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Abstract 
Time series forecasting occurs when you make scientific predictions based on historical 

time stamped data. It involves building models through historical analysis and using them to 
make observations and drive future Strategic decision-making. Their main specificities 
compared to the most common areas of machine learning are their dependence over time and 
their seasonal behaviors that can appear in their evolution. In the literature, statistical models 
are widely used for time series forecasting. However, many complex models or approaches can 
be very useful in some cases. Generalized Autoregressive Conditional Heteroskedasticity 
(GARCH), Bayesian models and ARIMA vectors (VAR) are just a few examples. There are 
also even time series models borrowed from deep learning. Deep learning methods do offer a 
lot of promise for time series forecasting, specifically the automatic learning of temporal 
dependence and the automatic handling of temporal structures like trends and seasonality. 
Multilayer Perceptrons, Convolutional Neural Networks (CNN), or Recurrent Neural Network 
(RNN) with LSTM or GRU cells can be successfully employed for time series forecasting 
issues. Through this work, we aim to develop a CNN model for time series forecasting. The 
proposed model will be experimented and evaluated on real-world datasets with the known 
metrics in this field. 
Key-words: Time Series Forecasting, CNN, GRU, Single-step, Multi-step, Univariate, 
Multivariate. 

 
Résumé 

Les prévisions de séries chronologiques se produisent lorsque vous faites des prédictions 
scientifiques basées sur des données historiques horodatées. Cela implique de construire des 
modèles grâce à une analyse historique et de les utiliser pour faire des observations et orienter 
la prise de décision stratégique future. Leurs principales spécificités par rapport aux domaines 
les plus courants du machine Learning sont leur dépendance dans le temps et leurs 
comportements saisonniers qui peuvent apparaître dans leur évolution. Dans la littérature, les 
modèles statistiques sont largement utilisés pour la prévision des séries temporelles. Cependant, 
de nombreux modèles ou approches complexes peuvent être très utiles dans certains cas. 
L'hétéroscédasticité conditionnelle autorégressive généralisée (GARCH), les modèles 
bayésiens et les vecteurs ARIMA (VAR) ne sont que quelques exemples. Il existe même des 
modèles de séries chronologiques empruntés à l'apprentissage en profondeur. Les méthodes 
d'apprentissage en profondeur offrent beaucoup de promesses pour la prévision des séries 
chronologiques, en particulier l'apprentissage automatique de la dépendance temporelle et la 
gestion automatique des structures temporelles telles que les tendances et la saisonnalité. Les 
perceptrons multicouches, les réseaux de neurones convolutifs (CNN) ou les réseaux de 
neurones récurrents (RNN) avec des cellules LSTM ou GRU peuvent être utilisés avec succès 
pour les problèmes de prévision de séries chronologiques. A travers ce travail, nous visons à 
développer un modèle CNN pour la prévision de séries temporelles. Le modèle proposé sera 
expérimenté et évalué sur des ensembles de données du monde réel avec les métriques connues 
dans ce domaine. 
 Mots-clés: Prévision de séries chronologiques, CNN, GRU, Single-step, Multi-step, 
Univariée, Multivariée. 
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General Introduction 

 Background  
Time series data and its analysis are increasingly important due to the massive production 

of such data through, for example, the internet of things, the digitalization of healthcare, and 

the rise of smart cities. In the coming years we can expect the quantity, quality, and importance 

of time series data to grow rapidly. Indicators of production and efficiency in markets have long 

provided interesting data to study from a time series analysis. Most interesting and urgent has 

been the question of forecasting future economic states based on the past. Such forecasts aren’t 

merely useful for making money they also help promote prosperity and avert social 

catastrophes. 

In simple terms, time-series data refers to a consistent stream of data sets over the course 

of a period of time. Analyzing this type of data has become a recent area of focus in artificial 

intelligence, as accurate forecasting is becoming increasingly vital across all kinds of industries 

in order to make more informed decisions. 

Machine Learning has been proven powerful in imaging, natural language, and speech because 

of huge annotated datasets available. On the other hand, time series problems usually do not 

have big annotated datasets. Also, the data from different domains exhibit considerable 

variations in important properties and features, temporal scales, and dimensionality. Further, 

time-series analysis requires the algorithm to learn time-dependent patterns within and across 

multiple modalities, unlike images or speech. Time series analysis mostly includes clustering, 

classification, anomaly detection, and forecasting each of which is uniquely useful to the 

business. 

 Problem statement  
Traditionally, time series forecasting has been dominated by linear methods because they 

are well understood and effective on many simpler forecasting problems, however deep 

learning neural networks are able to automatically learn arbitrary complex mappings from 

inputs to outputs and support multiple inputs and outputs. 

Accordingly, are deep learning models a viable option for time series forecasting? if so, 

how well it performs compared to traditional methods? 
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 Approach  
 

To answer the previous question, a CNN for time series forecasting is developed. The 

proposed model will be experimented and evaluated on real-world datasets with the known 

metrics in this field. 

 Outline  
This thesis is divided into three chapters and a general introduction, which includes the 

following sections: background, problem statement, approach, and outline, and a general 

conclusion.  

Chapters one and two are theoretical; chapter three will be the application section, in which the 

steps of implementation and the results will be presented; and finally, we will draw a broad 

conclusion based on the results and discussion from chapter three. Each chapter’s structure is 

as follows: 

 
• Chapter one: Time series forecasting  

This chapter introduces time series in general and time series forecasting in particular, 

with an overview of the various forecasting techniques and a discussion of real-world 

study cases that employed time series forecasting. 

 
•  Chapter two : Convolutional Neural Networks (CNN)  

This chapter covers the fundamentals of artificial intelligence, machine learning and its 

different types. And the fundamental concepts of deep learning, with focusing on 

Convolutional Neural Networks, their architecture and how it functions. 

 

• Chapter three: Convolutional Neural Networks for time series forecasting  

In this chapter, we implement a CNN model for time series forecasting and measure its 

performance based on the metrics and baselines. To study whether CNNs are a viable 

option for time series forecasting. 
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CHAPTER 1: Time Series Forecasting 
 

1.1 Introduction 
A time series is a collection of observations in chronological order. These could be daily 

stock closing prices, weekly inventory figures, annual sales, or countless other things. 

Forecasting the future values of an observed time series is an important problem in many 

areas, including economics, production planning, sales forecasting and stock control. 

Forecasting is valuable to businesses because it gives the ability to make informed business 

decisions and develop data-driven strategies. Based on the state of the market today and 

forecasts for the future, financial and operational decisions are taken. 

1.2 Time Series 

1.2.1 Time Series Presentation  
Time series forecasting has always been a very important area of research in many fields 

because many different types of data are stored as time series. For example, we can find many 

time series data in medicine, weather forecasting, biology, supply chain management and stock 

price forecasting. Due to the increasing availability of data and computing power in recent 

years, deep learning has become an essential part of the new generation of time series prediction 

models, with excellent results [1]. 

Unlike traditional machine learning models like auto-regression (AR) or exponential 

smoothing, which need feature engineering and some parameter optimization with domain 

expertise in mind; deep learning models learn features and dynamics entirely from the data. 

They can speed up the data preparation process and understand more complicated data patterns 

more thoroughly as a result of this. In recent years, a great number of innovative architectures 

have been built as various time series problems have been studied in many disciplines, making 

the development of new bespoke network components easier and faster. Therefore, we will 

proceed in this research by using one of the methods of deep learning in predicting time series 

[2]. 

Another difficulty or tradeoff is related to the number of data points in the time series, 

more data from the past increase the precision and the chance of detailed analysis. 

However, while increasing the precision property of the data, we also increase the risk that the 

model cannot handle the data processing [3]. 
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1.2.1.1 Definitions 
Time series analysis is a method for studying a collection of data points over a period. 

Instead of capturing data points intermittently or arbitrarily, time series analyzers record data 

points at constant intervals over a predetermined length of time. This form of analysis, however, 

is more than just gathering data over time. 

The ability to depict how variables change over time distinguishes time series data from 

other types of data. It provides an additional source of data as well as a predetermined order of 

data dependencies. To maintain consistency and dependability, time series analysis often 

requires a high number of data points. A large data set guarantees a representative sample size. 

To achieve consistency and dependability, time series analysis often requires a large 

number of data points. A large data collection ensures that your sample size is representative 

and that your analysis can cut through noisy data. It also guarantees that any discovered trends 

or patterns are not outliers and that seasonal variation is taken into account. Time series data 

can also be used for forecasting or anticipating future data based on previous data. The ability 

to depict how variables change over time distinguishes time series data from other types of data. 

It provides an additional source of data as well as a predetermined order of data dependencies 

[3]. 

1.2.1.2 Examples 
There is almost an endless supply of time series forecasting problems. Below are some 

examples from a range of industries to make the notions of time series analysis and forecasting 

more concrete. 

• Forecasting the corn yield in tons by state each year. 

• Forecasting whether an electroencephalography trace in seconds indicates a patient is 

having a seizure or not. 

• Forecasting the closing price of a stock each day. 

• Forecasting the birth rate at all hospitals in a city each year. 

• Forecasting product sales in units sold each day for a store. 

• Forecasting the number of passengers through a train station each day. 

• Forecasting unemployment for a state each quarter. 

• Forecasting utilization demand on a server each hour. 

• Forecasting the size of the rabbit population in a state each breeding season [4].  
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1.2.2 Time Series Data and Components 
Time series data is a set of observations obtained through repeated measurements over 

time. Time series metrics refer to a piece of data that is tracked with an increase in time. For 

example, a metric can indicate how much inventory was sold in a store from one day to the 

next. 

Time series data is everywhere, because time is a component of everything that can be 

observed. As our world increasingly uses tools, sensors and systems are constantly releasing a 

relentless stream of time-series data. Operations and other business decisions often depend on 

accurate time-series forecasts. These time series usually consist of trend-cycle, seasonal, and 

irregular components. Existing methodologies attempt to first identify and then extrapolate 

these components to produce forecasts. This data has many Components, we will mention them 

[5]. 

