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Abstract

Recommender systems (RS) are one of the most successful applications of data mining and

Machine learning technology in practice. It is generally based on the matrix completion

problem formulation, where for each user-item pair only one interaction (rating) is consid-

ered. In many application domains, multiple user-item interactions of different types can be

recorded over time. And a number of recent works have shown that this information can be

used to build richer individual user models and to discover additional behavioral patterns

that can be leveraged in the recommendation process in what is called Sequence-Aware Rec-

ommender Systems (SARS). This thesis aims to highlight this new kind of Recommender

systems (SARS). In addition, a Hidden Markov Model (HMM) to develop SARS is studied.

Results of the experiments on the Last.fm dataset, are presented using a different set of HMM

parameters.

Keywords: Recommender systems, Sequence-Aware Recommender Systems, Sequential

Recommendation, Sequential data, Hidden Markov Model, Next-Item recommendation.
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Résumé

Les systèmes de recommandation sont l’une des applications les plus réussies de l’exploration

de données et de la technologie d’apprentissage automatique dans la pratique. Ils sont

généralement basés sur la formulation du problème de complétion de la matrice, où pour

chaque paire utilisateur-article, une seule interaction (évaluation) est prise en compte. Dans

de nombreux domaines d’application, de multiples interactions utilisateur-article de différents

types peuvent être enregistrées dans le temps. Un certain nombre de travaux récents ont

montré que ces informations peuvent être utilisées pour construire des modèles d’utilisateurs

individuels plus riches et pour découvrir des modèles comportementaux supplémentaires

qui peuvent être exploités dans le processus de recommandation dans ce qu’on appelle les

systèmes de recommandation conscients des séquences SARS . Cette thèse vise à mettre en

évidence ce nouveau type de systèmes de recommandation SARS. En outre, un modèle de

Markov caché HMM pour développer les SARS est étudié. Les résultats des expériences sur

le jeu de données Last.fm, sont présentés en utilisant un ensemble différent de paramètres

HMM.

Mots clés: Systèmes de recommandation, systèmes de recommandation conscients de

la séquence, recommandation séquentielle, données séquentielles, modèle de Markov caché,

recommandation du prochain élément.
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General introduction

Background

Recommender systems (RS) are systems that suggest items that may be of interest to users.
Such systems are prominent components of many of today’s modern web applications, Rec-
ommender systems are and have been an important research area since the appearance of
the first papers on Collaborative Filtering in the 1990s. Over the last two decades, there
has been much researches about developing new approaches to Recommender systems. The
interest still remains high because it constitutes a problem-rich research area and because of
the abundance of practical applications that help users deal with information overload and
provide personalized recommendations, content and services to them.

Recommender systems has often been based on a matrix completion problem formulation
where each interaction, i.e user-item pair, is considered separately. However, in many ap-
plication domains, user-item interactions can be recorded over time. Recommender systems
that use user-item interactions recorded over time are called Sequence-Aware Recommender
Systems. A number of recent works have shown that taking sequential data into account
can yield richer recommendations and discover additional behavioural patterns. Sequential
interaction logs often contain useful information on both short-term user interests as well as
long-term sequential patterns that can be central to the success of a recommender system.

Applying Machine learning techniques to Recommender systems has become an increas-
ingly popular research in in sequence modeling tasks. Although many of deep learning’s
successes have been based on Recurrent Neural Networks in this kind of tasks. However, in
recent years, Hidden Markov Model have shown to be successful and efficient in sequence
modeling tasks.

1



Problem Statement

The Sequence-Aware Recommender Systems is unappreciated problem in the Machine learn-
ing and Recommender systems community. Many media Recommender systems rarely track
the Id’s of the users that visit their sites over a long period. While cookies and browser
fingerprinting can provide some level of user recognizability, those technologies are often not
reliable enough and raise privacy concerns. Even if tracking is possible, lots of users does
not have a richer history for making recommendations. Browsing on such sites (as last.fm),
is naturally a sequential task, therefore using a matrix completion formulation would neglect
the sequential nature of the data. Using a Sequence-Aware Recommender Systems could
potentially increase capturing the sequential behavior of a user. Using sequential user inter-
actions is especially important when there are many new or anonymous users as no long-term
historical data about the general tastes of these users is available.

Although Hidden Markov Model have shown good results in sequence modeling tasks
in other domains such as Natural language processing (NLP), investigating their usage in
Sequence-Aware Recommender Systems remains an open topic of research. The main research
question of this thesis is thus formulated as:

How can Hidden Markov Model be used in
Sequence-Aware Recommender Systems development?

Delimitations

The major research question emphasizes the investigation of Sequence-Aware Recommender
Systems. In this thesis, the domain is limited to items, particularly those common within
media. Where the goal of a system is to recommend items

Approach

To answer the research question, a Sequence-Aware Recommender Systems is developed. The
first item a user listen to can be considered as the initial observable in the user’s sequence,
then based on this initial input the model is queried for a recommendation that depends on
all the previous observables. An HMM with change of parameters will be presented in this
thesis.

2



Outline

This thesis is structured in three chapters, a general introduction and conclusion:

• General introduction

An initiation to Recommender systems and the background, problem statement, and
Delimitations of the thesis.

• Chapter 1 Sequence-Aware Recommender Systems

A theoretical introduction to Recommender systems and it’s categories, challenges and
goals. Beside a general overview of Sequence-Aware Recommender Systems, it’s general
architecture, and approaches.

