫ ∞
0

(f ∗ g)(y)h(
x

y
)
dy

y
,

=

∫ ∞
0

(∫ ∞
0

f(t)g
(y
t

) dt
t

)
h

(
x

y

)
dy

y
,

=

∫ ∞
0

∫ ∞
0

f(t)g
(y
t

)
h

(
x

y

)
dy

y

dt

t
....withFubini

=

∫ ∞
0

f(t)

(∫ ∞
0

g
(y
t

)
h

(
x

y

)
dy

y

)
dt

t
,

We put y
t

= v, so we get

(f ∗ g) ∗ h =

∫ ∞
0

f(t)

(∫ ∞
0

g(v)h
( x
tv

) dv
v

)
dt

t

=

∫ ∞
0

f(t)

(∫ ∞
0

g(v)h

( x
t

v

)
dv

v

)
dt

t

=

∫ ∞
0

∫ ∞
0

(g ∗ h)(
x

t
)
dt

t

= f ∗ (g ∗ h).
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2.4 The relation between Mellin transform and other transformsThe Mellin transformation

2.4 The relation between Mellin transform and

other transforms

Mellin transform and Laplace (see [2],)

Let f be a function and M [f ] its Mellin transform, then

M [f ](s) =

∫ ∞
0

f(x)xs−1dx

with a variable change x = e−t, the Mellin transform will be

M [f ](s) =

∫ +∞

−∞
f(e−t)e−t(s−1)e−tdt

=

∫ +∞

−∞
f(e−t)e−stdt.

So

M [f ](s) = L[f(e−t)](s). (2.8)

Mellin transform and Fourier (see [4])

We derive the Mellin transform from the complex Fourier transform (1.6).

F [f(t)](k) = G(k) =
1√
2π

∫ +∞

−∞
e−iktf(t)dt

Making the changes of variables et = x and ik = c−s, where c is a constant, we obtain

G(is− ic) =
1√
2π

∫ ∞
0

xs−c−1g(log x)dx

We now write 1√
2π
x−cg(log x) ≡ f(x) to get the Mellin transform of f(x)

M [f(x)] =

∫ ∞
0

xs−1f(x)dx.
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Chapter 3
Applications

In this chapter there is two sections, in the first one we discuss the Mellin trans-

form in solving problems like integral equations and a method of summation of series.

In the second section we apply the Mellin transform in solving problem with fractional

integral and derivatives(Riemann-Liouville, Caputo).

3.1 Applications in classical calculus

3.1.1 Integral equation

The integral equation can be easily solved with the Mellin Transform (see [4]):

g(x) =

∫ ∞
0

f(y)k(xy)dy, x > 0. (3.1)

Where f is unknown and g, k are given functions.

Theorem 3.1. (see [4]) Let f, g be two functions and M [f ](s) and M [g](s) be their

Mellin transform respectively, we defined the next operator by

M [f(x)og(x)] = M

[∫ ∞
0

f(xy)g(y)dy

]
= M [f ](s)M [g](1− s) (3.2)
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3.1 Applications in classical calculus Applications

Proof We have

M [f(x)o g(x)] = M

[∫ ∞
0

f(xy)g(y)dy

]
=

∫ ∞
0

xs−1dx

∫ ∞
0

f(xy)g(y)dy (xy = η),

=

∫ ∞
0

g(y)dy

∫ ∞
0

ηs−1y1−sf(η)
dη

y

=

∫ ∞
0

y1−s−1g(y)dy

∫ ∞
0

ηs−1f(η)dη = M [f ](s)M [g](1− s).

Note that, the operation o is not commutative

Application of the Mellin transform with respect to x to equation (3.1) combined with

(3.2) gives

M [f ](1− s)M [k](s) = M [g](s).

which gives , replacing s by 1− s ,

M [f ](s) = M [g](1− s)M [h](s).

where

M [h](s) =
1

M [k](1− s)
.

The inverse Mellin transform combined with (3.2) leads to the solution

f(x) = M−1[M [g](1− s)M [h](s)] =
1

2πi

∫ c+i∞

c−i∞

(∫ ∞
0

y1−s−1g(y)dy

∫ ∞
0

us−1h(u)du

)
ds

=
1

2πi

∫ c+i∞

c−i∞

∫ ∞
0

g(y)dy

∫ ∞
0

us−1y1−sh(u)
du

u
ds with (u = xy)

=
1

2πi

∫ c+i∞

c−i∞

∫ ∞
0

ys−1dyds

∫ ∞
0

h(xy)g(y)dy

=

∫ ∞
0

g(y)h(xy)dy

provided h(x) = M−1[M [h](s)]exists .Thus, the problem is formally solved. In partic-

ular,if M [h](s) = M [k](s), then the previous equality becomes

f(x) =

∫ ∞
0

g(y)k(xy)dy, x > 0. (3.3)
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Application Solve the integral equation∫ ∞
0

f(y)g(
x

y
)
dy

y
= h(x), (3.4)

Where f(x) is unknown and g(x) and h(x) are given functions. Applying theorem

(3.1) the solution of the equation (3.4) is

M [f(x)](s) = M [h(x)](s)M [k(x)](s) , M [k(x)](s) =
1

M [g(x)](s)
.