1.2.2.1 Components  
The various reasons or the forces, which affect the values of an observation in a time series, 

are the components of a time series. The four categories of the components of time series are: 

• Trend 

• Seasonality 

• Cycle 

• Irregular 

1.2.2.1.1  Trend Component 

A trend time series moves in a simple linear fashion. The trend shows the general tendency of 

the data to increase or decrease during a long period of time. And it is obtained by ignoring any 

short-term effects such as seasonal changes or noise. The increase or decrease does not need to 

be in the same direction throughout the given period of time [6]. For example, see the upward 

and downward trend in the plot of Japan’s population. 
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1.2.2.1.2 Seasonality Component 

A seasonal pattern exists when there are a series of nuances depending on seasonal 

factors (for example, quarter, month, or day of the week). Seasonality is always of a fixed, known 

period. Hence, seasonal time series are sometimes called periodic time series i.e. they repeat 

throughout the duration of the time series [7]. 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Predictions of Airline Passengers monthly [8]. 

Figure 1.1 The upward and downward trend in the plot of Japan’s 
population [8]. 
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1.2.2.1.3 Cyclical Component 

Cycles occur when a time series follows a non-seasonal, up-and-down pattern. Cycles 

are hard to predict because they do not occur in predictable time intervals. Atypical example is 

the business cycle, comprising the phases of recovery, prosperity, recession and depression [8]. 

 

 

 

 

 

 

 

 

 

 

1.2.2.1.4 Irregular Component 

 Irregular variation in time series data occurs due to uncontrollable and unpredictable 

events, such as earthquakes, wars, floods, famines, and so on. This plot of the Nikkei 225 stock 

index shows a plunge in value, which coincided with the earthquake and tsunami in March 2011 

[8]. 

 

 

 

Figure 1.3 Monthly housing sales [8]. 

Figure 1.4 Nikkei company stock price [8]. 
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1.2.2.2 Understanding time series 
Typically, a time series is represented as a graph with each data point modelled on the 

x- and y-axes. The time series data is a trend time series if the plot shows the highest or lowest 

values over an extended period. Seasonal time series are those that repeat throughout time, 

measured in years, and cyclical time series are those that change often over time, as seen by the 

depiction. (Figure1.5) provides an illustration of the components of a raw time series as well as 

how a time series appears after seasonal and cyclical tendencies have been eliminated, or what 

residual (remainder) data is: 

 

1.2.3 Time Series Types 
 A single variable measured over time is referred to as a univariate time series. 

Univariate means one variate or one variable. Multiple variables measured over time is referred 

to as a multivariate time series: multiple variates or multiple variables: 

• Univariate: One variable measured over time. 

• Multivariate: Multiple variables measured over time [4].  

When researching this field, any time series forecasting is divided into two groups:  

Univariate and multivariate. In the following section, we will discuss univariate time series and 

multivariate time series.  

 

Figure 1.5 Components of time series [75] 
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1.2.3.1 Univariate Time Series 
A univariate time series refers to time series that has only one observation recorded 

sequentially over equal time increments [9].  

Despite the fact that a univariate time series data set is typically presented as a single 

column of numbers, time is an implicit variable in the time series. The term variable, or index, 

does not need to be specified if the data are evenly spaced. When graphing a series, the time 

variable may be utilized explicitly. It is not, however, employed in the time series model, For 

example, if you are tracking hourly temperature values for a given region and want to forecast 

the future temperature using historical temperatures, this is univariate time series forecasting. 

(Figure1.6) is a simple example of temperature values with time measured by each hour [10].
  

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.3.2 Multivariate Time Series 
 Multivariate time series has more than one time-dependent variable. Each variable 

depends not only on its past values but also has some dependency on other variables. This 

dependency is used for forecasting future values.  along with the temperature values. In this 

case, there are multiple variables to be considered to optimally predict temperature. A series 

like this would fall under the category of multivariate time series. The following (Figure1.7) 

shows example for a multi-variate time series [11]:  

Figure 1.6 Univariate time series (temperature values) 
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1.2.4 Stationary Time Series 
The major goal of this research is to learn about stationary time series. A time series is 

referred as stationary if its statistical properties do not change over time. In other words, 

it has a constant mean and variance and it is independent of time [12]. For example, in 

(Figure 1.8) the strong cycles in series might appear to make it non-stationary. But these 

cycles are aperiodic, they are caused when the lynx population becomes too large for the 

available feed, so that they stop breeding and the population falls to low numbers, then the 

regeneration of their food sources allows the population to grow again, and so on. In the 

long-term, the timing of these cycles is not predictable. Hence the series is stationary. 

Figure 1.7 Multivariate time series (Bitcoin daily price index) [76] 

Figure 1.8 Annual total of lynx trapped in the McKenzie River district of north-west 
Canada [77] 
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One of the most important concepts in time series analysis is stationarity. 

Stationarity occurs when a shift in time doesn’t change the shape of the distribution of your 

data. This is in contrast to non-stationary data, where data points have means, variances 

and covariance that change over time. This means that the data have trends, cycles, random 

walks or combinations of the three. Generally, in forecasting, non-stationary data are 

unpredictable and cannot be modeled [12]. Here is an example of static and non-constant 

data (Figure 1.9). 

1.3 Time Series Forecasting  
An often-heard motivation for time series analysis is the prediction of future 

observations in the series. This is an ambitious goal, because time series forecasting relies on 

extrapolation, and is generally based on the assumption that past and present characteristics of 

the series continue. It seems obvious that good forecasting results require a very good 

comprehension of a series’ properties, be it in a more descriptive sense, or in the sense of a 

fitted model [13]. 

Time series forecasting is the process of predicting the data of future time steps. It can 

be thought of as a mechanism to process or analyze the historical data and use that learned 

information to make predictions about the future, time series forecasting can be classed into 

two types:  

 

Figure 1.9 Stationary and non-stationary time series [78] 
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1.3.1    One-step ahead prediction 
Always one step ahead Based on the corresponding forecast equation, every model 

supports one-step ahead forecasts. During the model estimate process, one-step ahead forecasts 

are required to compute model errors. For each data point, one-step ahead forecasts are 

computed sequentially using computed level and trend states for the current point, as well as 

seasonal states for the previous seasonal period. The forecast error is calculated by subtracting 

the forecast value (estimated at the preceding point) from the current observed value. The 

average value of absolute squared forecast errors is used to calculate overall model error, which 

is used to estimate the model. A greater model fit is associated with fewer mistakes. Statistical 

details display accuracy measures that provide numerous model summaries of one-step ahead 

forecast errors. This method is concerned only with predicting the next time step given the time 

series, for example predicting the value of a sensor in the 11th second given 10 seconds of past 

data [14]. 

 
1.3.2  Multi-step ahead prediction  

Many scholars have focused on time series forecasting in recent years, but most of them 

focus on one-step-ahead predictions, which are not useful in everyday life. There are two 

primary ways for multi-step ahead prediction: iterate-based and direct-based methods. The 

output of time step t is one of the inputs of time step t+1 in the iterate-based approach. The 

biggest downside of this strategy is that after a few time steps, the mistake would have 

accumulated to a very large value. The direct-based method creates different models from 

different training instances; one model predicts the next time step, another model predicts the 

next two time steps, and so on. The biggest downside of this procedure is that it necessitates an 

excessive amount of time [15]. 

This, as the name suggests, is concerned with predicting a sequence of time steps given a 

time series, for example forecasting the weather for the next 10 days given the past data. Future 

studies on estimating the future values of several variables. It should be noted that the effective 

role of the Tab process stems from the accuracy of the prediction results, which are based 

mainly on the process of correct construction of the model generating these results. Its 

effectiveness is determined by achieving a set of statistical hypotheses and choosing a series of 

tests based on The extent of the relationship, the problem, the structure of the studied data [15]. 
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1.4 Time Series Forecasting Models  
Statistical time series models are a family of models that have been traditionally used a 

lot in many domains of forecasting. They are strongly based on temporal variation inside a time 

series and they work well with univariate time series [16]. Some advanced options exist to add 

external variables into the models as well. In the other hand, machine learning and deep learning 

models are able to automatically learn arbitrary complex mappings from inputs to outputs and 

support multiple inputs and outputs [4]. 

1.4.1 Statistical Models 
In this section, we will talk about the use of statistical models in predicting time series. 

In particular, we divide them into two categories. Traditional statistical models such as: 

 ARIMA (Autoregressive Integrated Moving Average) and its family: AR, MA, ARMA, 

SARIMA and SARIMAX. Vector auto regression (VAR) and its derivatives VARMA and 

VARMAX, and Smoothing: Simple moving average (SMA), simple exponential smoothing 

(SES), double exponential smoothing (EES), Holt winter is exponential smoothing (HWES). 

GARCH (Generalized Autoregressive Conditional Heteroscedasticity). 

 

1.4.1.1 ARIMA  
The acronym ARIMA refers to the Auto Regressive Integrated Moving Average. Box 

and Jenkins popularized the ARIMA model (1976). It is made up of three different statistical 

models. For statistical data, it employs the Autoregressive, Integrated, and Moving Average 

(ARIMA) model. The ARIMA Model uses Auto Regressive Integrated Moving Average 

(ARIMA) and Auto Regressive Moving Average (ARMA) to assess and forecast evenly spaced 

univariate statistic information, transmission of function data, and intercession information 

(ARMA). A response Time Series forecasted by an ARIMA Model is a linear mixture of its 

own linked past values, previous Errors, and current and past values of alternative Time Series. 

The ARIMA Model seeks to explain information autocorrelation and can be applied to both 

stationary and non-stationary statistics [17]. 

  

1.4.1.2 Exponential Smoothing 
Exponential Smoothing was developed as a result of Robert G. Brown's work as an OR 

it is analyst for the United States Navy. In the early 1950s, Brown extended simple Exponential 

Smoothing to discrete data, and the method should improve for trend and seasonality. 
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Time Series established the universal exponential smoothing algorithm. In the residuals 

of Time Series projected using the Exponential Smoothing (ETS) Method, Taylor identified 

first order auto-correlation. One or more stochastic models correspond to each Exponential 

Smoothing (ETS) approach. It also follows the Robustness condition and is used as a model for 

extrapolating judgments [17]. 