• Chapter 2 Hidden Markov Model

Essential context and background knowledge around Artificial Intelligence and Machine
learning (development, types and challenges). The main goals of this chapter is to give
a familiarization with the fundamental concepts of Hidden Markov Model (Markov
Chains, approaches, solutions, types and general structure as an example).

• Chapter 3 Developing Sequence-Aware Recommender Systems with Hid-
den Markov Models

Highlights on the practical application of Hidden Markov Model in developing Sequence-
Aware Recommender Systems, First, the proposed model architecture, The evaluation
metrics used for the experiment and dataset used. At last, the comparison and discus-
sion of the obtained results.

• General conclusion

This last part draws a summary of this work and suggestions for potential future work.

3



Chapter 1
Sequence-Aware Recommender Systems

1 Introduction

Recommender systems (RS) are software applications that support users in finding items of
interest within larger collections of objects in a personalized way [24]. Today, such systems
are used in a variety of application domains, including for example e-commerce or media
streaming, and receiving automated recommendations of different forms has become a part
of our daily online user experience. Internally, such systems analyze the past behavior of
individual users or of a user community as a whole to detect patterns in the data. This
chapter gives a general presentation on the Recommender systems, mainly their kind of
Sequence-Aware Recommender Systems.

2 Recommender Systems

Recommender systems (RS) attempt to discover user preferences, and to learn about them in
order to anticipate their needs. RS provides specific suggestions about items within a given
domain, which may be considered of interest to the given active user [5].

Recommender systems are a filtering systems that suggests items of possible interest for
a given user. The problem of recommendation can be seen as the problem of estimating the
user rating for items not yet rated by the user. Items predicted with high rating for a given
user can be offered by the system as a recommendation.

2.1 Recommender Systems categories

There are several categories of Recommender systems but they usually work with two kinds of
data, user-item interactions, such as ratings or buying behavior, and the attribute information

4



CHAPTER 1. SEQUENCE-AWARE RECOMMENDER SYSTEMS 5

about the users and items such as textual profiles or relevant keywords. Methods that use
the former are referred to as Collaborative Filtering methods, where as methods that use
the latter are referred to as Content-Based recommender methods. Note that Content-Based
systems also use the ratings matrices in most cases, although the model is usually focused on
the ratings of a single user rather than those of all users. In knowledge-based Recommender
systems, the recommendations are based on explicitly specified user requirements. Instead
of using historical rating or buying data, external knowledge bases and constraints are used
to create the recommendation. Some Recommender systems combine these different aspects
to create hybrid systems [5]. Hybrid systems can combine the strengths of various types of
Recommender systems to create techniques that can perform more robustly in a wide variety
of settings.

2.1.1 Collaborative Filtering Models

Collaborative Filtering (CF) models use the collaborative power of the ratings provided by
multiple users to make recommendations. The main challenge in designing CF methods is
that the underlying ratings matrices are sparse [7].

There are two types of methods that are commonly used in CF, which are referred to as
memory-based methods and model-based methods:

1. Memory-based methods: Memory-based methods are also referred to as neighborhood-
based Collaborative Filtering algorithms. These were among the earliest Collaborative
Filtering algorithms, in which the ratings of user-item combinations are predicted on
the basis of their neighborhoods. These neighborhoods can be defined in one of two
ways:

• User-based Collaborative Filtering: is to determine users Us, who are similar to a
target user A, and recommend ratings for the unobserved ratings of A by com-
puting weighted averages of the ratings of Us [1].

• Item-based Collaborative Filtering: In order to make the rating predictions for
target item B by user A, the first step is to determine a set S of items that are
most similar to target item B. The ratings in item set S, which are specified by
A, are used to predict whether the user A will like item B [1].

The advantages of memory-based techniques are that they are simple to implement and
the resulting recommendations are often easy to explain.

2. Model-based methods: In model-based methods, Machine learning and data min-
ing methods are used in the context of predictive models. In cases where the model
is parameterized, the parameters of this model are learned within the context of an
optimization.
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2.1.2 Content-Based Recommender Systems

Content-Based (CB) RS use item information such as name, author, category, keywords to
make recommendations [9]. Unlike CF models, CB models only use user feedback and do not
use feedback from other users to make a recommendation. This makes the model to focus on
the user’s interests and to recommend unknown items based on the categories of items the
user has liked in the past. For example, if a user gives a positive feedback for pop music, the
recommendation model is likely to recommend another pop music because it has learns that
the user likes this category of music. Unlike Collaborative Filtering methods, Content-Based
models do not suffer from the cold-start item problem because some users have probably
already interacted with items similar to the new item [9]. However, Content-Based models
have some disadvantages:

• The provided recommendations lack diversity as they are always part of the same area
of interest that the user likes.

• In order to make relevant recommendations, the user must give sufficient feedback.
These types of methods are strongly impacted by the user’s cold-start problem.

2.1.3 Knowledge-Based Recommender Systems

They are used to recommend infrequently purchased items such as cars, travel, financial
services, etc [10]. In these cases, it is difficult to know the user’s tastes and their preferences
are likely to change between two interactions. For this type of system, it is the users who
will explicitly give information about the item they are looking for. Then, the system will
return the items according to the needs expressed by the user.

2.1.4 Utility-Based Recommender Systems

In utility-based Recommender systems, a utility function is defined on the product features
in order to compute the probability of a user liking the item [11]. The central challenge
in utility-based methods is in defining an appropriate utility function for the user at hand.
It is noteworthy that all recommender schemes, whether collaborative, Content-Based, or
knowledge-based methods, implicitly rank the recommended items on the basis of their per-
ceived value (or utility) for the target user. In utility-based systems, this utility value is
based on a function that is known a priori. In this sense, such functions can be viewed as a
kind of external knowledge. Therefore, utility-based systems can be viewed as a specific case
of knowledge-based Recommender systems.

