

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE
MINISTERE DE L’ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

 UNIVERSITE IBN KHALDOUN - TIARET

MEMOIRE

Présenté à :

FACULTÉ DES MATHEMATIQUES ET DE l’INFORMATIQUE

 DÉPARTEMENT D’INFORMATIQUE

Pour l’obtention du diplôme de :

MASTER

Spécialité: Génie Logiciel

Par:

 HADHBI ALI
 KACEM MOHAMED

Sur le thème

 Soutenu publiquement le 19 / 09 / 2022 à Tiaret devant le jury composé de :

Mr. DJAFRI Laouni MCA Président

Mr. BOUDAA Boudjemaa MCA Encadrant

Mme. LAAREDJ Zohra MAA Examinatrice

2021-2022

Convolutional Neural Networks for
Time Series Forecasting

I

Abstract
Time series forecasting occurs when you make scientific predictions based on historical

time stamped data. It involves building models through historical analysis and using them to
make observations and drive future Strategic decision-making. Their main specificities
compared to the most common areas of machine learning are their dependence over time and
their seasonal behaviors that can appear in their evolution. In the literature, statistical models
are widely used for time series forecasting. However, many complex models or approaches can
be very useful in some cases. Generalized Autoregressive Conditional Heteroskedasticity
(GARCH), Bayesian models and ARIMA vectors (VAR) are just a few examples. There are
also even time series models borrowed from deep learning. Deep learning methods do offer a
lot of promise for time series forecasting, specifically the automatic learning of temporal
dependence and the automatic handling of temporal structures like trends and seasonality.
Multilayer Perceptrons, Convolutional Neural Networks (CNN), or Recurrent Neural Network
(RNN) with LSTM or GRU cells can be successfully employed for time series forecasting
issues. Through this work, we aim to develop a CNN model for time series forecasting. The
proposed model will be experimented and evaluated on real-world datasets with the known
metrics in this field.
Key-words: Time Series Forecasting, CNN, GRU, Single-step, Multi-step, Univariate,
Multivariate.

Résumé

Les prévisions de séries chronologiques se produisent lorsque vous faites des prédictions
scientifiques basées sur des données historiques horodatées. Cela implique de construire des
modèles grâce à une analyse historique et de les utiliser pour faire des observations et orienter
la prise de décision stratégique future. Leurs principales spécificités par rapport aux domaines
les plus courants du machine Learning sont leur dépendance dans le temps et leurs
comportements saisonniers qui peuvent apparaître dans leur évolution. Dans la littérature, les
modèles statistiques sont largement utilisés pour la prévision des séries temporelles. Cependant,
de nombreux modèles ou approches complexes peuvent être très utiles dans certains cas.
L'hétéroscédasticité conditionnelle autorégressive généralisée (GARCH), les modèles
bayésiens et les vecteurs ARIMA (VAR) ne sont que quelques exemples. Il existe même des
modèles de séries chronologiques empruntés à l'apprentissage en profondeur. Les méthodes
d'apprentissage en profondeur offrent beaucoup de promesses pour la prévision des séries
chronologiques, en particulier l'apprentissage automatique de la dépendance temporelle et la
gestion automatique des structures temporelles telles que les tendances et la saisonnalité. Les
perceptrons multicouches, les réseaux de neurones convolutifs (CNN) ou les réseaux de
neurones récurrents (RNN) avec des cellules LSTM ou GRU peuvent être utilisés avec succès
pour les problèmes de prévision de séries chronologiques. A travers ce travail, nous visons à
développer un modèle CNN pour la prévision de séries temporelles. Le modèle proposé sera
expérimenté et évalué sur des ensembles de données du monde réel avec les métriques connues
dans ce domaine.
 Mots-clés: Prévision de séries chronologiques, CNN, GRU, Single-step, Multi-step,
Univariée, Multivariée.

II

Acknowledgment

First of all, praise be to God Almighty and thanked Him for His blessings throughout our

research work, which allowed us to complete it successfully. We have tested your guidance day

in and day out; you are the one who allows us to finish our studies. We will continue to trust

you for our future.

We would like to express our gratitude and special thanks to our supervisor Mr. Boudaa

Boudjemaa who made this work possible and whose office door was always open whenever we

encountered a problem or had any question about our research or writing, his guidance and

advice carried us through all stages of writing our project. It was a great honor and privilege

that we work under his supervision. We have been inspired by his dynamism, vision, honesty

and motivation. Thank you sir for your patience with us.

We would also like to thank our committee members for making our defense an

enjoyable moment, and for your great comments and suggestions, thank you. Finally, we

appreciate all the support we received from our family who have been the source of our

inspiration.

 Thank you all.

III

Dedications
 This message is dedicated to the Face of God, my Creator, Master, Teacher, and Great

Messenger, Muhammad (peace be upon him), who taught us the purpose of life. I dedicate my

graduation to my late mother, God willing, she is the one who taught me that love has no age

and that giving has no limits The female who shortens all women My dear mother, the candle

that burned to light my life path For the soul of my departed mother From our world that

remains in my eternal heart in my world to sacred love The pure angel, to whom God made

heaven under her feet, to the one who showered me with the flood of her tenderness, to the

one who starved to be sated, stayed up to sleep, tried to rest, cried to laugh, and watered me

from the source of her tenderness and sincerity, to the one who raised me young and advised

me big, the comfort of my eyes and my heart, my dear mother, may God have mercy on you.

 I dedicate my graduation to my dear father, who worked hard and made every effort and

supported me financially and morally and with all he could, may God prolong his life and

grant him health and wellness.

 I also dedicate this graduation to all my family, my sisters, my brothers, their wives, their

daughters and their children who have been credited with removing many obstacles and

difficulties from my path. I love you all.

 I also do not forget to give a big thank you to all my friends with whom I have studied over

the last five years. I should not forget my teachers, who had the greatest role in supporting me

and providing me with valuable information, praying to God Almighty to prolong your life

and bless you with bounties.
Hadhbi Ali

I dedicate this thesis to:

All my family members. Dad may Allah bless his soul, Mom may Allah grant her health and a

long life.

My teachers, colleagues, friends and those who helped me to achieve this work.

Kacem Mohamed

Contents

IV

 Contents

Abstract .. I

Acknowledgment .. II

Dedications ... III

Contents .. IV

List of Figures ... IX

List of Tables .. XI

General Introduction ... XIV

 Background .. XIV

 Problem statement .. XIV

 Approach ... XV

 Outline ... XV

CHAPTER 1: Time Series Forecasting .. 2

1.1 Introduction ... 2

1.2 Time Series .. 2

1.2.1 Time Series Presentation .. 2

1.2.1.1 Definitions .. 3

1.2.1.2 Examples .. 3

1.2.2 Time Series Data and Components .. 4

1.2.2.1 Components .. 4

1.2.2.1.1 Trend Component ... 4

1.2.2.1.2 Seasonality Component .. 5

1.2.2.1.3 Cyclical Component .. 6

1.2.2.1.4 Irregular Component ... 6

1.2.2.2 Understanding time series .. 7

1.2.3 Time Series Types .. 7

1.2.3.1 Univariate Time Series ... 8

Contents

V

1.2.3.2 Multivariate Time Series .. 8

1.2.4 Stationary Time Series ... 9

1.3 Time Series Forecasting .. 10

1.3.1 One-step ahead prediction .. 11

1.3.2 Multi-step ahead prediction .. 11

1.4 Time Series Forecasting Models ... 12

1.4.1 Statistical Models ... 12

1.4.1.1 ARIMA ... 12

1.4.1.2 Exponential Smoothing .. 12

1.4.1.3 Vector Auto regression (VAR) ... 13

1.4.2 Machine Learning Models ... 13

1.4.2.1 Linear Regression ... 13

1.4.2.2 Support Vector Regression (SVR) ... 14

1.4.2.3 K-Nearest Neighbors (KNN) .. 14

1.5 Deep Learning Models .. 15

1.5.1 Multi-Layer Perceptron (MLP) .. 15

1.5.2 Recurrent Neural Network (RNN) ... 16

1.5.3 Long Short-Term Memory (LSTM) ... 17

1.5.4 Gated Recurrent Unit (GRU) ... 18

1.5.5 Echo State Network (ESN) .. 18

1.5.6 Convolutional LSTM (ConvLSTM) .. 19

1.6 Conclusion ... 20

CHAPTER 2: Convolutional Neural Networks (CNN) ... 20

2.1 Introduction ... 20

2.2 Historical context ... 20

2.2.1 Artificial Intelligence ... 20

2.2.2 Machine Learning .. 21

Contents

VI

2.2.3 Types of Machine Learning ... 22

2.2.3.1 Supervised learning .. 23

2.2.3.2 Unsupervised learning .. 23

2.2.3.3 Reinforcement learning .. 23

2.3 Deep Learning and Neural Networks .. 24

2.3.1 Artificial Neurons ... 25

2.3.2 Biological Neural Network .. 27

2.3.3 Artificial neural networks ... 28

2.3.4 Models of Artificial Neural Networks ... 29

2.3.5 Gradient Descent .. 30

2.4 Activation Functions.. 33

2.4.1 Linear activation functions ... 33

2.4.2 Activation Functions (Non-Linearity) .. 34

2.4.2.1 Sigmoid ... 34

2.4.2.2 Tanh .. 35

2.4.2.3 ReLU .. 36

2.4.2.4 SoftMax .. 36

2.4.3 Loss Functions .. 37

2.5 Convolutional Neural Networks .. 38

2.5.1 Convolution operation .. 39

2.5.2 Architecture of CNN .. 40

2.5.2.1 Convolution layer ... 41

2.5.2.2 Filter/ Kernel... 42

2.5.2.3 Hyperparameters ... 42

2.5.2.4 Pooling layer ... 44

2.5.3 Fully Connected Layer ... 45

2.5.4 Real world applications of Convolutional neural network 46

Contents

VII

2.5.5 Advantages and disadvantages of ANNs and CNNs ... 47

2.6 Conclusion ... 47

Chapter 3: Convolutional Neural Networks For Time Series Forecasting 49

3.1 Introduction ... 49

3.2 Proposed time series forecasting method .. 49

3.3 Implementation .. 49

3.3.1 Python ... 49

3.3.2 Matplotlib ... 49

3.3.3 Scikit-learn ... 50

3.3.4 Pandas ... 50

3.3.5 StatsModels .. 50

3.3.6 Keras ... 50

3.3.7 Colaboratory ... 50

3.3.8 Hardware .. 50

3.4 Experiments ... 51

3.4.1 Datasets .. 51

3.4.2 Implementation details ... 53

3.4.2.1 Data preparation ... 53

3.4.2.2 Train-Test Split ... 54

3.4.2.3 Building the CNN model .. 54

3.4.3 Evaluation Metrics ... 55

3.4.3.1 MAE ... 55

3.4.3.2 MSE .. 55

3.4.3.3 MAPE ... 55

3.4.4 Baselines ... 55

3.4.4.1 ARIMA ... 55

3.4.4.2 Zero Rule algorithm.. 56

Contents

VIII

3.4.4.3 Naïve forecasting algorithm ... 56

3.5 Results and comparison ... 56

3.5.1 Results .. 56

3.5.1.1 Forecast results using univariate time series .. 56

3.5.1.2 Forecast results using multivariate time series ... 57

3.5.2 Performance Comparison ... 59

3.5.3 Discussion .. 60

3.6 Conclusion ... 60

General Conclusion .. 61

Bibliography ... 62

List of Figures

IX

List of Figures

Figure 1.1 The upward and downward trend in the plot of Japan’s population [8]. 5

Figure 1.2 Predictions of Airline Passengers monthly [8]. .. 5

Figure 1.3 Monthly housing sales [8]. .. 6

Figure 1.4 Nikkei company stock price [8]. ... 6

Figure 1.5 Components of time series [75] .. 7

Figure 1.6 Univariate time series (temperature values) ... 8

Figure 1.7 Multivariate time series (Bitcoin daily price index) [76] ... 9

Figure 1.8 Annual total of lynx trapped in the McKenzie River district of north-west Canada

[77] ... 9

Figure 1.9 Stationary and non-stationary time series [78] ... 10

Figure 1.10 Multi-layer Perceptron (MLP) Model [33] ... 16

Figure 1.11 Recurrent Neural Network (RNN) Architecture [81] ... 17

Figure 1.12 Illustration of the LSTM structure [79] .. 18

Figure 1.13 Illustration of the GRU structure [80] ... 18

Figure 1.14 Architecture of ESN [24] ... 19

Figure 1.15 A ConvLSTM Cell [41] .. 20

Figure 2.1: Deep Learning is a Subfield of Machine Learning which is a Subfield of AI [82]

 .. 21

Figure 2.2: Traditional Programming vs. Machine Learning [83] ... 21

Figure 2.3: Difference between a simple Neural Network and a Deep Learning Neural

Network [66] .. 22

Figure 2.4: Machine-learning types with problems examples [66] .. 22

Figure 2.5: Machine Learning Approaches with Algorithm Example 24

Figure 2.6: Deep representations learned by a digit classification model 25

Figure 2.7: Diagram of the Functionality of an artificial neuron ... 26

Figure 2.8: illustration of an artificial neuron .. 26

Figure 2.9: Neuron in Biology [85] ... 27

Figure 2.10: Artificial Neural Network Architecture [86] ... 28

Figure 2.11: Feed-forward (FNN) and recurrent (RNN) topology .. 30

Figure 2.12: The Quadratic Error Surface for a Linear Neuron [84] 31

Figure 2.13: Visualizing the Error Surface as a set of Contours [84] 32

Figure 2.14: Convergence is Difficult when our Learning Rate is too Large [84] 32