 

1.4.1.3 Vector Auto regression (VAR)  
The vector auto regression (VAR) model is a popular, flexible, and straightforward 

model for multivariate time series analysis. A natural extension of the univariate autoregressive 

model is the dynamic multivariate autoregressive model. The VAR model has been shown to 

be particularly useful for forecasting and describing the dynamic behavior of economic and 

financial time series.  

Forecasts from univariate time series models and complex theory-based simultaneous 

equations models are frequently outperformed. VAR model forecasts are quite flexible because 

they can be made conditional on the potential future paths of specified variables in the model. 

The VAR model is used for structural inference and policy analysis, in addition to data 

description and forecasting. In structural analysis, certain assumptions about the causal 

structure of the data are imposed, and the resulting causal impacts of unexpected shocks or 

innovations to specified variables on the variables in the model are summarized. These causal 

effects are typically summarized using impulse response functions and forecast error variance 

decompositions [18]. 

1.4.2 Machine Learning Models 
Prediction methods for machine learning methods in this study include all artificial 

intelligence-based prediction techniques. These methods are classified into several types based 

on the phenomenon being predicted. The following networks are introduced to provide a broad 

understanding of predictive models for machine learning: Linear regression (LR), Support 

vector regression (SVR), and K-Nearest Neighbors (KNN). 

 

1.4.2.1  Linear Regression 
Linear regression (LR) is the most basic approach for determining the relationship 

between the dependent and independent variables. 

Simple linear regression is used when there is only one independent variable. Having numerous 

independent variables, on the other hand, changes the name of the model to multiple linear 
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regression [19]. The linear predictor functions, whose model parameters are estimated from the 

data, are used to determine the relationships in linear regression. These kinds of models are 

known as linear models [20]. Linear regression, like other regression analyses, examines the 

dependent variable's conditional probability distribution given the values of independent 

variables This study employed the multivariate linear regression (MLR) technique, which is 

one of several LR model variants.  Several important asymptotic and finite sample results are 

presented and compared with time series regression statistical properties [21]. 

 

1.4.2.2     Support Vector Regression (SVR) 
The Support Vector Machine (SVM) is an elegant machine learning algorithm 

proposed by Cortes and Vapnik in 1995 [22]. The algorithm's basic idea is to reduce structural 

risk. It is a concept that achieves generalization by balancing the model's complexity against its 

ability to fit the training data. The SVM has a regression version that is widely used in time-

series prediction and imputation [23] [24]. 

The Support Regression Vector (SVR) is an SVM transformation for solving nonlinear 

regression problems. The data is transformed for nonlinear regression problems using a 

nonlinear kernel function that maps the input to a high-dimensional feature space. As a result, 

the overall performance of the SVM regression model is dependent on the proper selection of 

kernel parameters [25]. The basic idea behind SVM for function approximation is to map the 

data into a high-dimensional feature space, then perform a linear regression in the feature space. 

1.4.2.3 K-Nearest Neighbors (KNN)    
The k-nearest neighbors’ algorithm (KNN) is a non-parametric method for classification 

and regression invented by Thomas Cover [26]. The input in both regression and classification 

is the k closest training instances in the feature space. Whether KNN is used for classification 

or regression determines the outcome: In classification, the output is a class membership. An 

object is classified by a majority vote of its neighbors, with the object being assigned to the 

class most common among its k nearest neighbors (k is a positive integer, typically small). If k 

= 1, then the object is simply assigned to the class of that single nearest neighbor [27]. 

In KNN regression, the output is the property value for the object. This value is the 

average of the values of k nearest neighbors. KNN is a type of instance-based learning, or lazy 

learning, where the function is only approximated locally and all computation is deferred until 

function evaluation. Since this algorithm relies on distance for classification, normalizing the 

training data can improve its accuracy dramatically [28]. 
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1.5 Deep Learning Models 
Deep Learning (DL) is a machine learning subfield inspired by brain anatomy and 

function. Despite their capabilities, no deep machine learning approaches are limited when 

it comes to analyzing raw data. This means that designing a feature extractor that can 

convert raw data into a format suited for no deep machine learning models would require 

careful engineering and extensive subject experience. DL techniques are approaches for 

learning representations using multiple levels of representation. This is accomplished by 

mixing non-linear modules that shift the representation from a raw input level to a higher, 

more abstract one. DL techniques can learn complex functions using this composition [29].  

A lot of study is done in exploring multiple DL architectures due to their resilience 

and improved possibilities. Deep neural networks (DNN), deep belief networks (DBN), 

recurrent neural networks (RNN), convolutional neural networks (CNN), and other types 

of neural networks (ANN) [30]. The artificial neural network is at the heart of these 

structures. These designs have been used in a variety of domains, including computer 

vision, natural language processing, machine translation, and speech recognition, where 

they have produced results comparable to and in some cases better than human expert 

performance [31]. Based on ANN researchers have developed many architecture beginning 

with Multi-Layer Perceptron (MLP), then the more sophisticated methods, situated bellow: 
 

1.5.1 Multi-Layer Perceptron (MLP) 
   A completely connected neural network is what is referred to as a multi-layer perceptron, 

which is a sort of artificial neural network where the architecture is such that all of the nodes, 

or neurons, in one layer are connected to the neurons in the following layer. One input layer, 

one or more hidden perceptron layers, and three basic building blocks make up the framework 

of MLP. Simple distribution of the input characteristics to the top hidden layer occurs in the 

input layer. The features dispersed by the input layer are fed into the first hidden layer as inputs. 

The output of each perceptron from the preceding layer is sent into the subsequent hidden 

layers. The output of each perceptron from the last hidden layer is sent into the perceptron's 

output layer. Even that Multi-Layer Perceptron is a very basic model it is widely chosen for 

studies [32]. 
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Figure 1.10 Multi-layer Perceptron (MLP) Model [33] 

  

 

1.5.2 Recurrent Neural Network (RNN) 
Recurrent neural networks (RNNs) are a type of ANN in which nodes are connected in 

a directed graph that follows a temporal sequence. Traditional time series models and RNNs 

are both capable of modeling time dependent relationships in data. In RNNs, each node in one 

layer is connected to every other node in the next layer via a directed, one-way connection. 

Every node has a real-valued activation function that changes over time, and each link (synapse) 

has a real-valued weight that may be changed. Input nodes receive data from outside the 

network, output nodes provide results, and hidden nodes modify data in route to output. RNN 

can be regarded not just as cyclic but also as a deep layer per time step with shared weights 

across time steps, as shown in the diagram. Backpropagation can be used to train the 

unfolded network over many time steps. The back prop algorithm is called backpropagation 

through time (BPTT) because we propagate through time in RNN 

Despite the wonders of RNN, it suffers from couple of limitations. While training 

the network, when gradients are propagating back in time, all the way up to the initial layer, 

the gradients go through multiple simultaneous matrix multiplications and as a result of 

using Chain Rule, if they have values less than 1 (<1), they diminish exponentially until 

they become negligible or ‘vanish’. This deems the network model impossible to learn not 

anything as weights will be updated. This is known as the ‘Vanishing Gradient 
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Problem.’ Similarly, if the values of gradients propagating back in time are greater than 1 

(>1), their values escalate and eventually destroy the model’s capability to learn 

anything making it unstable. This is known as the ‘Exploding Gradient Problem [34]. 

 

 

 

 

 

 

 

 

 

 

1.5.3 Long Short-Term Memory (LSTM) 
When RNNs are fed a long sequence of data, they have trouble transporting the 

knowledge from earlier time steps to later ones, causing them to miss vital information. 

RNNs are also plagued by the problem of disappearing gradients. LSTMs are being 

developed to address these concerns. They are dubbed LSTMs because they can store 

short-term memories for extended periods. The LSTMs are identical to RNNs, except that 

they contain memory blocks. The information is allowed to pass through gates in the 

memory blocks. To determine whether the gates are triggered or not, sigmoid activation 

units are used. The sigmoid function returns a value between 0 and 1, indicating how much 

information should be revealed. LSTMs have three gates: the forget gate, input gate, and 

output gate. The forget gate layer, which is a sigmoid layer, helps decide what information 

needs to be discarded [35]. LSTMs are illustrated in the Figure 1.12. 

 

Figure 1.11 Recurrent Neural Network (RNN) Architecture [81] 
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1.5.4 Gated Recurrent Unit (GRU) 
GRU is a newer RNN that looks a lot like LSTMs  GRUs transport information by 

employing hidden states rather than the cell state or memory [36]. A reset gate and an 

update gate are the two gates they have. The update gate functions in the same way as the 

LSTM's forget and input gates. On the other hand, the reset gate is used to determine how 

much information from the past must be erased. Because they have fewer tensor operations 

than LSTMs, GRUs are faster. RNNs have short-term memory difficulties, which LSTMs 

and GRUs are designed to solve [37]. The GRU structure is depicted in Figure 1.13. 

 
 

 

 

 

 

 

 

 

 

 

1.5.5 Echo State Network (ESN) 
Echo state network are a kind of recurrent neural network (RNN).  ESN are based 

on Reservoir Computing (RC), which simplifies the training procedure of traditional 

RNNs. Reservoir Computing’s input signal is connected to a non-trainable and random 

Figure 1.12 Illustration of the LSTM structure [79] 

Figure 1.13 Illustration of the GRU structure [80] 
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dynamical system (the reservoir), thus creating a higher dimension representation 

(embedding). This embedding is then connected to the desired output via trainable units 

[38]. (Figure 1.14) is a modelization of the ESN architecture. Echo state network is a very 

powerful neural network for time series forecasting comparing to MLP and statistical 

methods when modeling chaotic time series data and many studies improve that [39]. 