2.1.5 Demographic Recommender Systems

Rely on user demographic information [12], such as age and country, to assign a class. Then,
from a rule-based system, the recommendation is made based on the user’s class. These
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methods are not very effective because using demographic information alone does not fully
model the user tastes. Nevertheless, this information can be useful for creating hybrid models.

2.1.6 Hybrid Recommender Systems

Hybrid Recommender systems combine several types of models to improve performance and
overcome weaknesses related to the type of Recommender systems used [8]. One of the most
common combinations is to mix a Content-Based method with a Collaborative Filtering
method. This reduces the cold start problem of Collaborative Filtering methods. Table 1.1
shows some of the combination methods that have been employed.

Hybridization
method

Description

Weighted [13] The scores (or votes) of several recommendation techniques are
combined together to produce a single recommendation

Switching [14] The system switches between recommendation techniques depend-
ing on the current situation.

Mixed [15] Recommendations from several di¡erent recommenders are pre-
sented at the same time

Feature combina-
tion [16]

Features from different recommendation data sources are thrown
together into a single recommendation algorithm.

Cascade [17] One recommender refines the recommendations given by another

Feature augmenta-
tion [18]

Output from one technique is used as an input feature to another.

Meta-level [19] The model learned by one recommender is used as input to
another.

Table 1.1: Hybridization methods

For instance, CHAMELEON1, a deep Learning hybrid-based recommender system, uses
the interaction between user and item, item content and user context to address the specific
challenges of news recommendation. This architecture allows CHAMELEON to reduce the
problem of cold-start.

1Gabriel de Souza Pereira Moreira. CHAMELEON: a deep learning meta-architecture for news recom-
mender systems. In Proceedings of the 12th ACM Conference on Recommender Systems, RecSys 2018,
Vancouver, BC, Canada, October 2-7, 2018, pages 578–583, 2018.12
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2.2 Challenges of Recommender systems

In this section challenges [6] in Recommender systems will be brought to light:

• Cold Start Problem: This problem occurs when new users enter the system or new
items are added to the catalog. In such cases, neither the taste of the new users can
be predicted nor can the new items be rated or purchased by the users leading to less
accurate recommendations.

• Synonymy: Arises when an item is represented with two or more different names
or entries having similar meanings. In such cases, the recommender cannot identify
whether the terms represent different items or the same item. To alleviate the problems
of synonymy, different techniques including ontologies, the Single Value Decomposition
(SVD) techniques, and Latent Semantic Indexing (LSI) could be used.

• Shilling Attacks: What happens if a malicious user or competitor enters into a system
and starts giving false ratings on some items either to increase the item popularity or to
decrease its popularity. Such attacks can break the trust on the recommender system
as well as decrease the performance and quality of recommenders. More information
about shilling attacks can be found in [20].

• Privacy: Feeding personal information to the Recommender systems results in better
recommendation services but may lead to issues of data privacy and security. Users
are reluctant to feed data into RS that suffer from data privacy issues. Therefore, a
recommender system should build trust among their users,

• Limited Content Analysis and Overspecialization: Content-Based recommenders
rely on content about items and users to be processed by information retrieval tech-
niques. The limited availability of content leads to problems including overspecializa-
tion.

• Grey Sheep: Occurs in pure CF systems where opinions of a user do not match with
any group and therefore, is unable to get benefit of recommendations. Pure CB filtering
can resolve this issue where items are suggested by exploiting user personal profile and
contents of items being recommended.

• Sparsity: The availability of huge size of data about items the catalog and the disin-
clination of users to rate items make a dispersed profile matrix leading to less accurate
recommendations. The sparse rating in CF systems makes it difficult to make accurate
predictions about items.

• Scalability: The rate of growth of nearest-neighbor algorithms shows a linear rela-
tion with number of items and number of users. It becomes difficult for a typical
recommender to process such large-scale data.
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• Latency Problem: Is when new items are added more frequently to the database,
where the recommender suggests only the already rated items as the newly added items
are not yet rated.

• Evaluation and the Availability of Online Datasets: Evaluating a recom-
mender system determines among the other things, its quality. The design of evaluation
criteria and selection of suitable evaluation metrics is a key problem in Recommender
systems. Most traditional Recommender systems evaluate system results and algo-
rithms by considering dataset divided into a test set and apply metrics like Mean
absolute error (MAE), Precision, and F-Measure for evaluation.

• Context-Awareness: Aggregates all categories that represent the setting in which
recommender is deployed, It is envisioned that the upcoming Recommender systems
will use contextual information obtained through mobile services infrastructure and
will include the user’s short and long term history, location, entries in the calendar,
and the information that the user provides to social networks. This can greatly affect
the performance of recommender. Finding out user preferences and context-related
information is the key to come up with relevant recommendations for the user.

2.3 Goals of Recommender Systems

Increasing product sales is the primary goal of a recommender system. RS are utilized by
merchants to increase their profit. By recommending carefully selected items to users, RS
bring relevant items to the attention of users. This increases the sales volume and profits for
the merchant. Although the primary goal of a recommendation system is to increase revenue
for the merchant [1], the common operational and technical goals of RS are as follows:

1. Accuracy: The most obvious operational goal of a recommender system is to recom-
mend items that are relevant to the user at hand. Users are more likely to consume
items they find interesting.

2. Novelty: RS are truly helpful when the recommended item is something that the
user has not seen in the past. For example, popular music of a preferred genre would
rarely be novel to the user. Repeated recommendation of popular items can also lead
to reduction in sales diversity [2].

