
    People's Democratic Republic of Algeria 

    Ministry of Higher Education and Research 

Scientific Research 

    Ibn Khaldun University - Tiaret - 
 

 
  Faculty of Mathematics and Computer Science 

 

Department of MATHEMATICS 

 
                            THESIS IN VIEW OF THE MASTER'S DEGREE 

 
FIELD : Mathematics and Computer Science 

FILIERE : Mathematics 

SPECIALITY: Functional Analysis and Differential Equation  

Presented by 

Soualem Abdelhak  

Salem Fethi 

Chiheb Karim 

 
SUBJECT OF THE MEMOIR : 

 

  Compactness method por a class 

evolution equation Semi 

Linear 
 

 

 

Supported the   Monday  02/11/2020  In front of the Jury  Composed of  : 

Mr : K.MAAZOUZ  M.C.(B) Tiaret  University   President 

Mr: B.HEDIA    Professor  Tiaret  University   Framer 

Miss : W.ELONG M.C.(B) Tiaret  University   Examiner 

 
 
 

College year : 2019/2020 



ACKNOWLEDGMENT

First and foremost we thank the Allah who gave us the courage and the patience to carry out this
work.

Our sincere thanks and gratitude go to our mentor Mr B. Hedia for his help, as well as for the
trust he has shown us during the realization of this work.

He was able to motivate each step of our work with relevant remarks and was able to help us
progress in my research.

Our warmest thanks also go to the members of the jury who honored us by agreeing to evaluate
this work.

And we also want to thank all our families and the students of the 2019/2020 promotion of
the Faculty of Math at Ibn Khaldoun Tiaret University.

i



DEDICATIONS

♥ I dedicate my work to ♥
My mother and father for their love, their encouragement and their

sacrifices.
To my brothers and my sisters.

To my friend Attallah amine and study colleagues.
And to all those who have contributed from near or far to make this

project possible, I say thank you.
Soualam Abdelhak

♥ I dedicate my work to ♥
My mother and father for their love, their encouragement and their

sacrifices.
To my brothers and my sisters.

To my kind friends and study colleagues.
And to all those who have contributed from near or far to make this

project possible, I say thank you.
Salem Fethi

ii



♥ I dedicate my work to ♥
My mother and father for their love, their encouragement and their

sacrifices.
To my brothers and my sisters.

To my kind friends and study colleagues.
And to all those who have contributed from near or far to make this

project possible, I say thank you.
Chiheb karim

iii



GENERAL RATING

Ω Bounded open set of Rn.
∂Ω The border of Ω
X Banach space.
H1

0 (Ω), Hm(Ω) Sobolev spaces.
B(X) Banach algebra of bounded linear operators in X.
I Identity operator.
£(X) Set of linear maps from X to X.
D(A) Domain of A.
A bounded linear operator.
ρ(A) Solving set of operator A.
σ(A) Spectre set of operator A.
Dαu Weak derivative of u of order α.
Im(T (t)) Range of T (t).
X∗ Topological dual of X.
∆ Laplacien operator.
α(B) Non compacity mesure of Kuratowski.
IVP Initial value problem.
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CHAPTER 1

SEMI GROUP OF BOUNDED LINEAR
OPERATORS

1.1 Preliminaries

Let Ω be a bounded open of Rn

Definition 1.1.1. Let X a Banach space and

PC([0, b], X) =
{
x : [0, b]→ X : xk ∈ C(tk, tk+1], k = 0, . . . ,m and there exists

x(t−k ), x(t+k ), k = 1, . . . ,m with x(tk) = x(t−k )
}
,

which is a Banach space with the norm

‖y‖PC = max
k=1,...m.

‖xk‖,

Definition 1.1.2. The Sobolev Space is defined by :

Hm(Ω) =
{
u ∈ L2(Ω) : ∀α ∈ Nn, |α| ≤ m,Dαu ∈ L2(Ω)

}
Definition 1.1.3. The Sobolev Space is defined by :

H1
0 (Ω) =

{
u ∈ H1(Ω), u\∂Ω = 0

}
Definition 1.1.4. An unbounded linear operator A in X is a couple (A,D(A)) such that D is a
subspace of X representing the domaine of A, and A is the linear map from X into X defined by

A : D(A) ⊂ X −→ X

Definition 1.1.5. Let X be a Banach space , A one parameter family (T (t))t≥0 ,
t ≥ 0 , of bounded linear operators from X into X is semi-group of bounded linear operators on
X if

1



i) T(0)=I,

ii) T(s+t)=T(s)·T(t) , for every t, s ≥ 0.

The Linear operator A defined by

D(A) =

{
x ∈ X : lim

t→0

T (t)x− x
t

exists

}
and

Ax = lim
t→0

T (t)x− x
t

=
d+T (t)x

dt

∣∣∣∣
t=0

, for x ∈ D(A)

is the infinitesimal generator of the semi-group T (t)
D(A) is the domain of A

Remark. Let X a Banach space:

1. We note by B(X) the Banach algebra of bounded linear operators in X and by I identity of
B(X).

2. For a linear operator A : D(A) ⊂ X −→ X . We note by:

ρ(A) = {λ ∈ C, (λI − A) is inversible in B(X)},

the resolving set of A ∈ B(X) and by :

R(·;A) : ρ(A) −→ B(X)

λ 7−→ (λI − A)−1,

the resolver of A.

Definition 1.1.6. Let {T (t)}t≥0 a semi-group defined on a Banach X space.

i) T(t) is uniformly continuous if:

lim
t−→0+

||T (t)− I||B(X) = 0

ii) T(t) is strongly continuous if:

∀x, x ∈ X : lim
t−→0+

||T (t)x− x||X = 0

Lemma 1.1.1. Let f : [a, b] −→ Xa continuous function then,

lim
t−→0

1

t

∫ a+t

a

f(s)ds = f(a) (1.1)

2



Proof. For everything t 6= 0 , We have :wwww1

t

∫ a+t

a

f(s)ds− f(a)

wwww =

wwww1

t

∫ a+t

a

(f(s)− f(a)) ds

wwww
≤ 1

t
× sup

s∈[a,a+t[

||f(s)− f(a)|| × t

≤ sup
s∈[a,a+t[

||f(s)− f(a)||.

The continuity of f allows us to conclude .

Lemma 1.1.2. Let {T (t)}t≥0 a C0-semi-group, then,

lim
h−→0

1

h

∫ t+h

t

T (s)xds = T (t)x,∀t ≥ 0,∀x ∈ X (1.2)

Proof.

||1
h

∫ t+h

t

T (s)xds− T (t)x|| ≤ 1

h

∫ t+h

t

||T (s)x− T (t)x||ds

according to the Lemma 1.1.1 , then :

lim
h−→0

1

h

∫ t+h

t

||T (s)x− T (t)x||ds = 0

Proposition 1.1.1. Let {T (t)}t≥0 is a C0-semi-group and A its infinitesimal generator;

if x ∈ D(A) , so T (t)x ∈ D(A)

Proof. Let x ∈ D(A) , so for everything t ≥ 0 , we have :

T (t)Ax = T (t) lim
h−→0

T (h)x− x
h

= lim
h−→0

T (h)T (t)x− T (t)x

h
.

Therefore T (t)x ∈ D(A) .

Proposition 1.1.2. Let {T (t)}t≥0 and A its infinitesimal generator,
then, ∫ t

0

T (s)xds ∈ D(A),∀x ∈ D(A) (1.3)

Example. Let

C = {f : [0,+∞[−→ R, f is uniformly continuous and bounded}.

and
||f || = sup

α∈[0,+∞[

|f(α)|, (T (t)f)α = f(t+ α) , ∀ t ≥ 0 and α ∈ [0,+∞[

3



1. ∀ f ∈ C, ∀ α ≥ 0,

(T (0)f)α = f(0 + α)

= f(α)

Therefore T(0)=I.

2. ∀ f ∈ C, ∀ t,s ≥ 0

(T (t+ s)f)α = f(t+ s+ α)

= (T (t)f)(s+ α)

= (T (t) · T (s)f)α

Therefore T(t+s)=T(t)·T(s).

3. ∀ f ∈ C,

lim
t−→0
||T (t)f − f ||C = lim

t−→0
{ sup
α∈[0,+∞[

|f(t+ α)− f(α)|}

= 0.

Similarly, we have:

||T (t)f ||C = sup
α∈[0,+∞[

|(T (t)f)α|

= sup
α∈[0,+∞[

|f(t+ α)|

= sup
β∈[t,+∞[

|f(β)|

≤ sup
β∈[0,+∞[

|f(β)| = ||f ||C ,∀t ≥ 0.

Therefore ||T (t)|| = 1,∀t ≥ 0,

so {T (t)}t≥0 is a C0-semi-group of linear operators bounded on C.
Let A : D(A) ⊂ C −→ Cthe infinitesimal generator of the semi-group {T (t)}t≥0

If f ∈ D(A), so we have:

Af(α) = lim
t−→0

T (t)f(α)− f(α)

t

= lim
t−→0

f(α + t)− f(α)

t
= f ′(α)

uniformly compared to α.Therefore

D(A) ⊂ {f ∈ C, f ′ ∈ C}. (1.4)

4



If f ∈ C such that f ’∈C,Therefore:wwwwT (t)f − f
t

− f ′
wwww
C

= sup
α∈[0,+∞[

∣∣∣∣(T (t)f)α− f(α)

t
− f ′(α)

∣∣∣∣
But ∣∣∣∣(T (t)f)α− f(α)

t
− f ′(α)

∣∣∣∣ =

∣∣∣∣f(α + t)− f(α)

t
− f ′(α)

∣∣∣∣
=

∣∣∣∣1t [f(τ)]α
α+t − f ′(α)

∣∣∣∣
=

1

t

∣∣∣∣∫ α+t

α

(f ′(τ)− f ′(α))dτ

∣∣∣∣
≤ 1

t

∫ α+t

α

|f ′(τ)− f ′(α)|dτ −→ 0.

uniformly compared to α for t −→ 0. Therefore:wwwwT (t)f − f
t

− f ′
wwww
C

−→ 0, If t −→ 0,

Therefore f ∈ D(A) and :
{f ∈ C, f ′ ∈ C} ⊂ D(A) (1.5)

From (1.4) and (1.5) we conclude D(A) = {f ∈ C, f ′ ∈ C}
Let f ∈ C and tn > 0,n∈ N such that lim

n−→0
tn = 0,therefore:

According to (1.3) we obtain

fn =
1

tn

∫ tn

0

T (s)fds ∈ D(A),∀n ∈ N

so

lim
n−→0

fn = lim
n−→0

1

tn

∫ tn

0

T (s)fds

= T (0)f

= f.

Therefore D(A)=C
finally we deduce D(A) is dense in C .

Theorem 1.1.1. a linear operator A is the infinitesimal generator of a uniformly continuous
semi-group on X , if and only if A is a bounded linear operator .

Proof. (⇐=) Let A ∈ £(X) , for t ≥ 0 , Let’s pose :

T (t) = etA =
+∞∑
n=0

tnAn

n!
.
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This series is convergent and defines a bounded linear operator.
It’s clear that T (0) = I and for all t, s ≥ 0

T (t+ s) = e(t+s)A = etA.esA = T (t) · T (s).