List of Figures

X

Figure 2.15 : Activation Function [92] ... 33

Figure 2.16: Linear Activation Function [92] ... 33

Figure 2.17: Sigmoid Function [92] ... 35

Figure 2.18: Tanh Hyperbolic [92] .. 35

Figure 2.19: The ReLU function graph [92] .. 36

Figure 2.20: SoftMax [11] .. 37

Figure 2.21: Neural Network Loss Visualization [88] ... 37

Figure 2.22: Neural Network Workflow [87] .. 38

Figure 2.23: Conv1D: Convolving on time dimension [62] ... 39

Figure 2.24: Artificial Neural Network and Convolutional Neural Network [89] 40

Figure 2.25: Convolutional Neural Network Architecture [91] ... 41

Figure 2.26 A 1D convolution with a kernel sized 3 and stride 1 [62]. 41

Figure 2.27: Example of Convolutional Operation [90] .. 42

Figure 2.28: Filter with Stride (s) = 2 [89] ... 43

Figure 2.29: Zero Padding example with (p)=1 [89] ... 44

Figure 2.30: Max Pooling and Avg Pooling .. 45

Figure 2.31: Connection between Convolutional Layer and Fully Connected Layer 46

Figure 3.1 US new (Covid-19) confirmed cases [70] .. 51

Figure 3.2 US new (Covid-19) confirmed deaths [70] ... 52

Figure 3.3 median price of property sales [71] .. 52

Figure 3.4: Importing the data .. 53

Figure 3.5: Code for data preparation .. 53

Figure 3.6: Code for Train-Test Split ... 54

Figure 3.7: code for building the CNN model ... 54

Figure 3.8: univariate model results for the COVID19 dataset prediction 56

Figure 3.9: univariate model results for the sales dataset prediction 57

Figure 3.10: multivariate model results for the COVID19 dataset prediction 57

Figure 3.11: multivariate model results for the sales dataset prediction 58

List of Tables

XI

List of Tables

Table 2.1: Advantages and disadvantages of ANNs and CNNs .. 47

Table 3.1: Baseline and CNN models metrics for the Covid-19 dataset 59

Table 3.2: Baseline and CNN models metrics for the property sales dataset 59

List of Abbreviations

XII

List of Abbreviations

AI: Artificial Intelligence

AN: Artificial Neurons

ANN: Artificial Neural Networks

AR: auto-regression

ARIMA: Auto Regressive Integrated Moving Average

ARMA: Auto Regressive Moving Average

ARMAV: Auto Regressive Moving Average Vector

CNN: Convolutional Neural Networks

ConvLSTM: Convolutional Long Short-Term Memory

DBN: Deep Belief Networks

DL: Deep Learning

DNN: Deep Neural Networks

ESN: Echo State Setwork

ETS: Exponential Smoothing

FNN: Feed-forward Neural Network

GARCH: Generalized Auto Regressive Conditional Heteroskedastic

GRU: Gated Recurrent Unit

HWES: Holt Winter’s Exponential Smoothing

KNN: K-Nearest Neighbors

LR: Linear regression

LSTM: Long Short Term Memory

MAE: Mean Absolute Error

MAPE: Mean Absolute Percentage Error

List of Abbreviations

XIII

MSE: Mean Squared Error

ML: Machine Learning

MLP: Multi-Layer Perceptron

NN: Neural Network

RC: Reservoir Computing

RNN: Recurrent Neural Networks

SES: Simple Exponential Smoothing

SMA: Simple Moving Average

SVM: Support Vector Machine

SVR: Support Vector Regression

VAR: Vector Auto Regression

General Introduction

XIV

General Introduction

 Background
Time series data and its analysis are increasingly important due to the massive production

of such data through, for example, the internet of things, the digitalization of healthcare, and

the rise of smart cities. In the coming years we can expect the quantity, quality, and importance

of time series data to grow rapidly. Indicators of production and efficiency in markets have long

provided interesting data to study from a time series analysis. Most interesting and urgent has

been the question of forecasting future economic states based on the past. Such forecasts aren’t

merely useful for making money they also help promote prosperity and avert social

catastrophes.

In simple terms, time-series data refers to a consistent stream of data sets over the course

of a period of time. Analyzing this type of data has become a recent area of focus in artificial

intelligence, as accurate forecasting is becoming increasingly vital across all kinds of industries

in order to make more informed decisions.

Machine Learning has been proven powerful in imaging, natural language, and speech because

of huge annotated datasets available. On the other hand, time series problems usually do not

have big annotated datasets. Also, the data from different domains exhibit considerable

variations in important properties and features, temporal scales, and dimensionality. Further,

time-series analysis requires the algorithm to learn time-dependent patterns within and across

multiple modalities, unlike images or speech. Time series analysis mostly includes clustering,

classification, anomaly detection, and forecasting each of which is uniquely useful to the

business.

 Problem statement
Traditionally, time series forecasting has been dominated by linear methods because they

are well understood and effective on many simpler forecasting problems, however deep

learning neural networks are able to automatically learn arbitrary complex mappings from

inputs to outputs and support multiple inputs and outputs.

Accordingly, are deep learning models a viable option for time series forecasting? if so,

how well it performs compared to traditional methods?

General Introduction

XV

 Approach

To answer the previous question, a CNN for time series forecasting is developed. The

proposed model will be experimented and evaluated on real-world datasets with the known

metrics in this field.

 Outline
This thesis is divided into three chapters and a general introduction, which includes the

following sections: background, problem statement, approach, and outline, and a general

conclusion.

Chapters one and two are theoretical; chapter three will be the application section, in which the

steps of implementation and the results will be presented; and finally, we will draw a broad

conclusion based on the results and discussion from chapter three. Each chapter’s structure is

as follows:

• Chapter one: Time series forecasting

This chapter introduces time series in general and time series forecasting in particular,

with an overview of the various forecasting techniques and a discussion of real-world

study cases that employed time series forecasting.

• Chapter two : Convolutional Neural Networks (CNN)

This chapter covers the fundamentals of artificial intelligence, machine learning and its

different types. And the fundamental concepts of deep learning, with focusing on

Convolutional Neural Networks, their architecture and how it functions.

• Chapter three: Convolutional Neural Networks for time series forecasting

In this chapter, we implement a CNN model for time series forecasting and measure its

performance based on the metrics and baselines. To study whether CNNs are a viable

option for time series forecasting.

1

CHAPTER 1:

Time Series Forecasting

CHAPTER 1: Time Series Forecasting

2

CHAPTER 1: Time Series Forecasting

1.1 Introduction
A time series is a collection of observations in chronological order. These could be daily

stock closing prices, weekly inventory figures, annual sales, or countless other things.

Forecasting the future values of an observed time series is an important problem in many

areas, including economics, production planning, sales forecasting and stock control.

Forecasting is valuable to businesses because it gives the ability to make informed business

decisions and develop data-driven strategies. Based on the state of the market today and

forecasts for the future, financial and operational decisions are taken.

1.2 Time Series

1.2.1 Time Series Presentation
Time series forecasting has always been a very important area of research in many fields

because many different types of data are stored as time series. For example, we can find many

time series data in medicine, weather forecasting, biology, supply chain management and stock

price forecasting. Due to the increasing availability of data and computing power in recent

years, deep learning has become an essential part of the new generation of time series prediction

models, with excellent results [1].

Unlike traditional machine learning models like auto-regression (AR) or exponential

smoothing, which need feature engineering and some parameter optimization with domain

expertise in mind; deep learning models learn features and dynamics entirely from the data.

They can speed up the data preparation process and understand more complicated data patterns

more thoroughly as a result of this. In recent years, a great number of innovative architectures

have been built as various time series problems have been studied in many disciplines, making

the development of new bespoke network components easier and faster. Therefore, we will

proceed in this research by using one of the methods of deep learning in predicting time series

[2].

Another difficulty or tradeoff is related to the number of data points in the time series,

more data from the past increase the precision and the chance of detailed analysis.

However, while increasing the precision property of the data, we also increase the risk that the

model cannot handle the data processing [3].

CHAPTER 1: Time Series Forecasting

3

1.2.1.1 Definitions
Time series analysis is a method for studying a collection of data points over a period.

Instead of capturing data points intermittently or arbitrarily, time series analyzers record data

points at constant intervals over a predetermined length of time. This form of analysis, however,

is more than just gathering data over time.

The ability to depict how variables change over time distinguishes time series data from

other types of data. It provides an additional source of data as well as a predetermined order of

data dependencies. To maintain consistency and dependability, time series analysis often

requires a high number of data points. A large data set guarantees a representative sample size.

To achieve consistency and dependability, time series analysis often requires a large

number of data points. A large data collection ensures that your sample size is representative

and that your analysis can cut through noisy data. It also guarantees that any discovered trends

or patterns are not outliers and that seasonal variation is taken into account. Time series data

can also be used for forecasting or anticipating future data based on previous data. The ability

to depict how variables change over time distinguishes time series data from other types of data.

It provides an additional source of data as well as a predetermined order of data dependencies

[3].

1.2.1.2 Examples
There is almost an endless supply of time series forecasting problems. Below are some

examples from a range of industries to make the notions of time series analysis and forecasting

more concrete.

• Forecasting the corn yield in tons by state each year.

• Forecasting whether an electroencephalography trace in seconds indicates a patient is

having a seizure or not.

• Forecasting the closing price of a stock each day.

• Forecasting the birth rate at all hospitals in a city each year.

• Forecasting product sales in units sold each day for a store.

• Forecasting the number of passengers through a train station each day.

• Forecasting unemployment for a state each quarter.

• Forecasting utilization demand on a server each hour.

• Forecasting the size of the rabbit population in a state each breeding season [4].

CHAPTER 1: Time Series Forecasting

4

1.2.2 Time Series Data and Components
Time series data is a set of observations obtained through repeated measurements over

time. Time series metrics refer to a piece of data that is tracked with an increase in time. For

example, a metric can indicate how much inventory was sold in a store from one day to the

next.

Time series data is everywhere, because time is a component of everything that can be

observed. As our world increasingly uses tools, sensors and systems are constantly releasing a

relentless stream of time-series data. Operations and other business decisions often depend on

accurate time-series forecasts. These time series usually consist of trend-cycle, seasonal, and

irregular components. Existing methodologies attempt to first identify and then extrapolate

these components to produce forecasts. This data has many Components, we will mention them

[5].

1.2.2.1 Components
The various reasons or the forces, which affect the values of an observation in a time series,

are the components of a time series. The four categories of the components of time series are:

• Trend

• Seasonality

• Cycle

• Irregular

1.2.2.1.1 Trend Component

A trend time series moves in a simple linear fashion. The trend shows the general tendency of

the data to increase or decrease during a long period of time. And it is obtained by ignoring any

short-term effects such as seasonal changes or noise. The increase or decrease does not need to

be in the same direction throughout the given period of time [6]. For example, see the upward

and downward trend in the plot of Japan’s population.

CHAPTER 1: Time Series Forecasting

5

1.2.2.1.2 Seasonality Component

A seasonal pattern exists when there are a series of nuances depending on seasonal

factors (for example, quarter, month, or day of the week). Seasonality is always of a fixed, known

period. Hence, seasonal time series are sometimes called periodic time series i.e. they repeat

throughout the duration of the time series [7].

Figure 1.2 Predictions of Airline Passengers monthly [8].

Figure 1.1 The upward and downward trend in the plot of Japan’s
population [8].

CHAPTER 1: Time Series Forecasting

6

1.2.2.1.3 Cyclical Component

Cycles occur when a time series follows a non-seasonal, up-and-down pattern. Cycles

are hard to predict because they do not occur in predictable time intervals. Atypical example is

the business cycle, comprising the phases of recovery, prosperity, recession and depression [8].

1.2.2.1.4 Irregular Component

 Irregular variation in time series data occurs due to uncontrollable and unpredictable

events, such as earthquakes, wars, floods, famines, and so on. This plot of the Nikkei 225 stock

index shows a plunge in value, which coincided with the earthquake and tsunami in March 2011

[8].

Figure 1.3 Monthly housing sales [8].

Figure 1.4 Nikkei company stock price [8].

CHAPTER 1: Time Series Forecasting

7

1.2.2.2 Understanding time series
Typically, a time series is represented as a graph with each data point modelled on the

x- and y-axes. The time series data is a trend time series if the plot shows the highest or lowest

values over an extended period. Seasonal time series are those that repeat throughout time,

measured in years, and cyclical time series are those that change often over time, as seen by the

depiction. (Figure1.5) provides an illustration of the components of a raw time series as well as

how a time series appears after seasonal and cyclical tendencies have been eliminated, or what

residual (remainder) data is:

1.2.3 Time Series Types
 A single variable measured over time is referred to as a univariate time series.

Univariate means one variate or one variable. Multiple variables measured over time is referred

to as a multivariate time series: multiple variates or multiple variables:

• Univariate: One variable measured over time.

• Multivariate: Multiple variables measured over time [4].

When researching this field, any time series forecasting is divided into two groups:

Univariate and multivariate. In the following section, we will discuss univariate time series and

multivariate time series.

Figure 1.5 Components of time series [75]

CHAPTER 1: Time Series Forecasting

8

1.2.3.1 Univariate Time Series
A univariate time series refers to time series that has only one observation recorded

sequentially over equal time increments [9].

Despite the fact that a univariate time series data set is typically presented as a single

column of numbers, time is an implicit variable in the time series. The term variable, or index,

does not need to be specified if the data are evenly spaced. When graphing a series, the time

variable may be utilized explicitly. It is not, however, employed in the time series model, For

example, if you are tracking hourly temperature values for a given region and want to forecast

the future temperature using historical temperatures, this is univariate time series forecasting.

(Figure1.6) is a simple example of temperature values with time measured by each hour [10].