Inversion, by the convolution proposition (2.7), gives the solution

f(x) = M−1 [M [h(x)](s)M [k(x)](s)] =

∫ ∞
0

h(y)k(
x

y
)
dy

y
. (3.5)

3.1.2 Summation of series

We recall the Zeta Riemann function ζ(x) =
∑∞

n=1
1
nx

Theorem 3.2. (see [4])

For all f defined over R+ ,c ∈< αf , βf >

∞∑
n=0

f(n+ a) =
1

2πi

∫ c+i∞

c−i∞
M [f(x)](s)ζ(s, a)ds, (3.6)

with Hurwitz Zeta function ζ(s, a) is defined by

ζ(s, a) =
∞∑
n=0

1

(n+ a)s
; 0 ≤ a ≤ 1, <(s) > 1 (3.7)

Proof By applying the Inverse Mellin transform , we get

f(n+ a) =
1

2πi

∫ c+i∞

c−i∞
F (s)(n+ a)−sds (3.8)

Summing this over all n gives

∞∑
n=0

f(n+ a) =
1

2πi

∫ c+i∞

c−i∞
M [f(x)](s)ζ(s, a)ds. (3.9)

Theorem 3.3. Similarly, On using the Mellin properties (P2) we get

f(nx) =
1

2πi

∞∑
n=1

∫ c+i∞

c−i∞
F (s)n−sx−sds,
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Thus
∞∑
n=1

f(nx) =
1

2πi

∫ c+i∞

c−i∞
F (s)ζ(s)x−sds. (3.10)

Corollary 3.1. when x = 1, result (3.10) reduces to

∞∑
n=1

f(n) =
1

2πi

∫ c+i∞

c−i∞
F (s)ζ(s)ds. (3.11)

This can be obtained from (3.9) when a = 0.

Example 3.1.

f(n) =
+∞∑
n=1

cos an

n2

.

The Mellin transform of f(x) = cos(ax)
x2

with s ∈< 2, 3 > is

M [f ](s) =

∫ ∞
0

xs−3cos(ax)dx

= M [cos(ax)](s− 2) (with properties ”Multiply by xa ”)

=
1

as−2
M [cosx](s− 2) (with ”Scaling properties”)

= − 1

as−2
Γ(s− 2)cos

(πs
2

)
We now that

ζ(1− s) =
2

2πs
cos
(πs

2

)
Γ(s)ζ(s) (3.12)

substituting this result into (3.11) gives and we use the relation (3.12) we find

+∞∑
n=1

cos an

n2
= −a

2

2

1

2πi

∫ c+i∞

c−i∞

(
2π

a

)s
ζ(1− s)Γ(s− 2)

Γ(s)
ds

= −a
2

2

1

2πi

∫ c+i∞

c−i∞

(
2π

a

)s
ζ(1− s)

(s− 1)(s− 2)
ds,

The integral has three simple poles at 0, 1 and 2 with residues −1
2

and π
a

,and − π2

3a2

respectively, and the complex integral is evaluated by calculating the residues at these

poles. Thus, the sum of the series is

∞∑
n=1

cos an

n2
=
a2

4
− πa

2
+
π2

6
,
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3.2 Application in fractional calculus Applications

if a goes to 0 we obtain
∞∑
n=1

1

n2
=
π2

6
.

3.2 Application in fractional calculus

Theorem 3.4. (see[12]) Let f(x) be Mellin transformable function on (0,∞), where

0 ≤ n− 1 < α < n then

(1) M [JαJβf(x); s] = Γ(1−α−β−s)
Γ(1−s) M [f(t);α + β + s],

(2) M [Dα
c J

α
c f(x); s] = M [f(x); s].