On the other hand , ∀t ≥ 0 :

||T (t)− I|| =

wwwww
+∞∑
n=0

tnAn

n!
− I

wwwww
=

wwwww
+∞∑
n=1

tnAn

n!

wwwww
≤

+∞∑
n=1

tn||A||n

n!

=⇒ lim
t−→0
||T (t)− I||B(X) = 0

∀ t > 0 we have : wwwwT (t)− I
t

− A
wwww =

wwwwetA − It
− A

wwww
=

wwwww1

t

+∞∑
n=2

tnAn

n!

wwwww
≤ 1

t

+∞∑
n=2

tn||A||n

n!

≤ 1

t

(
et||A|| − 1− t||A||

)
−→t−→00

Therefore

lim
t−→0

T (t)− I
t

= A.

So (T (t))t≥0 is a uniformly continuous semi-group .
(=⇒) Let (T (t))t≥0 a uniformly continuous semi-group of infinitesimal generator A .
By (Lemma 1.1.1) we have :

1

t

∫ a+t

a

f(s)ds = f(a)

∀ s , s’ ∈ [a,a+t] , ||f(s)− f(s′)|| ≤ ε
The continuity of f allows us to conclude , the application

R+ −→ B(X)

t 7−→ T (t)

6



is continuous .
as
∫ t

0
T (s)ds is well defined , from the Lemma 1.1.1

1

t

∫ t

0

T (s)ds converges(in norm) to I.

it exists Φ > 0 such that wwww 1

Φ

∫ Φ

0

T (s)− I
wwww < 1

which implies
1

Φ

∫ Φ

0

T (s)ds is invertible

and ∫ Φ

0

T (s)ds. is also invertible

For h > 0, we have :(
T (h)− I

h

)(∫ Φ

0

T (s)ds

)
=

1

h

[∫ Φ

0

[T (h+ s)− T (s)]ds

]
=

1

h

(∫ Φ+h

Φ

T (s)ds−
∫ h

0

T (s)ds

)
.

Therefore

T (h)− I
h

=

[
1

h

∫ Φ+h

Φ

T (s)ds− 1

h

∫ h

0

T (s)ds

] [∫ Φ

0

T (s)ds

]−1

.

From the Lemma 1.1.1 , we obtain by passing the limit h −→ 0+

lim
h−→0+

T (h)− I
h

= (T (Φ)− I)

(∫ Φ

0

T (s)ds

)−1

.

Thus the infinitesimal generator of the semi-group (T (t))t≥0 is the bounded linear operator .

A = (T (Φ)− I)

(∫ Φ

0

T (s)ds

)−1

.

Corollary 1.1.2. Let T (t) be a uniformly continuous semi-group of bounded linear operators.
Then

a) There exists a constant w ≥ 0 , M ≥ 0 such that ‖T (t)‖ ≤Mewt.

b) There exists a unique bounded linear operator A such that T (t) = etA.

c) The operator A in part (b) is the infinitesimal generator of T (t).

d) t 7→ T (t) is differentiable in norm and

dT (t)

dt
= AT (t) = T (t)A.

7



Proof. See [1].

Theorem 1.1.3. Let T (t)t≥0 be a C0 semi-group and let A be its infinitesimal generator. Then a

a) For x ∈ X

lim
h−→0

1

h

∫ t+h

t

T (s)xds = T (t)x

b) For x ∈ X,
∫ t

0
T (s)xds ∈ D(A) and

A

(∫ t

0

T (s)xds

)
= T (t)x− x

c) For x ∈ D(A),T (t)x ∈ D(A) and

d

dt
T (t)x = AT (t)x = T (t)Ax

d) For x ∈ D(A)

T (t)x− T (s)x =

∫ t

s

AT (τ)xdτ =

∫ t

s

T (τ)Axdτ.

Proof. Let T (t) be a C0 semi-group and let A be its infinitesimal generator.
a) one has deduce easily from Lemma 1.1.2
b) Let x ∈ X and h > 0.one has ,

T (h)− I
h

∫ t

0

T (s)xds =
1

h

∫ t

0

T (s+ h)xds− 1

h

∫ t

0

T (s)xds

=
1

h

∫ t+h

h

T (µ)xdµ− 1

h

∫ t

0

T (s)xds

=
1

h

∫ t+h

0

T (µ)xdµ− 1

h

∫ h

0

T (µ)xdµ− 1

h

∫ t

0

T (µ)xdµ

=
1

h

∫ t+h

t

T (µ)xdµ− 1

h

∫ t

0

T (µ)xdµ

by crossing limit for h −→ 0 and according to Lemma1.1.1,we obtain

A

(∫ t

0

T (s)xds

)
= T (t)x− x, ∀x ∈ X .

c) Let x ∈ D(A),t ≥ 0 and h>0 so:wwwwT (t+ h)x− T (t)x

h
− T (t)Ax

wwww ≤ ||T (t)||
wwwwT (h)x− x

h
− Ax

wwww
≤Mewt

wwwwT (h)x− x
h

− Ax
wwww .

8



Therefore,

lim
h−→0

T (t+ h)x− T (t)x

h
= T (t)Ax

so :
d+

dt
T (t)x = T (t)Ax,∀t ≥ 0.

if t-h >0 ,we have :wwwwT (t− h)x− T (t)x

−h
− T (t)Ax

wwww ≤ ||T (t− h)||
wwwwT (h)x− x

h
− Ax+ Ax− T (h)Ax

wwww
≤Mew(t−h)

(wwwwT (h)x− x
h

− Ax
wwww+ ||T (h)Ax− Ax||

)
.

Therefore,

lim
h−→0

T (t− h)x− T (t)x

−h
= T (t)Ax.

So ,
d−

dt
T (t)x = T (t)Ax,∀t ≥ 0.

We conclude: T (t)x is differentiable on [0,+∞[ regardless of x ∈ D(A) .
and we have equality :

d

dt
T (t)x = AT (t)x = T (t)Ax

d) The result is obtained by integrating the identity c) between s and t .

Corollary 1.1.4. If A is the infinitesimal generator of a C0 semi-group T (t) then D(A), the
domain of A, is dense in X and A is a closed linear operator .

Theorem 1.1.5. Let T (t) and S(t) be C0 semi-groups of bounded linear operators with infinites-
imal generators A and B respectively. If A = B then T (t) = S(t) for t −→ 0 .

Proof. Let x ∈ D(A) , t > 0 and let f : [0, t] −→ X be given by

f(s) = S(t− s)T (s)x

Fo each s ∈ [0, t] , By ((c) in Theorem 1.1.3) , it follows f is differentiable on [0, t] , and that :

f ′(s) = −AS(t− s)T (s)x+ S(t− s)AT (s)x

= −AS(t− s)T (s)x+ AS(t− s)T (s)x

= 0.

For each s ∈ [0, t] , thus f is constant , hence we have f(0)=f(t) , or equivalently S(t)x=T(t)x for
each x ∈ D(A) . Since D(A) is dense in X and S(t) , T(t) are linear bounded operators , we easily
conclude that S(t)x=T(t)x for each x ∈ X , which completes the proof .

9



Theorem 1.1.6. (Hille-Yosida). A linear (unbounded) operator A is the infinitesimal generator
of a C0 semi-group of contractions T (t), t −→ 0 if and only If

i) A is closed and D(A) = X.

ii) The resolvent set ρ(A) of A contains R+ and for every λ > 0 we have :

||R(λ,A)|| ≤ 1

λ

Proof. See [1]

Corollary 1.1.7. If (A,D(A)) is the infinitesimal generator of a strongly continuous semi-group
on X , (S(t))t≥0, then D(A) is dense in X, and A is closed .

Definition 1.1.7. A strongly continuous semi-group (S(t))t≥0 on X is a semi-group of contrac-
tions if

‖S(t)‖ ≤ 1

for all t ≥ 0.

Theorem 1.1.8. (To Schauder)
Let Y a Banach space .
Let C0 a closed convex bounded of Y .
and T : C0 −→ C0 a continuous application such as T (C0) compact.then T admits at least one
fixed point in C0

Theorem 1.1.9. (Sadovski)
Be Y a Banach space .
C0 a closed convex bounded ,and T : C0 −→ C0 continuous
α(·) non-compactness measurement .
∀ B bounded and α(B) > 0 α(TB) < α(B)
So T admits at least one fixed point in C0.

10



CHAPTER 2

SOME PARTICULAR C0-SEMI-GROUPS

2.1 Differentiable C0-semi-groups

Definition 2.1.1. A C0-semi-group (T (t))t≥0 on X is said differentiable if for every
x ∈ X , the application t 7−→ T(t)x is differentiable for t > t0.

Theorem 2.1.1. Let (T (t))t≥0 a C0-semi-group and A its infinitesimal generator , the following
statements are equivalent :

i) (T (t))t≥0 is a differentiable C0-semi-group .

ii) Im(T(t)) ⊂ D(A), ∀ t > 0.

Proof. (i) =⇒ (ii) : Let x ∈ X and t, h > 0.
Since the application ]0,+∞) 3 t 7−→ T (t)x ∈ X is differentiable , so

lim
h−→0

T (t+ h)x− T (t)x

h
exists

so T(t)x ∈ D(A) , from where Im(T(t)) ⊂ D(A).

(ii) =⇒ (i) : Let x ∈ X and t, h > 0.
That T(t)x ∈ D(A) , so :

d+

dt
T (t)x = lim

h−→0+

T (t+ h)x− T (t)x

h
= AT (t)x.

11



On the other hand , for h ∈]0, t[ and δ ∈]0, t− h[ we have :wwwwT (t− h)x− T (t)x

−h
− AT (t)x

wwww =

wwwwT (t− δ)T (δ)x− T (t− h− δ)T (δ)x

h
− AT (δ)T (t− δ)x

wwww
=

wwww1

h

[∫ t−δ

t−h−δ

d+

ds
T (s)T (δ)xds−

∫ t−δ

t−h−δ
AT (δ)T (t− δ)xds

]wwww
=

wwww1

h

∫ t−δ

t−h−δ
[AT (δ)T (s)− AT (δ)T (t− δ)]xds

wwww
≤ 1

h
||AT (δ)||

∫ t−δ

t−h−δ
||T (s)x− T (t− δ)x||ds

=
1

h
||AT (δ)||h||T (c)x− T (t− δ)x||

= ||AT (δ)||||T (c)x− T (t− δ)x||.

where c ∈ [t− h− δ, t− δ].Therefore

d−

dt
T (t)x = lim

h−→0+

T (t− h)x− T (t)x

−h
= AT (t)x.

so (T (t))t≥0 is a differentiable C0-semi-group .

Proposition 2.1.1. Let (T (t))t≥0 is a differentiable C0-semi-group so the application :

]0,+∞) 3 t 7−→ T (t) ∈ B(X)

is continuous for the topology of uniform convergence .

Proof. Let x ∈ X and t1, t2 ∈]0,+∞) such as t1 < t2.given the Theorem 2.1.1 , we obtain :

||T (t1)x− T (t2)x|| =
wwww∫ t2

t1

d

ds
T (s)xds

wwww
=

wwww∫ t2

t1

AT (t1)T (s− t1)xds

wwww
≤ ||AT (t1)||

∫ t2

t1

Me(s−t1)w||x||ds.

Therefore,we have :

||T (t1)x− T (t2)x|| ≤ ||AT (t1)||M
∫ t2

t1

e(s−t1)w||x||ds .

it follows the uniform continuity of the application considered in the statement .