3. Serendipity: wherein the items recommended are somewhat unexpected, and there-
fore there is a modest element of lucky discovery, as opposed to obvious recommen-
dations. Serendipity is different from novelty in that the recommendations are truly
surprising to the user [3], rather than simply something they did not know about before.

4. Diversity: RS typically suggest a list of top-k items. When all these recommended
items are very similar, it increases the risk that the user might not like any of these
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items. On the other hand, when the recommended list contains items of different types,
there is a greater chance that the user might like at least one of these items. Diversity
has the benefit of ensuring that the user does not get bored by repeated recommendation
of similar items.

Aside from these concrete goals, a number of soft goals are also met by the recommen-
dation process both from the perspective of the user and merchant. From the perspective
of the user, recommendations can help improve overall user satisfaction with the Web site.
At the merchant end, the recommendation process can provide insights into the needs of the
user and help customize the user experience further.

However, RS have expanded beyond the traditional domain of product recommendations
[4].In the following, the table 1.2 shows Examples of real-world recommendation goals.

System Product Goal

Amazon Books and other products
Netflix DVDs, Streaming Video
Jester Jokes

GroupLens News
MovieLens Movies

last.fm Music
Google News News
Google Search Advertisements

Facebook Friends, Advertisements
Pandora Music
YouTube Online videos

Trip advisor Travel products
IMDb Movies

Table 1.2: Examples of products recommended by various real-world recommender systems

2.4 Sequential and classical recommender systems

The most common approach to generate recommendations is to discard any sequential in-
formation and learn what items a user is typically interested in. On the other hand, recom-
mendations of sequential methods are based only on the last user events by learning what
an arbitrary user buys next when he has bought a certain item in the recent past [22]. Both
methods have their strengths and disadvantages.
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3 Sequence-Aware Recommender Systems

A Sequence-Aware Recommender Systems (SARS) is a recommender system that models the
dynamics in user’s interaction by extracting of sequential features from the logs of historical
user activity, with the ultimate goal of adapting to user’s short-term needs and providing
high quality suggestions on the following item(s) the user should interacts with [25].

3.1 Characterizing Sequence-Aware Recommender Systems

SARSs are different from the traditional matrix-completion setup in a number of ways [24].
Figure 1.1 [25] gives a high-level overview of the problem, its inputs, outputs, and specific
computational tasks. In general, the ordering of the objects can be relevant both with respect
to the inputs and to the outputs.

Figure 1.1: High-level Overview of Sequence-Aware Recommendation Problems.

• Inputs : The main input to sequence-aware recommendation problems is an ordered
and often timestamped list of past user actions. Users can be already known by the
system or anonymous ones. Overall, the inputs can be considered as a sort of enriched
click-stream data [24].

• Outputs : The output of a sequence-aware recommender are ordered lists of items.
They are similar to those of a traditional “item-ranking” recommendation setup. How-
ever, in some sequence-aware recommendation scenarios, the ordering of the objects
in the recommendation list can be relevant as well. Instead of considering the list of
recommendations as a set of alternatives for the user, there are scenarios where the
user should consider all recommendations and do this in the provided order [24].
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• Computational Tasks: This section identifies the four main goals (computational
tasks) that can be achieved with the help of Sequence-Aware Recommender Systems
in different application scenarios:

– Context Adaptation: Making context-adapted recommendations from past in-
teraction data is the main goal of Sequence-Aware Recommender Systems plus
understanding the user’s situation and goals. The following types can be differen-
tiate depending on the availability of historical data for individual users [24].

∗ Last-N interactions based recommendation : In this scenario, only the
last N user actions are considered.

∗ Session-based recommendation : In this scenario only the last sequence
of actions of a user is known and this sequence of actions is limited to a period
of time when the user interacted with the site.

∗ Session-aware recommendation : This scenario happens whene there is
knowledge about the user’s actions in the last session and about their past
behavior, a Sequence-Aware Recommender Systems can be based on a com-
bination of long term and short-term interest models.

– Trend Detection: Sequence-Aware Recommender Systems have a secondary
goal trend detection in a given sequence [24]. Based on sequential log information
two types can be defined:

∗ Individual trends: Changes in the interest in certain items can also happen
at an individual level. These interest changes can be caused when there is a
“natural” interest drift.

∗ Community trends: Sequence-Aware Recommender Systems can aim to
detect and utilize popularity patterns in the interaction logs to improve the
recommendations considering the changing and the popularity of items in a
user community.

– Repeated Recommendation: The following categories of repeated recommen-
dation scenarios [24] can be defined since recommending items that the user al-
ready knows or has purchased in the past can be meaningful:

∗ Repeated recommendations as reminders: Repeated recommendations
can help to remind users of things they found interesting in the past. De-
pending on the domain, these reminders could relate to objects that the user
has potentially forgotten.

∗ Identifying repeated user behavior patterns: SARS can use interaction
logs to identify patterns of repeated user behavior. Repeated user actions are
particularly relevant for app recommendation problems.
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– Consideration of Order Constraints and Sequential Patterns: The char-
acteristics of items may pose a sort of ordering between interactions, we distin-
guish between strict and weak order constraints, and order constrains that mined
directly from the logs of user’s activity [25] .

∗ Strict or Weak order constraints: In the sequential recommendation
there might be strict requirements regarding the order of different items that
have to be considered by the recommender differing from Weak order con-
straints that does not pose any strict ordering between them.