(3) M [JαDα
c f(x); s] = M [f(x); s]−

∑m−1
k=0

fk(0)
k!(k+s)

, Re(s) > −Re(k),

Proof

(1) Now, we are applying Mellin transform of JαJβ

M [JαJβf(x); s] = M [Jα+βf(x); s]

=

∫ ∞
0

xs−1Jα+βf(x)dx

=
1

Γ(α + β)

∫ ∞
0

xs−1

(∫ x

0

(x− t)α+β−1f(t)dt

)
dx

=
1

Γ(α + β)

∫ ∞
0

f(t)dt

∫ ∞
t

(x− t)α+β−1xs−1dx.

setting x = t
u

then the x-integral becomes

M [JαJβf(x); s] =
1

Γ(α + β)

∫ ∞
0

f(t)dt

∫ 1

0

tα+β−1

(
1

u
− 1

)α+β−1(
t

u

)s−1
du

u2

=
1

Γ(α + β)

∫ ∞
0

tα+β+s−1f(t)dt

∫ 1

0

u−α−β−s(1− u)α+β−1du.

where Re(α + β) > 0, Re(α + β + s) < 1.

After using beta function which is defined by B(α, β) =
∫ 1

0
tα−1(1− t)β−1dt and

the fact that B(α, β) = Γ(α)Γ(β)
Γ(α+β)

, hence obtain,

M [JαJβf(x); s] =
B(−α− β − s+ 1, α + β)

Γ(α + β)

∫ ∞
0

tα+β+s−1f(t)dt

=
Γ(−α− β − s+ 1)

Γ(1− s)
M [f(t);α + β + s].

(2) The result is obtained by applying Mellin transform to both sides of the first

property (1) in Theorem 1.15
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3.2 Application in fractional calculus Applications

M [Dα
c J

α
c f(x); s] = M [f(x); s] .

(3) We apply Mellin transform on the part (2) in Theorem 1.15 , then we obtain

M [JαDα
c f(x); s] = M [f(x); s]−M

[m−1∑
k=0

fk(0)xk

k!
; s
]

= M [f(x); s]−
m−1∑
k=0

fk(0)

k!

∫ ∞
0

xk+s−1dx

= M [f(x); s]−
m−1∑
k=0

fk(0)

k!(k + s)
, Re(s) > −Re(k)

Theorem 3.5. (see[12]) Let f be Mellin transformable defined on R+, n− 1 < α <

n, n ∈ N then

M [fαf(x); s] =
Γ(s)

Γ(s− α)
M [f(x); s− α].

Remarque 3.1. By using the same technique in above theorem, Mellin transform of

fractional integral can be yielded as the following formula :

M [Jαf(x); s] =
Γ(s)

Γ(s+ α)
M [f(x); s+ α].

Example 3.2. (1) M [f
1
2 (x); s] =

∫ +∞
0

xs−1f
1
2 (x)dx, by using fractional integration

by parts and fractional derivative of power function, we obtain

M [f
1
2 (x); s] =

∫ +∞

0

xs−1f
1
2 (x)dx =

∫ +∞

0

f(x)D
1
2xs−1dx

=
Γ(s)

Γ(s− 1
2
)
M
[
f(x); s− 1

2

]
.

(2) M [f
3
2 (x); s] =

∫ +∞
0

xs−1f
3
2 (x)dx, by using fractional integration by parts and

fractional derivative of power function, we obtain

M [f
3
2 (x); s] =

∫ +∞

0

xs−1f
3
2 (x)dx =

∫ +∞

0

f(x)D
3
2xs−1dx

=
Γ(s)

Γ(s− 3
2
)
M
[
f(x); s− 3

2

]
.

Theorem 3.6. (see[12]) let f be Mellin transformable defined on R+, then

M [xαfα(x); s] =
Γ(s+ α)

Γ(s)
M [f(x); s].
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3.2 Application in fractional calculus Applications

Example 3.3.

M [x
1
2f

1
2 (x); s] =

∫ +∞

0

f
1
2 (x)xs−

1
2dx =

Γ(s+ 1
2
)

Γ(s)
M [f(x); s].

M [x
3
2f

3
2 (x); s] =

∫ +∞

0

f
3
2 (x)xs+

1
2dx =

Γ(s+ 3
2
)

Γ(s)
M [f(x); s].

Example of application

Solve the problem :

x
1
2f

1
2 (x) = x

3
2f

3
2 (x) = Γ(x− α).

Solution : By applying the Mellin transform to both side we have

Γ(s+ 1
2
)

Γ(s)
M [f(x); s] +

Γ(s+ 3
2
)

Γ(s)
M [f(x); s] = as−1.

By solving the equation and applying the inverse Mellin transform by using complex

inversion integral in order to cover the f(x) explicitly as the solution

f(x) =
1

2πi

∫ c+i∞

c−i∞

Γ(s)

Γ(s+ 1
2
)Γ(s+ 3

2
)
as−1x−sds.