Theorem 2.1.2. Let T(t) a C0-semi-group and A its infinitesimal generator so :

12



i) ∀ n ∈ N∗ , ∀ x ∈ X :
T (x) ∈ D(An)

and

AnT (t)x =

[
AT

(
t

n

)]n
x, ∀t > 0.

ii) For every n ∈ N∗ , the application :

]0,+∞) 3 t 7−→ T (t) : X −→ D(An)

is n times differentiable for the topology of uniform convergence and :

T (n)(t) =
dn

dtn
T (t) = AnT (t)

iii) For every n ∈ N∗ , the application : [0,+∞) 3 t 7−→ T (n)(t) ∈ B(X) is continuous for the
topology of uniform convergence.

Proof. Prove the statement of the statement by induction.
i) with the Theorem 2.1.1 , we see that for every x ∈ X we have T(t)x ∈ D(A) and :

AT (t)x =

[
AT

(
t

1

)]1

x, ∀t > 0.

Suppose for every x ∈ X we are T (t)x ∈ D(Ak) and :

AkT (t)x =

[
AT

(
t

k

)]k
x, ∀t > 0.

Let x ∈ X and δ ∈]0, t[. we see that

T (t− δ)T (δ)x ∈ D(A)

and :

AT (t)x = AT (t+ δ)T (δ)x

= T (t− δ)AT (δ)x ∈ D(Ak)

Therefore T (t)x ∈ D(Ak+1) , ∀ t > 0. Furthermore :

Ak+1T (t)x = A[AkT (t− δ)T (δ)]x

= A[T (t− δ)AkT (δ)]x

= AT (t− δ)
[
AT

(
δ

k

)]k
x.

if δ = kt
k+1

, he comes :

Ak+1T (t)x =

[
AT

(
t

k + 1

)]k+1

x.

13



Finally , we obtain i)
ii) For n=1 , given the Theorem 2.1.1 and of the Proposition 2.1.1 , it follows that the application
:

]0,+∞) 3 t 7−→ T (t) : X −→ D(A)

is differentiable for the topology of uniform convergence and :

T ′(t) = AT (t) ,∀ t > 0.

as A is a closed operator and T(t) ∈ B(X),it follows that AT(t) is closed operator defined on
X.With the closed graph theorem,we see that AT(t) ∈ B(X) , ∀ t>0 , suppose the application :

]0,+∞) 3 t 7−→ T (t) : X −→ D(Ak)

is k times differentiable for the topology of uniform convergence and :

T (k)(t) = AkT (t) ∈ B(X) ,∀ t > 0.

Moreover, With the previous proof , we see that T(t)x ∈ D(Ak+1) , for every t > 0.
Be x ∈ X ,||x|| ≤1 and t > 0 , if h > 0 and δ ∈ ]0,t[ ,we have :wwwwT (k)(t+ h)− T (k)(t)

h
− Ak+1T (t)x

wwww =

wwwwAkT (δ)

h
[T (t+ h− δ)− T (t− δ)]x− Ak+1T (δ)T (t− δ)x

wwww
=

wwwwAkT (δ)

h

∫ t+h−δ

t−δ

d

dτ
T (τ)xdτ − Ak+1T (δ)

1

h

∫ t+h−δ

t−δ
T (t− δ)xdτ

wwww
=

wwwwAkT (δ)

h

∫ t+h−δ

t−δ
AT (τ)xdτ − Ak+1T (δ)

1

h

∫ t+h−δ

t−δ
T (t− δ)xdτ

wwww
=

wwww1

h
Ak+1T (δ)

∫ t+h−δ

t−δ
[T (τ)− T (t− δ)]xdτ

wwww
≤ ||A

k+1T (δ)||
h

∫ t+h−δ

t−δ
||T (τ)− T (t− δ)||||x||dτ

= ||Ak+1T (δ)||||T (c)− T (t− δ)||||x||,

where c ∈ [t− δ, t+ h− δ]. it follows that :wwwwT (k)(t+ h)− T (k)(t)

h
− Ak+1T (t)

wwww ≤ ||Ak+1T (δ)||||T (c)− T (t− δ)||,

where c ∈ [t− δ, t+ h− δ].Therefore :

lim
h−→0

T (k)(t+ h)− T (k)(t)

h
= Ak+1T (t) , ∀ t > 0.
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if h>0 such that t-h>0 and δ ∈ ]0, t− h[, so :wwwwT (k)(t− h)− T (k)(t)

−h
− Ak+1T (t)x

wwww =

wwwwAkT (δ)
1

h
[T (t− δ)− T (t− h− δ)]x− Ak+1T (δ)T (t− δ)x

wwww
=

wwwwAkT (δ)
1

h

∫ t−δ

t−h−δ

d

dτ
T (τ)xdτ − Ak+1T (δ)

1

h

∫ t−δ

t−h−δ
T (t− δ)xdτ

wwww
=

wwwwAkT (δ)
1

h

∫ t−δ

t−h−δ
AT (τ)xdτ − Ak+1T (δ)

1

h

∫ t−δ

t−h−δ
T (t− δ)xdτ

wwww
=

wwww1

h
Ak+1T (δ)

∫ t−δ

t−h−δ
[T (τ)− T (t− δ)]xdτ

wwww
≤ ||A

k+1T (δ)||
h

∫ t−δ

t−h−δ
||T (τ)− T (t− δ)||||x||dτ

= ||Ak+1T (δ)||||T (c)− T (t− δ)||||x||,

where c ∈ [t− h− δ, t− δ]. it follows that :wwwwT (k)(t− h)− T (k)(t)

−h
− Ak+1T (t)

wwww ≤ ||Ak+1T (δ)||||T (c)− T (t− δ)||,

where c ∈ [t− h− δ, t− δ].Therefore :

lim
h−→0

T (k)(t− h)− T (k)(t)

−h
= Ak+1T (t) ,∀ t > 0.

it follows that T (k)(t) is differentiable for the topology of uniform convergence and(
T (k)(t)

)′
= T (k+1)(t) = Ak+1T (t) ∀ t > 0.

as A is a closed operator and AkT (t) ∈ B(X),it follows that A
(
AkT (t)

)
is a closed operator

defined on X . with the closed graph theorem , we see that :

T (k+1)(t) = Ak+1T (t) ∈ B(X) ∀ t > 0.

Finally , we obtain ii).
iii) Let x ∈ X with ||x|| ≤ 1 and t>0.for h>0 and δ ∈ ]0, t[ we obtain :

||T ′(t+ h)x− T ′(t)x|| = ||AT (t+ h)x− AT (t)x||
≤ ||AT (δ)||||T (t+ h− δ)− T (t− δ)||||x||,

it follows
||T ′(t+ h)− T ′(t)|| ≤ ||AT (δ)||||T (t+ h− δ)− T (t− δ)||.

Similarly, for h>0 and δ ∈ ]0, t− h[ we obtain :

||T ′(t− h)x− T ′(t)x|| = ||AT (t− h)x− AT (t)x||
≤ ||AT (δ)||||T (t− h− δ)− T (t− δ)||||x||,
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Therefore
||T ′(t− h)− T ′(t)|| ≤ ||AT (δ)||||T (t− h− δ)− T (t− δ)||.

it is clear that the application :

]0,+∞) 3 t 7−→ T ′(t) ∈ B(X)

is continuous for the topology of uniform convergence . Suppose that the application:

]0,+∞) 3 t 7−→ T (k)(t) ∈ B(X)

is continuous for the topology of uniform convergence.
if h>0 and δ ∈ ]0, t[ , so :

||T (k+1)(t+ h)x− T (k+1)(t)x|| = ||Ak+1T (t+ h)x− Ak+1T (t)x||
≤ ||Ak+1T (δ)||||T (t+ h− δ)− T (t− δ)||||x||,

Therefore :

||T (k+1)(t+ h)− T (k+1)(t)|| ≤ ||Ak+1T (δ)||||T (t+ h− δ)− T (t− δ)||.

On the other hand , for h>0 and δ ∈ ]0, t− h[ we obtain :

||T (k+1)(t− h)x− T (k+1)(t)x|| = ||Ak+1T (t− h)x− Ak+1T (t)x||
≤ ||Ak+1T (δ)||||T (t− h− δ)− T (t− δ)||||x||,

and we can see :

||T (k+1)(t− h)− T (k+1)(t)|| ≤ ||Ak+1T (δ)||||T (t− h− δ)− T (t− δ)||.

so the application :
]0,+∞) 3 t 7−→ T (k+1)(t) ∈ B(X)

is continuous for the topology of uniform convergence.
Finally , we obtain iii).

Example. Let
X = {f ∈ C([0, 1],R); f(1) = 0} .

Equipped with the standard norm of uniform convergence,space X is a Banach space.
Let (T (t))t≥0 the family of linear operators defined on X by :{

(T (t)f)(x) = f(x+ t) si x+ t ≤ 1.

(T (t)f)(x) = 0 si x+ t > 1.

for every f ∈ X and every x ∈ [0,1].
so (T (t))t≥0 is a C0-semi-group of contractions on X.its infinitesimal generator A is given by :

D(A) = f ∈ C1([0, 1],R) ∩X; f ′ ∈ X

and
Af = f ′, forf ∈ D(A)

Furthermore (T (t))t≥0 is differentiable for t > 1.
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Remark. if (T (t))t≥0 is a differentiable C0-semi-group of infinitesimal generator A , so for every
x ∈ X :

i) d
dt
T (t)x = AT (t)x for t > 0

ii) t 7−→ AT (t)x is lipschitzienne for t > 0.

iii) Application : ]0,+∞) 3 t 7−→ T (t) ∈ B(X) is classy C∞]0,+∞)

2.2 Analytical C0-semi-groups

Definition 2.2.1. Let

∆ = {z ∈ C : ϕ1 < argz < ϕ2, ϕ1 < 0 < ϕ2} ,

and for z∈ ∆ let T(z) be a bounded linear operator . The family (T (z))z∈∆ is an analytic semi
group in ∆ if :

i) T(0)=I , T (z1 + z2) = T (z1) · T (z2) , ∀ z1,z2∈∆.

ii) lim
z−→0

T (z)x = x , ∀ x ∈ X , ∀ z ∈ ∆.

iii) The application z 7−→ T(z) is analytical on ∆ for the standard of B(X).

Theorem 2.2.1. Let (T (t))t≥0 be a uniformly bounded C0-semi-group such that ||T (t)|| ≤M and
A its infinitesimal generator such That 0 ∈ρ(A). The assertions are equivalent :

i) it exists δ > 0 such that (T (t))t≥0 can be extended into an analytical C0 semi-group on the sector
∆δ = {z ∈ C : |arg(z)| < δ} and (T (z))z∈∆δ′

is uniformly bounded in all closed subsectors

∆δ′ ⊂ ∆δ ,or δ′ ∈]0, δ[.

ii) there is a constant C > 0 such that for every σ > 0 and every τ 6= 0 we have:

||R(σ + iτ, A)|| ≤ C

|τ |
. (2.1)

iii) it exists 0 < δ < π
2

and K > 0 why

ρ(A) ⊃
∑
δ

=
{
λ ∈ C : |argλ| < π

2
+ δ
}
∪ {0} (2.2)

and

||R(λ,A)|| ≤ K

|λ|
,∀λ ∈

∑
δ

\ {0} (2.3)

iiii) The application ]0,+∞[3 t 7−→ T(t) is differentiable and there is a constant c > 0
such that :

||AT (t)|| ≤ c

t
,∀t > 0. (2.4)
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CHAPTER 3

NON LINEAR EVOLUTION PROBLEMS

3.1 Rappel

Let the homogeneous abstract problem of Cauchy :{
∂u
∂t

= Au(t)

u(0) = u0

(3.1)

Let X a Banach space . A : D(A) −→ X linear closed.
if A is an infinitesimal generator of a C0-semi-group (T (t))t>0 on X.
if u0 ∈ D(A) then the solution u of (3.1) is given by :u(t) = T (t).u0 is unique solution of (3.1) .
if u0 /∈ D(A) .t −→T(t).u0 is called mild solution{

∂u
∂t

= Au(t) + f(t, u(t)) , t > 0

u(0) = u0

(3.2)

3.2 Non-homogeneous problem{
∂u
∂t

= Au(t) + f(t) , t ≥ 0

u(0) = u0

(3.3)

f : R+ −→ X.