1.2.3.2 Multivariate Time Series
 Multivariate time series has more than one time-dependent variable. Each variable

depends not only on its past values but also has some dependency on other variables. This

dependency is used for forecasting future values. along with the temperature values. In this

case, there are multiple variables to be considered to optimally predict temperature. A series

like this would fall under the category of multivariate time series. The following (Figure1.7)

shows example for a multi-variate time series [11]:

Figure 1.6 Univariate time series (temperature values)

CHAPTER 1: Time Series Forecasting

9

1.2.4 Stationary Time Series
The major goal of this research is to learn about stationary time series. A time series is

referred as stationary if its statistical properties do not change over time. In other words,

it has a constant mean and variance and it is independent of time [12]. For example, in

(Figure 1.8) the strong cycles in series might appear to make it non-stationary. But these

cycles are aperiodic, they are caused when the lynx population becomes too large for the

available feed, so that they stop breeding and the population falls to low numbers, then the

regeneration of their food sources allows the population to grow again, and so on. In the

long-term, the timing of these cycles is not predictable. Hence the series is stationary.

Figure 1.7 Multivariate time series (Bitcoin daily price index) [76]

Figure 1.8 Annual total of lynx trapped in the McKenzie River district of north-west
Canada [77]

CHAPTER 1: Time Series Forecasting

10

One of the most important concepts in time series analysis is stationarity.

Stationarity occurs when a shift in time doesn’t change the shape of the distribution of your

data. This is in contrast to non-stationary data, where data points have means, variances

and covariance that change over time. This means that the data have trends, cycles, random

walks or combinations of the three. Generally, in forecasting, non-stationary data are

unpredictable and cannot be modeled [12]. Here is an example of static and non-constant

data (Figure 1.9).

1.3 Time Series Forecasting
An often-heard motivation for time series analysis is the prediction of future

observations in the series. This is an ambitious goal, because time series forecasting relies on

extrapolation, and is generally based on the assumption that past and present characteristics of

the series continue. It seems obvious that good forecasting results require a very good

comprehension of a series’ properties, be it in a more descriptive sense, or in the sense of a

fitted model [13].

Time series forecasting is the process of predicting the data of future time steps. It can

be thought of as a mechanism to process or analyze the historical data and use that learned

information to make predictions about the future, time series forecasting can be classed into

two types:

Figure 1.9 Stationary and non-stationary time series [78]

CHAPTER 1: Time Series Forecasting

11

1.3.1 One-step ahead prediction
Always one step ahead Based on the corresponding forecast equation, every model

supports one-step ahead forecasts. During the model estimate process, one-step ahead forecasts

are required to compute model errors. For each data point, one-step ahead forecasts are

computed sequentially using computed level and trend states for the current point, as well as

seasonal states for the previous seasonal period. The forecast error is calculated by subtracting

the forecast value (estimated at the preceding point) from the current observed value. The

average value of absolute squared forecast errors is used to calculate overall model error, which

is used to estimate the model. A greater model fit is associated with fewer mistakes. Statistical

details display accuracy measures that provide numerous model summaries of one-step ahead

forecast errors. This method is concerned only with predicting the next time step given the time

series, for example predicting the value of a sensor in the 11th second given 10 seconds of past

data [14].

1.3.2 Multi-step ahead prediction

Many scholars have focused on time series forecasting in recent years, but most of them

focus on one-step-ahead predictions, which are not useful in everyday life. There are two

primary ways for multi-step ahead prediction: iterate-based and direct-based methods. The

output of time step t is one of the inputs of time step t+1 in the iterate-based approach. The

biggest downside of this strategy is that after a few time steps, the mistake would have

accumulated to a very large value. The direct-based method creates different models from

different training instances; one model predicts the next time step, another model predicts the

next two time steps, and so on. The biggest downside of this procedure is that it necessitates an

excessive amount of time [15].

This, as the name suggests, is concerned with predicting a sequence of time steps given a

time series, for example forecasting the weather for the next 10 days given the past data. Future

studies on estimating the future values of several variables. It should be noted that the effective

role of the Tab process stems from the accuracy of the prediction results, which are based

mainly on the process of correct construction of the model generating these results. Its

effectiveness is determined by achieving a set of statistical hypotheses and choosing a series of

tests based on The extent of the relationship, the problem, the structure of the studied data [15].

CHAPTER 1: Time Series Forecasting

12

1.4 Time Series Forecasting Models
Statistical time series models are a family of models that have been traditionally used a

lot in many domains of forecasting. They are strongly based on temporal variation inside a time

series and they work well with univariate time series [16]. Some advanced options exist to add

external variables into the models as well. In the other hand, machine learning and deep learning

models are able to automatically learn arbitrary complex mappings from inputs to outputs and

support multiple inputs and outputs [4].

1.4.1 Statistical Models
In this section, we will talk about the use of statistical models in predicting time series.

In particular, we divide them into two categories. Traditional statistical models such as:

 ARIMA (Autoregressive Integrated Moving Average) and its family: AR, MA, ARMA,

SARIMA and SARIMAX. Vector auto regression (VAR) and its derivatives VARMA and

VARMAX, and Smoothing: Simple moving average (SMA), simple exponential smoothing

(SES), double exponential smoothing (EES), Holt winter is exponential smoothing (HWES).

GARCH (Generalized Autoregressive Conditional Heteroscedasticity).

1.4.1.1 ARIMA
The acronym ARIMA refers to the Auto Regressive Integrated Moving Average. Box

and Jenkins popularized the ARIMA model (1976). It is made up of three different statistical

models. For statistical data, it employs the Autoregressive, Integrated, and Moving Average

(ARIMA) model. The ARIMA Model uses Auto Regressive Integrated Moving Average

(ARIMA) and Auto Regressive Moving Average (ARMA) to assess and forecast evenly spaced

univariate statistic information, transmission of function data, and intercession information

(ARMA). A response Time Series forecasted by an ARIMA Model is a linear mixture of its

own linked past values, previous Errors, and current and past values of alternative Time Series.

The ARIMA Model seeks to explain information autocorrelation and can be applied to both

stationary and non-stationary statistics [17].

1.4.1.2 Exponential Smoothing
Exponential Smoothing was developed as a result of Robert G. Brown's work as an OR

it is analyst for the United States Navy. In the early 1950s, Brown extended simple Exponential

Smoothing to discrete data, and the method should improve for trend and seasonality.

CHAPTER 1: Time Series Forecasting

13

Time Series established the universal exponential smoothing algorithm. In the residuals

of Time Series projected using the Exponential Smoothing (ETS) Method, Taylor identified

first order auto-correlation. One or more stochastic models correspond to each Exponential

Smoothing (ETS) approach. It also follows the Robustness condition and is used as a model for

extrapolating judgments [17].

1.4.1.3 Vector Auto regression (VAR)
The vector auto regression (VAR) model is a popular, flexible, and straightforward

model for multivariate time series analysis. A natural extension of the univariate autoregressive

model is the dynamic multivariate autoregressive model. The VAR model has been shown to

be particularly useful for forecasting and describing the dynamic behavior of economic and

financial time series.

Forecasts from univariate time series models and complex theory-based simultaneous

equations models are frequently outperformed. VAR model forecasts are quite flexible because

they can be made conditional on the potential future paths of specified variables in the model.

The VAR model is used for structural inference and policy analysis, in addition to data

description and forecasting. In structural analysis, certain assumptions about the causal

structure of the data are imposed, and the resulting causal impacts of unexpected shocks or

innovations to specified variables on the variables in the model are summarized. These causal

effects are typically summarized using impulse response functions and forecast error variance

decompositions [18].

1.4.2 Machine Learning Models
Prediction methods for machine learning methods in this study include all artificial

intelligence-based prediction techniques. These methods are classified into several types based

on the phenomenon being predicted. The following networks are introduced to provide a broad

understanding of predictive models for machine learning: Linear regression (LR), Support

vector regression (SVR), and K-Nearest Neighbors (KNN).

1.4.2.1 Linear Regression
Linear regression (LR) is the most basic approach for determining the relationship

between the dependent and independent variables.

Simple linear regression is used when there is only one independent variable. Having numerous

independent variables, on the other hand, changes the name of the model to multiple linear

CHAPTER 1: Time Series Forecasting

14

regression [19]. The linear predictor functions, whose model parameters are estimated from the

data, are used to determine the relationships in linear regression. These kinds of models are

known as linear models [20]. Linear regression, like other regression analyses, examines the

dependent variable's conditional probability distribution given the values of independent

variables This study employed the multivariate linear regression (MLR) technique, which is

one of several LR model variants. Several important asymptotic and finite sample results are

presented and compared with time series regression statistical properties [21].

1.4.2.2 Support Vector Regression (SVR)
The Support Vector Machine (SVM) is an elegant machine learning algorithm

proposed by Cortes and Vapnik in 1995 [22]. The algorithm's basic idea is to reduce structural

risk. It is a concept that achieves generalization by balancing the model's complexity against its

ability to fit the training data. The SVM has a regression version that is widely used in time-

series prediction and imputation [23] [24].

The Support Regression Vector (SVR) is an SVM transformation for solving nonlinear

regression problems. The data is transformed for nonlinear regression problems using a

nonlinear kernel function that maps the input to a high-dimensional feature space. As a result,

the overall performance of the SVM regression model is dependent on the proper selection of

kernel parameters [25]. The basic idea behind SVM for function approximation is to map the

data into a high-dimensional feature space, then perform a linear regression in the feature space.

1.4.2.3 K-Nearest Neighbors (KNN)
The k-nearest neighbors’ algorithm (KNN) is a non-parametric method for classification

and regression invented by Thomas Cover [26]. The input in both regression and classification

is the k closest training instances in the feature space. Whether KNN is used for classification

or regression determines the outcome: In classification, the output is a class membership. An

object is classified by a majority vote of its neighbors, with the object being assigned to the

class most common among its k nearest neighbors (k is a positive integer, typically small). If k

= 1, then the object is simply assigned to the class of that single nearest neighbor [27].

In KNN regression, the output is the property value for the object. This value is the

average of the values of k nearest neighbors. KNN is a type of instance-based learning, or lazy

learning, where the function is only approximated locally and all computation is deferred until

function evaluation. Since this algorithm relies on distance for classification, normalizing the

training data can improve its accuracy dramatically [28].

CHAPTER 1: Time Series Forecasting

15

1.5 Deep Learning Models
Deep Learning (DL) is a machine learning subfield inspired by brain anatomy and

function. Despite their capabilities, no deep machine learning approaches are limited when

it comes to analyzing raw data. This means that designing a feature extractor that can

convert raw data into a format suited for no deep machine learning models would require

careful engineering and extensive subject experience. DL techniques are approaches for

learning representations using multiple levels of representation. This is accomplished by

mixing non-linear modules that shift the representation from a raw input level to a higher,

more abstract one. DL techniques can learn complex functions using this composition [29].

A lot of study is done in exploring multiple DL architectures due to their resilience

and improved possibilities. Deep neural networks (DNN), deep belief networks (DBN),

recurrent neural networks (RNN), convolutional neural networks (CNN), and other types

of neural networks (ANN) [30]. The artificial neural network is at the heart of these

structures. These designs have been used in a variety of domains, including computer

vision, natural language processing, machine translation, and speech recognition, where

they have produced results comparable to and in some cases better than human expert

performance [31]. Based on ANN researchers have developed many architecture beginning

with Multi-Layer Perceptron (MLP), then the more sophisticated methods, situated bellow:

1.5.1 Multi-Layer Perceptron (MLP)
 A completely connected neural network is what is referred to as a multi-layer perceptron,

which is a sort of artificial neural network where the architecture is such that all of the nodes,

or neurons, in one layer are connected to the neurons in the following layer. One input layer,

one or more hidden perceptron layers, and three basic building blocks make up the framework

of MLP. Simple distribution of the input characteristics to the top hidden layer occurs in the

input layer. The features dispersed by the input layer are fed into the first hidden layer as inputs.

The output of each perceptron from the preceding layer is sent into the subsequent hidden

layers. The output of each perceptron from the last hidden layer is sent into the perceptron's

output layer. Even that Multi-Layer Perceptron is a very basic model it is widely chosen for

studies [32].

CHAPTER 1: Time Series Forecasting

16

Figure 1.10 Multi-layer Perceptron (MLP) Model [33]

1.5.2 Recurrent Neural Network (RNN)
Recurrent neural networks (RNNs) are a type of ANN in which nodes are connected in

a directed graph that follows a temporal sequence. Traditional time series models and RNNs

are both capable of modeling time dependent relationships in data. In RNNs, each node in one

layer is connected to every other node in the next layer via a directed, one-way connection.

Every node has a real-valued activation function that changes over time, and each link (synapse)

has a real-valued weight that may be changed. Input nodes receive data from outside the

network, output nodes provide results, and hidden nodes modify data in route to output. RNN

can be regarded not just as cyclic but also as a deep layer per time step with shared weights

across time steps, as shown in the diagram. Backpropagation can be used to train the

unfolded network over many time steps. The back prop algorithm is called backpropagation

through time (BPTT) because we propagate through time in RNN

Despite the wonders of RNN, it suffers from couple of limitations. While training

the network, when gradients are propagating back in time, all the way up to the initial layer,

the gradients go through multiple simultaneous matrix multiplications and as a result of

using Chain Rule, if they have values less than 1 (<1), they diminish exponentially until

they become negligible or ‘vanish’. This deems the network model impossible to learn not

anything as weights will be updated. This is known as the ‘Vanishing Gradient

CHAPTER 1: Time Series Forecasting

17

Problem.’ Similarly, if the values of gradients propagating back in time are greater than 1

(>1), their values escalate and eventually destroy the model’s capability to learn

anything making it unstable. This is known as the ‘Exploding Gradient Problem [34].

1.5.3 Long Short-Term Memory (LSTM)
When RNNs are fed a long sequence of data, they have trouble transporting the

knowledge from earlier time steps to later ones, causing them to miss vital information.

RNNs are also plagued by the problem of disappearing gradients. LSTMs are being

developed to address these concerns. They are dubbed LSTMs because they can store

short-term memories for extended periods. The LSTMs are identical to RNNs, except that

they contain memory blocks. The information is allowed to pass through gates in the

memory blocks. To determine whether the gates are triggered or not, sigmoid activation

units are used. The sigmoid function returns a value between 0 and 1, indicating how much

information should be revealed. LSTMs have three gates: the forget gate, input gate, and

output gate. The forget gate layer, which is a sigmoid layer, helps decide what information

needs to be discarded [35]. LSTMs are illustrated in the Figure 1.12.