∗ Mined order constraints: SARS can mine such sequential patterns from
the log data, e.g., to automatically detect that users who watched a certain
movie later on have watched its sequel.

3.2 Sequential Recommendation Tasks

Figure 1.2 demonstrate two representative recommendation tasks [21] :

• Next-Item Recommendation: A user behavior contains only one item.

• Next-Basket Recommendation: A user behavior contains more than one items.

However, either in Next-Item Recommendation or Next-Basket Recommendation, the model
is to predict the next item(s) for a user, and the most popular output is still a list of Top-K
ranked items, where the ranking could be determined by probabilities, absolute scores or
relative rankings.

Figure 1.2: Next-Item and Next-Basket Recommendation

3.3 Behavior sequence types

In sequential data there are two types of behaviors [21]:
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• Behavior object: Refers to the items or services that a user chooses to interact with.

• Behavior type: Refers to the way that a user interacts with items or services.

Given these concepts, a behavior can be considered as a combination of a behavior type
and a behavior object, (a user interacting with a behavior object by a behavior type).

Figure 1.3 shows a schematic diagram of the sequential recommendation. ci:behavior
type, oi:behavior object. A behavior ai is represented by a 2-tuple, i.e., ai = (ci, 0i). A
behavior sequence is a list of 2-tuples in the order of time.

Figure 1.3: A behavior sequence (trajectory)

A sequential recommender system is referred to a system that takes a user’s behavior
trajectories as input and then adopts recommendation algorithms to recommend appropriate
items or services to the user. The input behavior sequence is polymorphic, which can thus
be divided into three types:

1. Experience-based behavior sequence: In an experience-based behavior sequence
a user may interact with a same object (item) multiple times by different behavior
types. Different behavior types as well as their orders might indicate user’s different
intentions, for this type of behavior sequence, a model is expected to capture a user’s
underlying intentions indicated by different behavior types. The goal here is to predict
the next behavior type that the user will exert given an item.

Figure 1.4: Experience-based behavior sequence

2. Transaction-based behavior sequence: A transaction-based behavior sequence
records a series of different behavior objects that a user interacts with, but with a same
behavior type. The goal of a sequential recommender system is to recommend the next
object that a user will interact with in view of the historical transactions of the user.
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Figure 1.5: Transaction-based behavior sequence

3. Interaction-based behavior sequence: An interaction-based behavior sequence is
a mixture of experience-based and transaction-based behavior sequences It consists of
different behavior objects and different behavior types simultaneously. In interaction-
based behavioral sequence modeling, a recommender system is expected to understand
user preferences more realistically, including different user intents expressed by different
behavior types and preferences implied by different behavior objects. Its major goal is
to predict the next behavior object that a user will interact with.

Figure 1.6: Interaction-based behavior sequence

3.4 Approaches

this section discuss a categorization representation of all the approaches for SARS from the
technical perspective [23]. This approaches are categorized into eleven atomic classes which
are presented in figure 1.7 below.

1. Traditional Sequence Models for SARS: Traditional sequence models are in-
tuitive solutions to SARS by taking advantage of their natural strength in modeling
sequential dependencies among the user-item interactions in a sequence.

• Sequential pattern mining: Sequential pattern-based RS first mine frequent pat-
terns on sequence data and then utilize the mined patterns to guide the subsequent
recommendations.
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Figure 1.7: Sequential recommender system approaches

• Markov Chains models: Markov Chain-based SARS adopt Markov Chains models
to model the transitions over user-item interactions in a sequence, for the pre-
diction of the next interaction. According to the specific technique used, Markov
Chain-based RS are divided into basic Markov Chain-based approaches and latent
Markov embedding-based approaches.

2. Latent Representation Models forSARS: Latent representation models first learn
a latent representation of each user or item, and then predict the subsequent user-item
interactions by utilizing the learned representations. As a result, more implicit and
complex dependencies are captured in a latent space.

• Factorization machines-based SARS: Usually utilize the matrix or tensor factor-
ization to factorize the observed user-item interactions into latent factors of users
and items for recommendations. Such a model is easily affected by the sparsity of
the observed data.

• Embedding-based SRSs: Learn a latent representations for each user and item for
the subsequent recommendations by encoding all the user-item interactions in a
sequence into a latent space. Specifically, some works take the learned latent
representations as the input of a network to further calculate an interaction score
between users and items, or successive user’s actions.
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3. Deep Neural Network Models for SARS: Deep neural networks have natu-
ral strength to model and capture the comprehensive relations over different entities
(e.g.,users, items, interactions) in a sequence, and thus they nearly dominate SARS in
the past few years.

• Basic Deep Neural Networks: The most commonly used deep neural networks
for SARS are Recurrent Neural Networks (RNN) due to their natural strength in
sequence modelling. Recently, Convolutional Neural Networks (CNN) and Graph
Neural Networks (GNN) have also been applied in SARS.

(a) RNN-based SARS: Given a sequence of historical user-item interactions, an
RNN-based SARS tries to predict the next possible interaction by modeling
the sequential dependencies over the given interactions.

(b) CNN-based SARS: Given a sequence of user-item interactions, a CNN first
puts all the embeddings of these interactions into a matrix, and then treats
such a matrix as an “image” in the time and latent spaces. Finally, a CNN
learns sequential patterns as local features of the image using convolutional
filters for the subsequent recommendations.

(c) GNN-based SARS: Captures the complex transitions over user-item interac-
tions in a sequence. Typically a directed graph is first built on the sequence
data by taking each interaction as a node in the graph while each sequence
is mapped to a path. Then, the embeddings of users or items are learned on
the graph to embed more complex relations over the whole graph.