Definition 3.2.1. a continuous function u : R+ −→ X is said to be a strict solution of (3.3) if
-u ∈ C1(R+, X)
-u(t) ∈ D(A) . ∀ t ≥ 0
-u satisfies the equation (3.3) .

Definition 3.2.2. u : R+ −→ X continuous is said to be a classical solution if :
-u ∈ C1(R+, X)
-u(t) ∈ D(A) . ∀ t > 0
-u satisfies the equation (3.3) for t>0.
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Definition 3.2.3. u : R+ −→ X continuous is said to be a strong solution if :
-u is almost everywhere derivable on R+

-u(t) ∈ D(A) almost everywhere
-u satisfies the equation (3.3) almost everywhere.

Theorem 3.2.1. if u is strict solution of (3.3) . so :
u(t) = T (t)u0 +

∫ t
0
T (t− s)f(s)ds , t ≥ 0

Remark. if A ∈ £(X) =⇒ T(t)=etA and the solution given by : u(t)=etAu0+
∫ t

0
e(t−s)Af(s)ds.

Proof. u being the strict solution . g : [0, t] −→ X given by : g(s) = T (t−s)u(s) , so g ∈ C1([0, t]),
moreover

g′(s) = −AT (t− s)u(s) + T (t− s)u′(s)
= −AT (t− s)u(s) + T (t− s)Au(s) + T (t− s)f(s)

= T (t− s)f(s).

∫ t

0

g′(s)ds = g(t)− g(0) =

∫ t

0

T (t− s)f(s)ds

=⇒ u(t) = T (t)u0 +

∫ t

0

T (t− s)f(s)ds. (3.4)

Definition 3.2.4. If u satisfies (3.4) , so u is called mild solution of (3.3).

Remark. strict solution =⇒ classical solution =⇒ strong solution =⇒ mild solution

Example (*). Let y ∈ X\D(A) , and consider the next problem :{
X ′(t) = AX(t) + T (t)y , t ≥ 0

X(0) = X0

(3.5)

Let X the mild solution of (3.5) .

X(t) =

∫ t

0

T (t− s)T (s)yds

= tT (t).y is not differentiable.

Theorem 3.2.2. (regularity)
if u0 ∈ D(A) and f ∈ C1(R+, X) so the mild solution is a strict solution.

Proof. since u0 ∈ D(A) , t −→ T(t).u0 is C1 , ∂T
∂t

(t)u0 exist .

Set v(t) =
∫ t

0
T (t− s)f(s)ds.(

T (h)− I
h

)
v(t) =

1

h

∫ t

0

T (t+ h− s)f(s)ds− 1

h

∫ t

0

T (t− s)f(s)ds

=
1

h

∫ t+h

0

T (t+ h− s)f(s)ds+
1

h

∫ t

t+h

T (t+ h− s)f(s)ds− 1

h

∫ t

0

T (t− s)f(s)ds

=
v(t+ h)− v(t)

h
− 1

h

∫ t+h

t

T (t+ h− s)f(s)ds −→ v′(t)− T (0)f(t).
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Lemma 3.2.1. v is class C1 on R+ such that :
v’(t)=f(t)+

∫ t
0
T(t-s)f ’(s)ds.

v(t+ h)− v(t)

h
=

1

h

∫ t+h

0

T (s)f(t+ h− s)ds− 1

h

∫ t

0

T (s)f(t− s)ds

=

∫ t

0

T (s)
f(t+ h− s)− f(t− s)

h
ds+

1

h

∫ t+h

t

T (s)f(t+ h− s)ds

=⇒ v’(t)=T(t)f(0)+
∫ t

0
T(t-s)f ’(s)ds

=⇒ v’ ∈ C1(R+, X).

Remark. lim
h−→0+

T (h)−I
h

v(t) = Av(t) (because this limit exists)

Av(t)=v’(t)-f(t) . so v’(t)=Av(t)+f(t).
such that the mild solution u given by u(t)=T(t)u0+f(t).
so

u′(t) = AT (t)u0 + Av(t) + f(t)

= A[T (t)u0 + v(t)] + f(t)

= Au(t) + f(t).

3.3 Reflective space

X is said to be reflexive if any sequence (xn)n bounded in X admits a sub sequence (xnk)n which
converges weakly :

∀x∗ ∈ X∗ (dual topological) < x∗, xnk > −→k−→+∞ < x∗, x > is convergent.

Examples of reflective spaces

• Hilbert spaces
• Lp(Ω) 1 < p <∞
• Uniformly convex space.

Theorem 3.3.1. Let f:[a,b] −→ H (H Hilbert)be a Lipschitzienne function =⇒ f is almost by
everywhere differentiable on [a,b].

Theorem 3.3.2. We suppose that f:[a,b] −→ X is lipschitzienne and u0 ∈ D(A) , so the mild
solution of (3.3) is a strong solution on [a,b] .

xnk −→ x =⇒ ∀x∗ ∈ X∗, < x∗, xnk >−→< x∗, x > .

Proof. Let u be the mild solution of (3.3)
so : u(t)=T(t)u0+v(t) ,such that

v(t) =

∫ t

0

T (s)f(t− s)ds.
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”the domain of derivation of f ⊂ the domain of derivation of v”

Or :
[
T (h)−I

h

]
v(t)=v(t+h)−v(t)

h
+ 1
h

∫ t
t+h

T(t+h-s)f(s)ds

Almost everywhere t ∈ [a,b]

Av(t) =
v(t+ h)− v(t)

h
+

1

h

∫ t

t+h

T (t+ h− s)f(s)ds

Remark. v’(t)=Av(t)+f(t) almost everywhere t ∈ [0,a].

Example. Let Ω fairly regular open . Let the following partial differential equation :
∂u
∂t

(t, x) = ∆u(t, x) + θ(t, x) , t ≥ 0, x ∈ Ω
u(t, x) = 0 , t ≥ 0, x ∈ ∂Ω
u(0, x) = u0(x)

(3.6)

or : θ:[0,a]×Ω−→R is continuous.
|θ(t1,x)-θ(t2,x)| ≤K| t1-t2|
H=L2(Ω) : D(∆)=H2(Ω)∩H1

0(Ω)
• −∆ is maximal monotonic , so ∆ is infinitesimal generator of a C0-semi-group ;
Let

f : [0, a] −→ H2(Ω)

t 7−→ f(t) = θ(t.·)

Let’s pose v(t)=u(t,0) . ∀ t ∈ [0,a] ,
∫
Ω

f2(t,x)dx < +∞.
So {

v′(t) = Av(t) + f(t) , t ≥ 0 (so that θ is in L2(Ω))

v(0) = v0

(3.7)

Let t1,t2 ∈ [0,a]

||f(t1)− f(t2)||2L2(Ω) =

∫
Ω

(θ(t1, x)− θ(t2, x))2dx

≤ K2mes(Ω)|t1 − t2|2

=⇒ ||f(t1)− f(t2)|| ≤ K
√
mes(Ω)|t1 − t2|

The mild solution v of (3.7) get strong
u(t,x)=v(t)(x) satisfies the following model C0-semi-group associated with ∆ :

Ω =]0, π[, H = L2(]0, π[)

T(∆)={−n2, n ≥ 1}
-n2 eigenvector associated with the eigenvector sin(nx).
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3.4 Non linear equation{
∂x
∂t

= Ax(t) + f(t, x(t))

x(0) = x0 ∈ X
(3.8)

A is an infinitesimal generator of a C0-semi-group on X
f : R+×X −→ X a continuous function

strict solution =⇒ classical solution =⇒ strong solution =⇒ mild soltion.

A mild solution of (3.8) on [0,a] (on R+) is a continuous function on [0,a] satisfies :

x(t) = T (t)x0 +

∫ t

0

T (t− s)f(x, x(s))ds t ∈ [0, a]

Theorem 3.4.1. Suppose that f is lipschitzienne at 2nd variable : ∃ K:R+ −→ R+ continuous
such that :

||f(t, x)− f(t, y)||X ≤ K(t)||x− y||X ∀t ≥ 0,∀x, y ∈ X.

So (3.8) admits a mild solution set to R+.

Proof. Let a> 0 , Ma= supt∈[0,a] |T (t)| ; Ka= supt∈[0,a] |K(t)| ; Ca=C([0,a],X)
For y ∈ Ca

L : Cα −→ Cα

y 7−→ (Ly)(t) = T (t)x0 +

∫ t

0

T (t− s)f(s, y(s))ds.

Let y1,y2 ∈ Ca

Ly1(t)− Ly2(t) =

∫ t

0

T (t− s)(f(s, y1(s))− f(s, y2(s)))ds

|Ly1(t)− Ly2(t)| ≤MaKat|y1 − y2| , ∀t ∈ [0, a]

2nd iteration

|L2y1(t)− L2y2(t)| ≤ (MaKat)
2

2
|y1 − y2| ≤

(MaKaa)2

2
|y1 − y2|

∃ n :
(MaKaa)n

n!
< 1

so ||Lny1(t)− Lny2(t)| ≤ (MaKaa)n

n!
|y1 − y2|

From where K admits a unique fixed point.
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Remark.
f continuous; existance of mild solution

See the Example(*) {
x′(t) = f(t, x(t))

x(0) = x0

(3.9)

Theorem 3.4.2. If T(t) is compact for t > 0
And f : R+ ×X −→ X continuous ;
so ∃ b > 0 such that : (3.8) admits at least mild solution on [0, b].

Proof. f is continuous in [0, x0]
∃ M> 0 |f(t, y)| ≤M ; ∃ r > 0 , ∃ α > 0

Let C̃α={y ∈ Cα : |y(t)− x0| ≤ r , ∀t ∈ [0, α]}
C̃α is a closed and bounded convex .
so LCα ⊆ C̃α Let y ∈ C̃α

|Ly(t)− x0| ≤ |T (t)x0 − x0|+
∫ t

0

|T (t− s)f(s, y(s))|ds

for t small enough |T (t)x0 − x0| ≤ r
2∫ t

0

|T (t− s)||f(s, y(s))|ds ≤ tMα.M

≤ r

2
for t pertty small.

∃ β > 0 such that if t ≤ β , |Ly(t)− y0| ≤ r
so

LCβ ⊆ Cβ

We prove LCα is compact.