Figure 1.11 Recurrent Neural Network (RNN) Architecture [81]

CHAPTER 1: Time Series Forecasting

18

1.5.4 Gated Recurrent Unit (GRU)
GRU is a newer RNN that looks a lot like LSTMs GRUs transport information by

employing hidden states rather than the cell state or memory [36]. A reset gate and an

update gate are the two gates they have. The update gate functions in the same way as the

LSTM's forget and input gates. On the other hand, the reset gate is used to determine how

much information from the past must be erased. Because they have fewer tensor operations

than LSTMs, GRUs are faster. RNNs have short-term memory difficulties, which LSTMs

and GRUs are designed to solve [37]. The GRU structure is depicted in Figure 1.13.

1.5.5 Echo State Network (ESN)
Echo state network are a kind of recurrent neural network (RNN). ESN are based

on Reservoir Computing (RC), which simplifies the training procedure of traditional

RNNs. Reservoir Computing’s input signal is connected to a non-trainable and random

Figure 1.12 Illustration of the LSTM structure [79]

Figure 1.13 Illustration of the GRU structure [80]

CHAPTER 1: Time Series Forecasting

19

dynamical system (the reservoir), thus creating a higher dimension representation

(embedding). This embedding is then connected to the desired output via trainable units

[38]. (Figure 1.14) is a modelization of the ESN architecture. Echo state network is a very

powerful neural network for time series forecasting comparing to MLP and statistical

methods when modeling chaotic time series data and many studies improve that [39].

1.5.6 Convolutional LSTM (ConvLSTM)
LSTMs are extraordinary at recognizing temporal relationships yet they don’t

perform well in perceiving spatial connections. CNNs on the other hand are great in finding

spatial connections however not temporal relations. To handle this, Convolutional LSTMs

(ConvLSTM) are built which caters spatiotemporal connections simultaneously i Although

LSTMs excel at understanding temporal linkages, they struggle to perceive geographical

connections. CNNs, on the other hand, excel in detecting spatial connections but not

temporal ones. Convolutional LSTMs (ConvLSTM) are built to handle this, and they cater

to spatiotemporal linkages in the data at the same time [24]. The pattern that exists based

on the location of one data point relative to others is referred to as spatial connection in

time series. The chronological sequence of the data points is the temporal relationship.

In time series, spatial relationship refers to the pattern that exists based on the

location of one data point relative to others. Whereas temporal relationship is the sequential

order of the data points. In comparison to conventional LSTM, ConvLSTM is able to cater

the spatiotemporal structures by vectorizing the spatial information thereby overcoming

the limitation of vector-variate representations in LSTM where spatial information is lost

[40].

Figure 1.14 Architecture of ESN [24]

CHAPTER 1: Time Series Forecasting

20

Figure 1.15 A ConvLSTM Cell [41]

1.6 Conclusion

In this chapter, we discussed the important aspects of time series data, analysis, and its

components, as well as the various forecasting techniques in detail. Different types of models

have been investigated, ranging from traditional statistical models to machine learning and deep

learning models, and common evaluation metrics that are commonly used in time series have

been illustrated. The next chapter will detail convolutional neural networks.

21

CHAPTER 2:

Convolutional Neural Networks

(CNN)

CHAPTER 2: Convolutional Neural Networks (CNN)

20

 CHAPTER 2: Convolutional Neural Networks (CNN)

2.1 Introduction
In recent years, artificial intelligence, or AI, has been a hot topic in the media. Machine

learning and deep learning, which are artificial intelligence subfields, appear in a slew of

articles, many of which are not focused on technology. Robots known as AI agents will perform

self-driving cars, catboats, virtual assistants, and a variety of other artificial intelligence (AI)-

based industries in which human jobs will be rare and economic activity. In this chapter, we'll

look at Deep Learning, which is a subfield of Machine Learning, which is a part of AI (Figure

2.1), as well as the relationship between AI, Machine Learning, and Deep Learning, as well as

how and which problems may be solved utilizing these three techniques.

2.2 Historical context

2.2.1 Artificial Intelligence
"Artificial Intelligence, or AI, is the science of teaching computers to think and behave

like humans in order to solve more complicated problems without the assistance of a

programmer."

Artificial intelligence was first proposed in the 1950s by a group of pioneers in the young

field of computer science, who wondered if machines might be programmed to behave

intelligently and think like humans, an issue whose repercussions we are still debating today.

For example, a chess programmer uses solely hardcoded rules and does not qualify as Machine

Learning. Many of them believed that reaching the human level would need programmers to

handcraft a large enough set of explicit rules for manipulating information. From the 1950s to

the late 1980s, this method was known as symbolic AI. Although symbolic AI has made

significant progress in tackling well-defined logical issues, clear rules for handling complicated

problems such as image classification, language translation, and speech recognition remain

elusive. This opens up a lot of room for a new method known as Machine Learning ML [42].

CHAPTER 2: Convolutional Neural Networks (CNN)

21

2.2.2 Machine Learning
Machine Learning (ML) is the process of teaching computers to learn from their previous

experiences and settings, which is referred to as the natural human learning process. We feed a

dataset and a predicted result to the computer and let it learn and analyze the relationship

between them in order to learn how that particular data could lead to this result" Machine

Learning has piqued the interest of researchers in AI and computer sciences since 1983. The

question has always been how a computer can learn from experiences (data) rather than

programmers crafting data processing rules by hand, and how to learn how to perform tasks on

its own. In traditional programming or symbolic AI, the programmer inputs rules or

programmers (algorithms) and data to be processed based on these rules, and the programmer

outputs answers. In machine learning, the programmer inputs data and the expected answers

based on this data, and the programmer outputs the rule, which then matches the data and the

answers (Figure 2.2). The rule can be applied to new data to get unique results [43].

Figure 2.1: Deep Learning is a Subfield of Machine Learning
which is a Subfield of AI [82]

Figure 2.2: Traditional Programming vs. Machine Learning
[83]

CHAPTER 2: Convolutional Neural Networks (CNN)

22

"It would be beneficial if computers could learn from their mistakes and thereby enhance

the efficiency of their own programmers while they are being executed. Within the framework

of appropriate programming, a simple but effective rote-learning facility can be given [44]."

Machine learning is capable of learning and improving as a result of its experiences.

The raw data is used to extract relevant information that aids in learning and decision-making

utilizing shallow or deep architecture (Figure 2.3) to grant that the machine learning process

begins with raw data [45].

2.2.3 Types of Machine Learning
There are so many different types of machine learning systems that it is useful to classify

them in broad categories (Figure 2.4):

Machine Learning system is trained rather than be explicitly programmed, AI focus on

teaching computers how to learn without being programmed for specific tasks Machine

Learning can be carried out using following approaches.

Figure 2.3: Difference between a simple Neural Network and a Deep Learning
Neural Network [66]

Figure 2.4: Machine-learning types with problems examples [66]

CHAPTER 2: Convolutional Neural Networks (CNN)

23

2.2.3.1 Supervised learning
In machine learning and artificial intelligence, supervised learning, the most common

type, is a group of algorithms that define a predictive model using data whose outcomes are

known. The model relies on training on this data while the output is clear and tries to establish

relationships between the data and its output in order to predict the new data (generalization of

the model) through a suitable learning algorithm like a network of neurons, a random forest and

a linear regression that works through an optimization routine to reduce the loss function. In

general, almost all deep learning applications that are in the spotlight these days belong to this

category, such as optical character recognition, speech recognition, image classification, and

language translation. There are two main types of supervised machine learning problems, called

classification and regression [45].

2.2.3.2 Unsupervised learning
Unsupervised learning In Machine Learning and Artificial Intelligent Unsupervised

learning involves data that comprises input without any target output. Is a type of algorithm that

learns patterns from untagged data. The hope is that the machine will be pushed to develop a

compact internal representation of its surroundings through imitation, which is a key way of

learning in humans, and then generate inventive material from it. The self-organization of

unsupervised approaches captures patterns as probability densities or a mixture of neural feature

preferences. Reinforcement learning, in which the computer is given merely a numerical

performance score as guidance, and semi-supervised learning, in which only a small percentage

of the data is tagged, are the other stages in the supervision spectrum. Neural Networks and

Probabilistic Methodologies are two broad methods in Unsupervised Learning [46] .

2.2.3.3 Reinforcement learning

 Reinforcement learning (RL) is a branch of machine learning that studies how intelligent

agents should operate in a given environment to maximize the concept of cumulative reward.

Reinforcement learning, along with supervised and unsupervised learning, is one of the three

main machine-learning paradigms. Reinforcement learning differs from supervised learning in

that it does not need the presentation of labelled input/output pairings or the explicit correction

of sub-optimal behaviors. Reinforcement learning has proven to be effective in a variety of

applications, including autonomous helicopter flight, robot legged movement, cell-phone

network routing, marketing plan selection, factory control, and efficient webpage indexing [47].

CHAPTER 2: Convolutional Neural Networks (CNN)

24

2.3 Deep Learning and Neural Networks
Deep learning (also known as deep structured learning) is a type of machine learning

technology that uses artificial neural networks to learn representations. Deep learning

architectures such as deep neural networks, deep belief networks, deep reinforcement learning,

recurrent neural networks, and convolutional neural networks have been used in fields such as

computer vision, speech recognition, natural language processing, machine translation,

bioinformatics, drug design, medical image analysis, climate science, material inspection, and

board game programmers, producing results that are comparable to, and in some cases superior

to, traditional approaches. ANNs differ from biological brains in a number of ways. Artificial

neural networks, in particular, are static and symbolic, whereas most living animals' biological

brains are dynamic (plastic) and analogue [30].

Figure 2.6 shows an example of what the representations learned by a deep learning

algorithm look like. As it is seen, the network transforms a digit image into representations that

are increasingly different from the original image and increasingly informative about the final

result to recognize what digit it is.

Figure 2.5: Machine Learning Approaches with Algorithm Example

CHAPTER 2: Convolutional Neural Networks (CNN)

25

Feature engineering is a key step in the model building process. It is a two-step process:

• Feature extraction

• Feature selection

2.3.1 Artificial Neurons
Artificial neurons are a mathematical function envisioned as a model for biological

neurons. Artificial neurons are the basic building blocks of a neural network. One or more

inputs are received by artificial neurons. Each element is usually weighted separately, and the

sum is then processed through a nonlinear function called the activation function or the transfer

function. Transfer functions are commonly sigmoidal, although they can also be nonlinear

functions, multiple defined linear functions, or sigmoid functions. A move they are also

frequently monotonous, continuous, differentiable, and finite.

Neurons in deep learning models are nodes through which data and computations pass, and this

functional understanding of the neurons in our brain is translated into an artificial model that

can be represented on a computer [48]. Neurons work like this (view figure 2.7):

• Neurons receive one or many input signals either from the raw dataset or from the

previous neuron (the previous layer) of the network.

• Neurons do some calculations.

• Finally, Neuron sends output signals to neurons in the next hidden layer through a

synapse.

Figure 2.6: Deep representations learned by a digit classification model

CHAPTER 2: Convolutional Neural Networks (CNN)

26

Through synapses, neurons in Deep Learning models can link to more than one neuron in the

preceding layer

A neuron receives its input from the previous neurons in the preceding layer of the

model, then adds up signals multiplied by the corresponding weight then pass the result to an

activation function; Figure 2.8 shows the complete process:

Mathematically, we have numbers of inputs 𝑥𝑥₁, 𝑥𝑥₂, 𝑥𝑥₃,…,ₙ , each one of those inputs is multiplied

by specific weight 𝑤𝑤₁, 𝑤𝑤₂, 𝑤𝑤₃ … , 𝑤𝑤ₙ .

The results of this multiplication are summed together to produce the logit of the Neuron:

𝑛𝑛

∑ 𝑥𝑥ⱼ𝑤𝑤ⱼ
𝑗𝑗=0

In many cases, the logit also include bias, which is a constant:

Figure 2.7: Diagram of the Functionality of an artificial neuron

Figure 2.8: illustration of an artificial neuron

CHAPTER 2: Convolutional Neural Networks (CNN)

27

𝑛𝑛

∑ 𝑥𝑥ⱼ𝑤𝑤ⱼ + 𝑏𝑏
𝑗𝑗=0

This logit passed through a function f in order to produce our output 𝒚𝒚 = (𝒛𝒛).

We may also express this functionality in victor form, our input as a vector

𝒙𝒙 = [𝑥𝑥₁, 𝑥𝑥₂,… , 𝑥𝑥ₙ] , and the weights of the neuron as 𝒘𝒘 = [𝑤𝑤₁, 𝑤𝑤₂, … , 𝑤𝑤ₙ], so our function

become 𝒚𝒚 = 𝒇𝒇(𝒙𝒙. 𝒘𝒘 + 𝒃𝒃), where b is the bias term.

The role of the activation function is to calculate the output value of neurons, the value

obtained passed through the next layer of our network using synapse [49].

2.3.2 Biological Neural Network
A neural network is a network or circuit of biological neurons, or, in a modern sense, an

artificial neural network, composed of artificial neurons or nodes. Thus, a neural network is

either a biological neural network, made up of biological neurons, or an artificial neural

network, used for solving artificial intelligence (AI) problems. The connections of the

biological neuron are modeled in artificial neural networks as weights between nodes. A

positive weight reflects an excitatory connection, while negative values mean inhibitory

connections. All inputs are modified by a weight and summed [50]. This activity is referred to

as a linear combination. Finally, an activation function controls the amplitude of the output.