• Advanced models: To address the limitations of SARS built on basic neural net-
work structures, some advanced models are usually combined together with a
certain kind of basic deep neural networks to build more powerful SARS which
are able to address particular challenges.

– Attention model: Attention models are commonly employed in SARS to em-
phasize those really relevant and important interactions in a sequence while
downplaying those ones irrelevant to the next interaction. They are widely
incorporated into shallow networks and RNN to handle interaction sequences
with noise.

– Memory networks: Memory networks are introduced into SARS to capture the
dependencies between any historical user-item interaction and the next one
directly by incorporating an external memory matrix. Such matrix enables
it possible to store and update the historical interactions in a sequence more
explicitly and dynamically to improve the expressiveness of the model and
reduce the interference of those irrelevant interactions.

– Mixture model: A mixture model-based SARS combines different models that
excel at capturing different kinds of dependencies to enhance the capability



CHAPTER 1. SEQUENCE-AWARE RECOMMENDER SYSTEMS 18

of the whole model in capturing various dependencies for better recommen-
dations.

4 Conclusion

Each day internet users generate huge amounts of data, they use services provided to them
through websites and platforms that cater to the needs of each individual specifically. Users
don’t have the time or power to go through all those data and extract the information they
seek neither the companies can, by the use of RS combining the data and the feedback from
users better results can be reached satisfying the users or clients and decreasing the needed
amount of time and resources.

Computer scientists researched this path over the past decades, many types of RS are
attainable to all users and companies around the world, but each has a field that is more
compatible with. Based on the data and users and the service provided in general and more
importantly the challenges and goals, which explains why SARS is a good fit for platforms
that recommend and provide items such as songs, movies, clothes...Etc. That depends on
previous choices made by the users themselves. These sequences can be characterized as a
sequence of items.



Chapter 2
Hidden Markov Models

1 Introduction

The Hidden Markov Model (HMM) is one of the pillars of statistical modeling of discrete
time series, with major successes in applications including speech recognition, computational
biology, computer vision, control theory and econometrics, among other disciplines.

The features of HMM are characterized by their simplicity, general mathematical tractabil-
ity and specifically that the likelihood is simple to compute. The purposes of this chapter is
to provide a brief and informal introduction to HMM.

2 Artificial Intelligence

The roots of modern Artificial Intelligence (AI) can be traced back to the classical philoso-
phers of Greece, and their efforts to model human thinking as a system of symbols. In the
1940s, a school of thought called “Connectionism” was developed to study the process of
thinking. In 1950, Alan Turing wrote a paper suggesting how to test a “thinking machine”1.
He believed if a machine could carry on a conversation by way of a teleprinter, imitating a
human with no noticeable differences. His paper was followed in 1952 by the Hodgkin-Huxley
model of the brain as neurons forming an electrical network, with individual neurons firing in
all-or-nothing (on/off) pulses. These events, at a conference sponsored by Dartmouth College
in 1956, helped to spark the concept of Artificial Intelligence.

However, Artificial Intelligence (AI) is the most in demand field in computer science
which deals with the simulation of intelligent behavior in computer. AI techniques reside in
background as features which improves the overall performance of the system. It can be used
along with APIs for software and interfaces for users [28]. It maps between model inputs and

1https://www.dataversity.net/brief-history-artificial-intelligence

19
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the parallel outputs for available data using Machine learning by delivering the model inputs
and outputs examples repeatedly.

In simplest term AI is manufactured thinking. Intelligence can be viewed as an individual
property or quality that can be distinguished from all other properties of an individual [28].
AI can also be noticed in the actions or the ability to perform certain tasks.

3 Machine Learning

The first Machine learning (ML) application that really became mainstream, the spam filter
in the 1990s [26]. It’s not a self-aware Skynet, but its qualify as Machine learning, It has
learned so well that the user rarely needs to flag an email as spam anymore. It was followed
by hundreds of ML applications that now quietly power hundreds of products and features,
from better recommendations to voice search. Machine learning is the science and art of
programming computers so they can learn from data [26].
Arthur Samuel in 1959, defined Machine learning in a general way :

”Machine learning is the field of study that gives computers the ability to learn without
being explicitly programmed.”

And Tom Mitchell in 1997 in an engineering-oriented one:

”A computer program is said to learn from experience E with respect to some task T and
some performance measure P, if its performance on T, as measured by P, improves with

experience E.”

3.1 Developing a Machine Learning Model

Machine learning aids in the development of programs that improve their performance for a
given task through experience and training. The process of developing ML algorithms may
be decomposed into the following steps [27]:

1. Data Collecting: Select the subset of all available data attributes that might be
useful in solving the problem.

2. Data preprocessing: Present the data in a manner that is understood by the con-
sumer of the data. Preprocessing consists of the following three steps:

i Formatting: The data needs to be presented in a usable format using an industry
standard format such as XML, HTML, and SOAP.

ii Cleaning: The data needs to be cleaned by removing, substituting, or fixing corrupt
or missing data.
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iii Sampling: Data need to be sampled by selecting, manipulating and analyzing a
representative subset of data without losing information when redundancy is mini-
mized.

3. Data Transforming: Transform the data specific to the algorithm and the knowledge
of the problem. Transformation can be in the form of feature scaling, decomposition,
or aggregation.

4. Training the algorithm: Select the training and testing datasets from the trans-
formed data. An algorithm is trained on the training dataset and evaluated against the
test set.

5. Testing the algorithm: Evaluate the algorithm to test its effectiveness and perfor-
mance. This step enables quick determination whether any learnable structures can be
identified in the data.