Equi-boundedness

Let t ∈ [0, β] : {Ly(t), y ∈ Cβ} compact on X
if t=0 obvious
Let 0 < t < β,

Ly(t) = T (t)x0 +

∫ t

0

T (t− s)f(s, y(s))ds.

Let ε > 0 such that ε < t,

∫ t

0

T (t− s)f(s, y(s))ds =

∫ t−s

0

T (t− s)f(s, y(s))ds+

∫ t

t−s
T (t)f(s, y(s))ds

= T (ε)

∫ t

0

T (t− ε− s)f(s, y(s))ds+O(ε)
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Non compactness measure

i) α(B)=0 ⇔ B Compact.

ii) α(B1+B2) ≤ α(B1)α(B2)

iii) α(B(0,ε)) ≤ 2ε

iiii) α(λB) ≤ |λ| α(B)

α ({Ly(t), y ∈ Cβ}) ≤ 0 +O(ε) ∀ε < t

ε −→ 0 α
({
Ly(t), y ∈ C̃β

})
= 0

so
{
Ly(t), y ∈ C̃β

}
is compact.

The continuity

Let xn −→n−→+∞ x we demonstrate that :

Lxn(t) −→n−→+∞ Lx(t)

According to the Theorem 3.4.1 we have :

|Lxn(t)− Lx(t)| = |
∫ t

0

T (t− s)(f(s, xn(s))− f(s, x(s)))ds|

≤MaKat|xn − x| −→n−→+∞ 0

with Ma= supt∈[0,a] |T (t)| ; Ka= supt∈[0,a] |K(t)|
Therefore K is continuous.

Theorem 3.4.3. Let Y is a Banach space and (Tn)n ⊆ £(Y )
Such that Tn−→n−→+∞T
so : ∀ B compact in Y

sup
y∈B
|Tn(y)− T (y)|−→n−→+∞0

Back to demonstration:

Equi-continuous: ∀ t0 ∈ [0,β]
supy∈C̃β |Ly(t)− Ly(t0)|−→t−→t00 t > t0

|Ly(t)− Ly(t0)| ≤ |T (t)x0 − T (t0)x0|+ |
∫ t0

0

(T (t− s)− T (t0 − s))f(s, y(s))ds|+
∫ t

t0

|T (t− s)f(s, y(s))|ds

|T (t)x0 − T (t0)x0| −→ 0 t −→ t0.

|
∫ t
t0

(T (t− s)f(s, y(s))ds| ≤ k|t− t0| ∀y ∈ C̃β.∫ t0
0

(T (t− s)− T (t0 − s))f(s, y(s))ds = (T (t− t0)− I)
∫ t0

0
(T (t− s)f(s, y(s))ds

supz∈K0
|T (t− t0)z − z|−→t−→t00

so LC̃β is compact.

Schauder′s theorem =⇒ admits at least one fixed point.
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Theorem 3.4.4. If moreover f is bounded ;
so (3.8) admits a maximum solution defined on [0,tmax[ ,
with 0 < tmax ≤ +∞.
If tmax < +∞ =⇒ lim

t−→tmax
|x(t)|=+∞.

Theorem 3.4.5. Let f :]α, β[−→ Y full , uniformly continuous , so lim
x−→α

f(x) , lim
x−→β

f(x) exist

in Y .

Theorem 3.4.6. (T (t))t≥0 C0-semi-group compact operators.
f : R+ ×X −→ X bounded continuous .
so (3.8) admits a maximum solution defined on [0,tmax[
with 0 < tmax ≤ +∞.
If tmax <∞ so limt−→tmax |x(t)|=+∞.

Proof. we suppose that tmax < +∞ and limt−→tmax |x(t)| <+∞
∃ M > 0 : ∀ t < tmax : |x(t)| ≤M . Let t < tmax and h > 0

x(t+ h)− x(t) = T (t) (T (h)x0 − x0) +

∫ t+h

0

T (t+ h− s)f(s, x(s))ds−
∫ t

0

T (t− s)f(s, x(s))ds

= T (t) (T (h)x0 − x0) +

∫ t

0

(T (t+ h− s)− T (t− s))f(s, x(s))ds

−
∫ t+h

t

T (t+ h− s)f(s, x(s))ds

T (t) (T (h)x0 − x0)−→h−→00 and
∫ t+h
t

T (t+ h− s)f(s, x(s))ds = O(h)∫ t
0
(T (t+ h− s)− T (t− s))f(s, x(s))ds=(T (h)− I)

∫ t
0
T (t− s))f(s, x(s))ds

D =

{∫ t

0

T (t− s))f(s, x(s))ds : t ∈ [0, tmax[

}
is compact ?

Let (tn)n ⊆ [0, tmax[ : ∃ (tnk)k −→ t
if t < tmax :

∫ tn
0
T (tn − s))f(s, x(s))ds

converge to
∫ t

0
T (t− s))f(s, x(s))ds

if t = tmax .
∫ tnk

0
T (tnk − s))f(s, x(s))ds =

∫ tmax
0

1[0,tnk]T (tnk − s))f(s, x(s))ds
Or
∀ s ∈ [0, tmax[

1[0,tnk]T (tnk − s))f(s, x(s))ds−→k−→+∞T (tmax − s)f(s, x(s)).

By the Lebesgue dominated convergence∫ tnk
0

T (tnk − s))f(s, x(s))ds −→
∫ tmax

0
T (tnk − s))f(s, x(s))ds

D compact =⇒ supz∈D |T (h)z − z|−→h−→00 ∀ t.
From where x(t+ h)− x(t)−→h−→00
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Regularity : {
x′(t) = Ax(t) + f(t, x(t)) ∀t ≥ 0

x(0) = x0

(3.10)

A infinitesimal generator of a C0-semi-group (T (t))t≥0

|f(t, x)− f(t, y)| ≤ k|x− y| ,
(3.10) admits at a mild solution . t ≥ 0 , x, y ∈ X.

x(t) = T (t)x0 +

∫ t

0

T (t− s)f(s, x(s))ds t ≥ 0

Proposition 3.4.1. if x0 ∈ D(A) and if another ”t 7−→ f(t, x(t))” is class C1 , so x is a strict
solution of (3.10)

Proof. Let u(t) = f(t, x(t)).

(3.10)⇐⇒

{
x′(t) = Ax(t) + u(t) ∀t ≥ 0

x(0) = x0

u ∈ C1(R+, X) , x0 ∈ D(A)

x(t) = T (t)x0 +

∫ t

0

T (t− s)u(s)ds.

According to the regulator for non homogeneous problems.
X ∈ C1(R+, X) and

x′(t) = Ax(t) + u(t)

= Ax(t) + f(t, x(t))

Remark. Under which conditions t 7−→ f(t, x(t)) is a class C1 .

Theorem 3.4.7. If f a C1(R+ ×X,X) and Dtf , Dxf are locally lipschitzian 2nd variable.
if x0 ∈ D(A) , so the mild solution becomes strict.(By the regularity)

Proof. It suffices to show that t 7−→ f(t, x(t)) is a class C1 (See Proposition 3.4.1)
it comes down to showing that x ∈ C1(R+, X)
∀x0 ∈ X, ∃V open ,∃x0 such that :

|Dtf(t, x)−Dtf(t, y)| ≤ k|x− y| ∀x, y ∈ V
|Dxf(t, x)−Dxf(t, y)| ≤ k|x− y|

=⇒


∀K compact of X, ∃k > 0 such that :

|Dtf(t, x)−Dtf(t, y)| ≤ k|x− y| ∀x, y ∈ K
|Dxf(t, x)−Dxf(t, y)| ≤ k|x− y|

x(t) = T (t)x0 +
∫ t

0
T (t− s)f(s, x(s))ds t ∈ [0, a]

either the following problem :{
y′(t) = Ay(t) +Dtf(t, x(t)) +Dxf(t, x(t))(y(t))

y(0) = Ax0 + f(0, x0)
(3.11)
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y’(t)=Ay(t)+g(t,y(t))

|g(t, y1)− g(t, y2)| ≤ K(t)|y1 − y2|
Such that : K(t) = |Dxf(t, x(t))|,
so (3.11) admits a mild solution in [0,a] .

y(t) = T (t)(Ax0 + f(0, x0)) +

∫ t

0

T (t− s) [Dsf(s, x(s)) +Dxf(s, x(s))(y(s))]

Let z(t) = x0 +
∫ t

0
y(s)ds;

so z ∈ C1([0, a], X) , such that x ≡ z
Therefore

z(t) = x0+

∫ t

0

T (s)Ax0ds+

∫ t

0

T (s)f(0, x0)ds+

∫ t

0

∫ s

0

T (s−τ) [Dτf(τ, x(τ)) +Dxf(τ, x(τ))(y(τ))] dxdτ

On the other hand ∫ t

0

T (s)Ax0ds = A

∫ t

0

T (s)x0ds

= T (t)x0 − x0.

t 7−→ z(t)is a classC1 =⇒ (t 7−→ f(t, z(t)) is a class C1)

=⇒ t −→
∫ t

0

T (t− s)f(s, x(s))ds is a class C1

We have :

d

dt

∫ t

0

T (s)f(t− s, z(t− s))ds =

∫ t

0

T (s) [Dtf(t− s, z(t− s)) +Dxf(t− s, z(t− s))y(t− s)] ds

+ T (t)f(0, x0)

= T (t)f(0, x0) +

∫ t

0

T (t− s) [Dtf(s, z(s)) +Dxf(s, z(s))y(s)] dτds.

Consequently,∫ t

0

T (s)f(0, x0)ds =

∫ t

0

T (t− s)f(s, z(s))ds

−
∫ t

0

∫ s

0

T (s− τ) [Dτf(τ, z(τ)) +Dxf(τ, z(τ))y(τ)] dτds

So,

z(t) = T (t)x0 +

∫ t

0

T (t− s)f(s, z(s))ds

+

∫ t

0

∫ s

0

T (s− τ) [Dτf(τ, x(τ))−Dτf(τ, z(τ))]

+

∫ t

0

∫ s

0

T (s− τ) [Dxf(τ, x(τ))−Dxf(τ, z(τ))] y(τ)
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x(t) = T (t)x0 +

∫ t

0

T (t− s)f(s, x(s))ds

so

|x(t)− z(t)| ≤ k

∫ t

0

|x(s)− y(s)|ds

K = {x(s), τ(s), s ∈ [0, a]} is compact.

Lemma 3.4.1. (Gronwall)
x ≡ z on [0, a] ie x ∈ C1(R+, X). Then t 7−→ f(t, x(t)) is a class C1

Theorem 3.4.8. We suppose that X is a Hilbert space and f : R+ ×X −→ X bi-lipschitzian ie:
∃ k > 0 such that :

||f(t, x)− f(s, y)|| ≤ k(||t− s||R+ + ||x− y||X)

If x0 ∈ D(A) , so the mild solution becomes strong.(See the Theorem 3.3.2)

Proof. Let a > 0, it suffices to prove that the mild solution x is lipschitzian .

x(t) = T (t)x0 +

∫ t

0

T (t− s)e(s)ds

this amounts to showing that :

s 7−→ e(s) = f(s, x(s)) is lipschitzian.