Neurons in deep learning were inspired by neurons in the human brain Figure 2.9 shows the

anatomy of a brain neuron:

Neurons, as can be seen, have a unique structure. Neurons in the human brain work

together in groups to execute functions that humans require in their daily lives. During his

groundbreaking research in neural networks, Geoffrey Hinton wondered if we might develop a

computer algorithm to imitate neurons in the human brain [49]. The hope is that by mimicking

Figure 2.9: Neuron in Biology [85]

CHAPTER 2: Convolutional Neural Networks (CNN)

28

brain anatomy, they will be able to capture some of its capabilities. Researchers and scientists

researched the functioning of neurons in the human brain to accomplish this. An key finding is

that the neuron is useless on its own. To generate meaningful activities, it instead requires

networks of neurons (Neuron Network). The reason for this is that neurons send and receive

messages from other neurons that are connected to them. The dendrites of neurons can receive

signals from the preceding cell and transmit them through the axon. The neuron's dendrites are

attached to the axon of another neuron. This link is referred to as a synapse. Deep learning has

generalized the synapse notion [49].

2.3.3 Artificial neural networks
One sort of machine learning model is neural networks, which have been around for at

least 50 years. Many key architectural improvements in neural networks were made in the mid-

1980s and early 1990s. The amount of effort and data required to achieve effective outcomes,

on the other hand, hindered adoption. In the early 2000s, processing power increased

significantly, resulting in a "Cambrian explosion" of previously unattainable computational

approaches, which rekindled interest in neural networks. The ANN is a feed-forward multilayer

ANN. The standard ANN design (Figure 2.10) consists of an input layer, a collection of hidden

layers, and an output layer. Artificial neurons are coupled via adaptive weights in each hidden

and output layer [50].

The simplest type of Artificial Neural Networks ANNs was the feedforward Neural

Network cause the information moves in one direction only, forward, from the input layer nodes

through the nodes of the hidden layer and to the output layer nodes, Neural Network learn

(update weight) by learning algorithm called Back-propagation [51].

Figure 2.10: Artificial Neural Network Architecture [86]

CHAPTER 2: Convolutional Neural Networks (CNN)

29

• Input layer:

The input layer of a Neural Network contains a group of artificial neurons that hold the

initial data for the neural network and bring it into the system for further processing by

subsequent layers of the artificial neuron. The input layer is the very beginning of the workflow

for the artificial neural network, input layers are followed by one or many hidden layers. On

images processing input layer will hold the pixel intensity of the image for example an RBG

image with width w=64 and height h=64, and depth d=3 will have an input dimension of

64×64×3.

• Hidden layers:

A neural network's hidden layers are a layer that sits between the input and output layers.

Artificial neurons take in a collection of weighted inputs and produce outputs through an

activation function in a hidden layer. The weights of hidden neural network layers are usually

assigned at random, but they can also be fine-tuned (by using the weights of other models) and

calibrated through the backpropagation process.

• Output layer:

The output layer is the final layer of an artificial neural network, and its neurons create

the network's output value. The output layer is formed in a variety of ways depending on

the neural network's architecture. In classification problems, the final output may be a set

of probabilities, while in regression problems, the final output may be a real-valued output.

The type of activation function employed on the output layer neurons controls the output.

2.3.4 Models of Artificial Neural Networks
Single artificial neuron cannot solve real life problems at all, however combining two or

more artificial neurons are capable of solving complex real life problems. The neural network

can be defined as an interconnection of neurons. Related neuron outputs and inputs are

connected, through weights. Delay block can be placed between neurons if needed. Neurons of

an artificial neural network are not randomly interconnected. There are standardized topologies

of neural networks. These topologies are fixed and predefined so as to solve the problems in an

efficient and easy way. These topologies can be examined in two basic classes which are feed-

forward and recurrent topologies. Therefore feed-forward neural network (FNN) topology is

also called acyclic graph. On the contrary, in simple recurrent neural network (RNN) topology

the information does not flow only from input to the output direction, but also flows from output

CHAPTER 2: Convolutional Neural Networks (CNN)

30

to the input direction. Hence, these kinds of topologies can be referred to as semi-cyclic graphs

[52].

Neural networks can be described layer by layer which refers to a group of neurons in

same level as shown on Figure 2.11. From input to the output direction, the first layer is called

input layer and the last one is named output layer. All remaining layers placed between the

input and output layer are labeled as hidden layers. Hidden layers are where neural networks

stores abstract and internal representation of the training samples. A single hidden layer network

which has a finite number of units can be trained to express any random function with an

acceptable error ratio with respect to the universal approximation theorem. Although single

hidden layer network is sufficient to learn any function, multi hidden layer networks can give

better results.

2.3.5 Gradient Descent

Gradient descent is an optimization algorithm used to minimize some function by

iteratively moving in the direction of steepest descent as defined by the negative of the gradient.

In machine learning, we use gradient descent to update the parameters of our model. Parameters

refer to coefficients in Linear Regression and weights in neural networks.

Consider how we might reduce the squared error across all training examples by

simplifying the problem. Let us pretend our linear neuron only has two inputs (and thus only

two weights, w1 and w2). Then consider a three-dimensional space in which the horizontal

dimensions correspond to the weights w1 and w2, and the vertical dimension corresponds to

the error function E's value. Places on the horizontal plane in this space correspond to different

weight settings, and the height at those points refers to the mistake suffered. We get a surface

in this three-dimensional space, namely a quadratic bowl, if we evaluate the errors we make

Figure 2.11: Feed-forward (FNN) and recurrent (RNN) topology

CHAPTER 2: Convolutional Neural Networks (CNN)

31

over all possible weights, as illustrated in Figure 2.12 [49].

We can now devise a strategy for determining the weight values that minimize the error

function; the weights for our network are randomly initialized, so we end up someplace on the

horizontal plane. By calculating the gradient at our current location, we may determine the

steepest descending path and then take a step in that direction, bringing us closer to the

minimum than before. Following this technique, we can reconsider the direction of steepest

descent by taking the gradient in this new direction and taking a step in this direction, as

illustrated in Figure 2.13 [49].

This is known as the Gradient Descent Algorithm, and it was developed to address the

problem of training individual neurons as well as the more general task of training entire

networks.

Figure 2.12: The Quadratic Error Surface for a Linear Neuron [84]

CHAPTER 2: Convolutional Neural Networks (CNN)

32

One of the most crucial hyperparameters in this process is the learning rate. Before

recalculating our new heading, we need to figure out how far we want to go. Because the closer

we get to the minimum, the shorter we want to step forward, and the closer we go to the

minimum, the flatter our surface becomes, we may use the steepness as an indicator of how

close we are to the minimum, but if our surface is mellow, training can take a long time. As a

result, the gradient is frequently multiplied by a quantity, the learning rate. Choosing a learning

rate is a difficult task (Figure 2.14).

We risk taking too long during the training process if we choose a modest learning rate, but if

we choose a large value for the learning rate, we will most likely start drifting away from the

minimum [49].

Figure 2.13: Visualizing the Error Surface as a set of Contours [84]

Figure 2.14: Convergence is Difficult when our Learning Rate
is too Large [84]

CHAPTER 2: Convolutional Neural Networks (CNN)

33

2.4 Activation Functions

The activation function is a mathematical gate between the input, which is a value coming

from the previous neuron and the output, and which is a value flowing to the next layer neurons

(Figure 2.15). We can characterize it as a function that turns the neuron output on or off based

on the applied rule [53].

There are two types of activation functions that can be used on neural networks: linear

activation functions and no-linear activation functions. The latter is the most commonly used

because it can assist the network in learning complex data. Activation functions can also be

used to filter out data. Here are some examples of common activation functions:

2.4.1 Linear activation functions
A linear activation function takes the form: f(𝑥𝑥) = 𝑐𝑐𝑥𝑥

Figure 2.15 : Activation Function [92]

Figure 2.16: Linear Activation Function [92]

CHAPTER 2: Convolutional Neural Networks (CNN)

34

This produces a signal output that is identical to the input by multiplying the inputs by

the weight assigned to each neuron. In some ways, a linear function is superior to a step function

since it provides for several outputs rather than simply yes or no.

We can state that the neuron receives input x1, x2, x3,... xn, and that the linear neuron's output

is supplied by:

y = w₁𝑥𝑥₁ + 𝑤𝑤₂𝑥𝑥₂ + 𝑤𝑤₃𝑥𝑥₃ … + 𝑤𝑤ₙ𝑥𝑥ₙ + 𝑏𝑏

Where 𝑤𝑤₁,₂,𝑤𝑤₃ …𝑤𝑤ₙ are the weight corresponding to 𝑥𝑥₁,₂,𝑥𝑥₃ …𝑥𝑥ₙ respectively and

𝑏𝑏 is the bias [53].

A neural network with a linear activation function is simply a linear regression model.

It has limited power and ability, to handle complexity-varying parameters of input data [54].

2.4.2 Activation Functions (Non-Linearity)

Instead of using linear activation, function modern models use non-linear activation

function in order to create a complex mapping between the network's inputs and outputs, image

processing and dataset that have high dimensionality.

Non-linear activation functions solve the problems of the linear-activation function

• Non-linear activation function allows backpropagation process because they have a

derivative function; the derivative of a linear function is always.

• Non-linear activation function gives high accuracy comparing to the linear one those

are the most used non-linear activation function.

2.4.2.1 Sigmoid

Which uses the function:

𝑓𝑓(𝑋𝑋) =
1

1 + 𝑒𝑒−𝑥𝑥

The Sigmoid function has an S-shape (Figure 2.17), which means that if the input is little, the

result is near to 0, but if the input is high, the output is closer to 1.

CHAPTER 2: Convolutional Neural Networks (CNN)

35

2.4.2.2 Tanh

Which is similar to sigmoid function but instead of ranging from 0 to 1, the output of

tanh range from -1 to 1, use (𝑥𝑥) = tanh(𝑥𝑥) it’s the ratio of the hyperbolic sine to the hyperbolic

cosine:

tanh(𝑥𝑥) =
sinh(𝑥𝑥)
cosh(𝑥𝑥)

The graph of tanh function is similar to the sigmoid function (Figure 2.18).

The gradients get smaller and smaller during the backpropagation phase until they

vanish; no gradients means no learning, which is known as the vanish gradient problem.

Because of the sigmoid function, information is squeezed. The solution to this problem is to

employ an activation function like RELU that does not squeeze information [55].

Figure 2.17: Sigmoid Function [92]

Figure 2.18: Tanh Hyperbolic [92]

CHAPTER 2: Convolutional Neural Networks (CNN)

36

2.4.2.3 ReLU
Rectified linear is a more interesting transformation that activates a node only if the

input is above a certain quantity. While the input is below zero, the output is zero, but when

the input rises above a certain threshold, it has a linear relationship with the dependent

variable as demonstrated in Figure 2.19 [54].

f(𝑥𝑥) = max(0 , 𝑥𝑥)

As we can see, (𝑥𝑥) is zero when 𝑥𝑥 is less than zero and (𝑥𝑥) is equal to 𝑥𝑥 when 𝑥𝑥 is

above or equal to zero. As we can see all the negative values become zero immediately,

that may decrease the ability of the model to fit or train from the data properly because

the ReLU block all the inputs less than zero that's called "dying ReLU problem"

introducing some activation even in the negative cases solve this problem. Leaky ReLU

is an attempt to solve the dying ReLU problem [54].

2.4.2.4 SoftMax

SoftMax (Figure 2.20) handles the activation of the output neuron; we can use SoftMax

to solve classification problems. the number of classes equal to the number of neurons in the last

layer the value obtained from the SoftMax represents the probability of belonging to a particular

class.

A strong forecast indicates that one output is too close to 1, while the other output is

clearly close to 0. Otherwise, our prediction is weak [54].

Figure 2.19: The ReLU function graph [92]

CHAPTER 2: Convolutional Neural Networks (CNN)

37

2.4.3 Loss Functions
The loss function measures how near a neural network is to the ideal it is being trained

toward. Configuring the loss function is one of the most crucial tasks in a deep learning project

to guarantee that the model works as intended. The loss function can give the neural network a

lot of practical flexibility. Neural networks may perform a variety of tasks, ranging from

forecasting continuous values to classifying discrete groups. Because the output format will

vary, each task will require a distinct type of loss function. For particular tasks, we can define

the loss anyway, we want. The loss function (Figure 2.21) is a function that has two parameters:

Predicted Output and True Output [56].

The function above calculates how poorly our model is performing by comparing the

actual value that we should obtain as an output with what the model is predicting; if Y pred is

Figure 2.20: SoftMax [11]

Figure 2.21: Neural Network Loss Visualization [88]

CHAPTER 2: Convolutional Neural Networks (CNN)

38

far from Y, the loss will be high; if the two values are similar, the loss will be low.

If the loss is significant, this enormous value will propagate across the network while it

is training, and the weight will be adjusted, to say, a little more than usual (Figure 2.22). If the

loss is minor, the weight will not change significantly because the network is already

performing well [57].

The goal is to find the best weights for our network, those that reduce error, and the best

approach to do so is to use an optimization process like gradient descent.

2.5 Convolutional Neural Networks
Convolutional neural networks (CNNs) are a type of neural network CNN, sometimes

known as ConvNet, is a family of models inspired by how the visual cortex of the human brain

recognizes objects. In the 1990s, Yann LeCun and his colleagues presented a unique neural

network design for categorizing handwritten digits from photographs, which led to the

development of CNNs [58].

CNNs have attracted a lot of attention as a result of their excellent performance,

particularly for image classification tasks, which has resulted in significant breakthroughs in

Machine Learning and computer vision applications [59].

ConvNets have a deep feed-forward design that allows them to generalize far better than

networks with completely connected layers [60], learn highly abstract characteristics, and

efficiently identify objects. Because CNN can be trained easily and does not suffer from

overfitting, it is far more difficult to create big networks using general models of Artificial

Neural Network (ANN) than it is to implement in CNN. Due to their exceptional performance,

Figure 2.22: Neural Network Workflow [87]

CHAPTER 2: Convolutional Neural Networks (CNN)

39

CNNs are widely employed in a variety of fields, including object detection, speech recognition,

face detection, facial expression recognition, natural language processing, and many more. The

basic idea behind CNNs is to extract local characteristics from input (often an image) at upper

layers and combine them into more complex features at lower layers [61].