6. Applying reinforcement learning: Most control theoretic applications require a
good feedback mechanism for stable operations. In many cases, the feedback data are
sparse or unspecific.

7. Execute: Apply the validated model to perform an actual task of prediction.

3.2 Machine Learning Types

Machine learning systems can be classified according to the amount and type of supervision
they get during training [27]. There are four major categories as in figure 2.1

• Supervised learning: Is a learning mechanism that infers the underlying relationship
between the observed data (input data) and a target variable (label) that is subject to
prediction. The learning task uses the labeled training data to synthesize the model
function that attempts to generalize the underlying relationship between the feature
vectors (input) and the supervisory signals (output) [27]. The feature vectors influence
the direction and magnitude of change in order to improve the overall performance
of the function model. The training data comprise observed input (feature) vectors
and a desired output value (figure 2.2) [29]. A well-trained function model based
on a supervised learning algorithm can accurately predict the class labels for hidden
phenomena embedded in unfamiliar or unobserved data instances. The goal of learning
algorithms is to minimize the error for a given set of inputs. However, for a poor-quality
training set that is influenced by the accuracy and versatility of the labeled examples,
the model may encounter the problem of overfitting, which typically represents poor
generalization and erroneous classification.
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Figure 2.1: Machine Learning Types.

• Unsupervised learning: Unsupervised learning algorithms are designed to discover
hidden structures in unlabeled datasets, in which the desired output is unknown (figure
2.2) [29]. This mechanism has utility value in the areas of data compression, outlier de-
tection, classification, human learning, and so on [27]. The general approach to learning
involves training through probabilistic data models. Two popular examples of unsuper-
vised learning are clustering and dimensionality reduction. In general, an unsupervised
learning dataset is composed of inputs but it contains neither target outputs (as in su-
pervised learning) nor rewards from its environment. The goal of ML in this case is to
hypothesize representations of the input data for efficient decision making, forecasting,
and information filtering and clustering. Unsupervised learning algorithms centered on
a probabilistic distribution model generally use maximum likelihood estimation (MLE),
maximum a posteriori (MAP), or Bayes methods. Other algorithms that are not based
on probability distribution models may employ statistical measurements, quantization
error, variance preserving, entropy gaps, and so on.
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• Semi-supervised learning: Uses a combination of a small number of labeled and a
large number of unlabeled datasets to generate a model function or classifier. Because
the labeling process of acquired data requires intensive skilled human labor inputs, it
is expensive and impracticable [27]. In contrast, unlabeled data are relatively inex-
pensive and readily available. Semi-supervised ML methodology operates somewhere
between the guidelines of unsupervised learning (unlabeled training data) and super-
vised learning (labeled training data) and can produce considerable improvement in
learning accuracy. Semi-supervised learning has recently gained greater prominence,
owing to the availability of large quantities of unlabeled data for diverse applications to
web data, messaging data, stock data, retail data, biological data, images, and so on.
This learning methodology can deliver value of practical and theoretical significance,
especially in areas related to human learning, such as speech, vision, and handwriting,
which involve a small amount of direct instruction and a large amount of unlabeled
experience.

Figure 2.2: Illustrations of the principles of supervised and unsupervised learning.

• Reinforcement learning: Reinforcement learning methodology involves exploration
of an adaptive sequence of actions or behaviors by an intelligent agent in a given
environment with a motivation to maximize the cumulative reward [27]. The intelligent
agent’s action triggers an observable change in the state of the environment. The
learning technique synthesizes an adaptation model by training itself for a given set of
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experimental actions and observed responses to the state of the environment (figure 2.3)
[29]. In general, this methodology can be viewed as a control-theoretic trial-and-error
learning paradigm with rewards and punishments associated with a sequence of actions.
This agent changes its policy based on the collective experience and consequent rewards.
reinforcement learning seeks past actions it explored that resulted in rewards. To build
an exhaustive database or model of all the possible action reward projections, many
unproven actions need to be tried. These untested actions may have to be attempted
multiple times before ascertaining their strength. Therefore, striking a balance between
exploration of new possible actions and likelihood of failure resulting from those actions
is essential.

Figure 2.3: Illustration of the principles of a reinforcement learning technique.

3.3 Machine Learning Challenges

Despite living in the prime years of Artificial Intelligence, there are still a lot of obstacles and
challenges that will have to be overcome when developing a Machine learning model there
are some of the challenges:

• Insufficient quantity of training data: Machine learning is not quite genius, it
takes a lot of data for most Machine learning algorithms to work properly [26]. Even
for very simple problems it needs thousands of examples, and for complex problems
such as image or speech recognition it might need millions of examples.
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• The unreasonable effectiveness of data: The idea that data matters more than
algorithms for complex problems was further popularized by Peter Norvig et al. in
“The Unreasonable Effectiveness of Data 2009” [26]. It should be noted, however, that
small and medium-sized datasets are still very common, and it is not always easy or
cheap to get extra training data.

• Nonrepresentative Training Data: The training data should be representative of
the new cases to generalize well [26] i.e., the data used for training should cover all the
cases that occurred and that is going to occur. By using a non-representative training
set, the trained model is not likely to make accurate predictions.

• Poor-Quality Data: If the training data is full of errors, outliers and noise (e.g., due
to poor-quality measurements) [26], it will make it harder for the system to detect the
underlying patterns, so the system is less likely to perform well. It is often well worth
the effort to spend time cleaning training data.