 

 

 

 

 

 

 

 

 

 

 

 

1.5.6 Convolutional LSTM (ConvLSTM) 
LSTMs are extraordinary at recognizing temporal relationships yet they don’t 

perform well in perceiving spatial connections. CNNs on the other hand are great in finding 

spatial connections however not temporal relations. To handle this, Convolutional LSTMs 

(ConvLSTM) are built which caters spatiotemporal connections simultaneously i Although 

LSTMs excel at understanding temporal linkages, they struggle to perceive geographical 

connections. CNNs, on the other hand, excel in detecting spatial connections but not 

temporal ones. Convolutional LSTMs (ConvLSTM) are built to handle this, and they cater 

to spatiotemporal linkages in the data at the same time [24]. The pattern that exists based 

on the location of one data point relative to others is referred to as spatial connection in 

time series. The chronological sequence of the data points is the temporal relationship. 

In time series, spatial relationship refers to the pattern that exists based on the 

location of one data point relative to others. Whereas temporal relationship is the sequential 

order of the data points. In comparison to conventional LSTM, ConvLSTM is able to cater 

the spatiotemporal structures by vectorizing the spatial information thereby overcoming 

the limitation of vector-variate representations in LSTM where spatial information is lost 

[40]. 

Figure 1.14  Architecture of ESN [24] 
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Figure 1.15 A ConvLSTM Cell [41] 

 

1.6 Conclusion 
 

In this chapter, we discussed the important aspects of time series data, analysis, and its 

components, as well as the various forecasting techniques in detail. Different types of models 

have been investigated, ranging from traditional statistical models to machine learning and deep 

learning models, and common evaluation metrics that are commonly used in time series have 

been illustrated. The next chapter will detail convolutional neural networks.
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 CHAPTER 2: Convolutional Neural Networks (CNN) 

2.1 Introduction  
In recent years, artificial intelligence, or AI, has been a hot topic in the media. Machine 

learning and deep learning, which are artificial intelligence subfields, appear in a slew of 

articles, many of which are not focused on technology. Robots known as AI agents will perform 

self-driving cars, catboats, virtual assistants, and a variety of other artificial intelligence (AI)-

based industries in which human jobs will be rare and economic activity. In this chapter, we'll 

look at Deep Learning, which is a subfield of Machine Learning, which is a part of AI (Figure 

2.1), as well as the relationship between AI, Machine Learning, and Deep Learning, as well as 

how and which problems may be solved utilizing these three techniques. 

2.2   Historical context 

2.2.1 Artificial Intelligence 
"Artificial Intelligence, or AI, is the science of teaching computers to think and behave 

like humans in order to solve more complicated problems without the assistance of a 

programmer." 

Artificial intelligence was first proposed in the 1950s by a group of pioneers in the young 

field of computer science, who wondered if machines might be programmed to behave 

intelligently and think like humans, an issue whose repercussions we are still debating today. 

For example, a chess programmer uses solely hardcoded rules and does not qualify as Machine 

Learning. Many of them believed that reaching the human level would need programmers to 

handcraft a large enough set of explicit rules for manipulating information. From the 1950s to 

the late 1980s, this method was known as symbolic AI. Although symbolic AI has made 

significant progress in tackling well-defined logical issues, clear rules for handling complicated 

problems such as image classification, language translation, and speech recognition remain 

elusive. This opens up a lot of room for a new method known as Machine Learning ML [42]. 

 



CHAPTER 2: Convolutional Neural Networks (CNN) 

 

21 
 

 

 

 

 

 

 

 

 

 

 

2.2.2 Machine Learning 
Machine Learning (ML) is the process of teaching computers to learn from their previous 

experiences and settings, which is referred to as the natural human learning process. We feed a 

dataset and a predicted result to the computer and let it learn and analyze the relationship 

between them in order to learn how that particular data could lead to this result" Machine 

Learning has piqued the interest of researchers in AI and computer sciences since 1983. The 

question has always been how a computer can learn from experiences (data) rather than 

programmers crafting data processing rules by hand, and how to learn how to perform tasks on 

its own. In traditional programming or symbolic AI, the programmer inputs rules or 

programmers (algorithms) and data to be processed based on these rules, and the programmer 

outputs answers. In machine learning, the programmer inputs data and the expected answers 

based on this data, and the programmer outputs the rule, which then matches the data and the 

answers (Figure 2.2). The rule can be applied to new data to get unique results [43]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1: Deep Learning is a Subfield of Machine Learning 
which is a Subfield of AI [82] 

Figure 2.2: Traditional Programming vs. Machine Learning 
[83] 
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"It would be beneficial if computers could learn from their mistakes and thereby enhance 

the efficiency of their own programmers while they are being executed. Within the framework 

of appropriate programming, a simple but effective rote-learning facility can be given [44]." 

Machine learning is capable of learning and improving as a result of its experiences. 

The raw data is used to extract relevant information that aids in learning and decision-making 

utilizing shallow or deep architecture (Figure 2.3) to grant that the machine learning process 

begins with raw data [45]. 

2.2.3 Types of Machine Learning 
There are so many different types of machine learning systems that it is useful to classify 

them in broad categories (Figure 2.4): 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Machine Learning system is trained rather than be explicitly programmed, AI focus on 

teaching computers how to learn without being programmed for specific tasks Machine  

Learning can be carried out using following approaches. 

Figure 2.3: Difference between a simple Neural Network and a Deep Learning 
Neural Network [66] 

Figure 2.4: Machine-learning types with problems examples [66] 
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2.2.3.1   Supervised learning 
In machine learning and artificial intelligence, supervised learning, the most common 

type, is a group of algorithms that define a predictive model using data whose outcomes are 

known. The model relies on training on this data while the output is clear and tries to establish 

relationships between the data and its output in order to predict the new data (generalization of 

the model) through a suitable learning algorithm like a network of neurons, a random forest and 

a linear regression that works through an optimization routine to reduce the loss function. In 

general, almost all deep learning applications that are in the spotlight these days belong to this 

category, such as optical character recognition, speech recognition, image classification, and 

language translation. There are two main types of supervised machine learning problems, called 

classification and regression [45]. 

2.2.3.2  Unsupervised learning   
Unsupervised learning In Machine Learning and Artificial Intelligent Unsupervised 

learning involves data that comprises input without any target output. Is a type of algorithm that 

learns patterns from untagged data. The hope is that the machine will be pushed to develop a 

compact internal representation of its surroundings through imitation, which is a key way of 

learning in humans, and then generate inventive material from it. The self-organization of 

unsupervised approaches captures patterns as probability densities or a mixture of neural feature 

preferences. Reinforcement learning, in which the computer is given merely a numerical 

performance score as guidance, and semi-supervised learning, in which only a small percentage 

of the data is tagged, are the other stages in the supervision spectrum. Neural Networks and 

Probabilistic Methodologies are two broad methods in Unsupervised Learning [46] .  

2.2.3.3   Reinforcement learning 
 
 Reinforcement learning (RL) is a branch of machine learning that studies how intelligent 

agents should operate in a given environment to maximize the concept of cumulative reward. 

Reinforcement learning, along with supervised and unsupervised learning, is one of the three 

main machine-learning paradigms. Reinforcement learning differs from supervised learning in 

that it does not need the presentation of labelled input/output pairings or the explicit correction 

of sub-optimal behaviors. Reinforcement learning has proven to be effective in a variety of 

applications, including autonomous helicopter flight, robot legged movement, cell-phone 

network routing, marketing plan selection, factory control, and efficient webpage indexing [47]. 
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2.3 Deep Learning and Neural Networks 
Deep learning (also known as deep structured learning) is a type of machine learning 

technology that uses artificial neural networks to learn representations. Deep learning 

architectures such as deep neural networks, deep belief networks, deep reinforcement learning, 

recurrent neural networks, and convolutional neural networks have been used in fields such as 

computer vision, speech recognition, natural language processing, machine translation, 

bioinformatics, drug design, medical image analysis, climate science, material inspection, and 

board game programmers, producing results that are comparable to, and in some cases superior 

to, traditional approaches. ANNs differ from biological brains in a number of ways. Artificial 

neural networks, in particular, are static and symbolic, whereas most living animals' biological 

brains are dynamic (plastic) and analogue [30]. 

Figure 2.6 shows an example of what the representations learned by a deep learning 

algorithm look like. As it is seen, the network transforms a digit image into representations that 

are increasingly different from the original image and increasingly informative about the final 

result to recognize what digit it is. 

 

 

 

 

 

 

Figure 2.5: Machine Learning Approaches with Algorithm Example  



CHAPTER 2: Convolutional Neural Networks (CNN) 

 

25 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Feature engineering is a key step in the model building process. It is a two-step process:  

• Feature extraction  

• Feature selection 

2.3.1   Artificial Neurons 
Artificial neurons are a mathematical function envisioned as a model for biological 

neurons. Artificial neurons are the basic building blocks of a neural network. One or more 

inputs are received by artificial neurons. Each element is usually weighted separately, and the 

sum is then processed through a nonlinear function called the activation function or the transfer 

function. Transfer functions are commonly sigmoidal, although they can also be nonlinear 

functions, multiple defined linear functions, or sigmoid functions. A move they are also 

frequently monotonous, continuous, differentiable, and finite. 

Neurons in deep learning models are nodes through which data and computations pass, and this 

functional understanding of the neurons in our brain is translated into an artificial model that 

can be represented on a computer [48]. Neurons work like this (view figure 2.7): 

• Neurons receive one or many input signals either from the raw dataset or from the 

previous neuron (the previous layer) of the network. 

• Neurons do some calculations. 

• Finally, Neuron sends output signals to neurons in the next hidden layer through a 

synapse. 

Figure 2.6: Deep representations learned by a digit classification model  
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Through synapses, neurons in Deep Learning models can link to more than one neuron in the 

preceding layer  

A neuron receives its input from the previous neurons in the preceding layer of the 

model, then adds up signals multiplied by the corresponding weight then pass the result to an 

activation function; Figure 2.8 shows the complete process: 

 

 

 
 
 
 
 
 
 
 
 
 
 

Mathematically, we have numbers of inputs 𝑥𝑥₁, 𝑥𝑥₂, 𝑥𝑥₃,…,ₙ , each one of those inputs is multiplied 

by specific weight 𝑤𝑤₁, 𝑤𝑤₂, 𝑤𝑤₃ … , 𝑤𝑤ₙ . 