2.5.1 Convolution operation

Convolution is one of the most important operations in signal and image processing

CNN’s convolutions are popularly known to work on spatial or 2D data. What’s less popular is

that there are also convolutions for 1D data [62].

This thesis is concentrated on convolution in 1D spatial, which is mostly used in time

series processing for feature extraction and it is the core block of Convolutional Neural

Networks. This allows CNN to be used in more general data type including texts and other time

series data. Instead of extracting spatial information, you use 1D convolutions to extract

information along the time dimension, see Figure 2.23 [62].

Figure 2.23: Conv1D: Convolving on time dimension [62]

CHAPTER 2: Convolutional Neural Networks (CNN)

40

2.5.2 Architecture of CNN

Each hidden layer in classic neural networks is made up of a number of neurons, each

of which is fully linked to all neurons in the preceding layer. The main distinction between a

typical Artificial Neural Network (ANN) and a Convolutional Neural Network CNN is that a

CNN only has one completely connected layer, whereas an ANN has every neuron coupled to

every other neuron (full connection), as seen in (Figure 2.24) [63].

ANNs are not appropriate to images it leads to over-fitting easily due to image size.

Consider an image of size [32x32x3]. If this image is passed through an ANN, it will be

flattened into a vector of size 32x32x3, which means 3072 rows so; our ANN must have 3072

weights in its first layer to receive this input vector. For larger images, say [300x300x3], it

results in a complex vector (270,000 weights), which requires a more powerful processor to

process. All CNN fundamentals are based on three properties: local connectivity, parameter

(weight) sharing, pooling and sampling of hidden units.
Convolutional Neural Network is based on a sequence of layers to achieve different tasks. The

figure 2.25 shows the architecture of a typical ConvNet that contains the following layers

divided on two-part Features Learning and Classification:

Convolutional layers,

Figure 2.24: Artificial Neural Network and Convolutional Neural Network [89]

CHAPTER 2: Convolutional Neural Networks (CNN)

41

Features Learning Activation function layer (ReLU),

Pooling layer,

Fully connected layer,

Classification Output layer with activation function (Softmax)

These layers are combined to form a full Convolutional Neural Network design, which

includes a Convolutional and Activation layer, as well as a pooling layer if desired. When it

comes to a classification problem like the one shown in the previous picture, the last layer of

the CNN uses a SoftMax function (Sigmoid function may be used for binary classification) to

calculate the likelihood of which class includes our input [53].

2.5.2.1 Convolution layer
Instead of ordinary matrix multiplication, which takes too long, a network that uses

convolutional operation (*), also known as an element-wise product, is utilized. The

Convolutional Layer is made up of a collection of filters (kernel or feature detectors), each of

which is applied to all sections of the input data (Figure 2.26). A filter is defined by a collection

of weights that can be learned. The provided number of filters equals the number of feature

maps [45].

Figure 2.26 A 1D convolution with a kernel sized 3 and stride 1 [62].

Figure 2.25: Convolutional Neural Network Architecture [91]

CHAPTER 2: Convolutional Neural Networks (CNN)

42

2.5.2.2 Filter/ Kernel
Each filter has some features such as corners and edges, and during the pass, the filter

is slid over the width and height (depending to the stride parameter) of the input, forming a

feature map for that filter. Each convolutional layer may have numerous kernels [45].

A feature map is obtained after adding a bias term and then applying a nonlinear function to

the output of the convolutional operation.

2.5.2.3 Hyperparameters
The convolutional and pooling layers have hyperparameters whose value must be

defined beforehand, they are used to control the behavior of the model, here some important

hyperparameters in the convolutional layer of the CNN:

a) Filter Size

Filer can take any size greater than 2 × 2; it should be less than the size of the input. The

largest size used is 7 × 7 but only in the first convolutional layer, [49] a 2D convolutional filter

will always have a third dimension in size. The third dimension is equal to the number of

channels of the input image. For example, we apply a 3x3x1 convolution filter on gray-scale

image that has 1 black and white channel like the previous example (Figure 2.27). We apply a

3x3x3 convolution filter on a colored image with 3 channels, Red, Green and Blue. In general,

each image has dimensions W × H × D where W is the width in pixels, H is the height in pixels

and D represent the dimension or the depth which is the number of channels.

Figure 2.27: Example of Convolutional Operation [90]

CHAPTER 2: Convolutional Neural Networks (CNN)

43

b) Number of filters

There can be any reasonable number of filters, Google Net has 128 filters of 3 × 3 kernel

size and 32 filter of 5 × 5 size, Alex Net used 96 filters of size 11 × 11 in the first convolution

layer.

c) Stride

It specifies how many cells the filter must be moved in the input to calculate the next cell

in the result, i.e., How many pixels must be moved at a time to create the filter's local receptive

field (Figure 2.28), a little stride will result in an overlapping receptive field, whereas a large

one will result in a smaller output dimension.

Figure 2.28: Filter with Stride (s) = 2 [89]

CHAPTER 2: Convolutional Neural Networks (CNN)

44

d) Zero padding

This hyperparameters describes the number of pixels to pad the input image (matrix),

we add to the image a padding with p pixel (Figure 2.28). It helps to keep more of the

information at the border of an image. Without padding, very few values at the next layer would

be affected.

Notice that the dimension of the result has changed due to padding if we compare

it with the previous example (Figure 2.29).

Each filter in the convolution layer produces a feature map of size ([A − K +

2P]/S) +1, where: A the input volume size, K size of the filter, P the number of paddings

applied and S the stride.

Suppose the input image has size 6 × 6 × 3, and 3 filters of size 3 × 3 are applied,

where stride s = 1 and padding p = 0), we already say that the number of feature maps

generated equal to the number of filters/kernels applied i.e., 5, the size of each feature map

�[6−3+0]
1

� + 1 #3, therefore, the output volume will be 4 × 4 × 3. Convolution of 3D

image will give a 2D output:

2.5.2.4 Pooling layer
Pooling layers, also known as subsampling layers, have no learnable parameters, such

as weights or bias units. In CNNs, the sequence of convolution layers and activation function

layers is followed by an optional pooling layer [64] to reduce the spatial size of the input and

thus the number of parameters in the network. By down sampling each feature map output from

Figure 2.29: Zero Padding example with (p)=1 [89]

CHAPTER 2: Convolutional Neural Networks (CNN)

45

the convolutional layer and summarizing a section of neurons in the convolution layer, the

pooling layer makes the model more resistant to alterations in the position of the features in the

input image. Many pooling techniques are employed, the most common of which are maximum

and average pooling. (See Figure 2.30.) It is a pooling operation that selects the maximum

element (value) from the region of the feature map covered by the filter; the result of max-

pooling layer is a feature map that contains the most relevant features of the preceding feature

map while discarding less significant data. Instead of taking the maximum value from the input

matrix, average pooling calculates the average [45].

2.5.3 Fully Connected Layer

A fully connected layer follows the previous sequence (Convolutional Layer, Pooling

Layer) in ConvNets. Two stages make up a convolutional neural network: The feature

extraction stage includes the stack of convolutional layers and the pooling layer, whereas the

classification stage includes the fully connected layer (one or more) followed by a SoftMax

function layer. The first part's major task is to extract enough features from the input photos.

The last layer, which is most likely made up of Softmax functions, will calculate the probability

that these features reflect each class, resulting in a class score. Every neuron in the preceding

layer (convolution layer, pooling layer, or fully connected layer) is connected to every neuron

in the following layer, and every value helps predict how strongly a value matches a specific

class. (See Figure 2.31) Fully connected layers can learn more complex feature combinations.

Softmax and Support Victor Machines (SVMs) are the two main classifiers used in CNNs. As

previously stated, Softmax produces the probabilities of each class with a total probability of 1,

whereas SVM produces the class scores, with the class with the greatest score being treated as

the right one [45].

Figure 2.30: Max Pooling and Avg Pooling

CHAPTER 2: Convolutional Neural Networks (CNN)

46

2.5.4 Real world applications of Convolutional neural network
Convolutional neural networks (CNNs) are remarkably successful in many computer vision

tasks. some real-world applications of CNNs including:

• Face detection: CNNs have been used to detect faces within images. The network takes

an image as the input and produces a set of values that represent characteristics of faces

or facial features at different parts of the image.

• Facial emotion recognition: CNNs have been used to help distinguish between different

facial expressions such as anger, sadness, or happiness. CNNs can also be adapted to

perform well with various lighting conditions and angles of faces within images.

• Object detection: CNN has been applied to object recognition across images by

classifying objects based on shapes and patterns found within an image. CNN models

have been created that can detect a wide range of objects from everyday items such as

food, celebrities, or animals to more unusual ones including dollar bills and guns. Object

detection is performed using techniques such as semantic or instance segmentation.

CNNs have been used to localize and identify objects within images as well as create

different views of those objects such as for use in drones or self-driving cars.

• Handwritten character recognition: CNNs can be used to recognize handwritten

characters. CNNs take the image of a character as an input and break it down into

smaller sections, identifying points that can connect or overlap with other points in order

to determine the shape of the larger character. CNN models have been created that are

able to identify different languages including Chinese, Arabic, and Russian even when

they’re written differently.

Figure 2.31: Connection between Convolutional Layer and Fully Connected Layer

CHAPTER 2: Convolutional Neural Networks (CNN)

47

• X-ray image analysis: CNNs have been used for medical imaging to identify tumors or

other abnormalities in X-ray images. CNN models can take an image of a human body

part, such as the knee, and determine where within that image there might be a tumor

based on previous similar images processed by CNN networks. CNN models can also

be used to determine abnormalities from X-ray images [65].

2.5.5 Advantages and disadvantages of ANNs and CNNs

 ANN CNN

Advantages

• Storing information on
the entire network.

• Ability to work with
incomplete knowledge.

• Having fault tolerance.

• Having a distributed
memory.

• Very High accuracy in image
recognition problems.

• Automatically detects the
important features without any
human supervision.

• Weight sharing.

Disadvantages

• Hardware dependence.

• Unexplained behavior of
the network.

• Determination of proper
network structure

• CNN do not encode the position
and orientation of object.

• Lack of ability to be spatially
invariant to the input data.

• Lots of training data is required.

Table 2.1: Advantages and disadvantages of ANNs and CNNs

2.6 Conclusion
In this chapter, we have discussed the important aspects of CNN, artificial intelligence

and machine learning as well as different types of machine learning in detail. Deep learning and

neural networks have been investigated, ranging from traditional artificial neurons, neural

networks, artificial neural networks and artificial neural network models, and we have

explained well the activation functions, the next chapter will deal with the time-series prediction

method and some prediction results.

48

CHAPTER 3:

Convolutional Neural Networks For Time

Series Forecasting

CHAPTER 3: Convolutional Neural Networks For Time Series Forecasting

49

Chapter 3: Convolutional Neural Networks For Time Series
Forecasting

3.1 Introduction
In this chapter we will build different time series forecasting models based on

convolutional neural networks and train and test it on the datasets we chose, afterwards we

measure the performance of our model using different baselines and metrics to find the

appropriate model for our forecasting.

3.2 Proposed time series forecasting method
CNNs deal with time series problems effectively. Their ability to learn and

automatically and extract features from raw input data can be applied to time series forecasting

problems, recent studies which applied CNN to time-series forecasting tasks mainly involving

financial data show promising results [4].

3.3 Implementation
This section is dedicated to an overview of programming language, libraries, tools and

the hardware used overall for the implementation.

3.3.1 Python
Python is an interpreted object-oriented programming language invented around 1991

intended to emphasize code readability, it supports modules and packages, which encourages

program modularity and code reuse.

Python is the convenient language to quickly implement an abstract idea, bring together

different libraries to do something new, process and scrape data from the internet [66].

3.3.2 Matplotlib
Matplotlib is an open-source Python library used for visualizations of data. It provides

a wide range of different plots [14].

CHAPTER 3: Convolutional Neural Networks For Time Series Forecasting

50

3.3.3 Scikit-learn
Scikit-learn is an open-source software library that provides tools for data analysis.

There are classes for pre-processing and overall machine learning problems, such as

classification, regression, clustering or dimensionality reduction. It is built on NumPy and

Matplotlib [67].

3.3.4 Pandas
 Pandas is another open-source library for Python used for data analysis. It is good for

data importing. Its class DataFrame is an excellent method for representing tabular data,

assisting in data pre-processing, modification or slicing [68].

3.3.5 StatsModels
StatsModels is a Python module that provides classes and functions for the estimation

of many different statistical models, as well as for conducting statistical tests, and statistical

data exploration.

3.3.6 Keras
Keras is a deep-learning framework built on top of python that provides high-level

building blocks for developing almost any kind of deep-learning model in a much more

convenient way than to build it all from scratch. Keras also allows the same code to be run on

both the CPU and GPU [42].

3.3.7 Colaboratory
Colaboratory, or “Colab” for short, is a product from Google Research. Colab allows

anybody to write and execute arbitrary python code through the browser, and is especially well

suited to machine learning, data analysis and education. More technically, Colab is a hosted

Jupyter notebook service that requires no setup to use, while providing access free of charge to

computing resources including GPUs [69].

3.3.8 Hardware
For implementation, we used a windows machine with an Intel i5 CPU 8th generation,

8 GB of Ram and SSD 256 GB.

CHAPTER 3: Convolutional Neural Networks For Time Series Forecasting

51

3.4 Experiments
Experiments were done with univariate and multivariate CNN models on two datasets,

different metrics and baseline were used to evaluate the results of the forecast.

3.4.1 Datasets
For our experiments we used two time series datasets retrieved from Kaggle.

• The first dataset is on daily new Coronavirus (Covid-19) cases and deaths in the United

States from January 2020 to Mai 2022 (Figures 3.1 and 3.2), The data is the product of

dozens of journalists working across several time zones to monitor news conferences,

analyze data releases and seek clarification from public officials on how they categorize

cases [70].