3.2.1 Mellin transforms of the Weyl fractional integral

Theorem 3.7. (see[4]) The Mellin transform of the Weyl fractional integral of f(x)

is defined by

M [W−αf(x), s] =
Γ(s)

Γ(s+ α)
M [f(x), s+ α] (3.13)

Proof :

We use The Weyl fractional integral(1.19)

(W−αf)(x) =
1

Γ(α)

∫ ∞
x

(t− x)α−1f(t)dt

=
1

Γ(α)

∫ ∞
x

tα−1
(

1− x

t

)α−1

f(t)dt

=
1

Γ(α)

∫ ∞
x

tαf(t)
(

1− x

t

)α−1 dt

t
.

we calculate the Mellin transform of the Weyl fractional integral by putting

h(t) = tαf(t) and g(x
t
) = 1

Γ(α)
(1 − x

t
)α−1H(1 − x

t
) , where H(1 − x

t
) is the Heaviside
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3.2 Application in fractional calculus Applications

function, so

Wα[f(t)] =

∫ ∞
0

h(t)g(
x

t
)
dt

t

which is, by the proposition in the equation (2.7)

M [Wαf(x), s] = M [xαf(x)]M [
1

Γ(α)
(1− x)α−1H(1− x)]

= M [xαf(x)]
1

Γ(α)

∫ 1

0

xs−1(1− x)α−1dx

= M [xαf(x)]
B(s, α)

Γ(α)
− Γ(s)

Γ(s+ α)


= M [xαf(x)]

Γ(s)

Γ(s+ α)
.
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Tabular of the Mellin transform

Original function Mellin transform

f(t), t > 0 M [f ; s] =
∫∞

0
f(x)xs−1dx Strip of holomorphy

e−pt, p > 0 p−sΓ(s) Re(s) > 0

H(t− a)tb, a > 0 −ab+s

b+s
Re(s) < −Re(b)

(1 + t)−1 π
sin(πs)

0 < Re(s) < 1

(1 + t)−1 Γ(s)Γ(a−s)
Γ(a)

Re(s) > 0

H(t− 1)(t− 1)−bRe(b) > 0 Γ(s)Γ(b)
Γ(s+b)

Re(s) > 0

H(t− 1)sin(aln(t)) a
s2+a2

Re(s) < − | =(a) |
ln(1 + t) π

ssin(πs)
−1 < Re(s) < 0

t−1ln(1 + t) π
(1−s)sin(πs)

0 < Re(s) < 1

(et − 1)−1 Γ(s)ζ(s) Re(s) > 1

t−1e−t
−1

Γ(1− s) −∞ < Re(s) < 1

e−x
2 1

2
Γ( s

2
) 0 < Re(s) < +∞

tan−1(t) −π
2scos(πs/2)

−1 < Re(s) < 0

cotan−1(t) π
2scos(πs/2)

0 < Re(s) < 1

σ(t− p), p > 0 ps−1 whole plane∑∞
n=1 σ(t− pn), p > 0 ps−1ζ(1− s) Re(s) < 0
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Annex

Robert Hjalmar Mellin, the son of the clergyman Gustaf Robert Mellin (1826-

1880) was born in Liminka, northern Ostrobothnia, in Finland in 1854, he grew up

and received his schooling in Hmeenlinna then undertook his university studies at

the University of Helsinki and he continues the research of his doctorate at the same

university, where he met his greatest influence Mittag-Leffler, he introduced Mellin to

function theory in the style of Weierstrass.

He studied the transform which now bears his name and established its reciprocal

properties.He applied this technique systematically in a long series of papers to the

study of the gamma function, hypergeometric functions, Dirichlet series, the Riemann

zeta function and related number-theoretic functions. He also extended his transform

to several variables and applied it to the solution of partial differential equations.

The use of the inverse form of the transform, expressed as an integral parallel to the

imaginary axis of the variable of integration. In 1895 Mellin received a prize from the

Finnish Society of Sciences and Letters, and also in 1927 he received a major award

from the Alfred Kordelin Foundation set up in 1918 to support the sciences, literature,

the arts and public education with grants and awards. He spent his last years working

with his beliefs, closing his eyes to eternal sleep on 5 April 1933 in the evening.For

More biography of R.H.Mellin including a sketch of his works can be found in [14].

However several mathematicians work to develop the Mellin transform,such as Rie-

mann and M.Cahen (a further extension) are given in [5],O.I.Marichev (who has ex-

tended the Mellin method and devised a systematic procedure to make it practical)[[8]].
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