Let h > 0 ,

x(t+ h)− x(t) = T (t+ h)x0 − T (t)x0 +

∫ t

0

T (s) (f(t+ h− s, x(t+ h− s))− f(t− s, x(t− s))) ds

+

∫ t+h

t

T (s)f(t+ h− s, x(t+ h− s))ds

So

|x(t+ h)− x(t)| ≤ |T (t+ h)x0 − T (t)x0|+Mak

∫ t

0

|x(t+ h− s)− x(t− s)|ds

≤ o(h) +Mak

∫ t

0

|x(h+ s)− x(s)|ds

≤ o(h)eMaka.

Let t→ x(t) is lipschitzian on [0, a]⇒ t→ f(t, x(t)) is lipschitzian on [0, a] , t→ e(t) is lipschitzian
on [0, a].
Hence the existence of the strong solution .
Stability and asymptotic behavior .
Either the autonomous system :

(1)

{
x′(t) = Ax(t) + f(x(t)), t > 0

x(0) = 0
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A infinitesimal generator of a C0-semi-group (T (t))t≥0 and f : X → X lipschitzian

x(t) : X −→ X

x0 7−→ x(t)x0 = x(t, x0)

x(t, x0)exists it is the mild solution of (1),
(x(t))t≥0 is a C0-semi-group

We calculated this limit

lim
t→+∞

x(t, x0)

|x(t)x0 − x(t)y0| ≤ βeαt|x0 − y0|, ∀t ≥ 0,

x0 → x(t, x0) is continuous.

Proposition 3.4.2. If limt→+∞ = x̄. So x̄ satisfies Ax̄+ f(x̄) = 0 ie x̄ is equilibrium point .

Proof. Let x̄ = limt→+∞ x(t, x0) = limt→+∞ x(t)x0

x(s)x̄ = x(s)( lim
t→+∞

x(t)x0)

= lim
t→+∞

(x(s)x(t)x0) = lim
t→+∞

(x(s+ t)x0).

u(s)x̄ = x̄, ∀s ≥ 0
ie x̄ is a fixed point for u(s),∀s ≥ 0

u(t)x̄ = T (t)x̄+

∫ t

0

T (t− s)f(u(s)x̄)ds

u(t)x̄ = T (t)x̄+

∫ t

0

T (t− s)f(x̄)ds

0 = u(t)x̄−x̄
t

= T (t)x̄−x̄
t

+ 1
t

∫ t
0
T (t− s)f(x̄)ds→t−→0 A(x̄) + f(x̄)

Equation at equilibrium {
Ax̄+ f(x̄) = 0

x̄ ∈ D(A)

Definition 3.4.1. Let x̄ is equilibrium point :
x̄ is stable ⇐⇒ ∀ε > 0,∃η > 0 |x0 − x̄| < η
⇒ supt≥0|x(t)x0 − x̄ ≤ ε x̄ is said to be asymptotically stable if x̄ is stable and another ∃U
contains x̄ such that :

∀x0 ∈ U lim
t→+∞

u(t)x0 = x̄
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x̄ is said to be exp-stable if x̄ is stable another we have ∃U contains x̄,∃α , M > 0 Such that

∀x0 ∈ U |u(t)x0 − x̄| ≤Me−αt

x̄ is said to be unstable if x̄ is not stable

and
∃xn −→ x,∃(tn), |u(tn)xn − x̄| > ε

Linear equation

(2)

{
x′(t) = Ax(t) t ≥ 0

x(0) = x0 ∈ X

0 is always a point of equilibrium.
we know ∃M ≥ 1,∃w ∈ R such that |T (t)| ≤Mewt.
The type of (T (t)t≥0 is defined by : w0(T ) = inf[w ∈ R supt≥0 (e−wt|T (t)|) < +∞]

Proposition 3.4.3. if w0(T ) < 0, so:

|T (t)| −→ 0

Theorem 3.4.9. w0(T ) = limt→+∞
log|T (t)|

t

Definition 3.4.2. The spectral terminal ζ(A) of A is defined by :

ζ(A) = sup{Re(λ) : λ ∈ σ(A)}

Theorem 3.4.10. Let T (t) est compact for t > 0 so :

σ(A) = σp(A)

w0(T ) = sup{Re(λ) : λ ∈ σ(T )} < +∞.

Remark. In the general case we have : ζ(A) ≤ w0(T )

General formula :

w0(T ) = max(ζ(A), wess(T ))
On the other hand

wess(T ) = sup
{
w ∈ R : sup

{
e−wt|T (t)|ess

}
< +∞

}
On the other hand | · |ess is defined by :
for K ∈ £(X)

|k|ess = inf {M > 0 |α(K(B))| ≤Mα(B)} ∀ B bounded of X

α(·) measure of non-compactness.

Lemma 3.4.2. If T (t) is compact for t > 0 , so :
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(i) ζ(A) < 0 =⇒ T (t) −→ 0

(ii) ζ(A) = 0 =⇒ ∃x0 ∈ X |T (t)x0| = |x0| , ∀t > 0

(iii) ζ(A) > 0 =⇒ ∃x0 ∈ X : T (t)x0 −→ +∞

Proof. (ii)
T(t) compact =⇒ ζ(A) is reached , so

∃λ0 ∈ σp(A) such that ζ(A) = Re(λ0).

Re(λ0) = 0. ∃x0 6= 0 such as : Ax0 = λ0x0 =⇒ T (t)x0 = eλ0tx0 , so

|T (t)x0| = |x0|.

formula :

If the eigenvalues are simple and if ζ (A) = 0 so :

∃m ≥ 1 such that |T (t)| ≤M (here T (t) compact)

Theorem 3.4.11. Let x equilibrium point.
We suppose that f is differential in x .Let B=f(x) ∈ £(X)
We suppose that T (t) is compact , ∀ t> 0.
Let (v(t))t≥0 the C0-semi-group solution of the linear system .{

y′(t) = (A+B)y(t) t > 0

y(0) = y0

so we have :

(i) ζ(A+B) < 0 =⇒ x is exponentially stable

(ii) ζ(A+B) > 0 =⇒ x is unstable

v(t)x = T (t)x+

∫ t

0

T (t− s)Bv(s)xds v(t) is compact , for t > 0

ζ(A+B) < 0 =⇒ v(t) −→ 0.

ζ(A+B) > 0 =⇒ v(t) −→ +∞.

Theorem 3.4.12. (Desh + Shappache).
Let Y a Banach space and (S(t))t≥0 C0-semi-group, we suppose ∃ X̄∈X , such that
S(t)x̄ = x̄ , t ≥ 0, be (R(t))t≥0 C0-semi-group of generator Q.
if w0(Q) < 0 so x̄ is exponentially stable , then R(t) is compact for t > 0.
if w0(Q) > 0 so x̄ is unstable.
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Proof. (theorem 3.4.11) we suppose that x̄ = 0
it suffices to show that v(t) = u′(t)(0) and we conclude with the theorem (Desh + Shappache).
ie

∀ε > 0,∃δ > 0, |x0| < δ =⇒ |u(t)x0 − v(t)x0| < ε|x0|,

and
|u(t)x0| < βeαt|x0|.

u(t)x0 = T (t)x0 +

∫ t

0

T (t− s)f(u(s)x0)ds

v(t)x0 = T (t)x0 +

∫ t

0

T (t− s)B(v(s)x0)ds

u(t)x0 − v(t)x0 =
∫ t

0
T (t− s) (f(u(s)x0)−B(u(s)x0)) ds+

∫ t
0
T (t− s) (B(u(s)x0)−B(v(s)x0)) ds

f is differential in x̄ = 0 . Let ε > 0

∃ δ > 0 such that : |x| < δ + |f(x)−B(x)| < ε|x|

We have |u(t)x0| ≤Meβt|x0|.

|f(u(s)x0)−B(u(s)x0)| < ε · |u(s)(x0)| < εK1|x0|

|u(t)x0 − v(t)x0| ≤ K̄1ε|x0|+ K̄2

∫ t

0

|u(s)x0 − v(s)x0|ds ∀s ≤ t

By Gronwall’s lemma we have :

|u(t)x0 − v(t)x0| ≤ K̄1ε|x0|eK̄2t = o(ε)|x0|

Hence the result.

Application:

Reaction-diffusion model.
Ω is regular open bounded of Rn.

∂u
∂t

(t, x) = ∆u(t, x) + f(u(t, x))

u(t, x) = 0, ∀t ≥ 0.∀x ∈ ∂Ω
u(0, x) = u0(x)

f : R −→ R is regular .
X = L2(Ω) ; A = −∆
D(A) = H2(Ω) ∩H1

0(Ω).

Theorem 3.4.13.

σ(∆) = σp(∆)

= {λn , n ≥ 1}
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· · · < λn+1 < λn < · · · < λ0 < 0.

Moreover the eigenvectors normalized in associated with λn form a Hilbertian basis in  L2(Ω) ,
∀ f ∈  L2(Ω):

f =
+∞∑
n=1

< f, en > en.

||f || =

√√√√+∞∑
n=1

| < f, en > |2

We have :

T (t)f =
+∞∑
n=1

eλnt < f, en > en

Theorem 3.4.14. T(t) is compact for t > 0

T (t)f = lim
N−→+∞

N∑
n=1

eλnt < f, en > en

= lim
N−→+∞

SN(t)f.

SN(t)
(
L2(Ω)

)
= vect {e1, · · · , eN} ⇐⇒ of finished rank.

so SN(t) is compact.
||T (t)− SN(t)|| −→N−→+∞0.

We suppose that u is solution of the reaction-diffusion module on [0, a]×Ω
Let

v : [0, a] −→ L2(Ω)

t 7−→ v(t)

v(t)(x) = u(t, x).

F : L2 −→ L2

v 7−→ F (v)

F (v, x) = F (v(x)).
So

(3)

{
v(t) = Av(t) + F (v(t)) , t ≥ 0

v(0) = u0

Lemma 3.4.3. |f(x)| ≤ a|x|+ b. a, b > 0.
f : R −→ R is continuous
so f : L2 −→ L2 is continuous .
(3) admits a maximal mild solution defined on [0, tmax[.
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if tmax <∞ =⇒ limt−→tmax|u(t)| = +∞

if Lipf <∞ =⇒ LipF <∞

(3) admits a mild solution defined on [0,+∞[.

stability :

f(0)=0

Equation of equilibrium :

{
∆v + f(v) = 0

vn∂Ω = 0
f differentiable in 0 .

The linearised equation around 0 is given by :

(4)


∂v
∂t

(t, x) = ∆v(t, x) + av(t, x) t ≥ 0, x ∈ Ω
v(t, x) = 0,∀t ≥ 0.∀x ∈ ∂Ω
v(0, x) = v0(x)

with a = f ′(0)

(4)⇐⇒

{
w′ = Bw

w(0) = w0

with B = ∆ + aI .
Let (SB(t))t≥0 the C0-semi-group generated by B .
Therefore

SB(t)f = eatT (t)f.

= eat
∞∑
n=1

eλnt < f, en > en.

SB(t) is compact for t ≥ 0 so

w0(SB) = ζ(B)

= sup {Re(λ), λ ∈ σp(B)}

λn function of Ω

σp(B) = σp(∆ + aI)

= {λn + a, n ≥ 1}

so : ζ(B) = λ0 + a .
According the Theorem 3.4.11 we have :

λ0 + a < 0 =⇒ 0 is exp− stable.