Figure 3.1 US new (Covid-19) confirmed cases [70]

CHAPTER 3: Convolutional Neural Networks For Time Series Forecasting

52

Figure 3.2 US new (Covid-19) confirmed deaths [70]

• The second dataset is a multivariate time series of accumulated property sales data for

the 2007-2019 period, for one specific region. The data contains sales prices in us

dollars for houses and units with 1,2,3,4,5 bedrooms. These are the cross-depended

variables, Raw sales data was transformed to produce median price at quarterly

intervals (Figure 3.3) [71].

Figure 3.3 median price of property sales [71]

CHAPTER 3: Convolutional Neural Networks For Time Series Forecasting

53

3.4.2 Implementation details
In the section we will describe the process of developing our CNN time series

forecasting model implementation and data processing.

3.4.2.1 Data preparation
 We first import the data from google drive cloud storage.

Figure 3.4: Importing the data

After loading the data, we transform the time series to a supervised learning problem

using the sliding window method. We can do this by using previous time steps as input variables

and use the next time step as the output variable, this operation is done in the code below (Figure

3.5).

Figure 3.5: Code for data preparation

CHAPTER 3: Convolutional Neural Networks For Time Series Forecasting

54

3.4.2.2 Train-Test Split

We split the loaded time series data into train and test sets 80% of the data for training

set and 20% stays for testing.

This is done with the following lines of code.

Figure 3.6: Code for Train-Test Split

3.4.2.3 Building the CNN model
A one-dimensional CNN is a CNN model that has a convolutional hidden layer that

operates over a 1D sequence. This is followed by a second convolutional layer, and then a

pooling layer followed by a dense fully connected layer that interprets the features extracted by

the convolutional part of the model. A fatten layer is used between the convolutional layers and

the dense layer to reduce the feature maps to a single one-dimensional vector. We can define a

1D CNN Model for time series forecasting as follows.

 Figure 3.7: code for building the CNN model

CHAPTER 3: Convolutional Neural Networks For Time Series Forecasting

55

3.4.3 Evaluation Metrics

When we build a solution for any regression problem, we compare its performance with

the existing work. But to compare the two works, there should be some standard metric, the

evaluation metrics we used are MAE, MSE and MAPE.

3.4.3.1 MAE
Mean absolute error (MAE) is a fundamental and most used evaluation metric for

regression problems. Here we try to calculate the difference between the actual and predicted

values. This difference is termed an error, it can be positive or negative so we take the

magnitude. Let’s put AV as the actual value and PV as the predicted value,

so we have: MAE = |AV – PV| [72].

3.4.3.2 MSE

Mean squared error (MSE) is a very popular evaluation metric for regression problems.

It is similar to the mean absolute error, but the error is squared here, MSE = (AV – PV)² [72].

3.4.3.3 MAPE
The mean absolute percentage error (MAPE) is the mean or average of the absolute

percentage errors of forecasts. Error is defined as actual or observed value minus the forecasted

value. Percentage errors are summed without regard to sign to compute MAPE. This measure

is easy to understand because it provides the error in terms of percentages. Also, because

absolute percentage errors are used, the problem of positive and negative errors cancelling each

other out is avoided. Consequently, MAPE has managerial appeal and is a measure commonly

used in forecasting. The smaller the MAPE the better the forecast,

MAPE = 100% (|AV – PV| / AV) [72].

3.4.4 Baselines
A baseline model is essentially a simple model that acts as a reference in a forecast

project. Its main function is to contextualize the results of trained models as it provides a point

of comparison [73], the baselines we chose to benchmark our model are ARIMA, Zero Rule

algorithm and the naïve forecasting algorithm.

3.4.4.1 ARIMA
ARIMA is the most popular baseline chosen in many projects, we described in in detail

in chapter two.

CHAPTER 3: Convolutional Neural Networks For Time Series Forecasting

56

3.4.4.2 Zero Rule algorithm
Zero Rule Algorithm for regression problems is to predict the central tendency. This

could be the mean or the median, (also called the average) of the output value observed in the

training data. This is likely to have a lower error than random prediction which will return any

observed output value [73].

3.4.4.3 Naïve forecasting algorithm
Naïve forecasting is the technique in which the last period's sales are used for the next

period's forecast without predictions or adjusting the factors. Forecasts produced using a naïve

approach are equal to the final observed value [74].

3.5 Results and comparison

3.5.1 Results
To make the comparison and evaluation easier we classified the results into the

univariate time series and the multivariate time series.

3.5.1.1 Forecast results using univariate time series
In Figure 3.8 we have the results from the univariate model, trained with the first dataset,

the output is the predicted new Covid-19 confirmed cases plotted along with test set to show

the outcome of the forecast.

Figure 3.8: univariate model results for the COVID19 dataset prediction

CHAPTER 3: Convolutional Neural Networks For Time Series Forecasting

57

The second univariate model used the property sales dataset, it has one feature which

is the median sales price of the properties, results are shown in figure 3.9 along with the test

set.

Figure 3.9: univariate model results for the sales dataset prediction

3.5.1.2 Forecast results using multivariate time series
We have the results from the multivariate model, this was trained with one more feature

which is the new Covid-19 confirmed deaths, predictions of the new confirmed Covid-19 cases

are paired with test set in figure 3.10.

Figure 3.10: multivariate model results for the COVID19 dataset prediction

CHAPTER 3: Convolutional Neural Networks For Time Series Forecasting

58

And these are the results for the property sales dataset shown in figure 3.11 for the

multivariate model, which was trained with an additional feature which is the number of

bedrooms of each property sold.

Figure 3.11: multivariate model results for the sales dataset prediction

We clearly notice from the graphs that the multivariate version of the model is

outperforming the univariate model, now let’s confirm that by moving on to the metrics

comparison.

CHAPTER 3: Convolutional Neural Networks For Time Series Forecasting

59

3.5.2 Performance Comparison
To measure how well our model performed we use the metrics and compare the results

between the baselines and our CNN models.

Metrics and baselines for the Covid-19 dataset:

 MSE MAE MAPE

Univariate CNN model 13568179924.31 61740.32 57.39%

Multivariate CNN model 9701514846.04 50776.95 33.60%

ARIMA 90371021379.40 163118.01 224.29%

Naïve forecasting 35476955073.29 96146.33 67.35%

Zero rule forecasting 90468199050.99 163669.10 226.00%

Table 3.1: Baseline and CNN models metrics for the Covid-19 dataset

Metrics and baselines the property sales dataset:

 MSE MAE MAPE

Univariate CNN model 576005790.95 15052.95 2.98%

Multivariate CNN model 4657.88 4657.88 0.91%

ARIMA 2855425692.11 47692.08 9.37%

Naïve forecasting 157049577.17 4500.82 5.82%

Zero rule forecasting 5773427546.87 61892.79 11.11%

Table 3.2: Baseline and CNN models metrics for the property sales dataset

Looking at the metrics our most accurate predictions is the multivariate CNN model

followed by the univariate CNN model, this outcome applies on both datasets.

CHAPTER 3: Convolutional Neural Networks For Time Series Forecasting

60

3.5.3 Discussion
The outcome of the experiments done on the datasets insight that CNNs can handle time

series data pretty well, the univariate CNN model for the Covid-19 dataset outperformed the

ARIMA and Zero rule forecasting baselines with four times more in the MAPE value, but the

results were close with the Naïve forecasting baseline with only 10% MAPE difference, and

closer MSE, MAE values than the other baselines. It is worth noting that the smaller the value

of MAPE the better the forecast. For the multivariate CNN model there is a noticeable increase

in performance as the MAPE was two times better than the univariate model and the naïve

forecasting model.

For the experiments on the second dataset the results were relatively similar to the first

one. According to the MAPE values, the univariate CNN model is 8% better than the Zero rule

forecasting algorithm, 6% better than the ARIMA model 3% better than the naïve forecasting.

The results for the multivariate CNN model were really promising as we got the smallest MAPE

value of 0.91% which is a significant increase in accuracy compared the univariate model.

We can see from these results that our CNN models performed pretty well compared to

the other baselines especially in the sales dataset, and the more features we add to the model

the more accurate the predictions are, this prove that deep learning forecasting models have an

advantage over the traditional statistical models when there are more data and variables

available.

Also, we think further testing is important, more datasets with different characteristics

should be applied to better understand and further validate the results and characteristics for

each model.

3.6 Conclusion
In this chapter, we implemented CNN univariate and multivariate models for time series

forecasting and measured its performance based on the metrics and baselines. The study

performed about CNN models applied to time series problems showed that they are a viable

option for time series. It was also showed what are the desired characteristics that a model

should have to be a viable option.

General Conclusion

61

General Conclusion

Time series analysis were always a field extremely important across several areas, thus it

was always under intense development. Supported by the recent advances in the deep learning

area the objective of this work was to make a study on deep learning strategies for the time

series domain.

 Initially we discussed the aspects of time series data, analysis, and its components, as well

as the various forecasting techniques in detail. Different types of models have been investigated,

ranging from traditional statistical models to machine learning and deep learning models, and

common evaluation metrics that are commonly used in time series have been illustrated.

We discussed the theory behind the artificial intelligence and machine learning as well as

different types of machine learning in detail, ranging from traditional artificial neurons, neural

networks and deep neural network models focusing on CNNs and their architecture.

We implemented on the basis of the metrics and baselines different CNN models including

univariate and multivariate models for time series forecasting and evaluated its performance,

we had some promising results especially with multivariate models.

The research done on CNN models used to solve time series problems revealed that they

are a good choice for time series forecasting and they are capable to compete and outperform

the traditional models, this offers a great opportunity to try complex deep learning models like

the hybrid models on more datasets with different characteristics and larger data to explore their

potential.

 With the growing interest in exploring deep learning’s predictive capabilities, we expect it

to dominate the forecasting field in the near future.

Bibliography

62

Bibliography

[1] M. D. Pra, Time Series Forecasting with Deep Learning and Attention Mechanism | by

Marco Del Pra | Towards Data Science, 2020.

[2] Q. Yang and X. Wu, "10 challenging problems in data mining research," International

Journal of Information Technology & Decision Making, vol. 5, p. 597–604, 2006.

[3] C. Stolte, Time Series Forecasting: Definition & Examples | Tableau, 2003.

[4] J. Brownlee, Deep Learning for Time Series Forecasting: Predict the Future with MLPs,

CNNs and LSTMs in Python, Machine Learning Mastery, 2018.

[5] J. V. Hansen and R. D. Nelson, "Forecasting and Recombining Time-Series Components by

Using Neural Networks," The Journal of the Operational Research Society, vol. 54, p. 307–

317, 2003.

[6] G. P. Zhang and M. Qi, "Neural network forecasting for seasonal and trend time series,"

European Journal of Operational Research, vol. 160, pp. 501-514, 2005.

[7] E. Ghysels and D. R. Osborn, The Econometric Analysis of Seasonal Time Series,

Cambridge University Press, 2001.

[8] Dataiku, Concept: Time {Series} {Components} — {Dataiku} {Knowledge} {Base},

2022.

[9] J. Crespo Cuaresma, J. Hlouskova, S. Kossmeier and M. Obersteiner, "Forecasting

electricity spot-prices using linear univariate time-series models," Applied Energy, vol. 77,

pp. 87-106, January 2004.

[10] F. Ndiritu, Univariate Time Series using Facebook Prophet | Engineering Education

(EngEd) Program | Section, 2022.

[11] A. Singh, Multivariate Time Series | Vector Auto Regression (VAR), 2018.

[12] D. Kwiatkowski, P. C. B. Phillips, P. Schmidt and Y. Shin, "Testing the null hypothesis of

stationarity against the alternative of a unit root: How sure are we that economic time series

have a unit root?," Journal of Econometrics, vol. 54, pp. 159-178, 1992.

[13] J. Emery, 3 Advantages to Time Series Analysis and Forecasting | phData, 2021.

[14] Matplotlib, Matplotlib — Visualization with Python, 2022.

[15] G. Chevillon, "DIRECT MULTI-STEP ESTIMATION AND FORECASTING," Journal of

Economic Surveys, vol. 21, pp. 746-785, 2007.

Bibliography

63

[16] J. Korstanje, How to Select a Model For Your Time Series Prediction Task [Guide] -

neptune.ai, 2021.

[17] G. Jain and B. Mallick, "A Study of Time Series Models ARIMA and ETS by Garima Jain,

Bhawna Mallick :: SSRN," A Study of Time Series Models ARIMA and ETS by Garima Jain,

Bhawna Mallick :: SSRN, June 2017.

[18] "Modeling Financial Time Series with S-PLUS®," 2006.

[19] D. A. Freedman, Statistical Models, 2012.

[20] H. L. Seal, The Historical Development of the Gauss Linear Model, Yale University, 1968.

[21] A. C. Rencher and W. F. Christensen, Methods of Multivariate Analysis, 2012.

[22] C. Cortes and V. Vapnik, "Support-vector networks," Machine Learning, vol. 20, p. 273–

297, September 1995.

[23] U. Thissen, R. van Brakel, A. P. de Weijer, W. J. Melssen and L. M. C. Buydens, "Using

support vector machines for time series prediction," Chemometrics and Intelligent

Laboratory Systems, vol. 69, pp. 35-49, 2003.

[24] H. Soh and Y. Demiris, "Spatio-Temporal Learning With the Online Finite and Infinite

Echo-State Gaussian Processes," IEEE transactions on neural networks and learning

systems, vol. 26, June 2014.

[25] C. Deb, F. Zhang, J. Yang, S. E. Lee and K. W. Shah, "A review on time series forecasting

techniques for building energy consumption," Renewable and Sustainable Energy Reviews,

vol. 74, pp. 902-924, 2017.

[26] N. S. Altman, "An Introduction to Kernel and Nearest-Neighbor Nonparametric

Regression," The American Statistician, vol. 46, pp. 175-185, 1992.