 
The results of this multiplication are summed together to produce the logit of the Neuron: 

𝑛𝑛 

∑ 𝑥𝑥ⱼ𝑤𝑤ⱼ 
𝑗𝑗=0 

 
 

 
In many cases, the logit also include bias, which is a constant: 
 

Figure 2.7: Diagram of the Functionality of an artificial neuron  

Figure 2.8: illustration of an artificial neuron  
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𝑛𝑛 

∑ 𝑥𝑥ⱼ𝑤𝑤ⱼ + 𝑏𝑏 
𝑗𝑗=0 

 
 

This logit passed through a function f in order to produce our output 𝒚𝒚 = (𝒛𝒛). 

We may also express this functionality in victor form, our input as a vector 

𝒙𝒙 = [𝑥𝑥₁, 𝑥𝑥₂,… , 𝑥𝑥ₙ] , and the weights of the neuron as 𝒘𝒘 = [𝑤𝑤₁, 𝑤𝑤₂, … , 𝑤𝑤ₙ], so our function 

become 𝒚𝒚 = 𝒇𝒇(𝒙𝒙. 𝒘𝒘 + 𝒃𝒃), where b is the bias term. 

The role of the activation function is to calculate the output value of neurons, the value 

obtained passed through the next layer of our network using synapse [49]. 

2.3.2   Biological Neural Network 
A neural network is a network or circuit of biological neurons, or, in a modern sense, an 

artificial neural network, composed of artificial neurons or nodes. Thus, a neural network is 

either a biological neural network, made up of biological neurons, or an artificial neural 

network, used for solving artificial intelligence (AI) problems. The connections of the 

biological neuron are modeled in artificial neural networks as weights between nodes. A 

positive weight reflects an excitatory connection, while negative values mean inhibitory 

connections. All inputs are modified by a weight and summed [50]. This activity is referred to 

as a linear combination. Finally, an activation function controls the amplitude of the output. 

Neurons in deep learning were inspired by neurons in the human brain Figure 2.9 shows the 

anatomy of a brain neuron: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Neurons, as can be seen, have a unique structure. Neurons in the human brain work 

together in groups to execute functions that humans require in their daily lives. During his 

groundbreaking research in neural networks, Geoffrey Hinton wondered if we might develop a 

computer algorithm to imitate neurons in the human brain [49]. The hope is that by mimicking 

Figure 2.9:  Neuron in Biology [85] 
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brain anatomy, they will be able to capture some of its capabilities. Researchers and scientists 

researched the functioning of neurons in the human brain to accomplish this. An key finding is 

that the neuron is useless on its own. To generate meaningful activities, it instead requires 

networks of neurons (Neuron Network). The reason for this is that neurons send and receive 

messages from other neurons that are connected to them. The dendrites of neurons can receive 

signals from the preceding cell and transmit them through the axon. The neuron's dendrites are 

attached to the axon of another neuron. This link is referred to as a synapse. Deep learning has 

generalized the synapse notion [49]. 

2.3.3   Artificial neural networks 
One sort of machine learning model is neural networks, which have been around for at 

least 50 years. Many key architectural improvements in neural networks were made in the mid-

1980s and early 1990s. The amount of effort and data required to achieve effective outcomes, 

on the other hand, hindered adoption. In the early 2000s, processing power increased 

significantly, resulting in a "Cambrian explosion" of previously unattainable computational 

approaches, which rekindled interest in neural networks. The ANN is a feed-forward multilayer 

ANN. The standard ANN design (Figure 2.10) consists of an input layer, a collection of hidden 

layers, and an output layer. Artificial neurons are coupled via adaptive weights in each hidden 

and output layer [50].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The simplest type of Artificial Neural Networks ANNs was the feedforward Neural 

Network cause the information moves in one direction only, forward, from the input layer nodes 

through the nodes of the hidden layer and to the output layer nodes, Neural Network learn 

(update weight) by learning algorithm called Back-propagation [51]. 

 

Figure 2.10: Artificial Neural Network Architecture [86] 
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• Input layer: 

The input layer of a Neural Network contains a group of artificial neurons that hold the 

initial data for the neural network and bring it into the system for further processing by 

subsequent layers of the artificial neuron. The input layer is the very beginning of the workflow 

for the artificial neural network, input layers are followed by one or many hidden layers. On 

images processing input layer will hold the pixel intensity of the image for example an RBG 

image with width w=64 and height h=64, and depth d=3 will have an input dimension of 

64×64×3. 

• Hidden layers: 

A neural network's hidden layers are a layer that sits between the input and output layers. 

Artificial neurons take in a collection of weighted inputs and produce outputs through an 

activation function in a hidden layer. The weights of hidden neural network layers are usually 

assigned at random, but they can also be fine-tuned (by using the weights of other models) and 

calibrated through the backpropagation process. 

 

• Output layer: 

The output layer is the final layer of an artificial neural network, and its neurons create 

the network's output value. The output layer is formed in a variety of ways depending on 

the neural network's architecture. In classification problems, the final output may be a set 

of probabilities, while in regression problems, the final output may be a real-valued output. 

The type of activation function employed on the output layer neurons controls the output. 

 

2.3.4  Models of Artificial Neural Networks 
Single artificial neuron cannot solve real life problems at all, however combining two or 

more artificial neurons are capable of solving complex real life problems. The neural network 

can be defined as an interconnection of neurons. Related neuron outputs and inputs are 

connected, through weights. Delay block can be placed between neurons if needed. Neurons of 

an artificial neural network are not randomly interconnected. There are standardized topologies 

of neural networks. These topologies are fixed and predefined so as to solve the problems in an 

efficient and easy way. These topologies can be examined in two basic classes which are feed-

forward and recurrent topologies. Therefore feed-forward neural network (FNN) topology is 

also called acyclic graph. On the contrary, in simple recurrent neural network (RNN) topology 

the information does not flow only from input to the output direction, but also flows from output 
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to the input direction. Hence, these kinds of topologies can be referred to as semi-cyclic graphs 

[52]. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Neural networks can be described layer by layer which refers to a group of neurons in 

same level as shown on Figure 2.11. From input to the output direction, the first layer is called 

input layer and the last one is named output layer. All remaining layers placed between the 

input and output layer are labeled as hidden layers. Hidden layers are where neural networks 

stores abstract and internal representation of the training samples. A single hidden layer network 

which has a finite number of units can be trained to express any random function with an 

acceptable error ratio with respect to the universal approximation theorem. Although single 

hidden layer network is sufficient to learn any function, multi hidden layer networks can give 

better results. 

2.3.5   Gradient Descent 
 

Gradient descent is an optimization algorithm used to minimize some function by 

iteratively moving in the direction of steepest descent as defined by the negative of the gradient. 

In machine learning, we use gradient descent to update the parameters of our model. Parameters 

refer to coefficients in Linear Regression and weights in neural networks. 

Consider how we might reduce the squared error across all training examples by 

simplifying the problem. Let us pretend our linear neuron only has two inputs (and thus only 

two weights, w1 and w2). Then consider a three-dimensional space in which the horizontal 

dimensions correspond to the weights w1 and w2, and the vertical dimension corresponds to 

the error function E's value. Places on the horizontal plane in this space correspond to different 

weight settings, and the height at those points refers to the mistake suffered. We get a surface 

in this three-dimensional space, namely a quadratic bowl, if we evaluate the errors we make 

Figure 2.11: Feed-forward (FNN) and recurrent (RNN) topology 
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over all possible weights, as illustrated in Figure 2.12 [49]. 

 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We can now devise a strategy for determining the weight values that minimize the error 

function; the weights for our network are randomly initialized, so we end up someplace on the 

horizontal plane. By calculating the gradient at our current location, we may determine the 

steepest descending path and then take a step in that direction, bringing us closer to the 

minimum than before. Following this technique, we can reconsider the direction of steepest 

descent by taking the gradient in this new direction and taking a step in this direction, as 

illustrated in Figure 2.13 [49].  

This is known as the Gradient Descent Algorithm, and it was developed to address the 

problem of training individual neurons as well as the more general task of training entire 

networks. 

Figure 2.12:  The Quadratic Error Surface for a Linear Neuron [84] 
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One of the most crucial hyperparameters in this process is the learning rate. Before 

recalculating our new heading, we need to figure out how far we want to go. Because the closer 

we get to the minimum, the shorter we want to step forward, and the closer we go to the 

minimum, the flatter our surface becomes, we may use the steepness as an indicator of how 

close we are to the minimum, but if our surface is mellow, training can take a long time. As a 

result, the gradient is frequently multiplied by a quantity, the learning rate. Choosing a learning 

rate is a difficult task (Figure 2.14). 

We risk taking too long during the training process if we choose a modest learning rate, but if 

we choose a large value for the learning rate, we will most likely start drifting away from the 

minimum [49]. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.13: Visualizing the Error Surface as a set of Contours [84] 

Figure 2.14: Convergence is Difficult when our Learning Rate 
is too Large [84] 
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2.4 Activation Functions 
 

The activation function is a mathematical gate between the input, which is a value coming 

from the previous neuron and the output, and which is a value flowing to the next layer neurons 

(Figure 2.15). We can characterize it as a function that turns the neuron output on or off based 

on the applied rule [53]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

There are two types of activation functions that can be used on neural networks: linear 

activation functions and no-linear activation functions. The latter is the most commonly used 

because it can assist the network in learning complex data. Activation functions can also be 

used to filter out data. Here are some examples of common activation functions: 

 

2.4.1 Linear activation functions 
A linear activation function takes the form:  f(𝑥𝑥) = 𝑐𝑐𝑥𝑥 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.15 : Activation Function [92] 

Figure 2.16:  Linear Activation Function [92] 
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This produces a signal output that is identical to the input by multiplying the inputs by 

the weight assigned to each neuron. In some ways, a linear function is superior to a step function 

since it provides for several outputs rather than simply yes or no. 