λ0 + a > 0 =⇒ 0 is unstable.
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CHAPTER 4

STRUCTURE OF SOLUTION SETS FOR
DIFFERENTIAL EVOLUTION EQUATIONS

IN BANACH SPACE

4.1 Introduction

In this Chapter, we study structure of solutions sets to an initial value problem (IVP for short) for
a non-homogeneous differential evolution equation with non-local initial conditions More precisely
we consider the IVP

x′(t) = Ax(t) + f(t, x(t)), t ∈ [0, b] (4.1)

x(0) = x0 − g(x), (4.2)

where f : [0, b]×X → X. g : C([0, b], X)→ X functions that will be specified later, A : D(A) ⊂
X → X is the infinitesimal generator of a C0-semigroup T (t), t ≥ 0, and X a real separable
Banach space with norm |.|.

4.2 Contractibility for the solution sets for the nonhomo-

geneous problem

4.2.1 Preliminaries

First, we recall some elementary notions and notations from geometric topology . In what follows
(X, d) and (Y, d

′
) stand for two metric spaces.

Definition 4.2.1. Let A ∈ P (X). The set P (A) is called a contractible space provided there exists
a continuous homotopy H : A× [0, 1] −→ A and x0 ∈ A such that
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(a) H(x, 0) = x, for every x ∈ A,

(b) H(x, 1) = x0, for every x ∈ A,

Definition 4.2.2. A ∈ P (X) is a retract of X if there existe a continuous map
r : X −→ A such that r(a) = a for every a ∈ A.

Definition 4.2.3. A compact nonempty space X is called an Rδ − set provided there exists a
decreasing sequence of compact nonempty contractible spaces {Xn}n∈N such that X =

⋂∞
n=1 Xn.

Definition 4.2.4. A space X is called an absolute retract (in short X ∈ AR) provided that for
every space Y , every closed subset B ⊆ Y and any continuous map ϕ : B −→ X, there exists a
continuous extension g : Y −→ X of ϕ over Y that is

g(x) = ϕ(x) for every x ∈ B.

In other words, for every space Y and for any embedding ϕ : X −→ Y , the set ϕ(X) is a retract
of Y .

Let us recall the well-known Lasota-Yorke approximation lemma, [8, 7].

Lemma 4.2.1. Let E be a normed space, X a metric space and F : X −→ E be a continuous
map. Then for each ε > 0 there is a locally Lipschitz map Fε : X −→ E such that

‖F (x)− Fε(x)‖ < ε, for every x ∈ X.

Next, we present a result about the topological structure of the solution set of some nonlinear
functional equations due to N. Aronszajn and developed by Browder and Gupta [5, 3].

Theorem 4.2.1. Let (X, d) be a metric space, (E, ‖.‖) a Banach space and F : X −→ E a proper
map, i.e., F is continuous and for every compact K ⊂ E, the set F−1(K) is compact. Assume
further that for each ε > 0, a proper map Fε : X −→ E is given, and the following two conditions
are satisfied

(a) ‖Fε(x)− F (x)‖ < ε, for every x ∈ X,

(b) for every ε > 0 and u ∈ E in a neighborhood of the origin such that ‖u‖ ≤ ε, the equation
Fε(x) = u has exactly one solution xε,

then the set S = F−1(0) is an Rδ − set.

Lemma 4.2.2. Let E be a Banach space, C ⊂ E be a nonempty closed bounded subset of E and
F : C −→ E is an completely continuous map, then G = Id− F is proper.
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4.2.2 Existence result

In this section, we denote by S(f, x0, g) the set of all solutions of the problem (4.1)− (4.2) .
We have to prove that solution sets S(f, x0, g) is contractible.
. Before stating and proving this result, we give the definition of its mild solution.

Definition 4.2.5. A function x ∈ C([0, b], X) is said to be a mild solution of problem (4.1)–(4.2)
if x(0) = x0 − g(x), and x is a solution of integral equation

x(t) = T (t)(x0 − g(x)) +
∫ t

0
T (t− s)f̃(s, x(s))ds, t ∈ [0, b].

We consider the following problem

x′(t) = Ax(t) + f̃(t, x(t)), t ∈ [0, b] (4.3)

x(0) = x0 − g(x), (4.4)

Theorem 4.2.2. Assume that

(H1) There exists a constant η > 0 such that |g(t, u) − g(t, u1)| ≤ η|u − u1|, for each t ∈ [0, b],
and each u, u1 ∈ X.

(H2) There exists a constant µ > 0 such that |f̃(t, u) − f̃(t, u1)| ≤ µ|u − u1|, for each t ∈ [0, b],
and each u, u1 ∈ X.

If
M (η + µb) < 1. (4.5)

then (4.3)-(4.4) has a unique solution x on [0, b].

We transform the problem (4.3) − (4.4) into a fixed point problem. Consider the operator
N : C([0, b], X) −→ C([0, b], X) defined by

N(x)(t) = T (t)(x0 − g(x)) +

∫ t

0

T (t− s)f̃(s, x(s))ds, t ∈ [0, b].

We use Banach fixed point theorem to prove the existence solution. Clearly, the fixed points
of the operator N are solution of the problem (4.3)-(4.4). We shall use the Banach contraction
principle to prove that N has a fixed point. We shall show that N is a contraction. Let x1, x2 ∈
C([0, b], E). Then, for each t ∈ [0, b] we have

Proof.

|N(x)(t)−N(x̄)(t)| ≤ |T (t)(g(x̄)− g(x))|+
∫ t

0

∣∣∣T (t− s)
[
f̃(s, x(s))− f̃(s, x̄(s))

]∣∣∣ ds
≤Mη|x− x̄|+M

∫ t

0

µ|x− x̄|ds

≤M (η + µb) |x− x̄|,

if M (η + µb) < 1 so N is a contraction , with M = supt∈[0,b] |T (t)|.
Therefore the fixed point of the operator N is solution of the problem (4.3)-(4.4) .
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Claim 1. Define the homotopy H : S(f, x0, g)× [0, b] −→ S(f, x0, g) by

H(x, λ)(t) =

{
x(t), 0 < t ≤ λb
x(t) λb < t ≤ b.

where x = S(f, x0, g) is the unique solution of problem (4.3)− (4.4). In particular

H(x, λ) =

{
x, for λ = 1,
x, for λ = 0.

We prove that H is a continuous homotopy. Let (xn, λn) ∈ S(f, x0, g) × [0, b] be such that
(xn, λn) −→ (x, λ), as n −→ +∞.
We shall prove that H(xn, λn) −→ H(x, λ), we have

H(xn, λn)(t) =

{
xn(t), for t ∈ (0, λnb],
x(t), for t ∈ (λnb, t].

We consider several cases,

(a) if limn−→+∞ λn = 0,

|H(xn, λn)(t)−H(x, λ)(t)| ≤ |H(xn, λn)(t)−H(x, λ)(t)|[0,λ b]

+ |H(xn, λn)(t)−H(x, λ)(t)|[λ b,λn b] + |H(xn, λn)(t)−H(x, λ)(t)|[λn b,b]

≤ |xn(t)− x(t)|[0,λ b] + |xn(t)− x(t)|[λ b,λn b] + |x(t)− x(t)|[λn b,b]

≤ |xn(t)− x(t)|[0,λ b] + |xn(t)− x(t)|[λ b,λn b]

≤ (Mη +Mµb)‖xn − x‖+ (Mη +Mµb)|xn(t)− x(t)|[λ b,λn b],

which tends to 0 as n −→ +∞.

(b) If limn−→∞ λn = 1,

it’s treated similarly.
If λn 6= 0 and 0 < limn−→∞ λn < 1,

two cases must be treated,

• t ∈ (0, λn],

then H(xn, λn)(t) = H(x, λ)(t) = xn(t)− x(t),

xn(t) = T (t)(x0 − g(xn)) +

∫ t

0

T (t− s)f̃(s, xn(s))ds,

since f is continuous function,

x(t) = T (t)(x0 − g(x)) +

∫ t

0

T (t− s)f̃(s, x(s))ds

‖H(xn, λn)−H(x, λ)‖X −→ 0 as n −→ +∞,
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• t ∈ (λn, 1],

then H(xn, λn)(t) = H(x, λ)(t) = x(t), thus

‖H(xn, λn)−H(x, λ)‖X −→ 0 as n −→ +∞.

Therefore H is a continuous function, proving that S(f, x0, g) is contractible to the point x.

4.3 Toplogical structure for nonlinear impulsive differen-

tial evolution equation

Our aim in this section is to study the compactness of solution sets for the nonlinear impulsive
problem,

x′(t) = Ax(t) + f(t, x(t)), t ∈ [0, b] (4.6)

∆x|tk = Ik(x(t−k )), (4.7)

x(0) = x0 − g(x), (4.8)

Ik : X → X, 0 = t0 < t1 < . . . < tm < tm+1 = b and ∆x|tk = x(t+k ) − x(t−k ), where
x(t+k ) = limt−→t+k

x(t) and x(t−k ) = limt−→t−k
x(t).

Firstly , we give our main existence result for problem (4.6)–(4.8). Before stating and proving
this result, we give the definition of its mild solution.

Definition 4.3.1. A function x ∈ PC ([0, b] , X) is said to be a mild solution of problem (4.6)–
(4.8) if x(t) = x0 − g(x) and x is a solution of impulsive integral equation

x(t) = T (t)(x0 − g(x)) +
∫ t

0
T (t− s)f(t, x(s))ds+

∑
0<tk<t

T (t− tk)Ik(x(t−k )), t ∈ [0, b].

our result is based on the nonlinear alternative of Leray-Schauder type.
We assume the following hypotheses :

(H1) A : D(A) ⊂ X → X is the infinitesimal generator of a C0-semigroup {T (t)}, t ∈ [0, b] which
is compact for t > 0 in the Banach space X. Let M = sup{‖T (t)‖B(X) : t ∈ [0, b]};

(H2) f : [0, b]× R→ R is a continuous function.

(H3) There exist constants a , c ∈ R+

|f(t, u)| ≤ a|u|+ c

for t ∈ [0, b] and u ∈ X.

(H4) There exist constants ak, bk ∈ R+ such that

|Ik(u)| ≤ ak|u|+ bk for u ∈ X.
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(H5) There exists a constant l′ > 0 such that

|g(u2)− g(u1)| ≤ l′|u2 − u1|,

for each t ∈ [0, b], and each u2, u1 ∈ X.

(H6) There exists a constant ξ > 0 such that

|g(u)| ≤ ξ,

for each u ∈ X.

Theorem 4.3.1. Under assumptions (H1)− (H6), the solution set S4(f, x0, g) is an Rδ- set .

Transform the problem (4.6)-(4.8) into a fixed point problem. Consider the operator
N : PC([0, b], X) −→ PC([0, b], X) defined by Our main result in this section is based upon

the following fixed point theorem .

Theorem 4.3.2. Let X be a Banach space, and A, B : X → X two operators satisfying:

(i) A is a contraction, and

(ii) B is completely continuous.

Then either

(a) the operator equation x = A(x) + B(x) has a solution, or

(b) the set E =
{
u ∈ X : λA

(u
λ

)
+ λB(u) = u

}
is unbounded for λ ∈ (0, 1).

Theorem 4.3.3. Assume that (H1)-(H6) hold. Then the problem (4.6)–(4.8) has at least one
mild solution on [0, b].