[27] J. Jagwani, M. Gupta, H. Sachdeva and A. Singhal, "Stock Price Forecasting Using Data

from Yahoo Finance and Analysing Seasonal and Nonseasonal Trend," in 2018 Second

International Conference on Intelligent Computing and Control Systems (ICICCS), 2018.

[28] d. Hudson, Agricultural Markets and Prices, 2007.

[29] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, 2016.

[30] D. Ciresan, U. Meier and J. Schmidhuber, "Multi-column deep neural networks for image

classification," 2012 IEEE Conference on Computer Vision and Pattern Recognition, June

2012.

[31] A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet Classification with Deep

Convolutional Neural Networks," in Advances in Neural Information Processing Systems,

Bibliography

64

2012.

[32] T. Menzies, E. Kocaguneli, B. Turhan, L. Minku and F. Peters, Sharing Data and Models in

Software Engineering, Morgan Kaufmann, 2014.

[33] A. Mohanty, Multi layer Perceptron (MLP) Models on Real World Banking Data | by

Awhan Mohanty | Becoming Human: Artificial Intelligence Magazine, 2019.

[34] P. J. Werbos, "Backpropagation Through Time: What It Does and How to Do It," Proc.

IEEE, vol. 78, pp. 1550-1560, 1990.

[35] S. Hochreiter, "The Vanishing Gradient Problem During Learning Recurrent Neural Nets

and Problem Solutions," International Journal of Uncertainty, Fuzziness and Knowledge-

Based Systems, vol. 06, p. 107–116, April 1998.

[36] R. Dey and F. M. Salem, Gate-Variants of Gated Recurrent Unit (GRU) Neural Networks,

2017.

[37] R. Fu, Z. Zhang and L. Li, "Using LSTM and GRU neural network methods for traffic flow

prediction," 2016 31st Youth Academic Annual Conference of Chinese Association of

Automation (YAC), November 2016.

[38] M. Ciortan, Gentle introduction to Echo State Networks | by Madalina Ciortan | Towards

Data Science, 2019.

[39] P. L.-B. tez, M. Carranza-Garcıá and J. C. Riquelme, "An Experimental Review on Deep

Learning Architectures for Time Series Forecasting," International Journal of Neural

Systems, vol. 31, p. 2130001, February 2021.

[40] Y. Wang, M. Long, J. Wang, Z. Gao and P. S. Yu, "PredRNN: Recurrent Neural Networks

for Predictive Learning using Spatiotemporal LSTMs," in Advances in Neural Information

Processing Systems, 2017.

[41] A. Xavier, An introduction to ConvLSTM. Nowadays it is quite common to find... | by

Alexandre Xavier | Neuronio | Medium, 2019.

[42] L. Cunha, "Deep learning with Python (2a ed) - François Chollet - Manning, outubro 2021,

504 pp.," Interações: Sociedade e as novas modernidades, p. 113–115, June 2022.

[43] H. Chen, "Machine learning for information retrieval: Neural networks, symbolic learning,

and genetic algorithms," Journal of the American Society for Information Science, vol. 46,

p. 194–216, April 1995.

[44] D. MICHIE, "``Memo'' Functions and Machine Learning," Nature, vol. 218, p. 306–306,

April 1968.

Bibliography

65

[45] M. A. Wani, F. A. Bhat, S. Afzal and A. I. Khan, "Advances in Deep Learning," Studies in

Big Data, 2020.

[46] G. E. Hinton and T. J. Sejnowski, "Unsupervised learning : foundations of neural

computation," 1999.

[47] B. J. Pandian and M. M. Noel, "Control of a bioreactor using a new partially supervised

reinforcement learning algorithm," Journal of Process Control, vol. 69, p. 16–29,

September 2018.

[48] R. A. Alzahrani and A. C. Parker, "Neuromorphic Circuits With Neural Modulation

Enhancing the Information Content of Neural Signaling," International Conference on

Neuromorphic Systems 2020, July 2020.

[49] N. Buduma and N. Locascio, Fundamentals of Deep Learning: Designing Next-Generation

Machine Intelligence Algorithms, 1st ed., O'Reilly Media, Inc., 2017.

[50] J. J. Hopfield, "Neural networks and physical systems with emergent collective

computational abilities.," Proceedings of the National Academy of Sciences, vol. 79, p.

2554–2558, April 1982.

[51] R. Gour, Artificial Neural Network for Machine Learning — Structure & Layers, 2019.

[52] M. Garduño-Ramón, L. Morales-Hernández, J. Benitez-Rangel, R. Osornio-Rios and J.

Sánchez-Gómez, "Methodology for automatic detection of trees and shrubs in aerial pictures

from UAS," 2015.

[53] S. Pattanayak, Pro Deep Learning with TensorFlow, 2017.

[54] S. H. Han, K. W. Kim, S. Kim and Y. C. Youn, "Artificial Neural Network: Understanding

the Basic Concepts without Mathematics," Dementia and Neurocognitive Disorders, vol.

17, p. 83, 2018.

[55] V. S. Bawa and V. Kumar, "Linearized sigmoidal activation: A novel activation function

with tractable non-linear characteristics to boost representation capability," Expert Systems

with Applications, vol. 120, p. 346–356, April 2019.

[56] J. Patterson and A. Gibson, Deep Learning: A Practitioner's Approach, Beijing: O'Reilly,

2017.

[57] W. Ballard, Hands-On Deep Learning for Images with TensorFlow, 2018.

[58] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard and L. Jackel,

"Handwritten Digit Recognition with a Back-Propagation Network," in Advances in Neural

Information Processing Systems, 1989.

Bibliography

66

[59] S. Raschka and V. Mirjalili, Python Machine Learning - Second Edition, 2017.

[60] A. N. Shoutko, Immunity or morphogenesis in cancer development and treatment, vol. 6,

Open Access Text Pvt, Ltd., 2019.

[61] B.-S. Yang, T. Han and Z.-J. Yin, "Fault Diagnosis System of Induction Motors Using

Feature Extraction, Feature Selection and Classification Algorithm," JSME International

Journal Series C, vol. 49, pp. 734-741, January 2006.

[62] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar and P. A. Muller, Deep learning for time

series classification: a review - Data Mining and Knowledge Discovery, 2019.

[63] I. Gogul and V. S. Kumar, "Flower species recognition system using convolution neural

networks and transfer learning," in 2017 Fourth International Conference on Signal

Processing, Communication and Networking (ICSCN), 2017.

[64] M. A. Nielsen, Neural networks and deep learning.

[65] A. Kumar, Real-World Applications of Convolutional Neural Networks - Data Analytics,

2021.

[66] C. Vudhya, AI VS ML VS DL-Let's Understand The Difference - Analytics Vidhya, 2021.

[67] scikit-learn: machine learning in Python — scikit-learn 0.16.1 documentation, 2022.

[68] Pandas, pandas - Python Data Analysis Library, 2022.

[69] C. Google, Google Colaboratory, 2022.

[70] J. Hanson, Coronavirus (Covid-19) maps of United States, 2022.

[71] H. Holdings, House Property Sales Time Series, 2019.

[72] R. Agrawal, Evaluation Metrics for Your Regression Model - Analytics Vidhya, 2021.

[73] J. Brownlee, How to implement Baseline Machine Learning algorithms from scratch with

python. Machine Learning Mastery, 2020.

[74] J. Brownlee, Evaluate naive models for forecasting household electricity consumption.

Machine Learning Mastery, 2020.

[75] s. significance, statistical significance - Justifying the trend component in a time series? -

Cross Validated, 2019.

[76] A. L. Lima, Bitcoin Price Prediction Using Recurrent Neural Networks and LSTM, 2021.

[77] C. Lynx, Annual Canadian Lynx trappings 1821–1934 — lynx.

[78] B. Wise, Time Series Analysis with ARIMA: Part 2 - Cisco Blogs, 2020.

[79] L. S. T. M. Networks, Understanding LSTM Networks – colah's blog, 2015.

Bibliography

67

[80] W. Commons, File:Gated Recurrent Unit, type 1.svg - Wikimedia Commons, 2018.

[81] S. Vivek, Basic architecture of RNN and LSTM, 2017.

[82] I. N. T. E. L. L. I. G. E. N. C. E. ARTIFICIELLE, INTELLIGENCE ARTIFICIELLE,

MACHINE LEARNING, BIG DATA... QUELS IMPACTS POUR NOTRE FUTUR ? - BGS

Associés, 2019.

[83] R. Stefanus, Conventional Programming VS Machine Learning | by Ruben Stefanus |

Medium, 2019.

[84] r. notes, reading-notes.

[85] W. Wikimedia, File:Neuron.jpg - Wikimedia Commons.

[86] M. H. Esfe, A well-trained artificial neural network for predicting the rheological behavior

of MWCNT–Al2O3 (30–70%)/oil SAE40 hybrid nanofluid - Scientific Reports, 2021.

[87] D. Dan, Neural Network Workflow - Concord Analytics, LLC, 2019.

[88] H. Bommana, Loss Functions Explained. Intuitive explanations of various Loss... | by

Harsha Bommana | Deep Learning Demystified | Medium, 2020.

[89] P. ProjectPro, Introduction to Convolutional Neural Networks Architecture, 2022.

[90] V. Kumar, Convolutional Neural Networks. Basic fundamentals of CNN | by Vedant Kumar

| Towards Data Science, 2020.

[91] S. Saha, A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way, 2018.

[92] I. IndianTechWarrior, 7 Types of Neural Network Activation Functions: How to Choose? –

IndianTechWarrior, 2021.

[93] F. convolution, 4 – Filtres de convolution – Mathinfo, 2022.

	Abstract
	Acknowledgment
	Dedications
	Contents
	List of Figures
	List of Tables
	General Introduction
	1. Background
	2. Problem statement
	3. Approach
	4. Outline
	CHAPTER 1: Time Series Forecasting
	1.1 Introduction
	1.2 Time Series
	1.2.1 Time Series Presentation
	1.2.1.1 Definitions
	1.2.1.2 Examples

	1.2.2 Time Series Data and Components
	1.2.2.1 Components
	1.2.2.1.1 Trend Component
	1.2.2.1.2 Seasonality Component
	1.2.2.1.3 Cyclical Component
	1.2.2.1.4 Irregular Component

	1.2.2.2 Understanding time series

	1.2.3 Time Series Types
	1.2.3.1 Univariate Time Series
	1.2.3.2 Multivariate Time Series

	1.2.4 Stationary Time Series

	1.3 Time Series Forecasting
	1.3.1 One-step ahead prediction
	1.3.2 Multi-step ahead prediction

	1.4 Time Series Forecasting Models
	1.4.1 Statistical Models
	1.4.1.1 ARIMA
	1.4.1.2 Exponential Smoothing
	1.4.1.3 Vector Auto regression (VAR)

	1.4.2 Machine Learning Models
	1.4.2.1 Linear Regression
	1.4.2.2 Support Vector Regression (SVR)
	1.4.2.3 K-Nearest Neighbors (KNN)

	1.5 Deep Learning Models
	1.5.1 Multi-Layer Perceptron (MLP)
	1.5.2 Recurrent Neural Network (RNN)
	1.5.3 Long Short-Term Memory (LSTM)
	1.5.4 Gated Recurrent Unit (GRU)
	1.5.5 Echo State Network (ESN)
	1.5.6 Convolutional LSTM (ConvLSTM)

	1.6 Conclusion

	CHAPTER 2: Convolutional Neural Networks (CNN)
	2
	2.1 Introduction
	2.2 Historical context
	2.2.1 Artificial Intelligence
	2.2.2 Machine Learning
	2.2.3 Types of Machine Learning
	2.2.3.1 Supervised learning
	2.2.3.2 Unsupervised learning
	2.2.3.3 Reinforcement learning

	2.3 Deep Learning and Neural Networks
	2.3.1 Artificial Neurons
	2.3.2 Biological Neural Network
	2.3.3 Artificial neural networks
	2.3.4 Models of Artificial Neural Networks
	2.3.5 Gradient Descent

	2.4 Activation Functions
	2.4.1 Linear activation functions
	2.4.2 Activation Functions (Non-Linearity)
	2.4.2.1 Sigmoid
	2.4.2.2 Tanh
	2.4.2.3 ReLU
	2.4.2.4 SoftMax

	2.4.3 Loss Functions

	2.5 Convolutional Neural Networks
	2.5.1 Convolution operation
	2.5.2 Architecture of CNN
	2.5.2.1 Convolution layer
	2.5.2.2 Filter/ Kernel
	2.5.2.3 Hyperparameters
	a) Filter Size
	b) Number of filters
	c) Stride
	d) Zero padding

	2.5.2.4 Pooling layer

	2.5.3 Fully Connected Layer
	2.5.4 Real world applications of Convolutional neural network
	2.5.5 Advantages and disadvantages of ANNs and CNNs

	2.6 Conclusion

	Chapter 3: Convolutional Neural Networks For Time Series Forecasting
	3
	3.1 Introduction
	3.2 Proposed time series forecasting method
	3.3 Implementation
	3.3.1 Python
	3.3.2 Matplotlib
	3.3.3 Scikit-learn
	3.3.4 Pandas
	3.3.5 StatsModels
	3.3.6 Keras
	3.3.7 Colaboratory
	3.3.8 Hardware

	3.4 Experiments
	3.4.1 Datasets
	3.4.2 Implementation details
	3.4.2.1 Data preparation
	3.4.2.2 Train-Test Split
	3.4.2.3 Building the CNN model

	3.4.3 Evaluation Metrics
	3.4.3.1 MAE
	3.4.3.2 MSE
	3.4.3.3 MAPE

	3.4.4 Baselines
	3.4.4.1 ARIMA
	3.4.4.2 Zero Rule algorithm
	3.4.4.3 Naïve forecasting algorithm

	3.5 Results and comparison
	3.5.1 Results
	3.5.1.1 Forecast results using univariate time series
	3.5.1.2 Forecast results using multivariate time series

	3.5.2 Performance Comparison
	3.5.3 Discussion

	3.6 Conclusion

	General Conclusion
	Bibliography