We can state that the neuron receives input x1, x2, x3,... xn, and that the linear neuron's output 

is supplied by: 

y = w₁𝑥𝑥₁ + 𝑤𝑤₂𝑥𝑥₂ + 𝑤𝑤₃𝑥𝑥₃ … + 𝑤𝑤ₙ𝑥𝑥ₙ + 𝑏𝑏  

Where 𝑤𝑤₁,₂,𝑤𝑤₃ …𝑤𝑤ₙ are the weight corresponding to 𝑥𝑥₁,₂,𝑥𝑥₃ …𝑥𝑥ₙ respectively and 

𝑏𝑏 is the bias [53]. 

A neural network with a linear activation function is simply a linear regression model. 

It has limited power and ability, to handle complexity-varying parameters of input data [54]. 

 
2.4.2  Activation Functions (Non-Linearity) 
 

Instead of using linear activation, function modern models use non-linear activation 

function in order to create a complex mapping between the network's inputs and outputs, image 

processing and dataset that have high dimensionality. 

Non-linear activation functions solve the problems of the linear-activation function 

• Non-linear activation function allows backpropagation process because they have a 

derivative function; the derivative of a linear function is always. 

• Non-linear activation function gives high accuracy comparing to the linear one those 

are the most used non-linear activation function. 

2.4.2.1   Sigmoid 
 

Which uses the function: 

𝑓𝑓(𝑋𝑋) =
1

1 + 𝑒𝑒−𝑥𝑥
 

The Sigmoid function has an S-shape (Figure 2.17), which means that if the input is little, the 

result is near to 0, but if the input is high, the output is closer to 1. 
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2.4.2.2   Tanh 
 

Which is similar to sigmoid function but instead of ranging from 0 to 1, the output of 

tanh range from -1 to 1, use (𝑥𝑥) = tanh(𝑥𝑥) it’s the ratio of the hyperbolic sine to the hyperbolic 

cosine: 

tanh(𝑥𝑥) =  
sinh(𝑥𝑥)
cosh(𝑥𝑥)

 

The graph of tanh function is similar to the sigmoid function (Figure 2.18). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The gradients get smaller and smaller during the backpropagation phase until they 

vanish; no gradients means no learning, which is known as the vanish gradient problem. 

Because of the sigmoid function, information is squeezed. The solution to this problem is to 

employ an activation function like RELU that does not squeeze information [55]. 

 

Figure 2.17: Sigmoid Function [92] 

Figure 2.18: Tanh Hyperbolic [92] 
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2.4.2.3  ReLU 
Rectified linear is a more interesting transformation that activates a node only if the 

input is above a certain quantity. While the input is below zero, the output is zero, but when 

the input rises above a certain threshold, it has a linear relationship with the dependent 

variable as demonstrated in Figure 2.19 [54]. 

f(𝑥𝑥) = max(0 , 𝑥𝑥) 
 

 
 
 
 
 
 
 
 
 

 

As we can see, (𝑥𝑥) is zero when 𝑥𝑥 is less than zero and (𝑥𝑥) is equal to 𝑥𝑥 when 𝑥𝑥 is 

above or equal to zero. As we can see all the negative values become zero immediately, 

that may decrease the ability of the model to fit or train from the data properly because 

the ReLU block all the inputs less than zero that's called "dying ReLU problem" 

introducing some activation even in the negative cases solve this problem. Leaky ReLU 

is an attempt to solve the dying ReLU problem [54]. 

2.4.2.4    SoftMax 

SoftMax (Figure 2.20) handles the activation of the output neuron; we can use SoftMax 

to solve classification problems. the number of classes equal to the number of neurons in the last 

layer the value obtained from the SoftMax represents the probability of belonging to a particular 

class.  

A strong forecast indicates that one output is too close to 1, while the other output is 

clearly close to 0. Otherwise, our prediction is weak [54]. 

 

Figure 2.19: The ReLU function graph [92] 
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2.4.3   Loss Functions 
The loss function measures how near a neural network is to the ideal it is being trained 

toward. Configuring the loss function is one of the most crucial tasks in a deep learning project 

to guarantee that the model works as intended. The loss function can give the neural network a 

lot of practical flexibility. Neural networks may perform a variety of tasks, ranging from 

forecasting continuous values to classifying discrete groups. Because the output format will 

vary, each task will require a distinct type of loss function. For particular tasks, we can define 

the loss anyway, we want. The loss function (Figure 2.21) is a function that has two parameters: 

Predicted Output and True Output [56]. 

 

 

  

 

 

 

 

 

 

 

 

The function above calculates how poorly our model is performing by comparing the 

actual value that we should obtain as an output with what the model is predicting; if Y pred is 

Figure 2.20: SoftMax [11] 

Figure 2.21: Neural Network Loss Visualization [88] 
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far from Y, the loss will be high; if the two values are similar, the loss will be low. 

If the loss is significant, this enormous value will propagate across the network while it 

is training, and the weight will be adjusted, to say, a little more than usual (Figure 2.22). If the 

loss is minor, the weight will not change significantly because the network is already 

performing well [57]. 

 

 

 

 

 

 

 

 

 

 

 

The goal is to find the best weights for our network, those that reduce error, and the best 

approach to do so is to use an optimization process like gradient descent. 

 

2.5 Convolutional Neural Networks 
Convolutional neural networks (CNNs) are a type of neural network CNN, sometimes 

known as ConvNet, is a family of models inspired by how the visual cortex of the human brain 

recognizes objects. In the 1990s, Yann LeCun and his colleagues presented a unique neural 

network design for categorizing handwritten digits from photographs, which led to the 

development of CNNs [58]. 

CNNs have attracted a lot of attention as a result of their excellent performance, 

particularly for image classification tasks, which has resulted in significant breakthroughs in 

Machine Learning and computer vision applications [59]. 

ConvNets have a deep feed-forward design that allows them to generalize far better than 

networks with completely connected layers [60], learn highly abstract characteristics, and 

efficiently identify objects. Because CNN can be trained easily and does not suffer from 

overfitting, it is far more difficult to create big networks using general models of Artificial 

Neural Network (ANN) than it is to implement in CNN. Due to their exceptional performance, 

Figure 2.22: Neural Network Workflow [87] 
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CNNs are widely employed in a variety of fields, including object detection, speech recognition, 

face detection, facial expression recognition, natural language processing, and many more. The 

basic idea behind CNNs is to extract local characteristics from input (often an image) at upper 

layers and combine them into more complex features at lower layers [61]. 

2.5.1 Convolution operation 
 

Convolution is one of the most important operations in signal and image processing 

CNN’s convolutions are popularly known to work on spatial or 2D data. What’s less popular is 

that there are also convolutions for 1D data [62].  

This thesis is concentrated on convolution in 1D spatial, which is mostly used in time 

series processing for feature extraction and it is the core block of Convolutional Neural 

Networks. This allows CNN to be used in more general data type including texts and other time 

series data. Instead of extracting spatial information, you use 1D convolutions to extract 

information along the time dimension, see Figure 2.23 [62]. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.23:  Conv1D: Convolving on time dimension [62] 
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2.5.2 Architecture of CNN 
 

Each hidden layer in classic neural networks is made up of a number of neurons, each 

of which is fully linked to all neurons in the preceding layer. The main distinction between a 

typical Artificial Neural Network (ANN) and a Convolutional Neural Network CNN is that a 

CNN only has one completely connected layer, whereas an ANN has every neuron coupled to 

every other neuron (full connection), as seen in (Figure 2.24) [63]. 

 

 

ANNs are not appropriate to images it leads to over-fitting easily due to image size. 

Consider an image of size [32x32x3]. If this image is passed through an ANN, it will be 

flattened into a vector of size 32x32x3, which means 3072 rows so; our ANN must have 3072 

weights in its first layer to receive this input vector. For larger images, say [300x300x3], it 

results in a complex vector (270,000 weights), which requires a more powerful processor to 

process. All CNN fundamentals are based on three properties: local connectivity, parameter 

(weight) sharing, pooling and sampling of hidden units. 
Convolutional Neural Network is based on a sequence of layers to achieve different tasks. The 

figure 2.25 shows the architecture of a typical ConvNet that contains the following layers 

divided on two-part Features Learning and Classification: 

Convolutional layers, 

Figure 2.24: Artificial Neural Network and Convolutional Neural Network [89] 
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Features Learning Activation function layer (ReLU), 

Pooling layer, 
 

Fully connected layer, 

Classification                 Output layer with activation function (Softmax) 

 

These layers are combined to form a full Convolutional Neural Network design, which 

includes a Convolutional and Activation layer, as well as a pooling layer if desired. When it 

comes to a classification problem like the one shown in the previous picture, the last layer of 

the CNN uses a SoftMax function (Sigmoid function may be used for binary classification) to 

calculate the likelihood of which class includes our input [53]. 

2.5.2.1   Convolution layer 
Instead of ordinary matrix multiplication, which takes too long, a network that uses 

convolutional operation (*), also known as an element-wise product, is utilized. The 

Convolutional Layer is made up of a collection of filters (kernel or feature detectors), each of 

which is applied to all sections of the input data (Figure 2.26). A filter is defined by a collection 

of weights that can be learned. The provided number of filters equals the number of feature 

maps [45]. 

 
Figure 2.26 A 1D convolution with a kernel sized 3 and stride 1 [62].  

Figure 2.25: Convolutional Neural Network Architecture [91] 
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2.5.2.2     Filter/ Kernel  
Each filter has some features such as corners and edges, and during the pass, the filter 

is slid over the width and height (depending to the stride parameter) of the input, forming a 

feature map for that filter. Each convolutional layer may have numerous kernels [45]. 

 
 
 
 
  
  
 
 
 

 
 
 
 

A feature map is obtained after adding a bias term and then applying a nonlinear function to 

the output of the convolutional operation. 