Proof. Transform the problem (4.6)-(4.8) into a fixed point problem. Consider the two
operators:

A,B : PC ([0, b] , X)→ PC ([0, b] , X)

defined by

A(x) (t) =
∑

0<tk<t

T (t− tk) Ik
(
x
(
t−k
))
, if t ∈ [0, b],

and

B(x) (t) = T (t)(x0 − g(x)) +

∫ t

0

T (t− s)f (s, x(s)) ds, if t ∈ [0, b].

Then the problem of finding the solution of problem (4.6)–(4.8) is reduced to finding the solution
of the operator equation
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A (x) (t) +B (x) (t) = x (t) , t ∈ [0, b]. We shall show that the operators A and B satisfies all the
conditions of Theorem 4.3.2. For better readability, we devide the proof into a sequence of steps.

Step 1: B is continuous.

Let {xn} be a sequence such that xn → x in PC([0, b], X). Then for t ∈ [0, b]

|B(xn)(t)− B(x)(t)| = M |g(xn)− g(x)|+
∣∣∣∣∫ t

0

T (t− s)[f(s, xn(s))− f(s, x(s))]ds

∣∣∣∣
≤Ml′||xn − x||PC +M

∫ b

0

|f(s, xn(s))− f(s, x(s))| ds.

Since f(s, ·) is continuous for a.e. s ∈ [0, b], we have by the Lebesgue dominated convergence
theorem

||B(xn)(t)− B(x)(t)||PC → 0 as n→∞.

Thus B is continuous.

Step 2: B maps bounded sets into bounded sets in PC([0, b], X).
There exists a positive constant l then we have for each t ∈ [0, b],

|B(x)(t)| =
∣∣∣∣T (t)(x0 − g(x)) +

∫ t

0

T (t− s)f(s, x(s))ds

∣∣∣∣
≤M |x0|+M |g(x)− g(0)|+M |g(0)|+ aM |x|b+Mcb;

Then we have

||B(x)||PC ≤M |x0|+ ||x||PC |(Ml′ + aMb) +Mξ +Mcb = l.

Step 3: B maps bounded sets into equi-continuous sets of PC([0, b], X).

Let τ1, τ2 ∈ [0, b]\ {t1, ..., tm} , τ1 < τ2.Thus if ε > 0 and ε ≤ τ1 < τ2 we have

|B(x)(τ2)− B(x)(τ1)| ≤ |T (τ2)(x0 − g(x))− T (τ1)(x0 − g(x))|

+ (a||x||PC + c)

∫ τ1−ε

0

‖T (τ2 − s)− T (τ1 − s)‖B(X)ds

+ (a||x||PC + c)

∫ τ1

τ1−ε
‖T (τ2 − s)− T (τ1 − s)‖B(X)ds

+ (a||x||PC + c)

∫ τ2

τ1

‖T (τ2 − s)‖B(X)ds.

As τ1 → τ2 and ε become sufficiently small, the right-hand side of the above inequality tends to
zero, since T (t) is a strongly continuous operator and the compactness of T (t) for t > 0 implies
the continuity in the uniform operator topology ([1]). This proves the equi-continuity for the case
where t 6= ti, k = 1, 2, . . . ,m+ 1. It remains to examine the equi-continuity at t = ti.

First we prove equi-continuity at t = t−i . Fix δ1 > 0 such that {tk : k 6= i}∩[ti − δ1, ti + δ1] = ∅.
For 0 < h < δ1 we have
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|B(x)(ti − h)− B(x)(ti)| ≤ | (T (ti − h)− T (ti)) (x0 − g(x))|

+

∫ ti−h

0

| (T (ti − h− s)− T (ti − s)) f(s, x(s))|ds

+M(a||x||PC + c)h;

which tends to zero as h→ 0.
Define

B̂0(x)(t) = B(x)(t), t ∈ [0, t1]

and

B̂i(x)(t) =

{
B(x)(t), if t ∈ (ti, ti+1]
B(x)(t+i ), if t = ti.

Next we prove equi-continuity at t = t+i . Fix δ2 > 0 such that {tk : k 6= i}∩[ti − δ2, ti + δ2] = ∅.
For 0 < h < δ2 we have

|B̂(x)(ti + h)− B̂(x)(ti)| ≤ | (T (ti + h)− T (ti)) (x0 − g(x))|

+

∫ ti

0

| (T (ti + h− s)− T (ti − s)) f(s, x(s))|ds

+M(a||x||PC + c)h.

The right-hand side tends to zero as h→ 0. The equi-contnuity for the cases τ1 < τ2 ≤ 0.
As consequence of Steps 1 to 3 together with Arzelá-Ascoli theorem it suffices to show that B

maps B into a precompact set in X.
Let 0 < t < b be fixed and let ε be a real number satisfying 0 < ε < t.

Bε(x)(t) = T (t)(x0 − g(x)) + T (ε)

∫ t−ε

0

T (t− s− ε)f(s, x(s))ds.

Since T (t) is a compact operator, the set

Xε(t) = {Bε(x)(t) : x ∈ Bq}

is precompact in X for every ε, 0 < ε < t. Moreover, for every y ∈ Bq we have

|B(x)(t)− Bε(x)(t)| ≤
∫ t

t−ε
‖T (t− s)‖B(X)(a|x(s)|+ c)ds

≤M(a||x||PC + c)ε.

Therefore, there are precompact sets arbitrarily close to the set Xε(t) = {Bε(x)(t) : x ∈
Bq}. Hence the set X(t) = {B(x)(t) : x ∈ Bq} is precompact in X. Hence the operator
B : PC ([0, b] , X)→ PC ([0, b] , X) is completely continuous.
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Step 4: A is a contraction

Let x, y ∈ PC([0, b], X). Then for t ∈ [0, b]

|A(y)(t)−A(x)(t)| =

∣∣∣∣∣ ∑
0<tk<t

T (t− tk)
(
Ik
(
y
(
t−k
))
− Ik

(
x
(
t−k
)))∣∣∣∣∣

≤M
∑

0<tk<t

∣∣Ik (y (t−k ))− Ik (x (t−k ))∣∣
≤M

m∑
k=1

ak
∣∣y (t−k )− x (t−k )∣∣

≤M

m∑
k=1

ak ‖y − x‖ .

Then

‖A(y)−A(x)‖ ≤M
m∑
k=1

ak ‖y − x‖ ,

which is a contraction, since M
m∑
k=1

ak < 1 .

Step 5: A priori bounds.

Now it remains to show that the set

E =
{
x ∈ PC([0, b], X) : x = λB(x) + λA

(x
λ

)
for some 0 < λ < 1

}
is bounded.

Let x ∈ E , then x = λB(x) + λA
(x
λ

)
for some 0 < λ < 1. Thus, for each t ∈ [0, b],

x(t) = λT (t)(x0 − g(x)) + λ

t∫
0

T (t− s)f(s, xs)ds+ λ
∑

0<tk<t

T (t− tk) Ik
(x
λ

(
t−k
))
.
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This implies by (H3), (H4), (H5) and (H6) that, for each t ∈ [0, b], we have

|x(t)| ≤ λM |(x0 − g(x))|+ λM

t∫
0

(a|x(s)|+ c)ds+ λM

m∑
k=1

∣∣∣Ik (x
λ

(
t−k
))∣∣∣

≤ λM |x0|+ λM |g(x)− g(0)|+ λM |g(0)|+ λM(a||x||PC + c)b

+ λM
m∑
k=1

∣∣∣Ik (x
λ

(
t−k
))∣∣∣

≤ λM (|x0|+ |g(0)|+ bk) + λM(a||x||PC + c)b+ λM
m∑
k=1

ak

∣∣∣x
λ

(
t−k
)∣∣∣+ λMl′||x||PC

≤M (|x0|+ |g(0)|+ bk) +M(a||x||PC + c)b+M
m∑
k=1

ak
∣∣x (t−k )∣∣+Ml′||x||PC

≤M (|x0|+ |g(0)|+ bk) +Mab||x||PC +Mbc+M ||x||PC
m∑
k=1

ak +Ml′||x||PC

≤M (|x0|+ ξ + bk) + ||x||PC(Mab+Ml′ +M
m∑
k=1

ak) +Mbc

Therefore [
1−Mab−Ml′ −M

m∑
k=1

ak

]
||x||PC ≤M (|x0|+ ξ + bk) +Mcb

If we assume that (
Mab+Ml′ +M

m∑
k=1

ak

)
< 1

we’ll have

||x||PC ≤
M (|x0|+ ξ + bk) +Mcb[

1−Mab−Ml′ −M
m∑
k=1

ak

]
This shows that the set E is bounded. As a consequence of Theorem 4.3.2 we deduce that A+ B
has a fixed point which is a mild solution of problem (4.6)–(4.8).

4.3.1 Compactness of Solution Set

Now we show that the set

S = {x ∈ C([0, b], X) : x is a solution of (4.1)− (4.2)} is compact.

Let (xn)n∈N be a sequence in S.
We put B = {xn : n ∈ N} ⊆ C([0, b], X). Then from earlier parts of the proof of this theorem,

we conclude that B is bounded and equi-continuous. Then from the Ascoli-Arzela theorem, we
can conclude that B is compact.
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Consider the equation the problem (4.1)-(4.2) following :

x′(t) = Ax(t) + f(t, x(t)), a.e t ∈ [0, b],

x(0) = x0 − g(x).

Hence:
xn|[0,b] has a subsequence (xnm)nm∈N converges to x with
x is a solution of (4.1)-(4.2)}.

Let

x(t) = T (t)(x0 − g(x)) +

∫ t

0

T (t− s)f(s, x(s))ds,

and

|xnm(t)− x(t)| ≤ |g(xnm)| − g(x)|+
∫ t

0

T (t− s)|f(s, xnm(s))− f(s, x(s))|ds.

As nm → +∞, xnm(t)→ x(t), and then

x(t) = T (t)(x0 − g(x)) +

∫ t

0

T (t− s)f(s, x(s))ds.

Hence S(f, x0, g) is compact.

4.3.2 The solution set is an Rδ-set

Define

f̃(t, x(t)) =

{
f(t, x(t)), |x(t)| ≤M ′,

f(t, x(M
′x(t)
|x(t)| )), |x(t)| ≥M ′,

Since f is continuous, the function f̃ is continuous and it is bounded by (H1). So there exists
M ′ > 0 such that

|f̃(t, x)| ≤M ′, for a.e. t and all x ∈ R. (4.9)

We consider the following modified problem,{
x′(t) = Ax(t) + f̃(t, x(t)), t ∈ (0, b],
x(0) = x0 − g(x),

We can easily prove that S(f, x0, g) = S(f̃ , x0, g) = FixÑ , where

Ñ : C((0, b], X) −→ C((0, b], X)

is defined by

Ñ(x)(t) = T (t)(x0 − g(x)) +

∫ t

0

T (t− s)f̃(s, x(s))ds,
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‖Ñx‖ ≤M |x0 − g(x)|+MM ′b =: M∗.

Finally we have

‖Ñ(x)‖X ≤M∗,

then Ñ is uniformly bounded, as in steps 1 to 2 we can prove that

Ñ : C((0, b], X) −→ C((0, b], X),

is compact which allows us to define the compact perturbation of the identity
G̃(x) = x− Ñ(x) which is a proper map.

From the compactness of Ñ , we can easily prove that all conditions of Theorem (4.2.1) are
satisfied. Therefore the solution set S(f̃ , x0, g) = G̃−1(0) is an Rδ-set so S(f, x0, g) is an Rδ-set.
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