2.5.2.3      Hyperparameters 
The convolutional and pooling layers have hyperparameters whose value must be 

defined beforehand, they are used to control the behavior of the model, here some important 

hyperparameters in the convolutional layer of the CNN: 

a) Filter Size 

Filer can take any size greater than 2 × 2; it should be less than the size of the input. The 

largest size used is 7 × 7 but only in the first convolutional layer, [49] a 2D convolutional filter 

will always have a third dimension in size. The third dimension is equal to the number of 

channels of the input image. For example, we apply a 3x3x1 convolution filter on gray-scale 

image that has 1 black and white channel like the previous example (Figure 2.27). We apply a 

3x3x3 convolution filter on a colored image with 3 channels, Red, Green and Blue. In general, 

each image has dimensions W × H × D where W is the width in pixels, H is the height in pixels 

and D represent the dimension or the depth which is the number of channels.  

 

Figure 2.27: Example of Convolutional Operation [90] 
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b) Number of filters 

There can be any reasonable number of filters, Google Net has 128 filters of 3 × 3 kernel 

size and 32 filter of 5 × 5 size, Alex Net used 96 filters of size 11 × 11 in the first convolution 

layer.  

c) Stride 

It specifies how many cells the filter must be moved in the input to calculate the next cell 

in the result, i.e., How many pixels must be moved at a time to create the filter's local receptive 

field (Figure 2.28), a little stride will result in an overlapping receptive field, whereas a large 

one will result in a smaller output dimension.  

 

  

Figure 2.28: Filter with Stride (s) = 2 [89] 
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d) Zero padding 

This hyperparameters describes the number of pixels to pad the input image (matrix), 

we add to the image a padding with p pixel (Figure 2.28). It helps to keep more of the 

information at the border of an image. Without padding, very few values at the next layer would 

be affected. 

Notice that the dimension of the result has changed due to padding if we compare 

it with the previous example (Figure 2.29). 

Each filter in the convolution layer produces a feature map of size ([A − K + 

2P]/S) +1, where: A the input volume size, K size of the filter, P the number of paddings 

applied and S the stride.  

Suppose the input image has size 6 × 6 × 3, and 3 filters of size 3 × 3 are applied, 

where stride s = 1 and padding p = 0),  we already say that the number of feature maps 

generated equal to the number of filters/kernels applied i.e., 5, the size of each feature map   

�[6−3+0]
1

� + 1   #3,  therefore, the output volume will be 4 × 4 × 3. Convolution of 3D 

image will give a 2D output: 

 

2.5.2.4     Pooling layer 
Pooling layers, also known as subsampling layers, have no learnable parameters, such 

as weights or bias units. In CNNs, the sequence of convolution layers and activation function 

layers is followed by an optional pooling layer [64] to reduce the spatial size of the input and 

thus the number of parameters in the network. By down sampling each feature map output from 

Figure 2.29: Zero Padding example with (p)=1 [89] 
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the convolutional layer and summarizing a section of neurons in the convolution layer, the 

pooling layer makes the model more resistant to alterations in the position of the features in the 

input image. Many pooling techniques are employed, the most common of which are maximum 

and average pooling. (See Figure 2.30.) It is a pooling operation that selects the maximum 

element (value) from the region of the feature map covered by the filter; the result of max-

pooling layer is a feature map that contains the most relevant features of the preceding feature 

map while discarding less significant data. Instead of taking the maximum value from the input 

matrix, average pooling calculates the average [45]. 

 

 

 

 

 

 

 

2.5.3   Fully Connected Layer 
 

A fully connected layer follows the previous sequence (Convolutional Layer, Pooling 

Layer) in ConvNets. Two stages make up a convolutional neural network: The feature 

extraction stage includes the stack of convolutional layers and the pooling layer, whereas the 

classification stage includes the fully connected layer (one or more) followed by a SoftMax 

function layer. The first part's major task is to extract enough features from the input photos. 

The last layer, which is most likely made up of Softmax functions, will calculate the probability 

that these features reflect each class, resulting in a class score. Every neuron in the preceding 

layer (convolution layer, pooling layer, or fully connected layer) is connected to every neuron 

in the following layer, and every value helps predict how strongly a value matches a specific 

class. (See Figure 2.31) Fully connected layers can learn more complex feature combinations. 

Softmax and Support Victor Machines (SVMs) are the two main classifiers used in CNNs. As 

previously stated, Softmax produces the probabilities of each class with a total probability of 1, 

whereas SVM produces the class scores, with the class with the greatest score being treated as 

the right one [45]. 

Figure 2.30: Max Pooling and Avg Pooling 



CHAPTER 2: Convolutional Neural Networks (CNN) 

 

46 
 

 

 
2.5.4 Real world applications of Convolutional neural network 
Convolutional neural networks (CNNs) are remarkably successful in many computer vision 

tasks. some real-world applications of CNNs including: 

• Face detection: CNNs have been used to detect faces within images. The network takes 

an image as the input and produces a set of values that represent characteristics of faces 

or facial features at different parts of the image. 

• Facial emotion recognition: CNNs have been used to help distinguish between different 

facial expressions such as anger, sadness, or happiness. CNNs can also be adapted to 

perform well with various lighting conditions and angles of faces within images. 

•  Object detection: CNN has been applied to object recognition across images by 

classifying objects based on shapes and patterns found within an image. CNN models 

have been created that can detect a wide range of objects from everyday items such as 

food, celebrities, or animals to more unusual ones including dollar bills and guns. Object 

detection is performed using techniques such as semantic or instance segmentation. 

CNNs have been used to localize and identify objects within images as well as create 

different views of those objects such as for use in drones or self-driving cars. 

• Handwritten character recognition: CNNs can be used to recognize handwritten 

characters. CNNs take the image of a character as an input and break it down into 

smaller sections, identifying points that can connect or overlap with other points in order 

to determine the shape of the larger character. CNN models have been created that are 

able to identify different languages including Chinese, Arabic, and Russian even when 

they’re written differently. 

 

Figure 2.31: Connection between Convolutional Layer and Fully Connected Layer 
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•  X-ray image analysis: CNNs have been used for medical imaging to identify tumors or 

other abnormalities in X-ray images. CNN models can take an image of a human body 

part, such as the knee, and determine where within that image there might be a tumor 

based on previous similar images processed by CNN networks. CNN models can also 

be used to determine abnormalities from X-ray images [65]. 

2.5.5 Advantages and disadvantages of ANNs and CNNs 
 

 ANN CNN 

Advantages 

 

• Storing information on 
the entire network. 

• Ability to work with 
incomplete knowledge. 

• Having fault tolerance. 

• Having a distributed 
memory. 
 

 

• Very High accuracy in image 
recognition problems. 

• Automatically detects the 
important features without any 
human supervision. 

• Weight sharing. 

 
 
 
 

Disadvantages 

 

• Hardware dependence. 

• Unexplained behavior of 
the network. 

• Determination of proper 
network structure 

 

• CNN do not encode the position 
and orientation of object. 

• Lack of ability to be spatially 
invariant to the input data. 

• Lots of training data is required. 

 
Table 2.1: Advantages and disadvantages of ANNs and CNNs 

 

2.6 Conclusion 
In this chapter, we have discussed the important aspects of CNN, artificial intelligence 

and machine learning as well as different types of machine learning in detail. Deep learning and 

neural networks have been investigated, ranging from traditional artificial neurons, neural 

networks, artificial neural networks and artificial neural network models, and we have 

explained well the activation functions, the next chapter will deal with the time-series prediction 

method and some prediction results.
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Chapter 3: Convolutional Neural Networks For Time Series 
Forecasting 

3.1 Introduction 
In this chapter we will build different time series forecasting models based on 

convolutional neural networks and train and test it on the datasets we chose, afterwards we 

measure the performance of our model using different baselines and metrics to find the 

appropriate model for our forecasting. 

  

3.2 Proposed time series forecasting method 
CNNs deal with time series problems effectively. Their ability to learn and 

automatically and extract features from raw input data can be applied to time series forecasting 

problems, recent studies which applied CNN to time-series forecasting tasks mainly involving 

financial data show promising results [4]. 

 

3.3 Implementation 
This section is dedicated to an overview of programming language, libraries, tools and 

the hardware used overall for the implementation. 

 

3.3.1  Python  
Python is an interpreted object-oriented programming language invented around 1991 

intended to emphasize code readability, it supports modules and packages, which encourages 

program modularity and code reuse. 

Python is the convenient language to quickly implement an abstract idea, bring together 

different libraries to do something new, process and scrape data from the internet [66]. 

 

3.3.2 Matplotlib 
Matplotlib is an open-source Python library used for visualizations of data. It provides 

a wide range of different plots [14]. 
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3.3.3  Scikit-learn 
Scikit-learn is an open-source software library that provides tools for data analysis. 

There are classes for pre-processing and overall machine learning problems, such as 

classification, regression, clustering or dimensionality reduction. It is built on NumPy and 

Matplotlib [67]. 

 

3.3.4  Pandas 
 Pandas is another open-source library for Python used for data analysis. It is good for 

data importing. Its class DataFrame is an excellent method for representing tabular data, 

assisting in data pre-processing, modification or slicing [68]. 

 

3.3.5  StatsModels  
StatsModels is a Python module that provides classes and functions for the estimation 

of many different statistical models, as well as for conducting statistical tests, and statistical 

data exploration. 

 

3.3.6  Keras 
Keras is a deep-learning framework built on top of python that provides high-level 

building blocks for developing almost any kind of deep-learning model in a much more 

convenient way than to build it all from scratch. Keras also allows the same code to be run on 

both the CPU and GPU [42]. 

 

3.3.7  Colaboratory 
Colaboratory, or “Colab” for short, is a product from Google Research. Colab allows 

anybody to write and execute arbitrary python code through the browser, and is especially well 

suited to machine learning, data analysis and education. More technically, Colab is a hosted 

Jupyter notebook service that requires no setup to use, while providing access free of charge to 

computing resources including GPUs [69]. 

3.3.8 Hardware 
For implementation, we used a windows machine with an Intel i5 CPU 8th generation, 

8 GB of Ram and SSD 256 GB. 
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3.4  Experiments 
Experiments were done with univariate and multivariate CNN models on two datasets, 

different metrics and baseline were used to evaluate the results of the forecast. 

3.4.1  Datasets 
For our experiments we used two time series datasets retrieved from Kaggle. 

 

• The first dataset is on daily new Coronavirus (Covid-19) cases and deaths in the United 

States from January 2020 to Mai 2022 (Figures 3.1 and 3.2), The data is the product of 

dozens of journalists working across several time zones to monitor news conferences, 

analyze data releases and seek clarification from public officials on how they categorize 

cases [70]. 

 

 
Figure 3.1 US new (Covid-19) confirmed cases [70] 
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Figure 3.2 US new (Covid-19) confirmed deaths [70] 

 
• The second dataset is a multivariate time series of accumulated property sales data for 

the 2007-2019 period, for one specific region. The data contains sales prices in us 

dollars for houses and units with 1,2,3,4,5 bedrooms. These are the cross-depended 

variables, Raw sales data was transformed to produce median price at quarterly 

intervals (Figure 3.3) [71]. 

 
Figure 3.3 median price of property sales [71] 
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3.4.2 Implementation details 
In the section we will describe the process of developing our CNN time series 

forecasting model implementation and data processing. 

3.4.2.1  Data preparation 
 We first import the data from google drive cloud storage. 

 

Figure 3.4: Importing the data 

After loading the data, we transform the time series to a supervised learning problem 

using the sliding window method. We can do this by using previous time steps as input variables 

and use the next time step as the output variable, this operation is done in the code below (Figure 

3.5). 

 
Figure 3.5: Code for data preparation 
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3.4.2.2  Train-Test Split 
  

We split the loaded time series data into train and test sets 80% of the data for training 

set and 20% stays for testing. 

This is done with the following lines of code. 

 

 
Figure 3.6: Code for Train-Test Split 

 

3.4.2.3  Building the CNN model 
A one-dimensional CNN is a CNN model that has a convolutional hidden layer that 

operates over a 1D sequence. This is followed by a second convolutional layer, and then a 

pooling layer followed by a dense fully connected layer that interprets the features extracted by 

the convolutional part of the model. A fatten layer is used between the convolutional layers and 

the dense layer to reduce the feature maps to a single one-dimensional vector. We can define a 

1D CNN Model for time series forecasting as follows. 

 

 
  Figure 3.7: code for building the CNN model 
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3.4.3  Evaluation Metrics 

When we build a solution for any regression problem, we compare its performance with 

the existing work. But to compare the two works, there should be some standard metric, the 

evaluation metrics we used are MAE, MSE and MAPE. 

3.4.3.1  MAE 
Mean absolute error (MAE) is a fundamental and most used evaluation metric for 

regression problems. Here we try to calculate the difference between the actual and predicted 

values. This difference is termed an error, it can be positive or negative so we take the 

magnitude.  Let’s put AV as the actual value and PV as the predicted value,  

so we have: MAE = |AV – PV| [72]. 

3.4.3.2 MSE 

Mean squared error (MSE) is a very popular evaluation metric for regression problems. 

It is similar to the mean absolute error, but the error is squared here, MSE = (AV – PV)²  [72]. 

3.4.3.3  MAPE 
The mean absolute percentage error (MAPE) is the mean or average of the absolute 

percentage errors of forecasts. Error is defined as actual or observed value minus the forecasted 

value. Percentage errors are summed without regard to sign to compute MAPE. This measure 

is easy to understand because it provides the error in terms of percentages. Also, because 

absolute percentage errors are used, the problem of positive and negative errors cancelling each 

other out is avoided. Consequently, MAPE has managerial appeal and is a measure commonly 

used in forecasting. The smaller the MAPE the better the forecast,  

MAPE = 100% (|AV – PV| / AV) [72]. 

3.4.4  Baselines 
A baseline model is essentially a simple model that acts as a reference in a forecast 

project. Its main function is to contextualize the results of trained models as it provides a point 

of comparison [73], the baselines we chose to benchmark our model are ARIMA, Zero Rule 

algorithm and the naïve forecasting algorithm. 

3.4.4.1 ARIMA 
ARIMA is the most popular baseline chosen in many projects, we described in in detail 

in chapter two. 
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3.4.4.2  Zero Rule algorithm 
Zero Rule Algorithm for regression problems is to predict the central tendency. This 

could be the mean or the median, (also called the average) of the output value observed in the 

training data. This is likely to have a lower error than random prediction which will return any 

observed output value [73]. 

3.4.4.3  Naïve forecasting algorithm 
Naïve forecasting is the technique in which the last period's sales are used for the next 

period's forecast without predictions or adjusting the factors. Forecasts produced using a naïve 

approach are equal to the final observed value [74]. 

 

3.5  Results and comparison 

3.5.1  Results 
To make the comparison and evaluation easier we classified the results into the 

univariate time series and the multivariate time series. 

3.5.1.1  Forecast results using univariate time series 
In Figure 3.8 we have the results from the univariate model, trained with the first dataset, 

the output is the predicted new Covid-19 confirmed cases plotted along with test set to show 

the outcome of the forecast. 

 
Figure 3.8: univariate model results for the COVID19 dataset prediction 
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The second univariate model used the property sales dataset, it has one feature which 

is the median sales price of the properties, results are shown in figure 3.9 along with the test 

set.  

 
Figure 3.9: univariate model results for the sales dataset prediction 

3.5.1.2 Forecast results using multivariate time series 
We have the results from the multivariate model, this was trained with one more feature 

which is the new Covid-19 confirmed deaths, predictions of the new confirmed Covid-19 cases 

are paired with test set in figure 3.10. 

 
Figure 3.10: multivariate model results for the COVID19 dataset prediction 
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And these are the results for the property sales dataset shown in figure 3.11 for the 

multivariate model, which was trained with an additional feature which is the number of 

bedrooms of each property sold. 

 

 

 
Figure 3.11: multivariate model results for the sales dataset prediction 

 
We clearly notice from the graphs that the multivariate version of the model is 

outperforming the univariate model, now let’s confirm that by moving on to the metrics 

comparison. 
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3.5.2 Performance Comparison 
To measure how well our model performed we use the metrics and compare the results 

between the baselines and our CNN models. 

Metrics and baselines for the Covid-19 dataset: 
 

 MSE MAE MAPE 

Univariate CNN model 13568179924.31 61740.32 57.39% 

Multivariate CNN model 9701514846.04 50776.95 33.60% 

ARIMA 90371021379.40 163118.01 224.29% 

Naïve forecasting 35476955073.29 96146.33 67.35% 

Zero rule forecasting 90468199050.99 163669.10 226.00% 

 

Table 3.1: Baseline and CNN models metrics for the Covid-19 dataset 

 

 

Metrics and baselines the property sales dataset: 
 

 MSE MAE MAPE 

Univariate CNN model 576005790.95 15052.95 2.98% 

Multivariate CNN model 4657.88 4657.88 0.91% 

ARIMA 2855425692.11 47692.08 9.37% 

Naïve forecasting 157049577.17 4500.82 5.82% 

Zero rule forecasting 5773427546.87 61892.79 11.11% 
 

Table 3.2: Baseline and CNN models metrics for the property sales dataset 

 

Looking at the metrics our most accurate predictions is the multivariate CNN model 

followed by the univariate CNN model, this outcome applies on both datasets. 
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3.5.3  Discussion 
The outcome of the experiments done on the datasets insight that CNNs can handle time 

series data pretty well, the univariate CNN model for the Covid-19 dataset outperformed the 

ARIMA and Zero rule forecasting baselines with four times more in the MAPE value, but the 

results were close with the Naïve forecasting baseline with only 10% MAPE difference, and 

closer MSE, MAE values than the other baselines. It is worth noting that the smaller the value 

of MAPE the better the forecast. For the multivariate CNN model there is a noticeable increase 

in performance as the MAPE was two times better than the univariate model and the naïve 

forecasting model. 

For the experiments on the second dataset the results were relatively similar to the first 

one. According to the MAPE values, the univariate CNN model is 8% better than the Zero rule 

forecasting algorithm, 6% better than the ARIMA model 3% better than the naïve forecasting. 

The results for the multivariate CNN model were really promising as we got the smallest MAPE 

value of 0.91% which is a significant increase in accuracy compared the univariate model. 

We can see from these results that our CNN models performed pretty well compared to 

the other baselines especially in the sales dataset, and the more features we add to the model 

the more accurate the predictions are, this prove that deep learning forecasting models have an 

advantage over the traditional statistical models when there are more data and variables 

available. 

Also, we think further testing is important, more datasets with different characteristics 

should be applied to better understand and further validate the results and characteristics for 

each model. 

 

3.6  Conclusion 
In this chapter, we implemented CNN univariate and multivariate models for time series 

forecasting and measured its performance based on the metrics and baselines. The study 

performed about CNN models applied to time series problems showed that they are a viable 

option for time series. It was also showed what are the desired characteristics that a model 

should have to be a viable option.  
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General Conclusion  
 
 

Time series analysis were always a field extremely important across several areas, thus it 

was always under intense development. Supported by the recent advances in the deep learning 

area the objective of this work was to make a study on deep learning strategies for the time 

series domain. 

 Initially we discussed the aspects of time series data, analysis, and its components, as well 

as the various forecasting techniques in detail. Different types of models have been investigated, 

ranging from traditional statistical models to machine learning and deep learning models, and 

common evaluation metrics that are commonly used in time series have been illustrated.  

We discussed the theory behind the artificial intelligence and machine learning as well as 

different types of machine learning in detail, ranging from traditional artificial neurons, neural 

networks and deep neural network models focusing on CNNs and their architecture.  

We implemented on the basis of the metrics and baselines different CNN models including 

univariate and multivariate models for time series forecasting and evaluated its performance, 

we had some promising results especially with multivariate models. 

The research done on CNN models used to solve time series problems revealed that they 

are a good choice for time series forecasting and they are capable to compete and outperform 

the traditional models, this offers a great opportunity to try complex deep learning models like 

the hybrid models on more datasets with different characteristics and larger data to explore their 

potential. 

 With the growing interest in exploring deep learning’s predictive capabilities, we expect it 

to dominate the forecasting field in the near future. 
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