• Irrelevant Features: If the training data contains a large number of irrelevant fea-
tures and enough relevant features, the Machine learning system will not give the results
as expected [26]. A critical part of the success of a ML project is coming up with a
good set of features to train on. This process, called feature engineering, involves the
following steps:

– Feature selection: Selecting the most useful features to train on among existing
features).

– Feature extraction: Combining existing features to produce a more useful one.

– Creating new features by gathering new data.

• Overfitting the Training Data: It means the model is performing well, making
likely predictions on the training dataset, but it is not generalized well [26]. overfitting
occurs when the model is excessively unpredictable when compared to the noisiness of
the training dataset. It can be avoided with the following process:

– Gathering more training data.

– Selecting a model with fewer features, a higher degree polynomial model is not
preferred compared to the linear model.

– Fix data errors, remove the outliers, and reduce the number of instances in the
training set.

• Underfitting the Training Data: Underfitting which is opposite to overfitting
generally occurs when the model is too simple to understand the base structure of the
data [26]. It generally happens when there is less information to construct an exact
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model and when attempting to build or developing a linear model with non-linear
information. Main options to reduce underfitting are:

– Feature Engineering: Feeding better features to the learning algorithm.

– Removing noise from the data.

– Increasing parameters and selecting a powerful model.

4 System models

“Being able to guess” is a concept that is conveyed by the Greek word tokhastikos from which
the word stochastic has born. The behavior of any process can invariably be divided into two
components: One that follows exactly the model (mental, mathematical,...) that describes
its action and other which is unpredictable, and fails from following it. The first component
is the deterministic part of the event and the second is the stochastic one. In case of total
absence of determinism, the process is said to be random and, by definition, its outcome
cannot be predicted by means of any past information [36].

In practice, it is impossible to have a model that is able to capture all the details of an
undergoing process. Deviations between the model output and effective observations will
always be present.

Often, dynamical processes in continuous-time, are modeled using systems of differential
equations which can lead to an approach designated by state-space model. The usual state-
space model formulation regards the deterministic component of a process. The stochastic
component can be included by adding a random component whose statistical properties
are known or estimated. A continuous-time system is one that has an infinite number of
states defined continuously along the independent variable. Notice that, it is also possible to
describe discrete-time systems using the same approach [36]. For example, digital systems
are particular cases of discrete-time systems with finite number of states. In abstract, the
behavior of all automation systems can be described by finite state machines (FSM) which
is a mathematical model of computation. It is an abstract machine that can be in exactly
one of a finite number of states at any given time [36]. The graphical way to represent the
system behavior is designated by state diagram which is represented using circles and arrows.
Circles are used to represent the states that the system can exhibit, and the arrows, the way
the system navigates through these states.

In some special cases, namely if the inputs to the FSM are chosen randomly with fixed
probabilities (or with probabilities that depend only on the current state of the FSM) [35],
one can model the behavior of the FSM as a Markov Chains (As shown in figure 2.4 the labels
of the arrows in FSM graph are the names of the actions from qi to qj and are probabilities
in MC graph).
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Figure 2.4: Finite state machine and its corresponding Markov Chain

5 Markov chains

Andrey Andreyevich Markov (June 14, 1856 – July 20, 1922) was a Russian mathematician.
He is best known for his work on the theory of stochastic Markov processes. His research area
later became known as Markov process and Markov Chains. Andrey Andreyevich Markov
introduced the Markov Chains in 1906 when he produced the first theoretical results for
stochastic processes by using the term “chain” for the first time [32].

The HMM is based on augmenting the Markov Chains. A Markov Chains is a model that
reveals a meaning about the probabilities of sequences of random variables, states, each of
which can take on values from some set [33]. These sets can be words, or tags, or symbols
representing anything, like the weather. A Markov chain makes a very strong assumption
that predicting the future in the sequence, all that matters is the current state. The states
before the current state have no impact on the future except via the current state. Consider
a sequence of state variables q1, q2, q3, ..., qi. A Markov model mimics the Markov assumption
on the probabilities of this sequence: That when predicting the future, the past does not
matter, only the present.

Markov Assumption: P (qi = a|q1, ..., qi−1) = P (qi = a|qi−1) (2.1)

Figure 2.5 shows a Markov chain for assigning a probability a11, a12, ..., a33 to a sequence
of stats S1, S2, S3. The states are represented as nodes in the graph, and the transitions as
edges. The transitions are probabilities: The values of arcs leaving a given state must sum
to 1. Given a MC model allows to calculate the probability to any given sequence of states.

Formally, a Markov chain is specified by the following components:

• A set of N states Q = q1, q2, q3, ..., qN .

• A transition probability matrix A, where A = a11, a12, ..., ann, each aij representing the
probability of moving from state i to state j, so that

∑n
j=1 aij = 1 ∀i.
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Figure 2.5: An example of Markov chain with 3 states

• An initial probability distribution over states π = π1, π2, ..., πN . πi is the probability
that the Markov Chains will start in state i. Some states may have π = 0, meaning
that they cannot be initial states. Also,

∑n
i=1 πi = 1.

6 Hidden Markov Model

A Hidden Markov Model (HMM) is a Markov process split into an observable component and
an unobserved or latent component. From a statistical standpoint, the use of latent states
makes the HMM generic enough to model a variety of complex real-world time series, while
the Markovian structure enables relatively simple computational procedures [30].

A Hidden Markov Model consists of two stochastic processes. The first stochastic process
is a Markov Chains that is characterized by states and transition probabilities. The states
of the chain are externally not visible, therefore “hidden”. The second stochastic process
produces emissions observable at each moment, depending on a state-dependent probability
distribution [33]. It is important to notice that the denomination “hidden” while defining a
Hidden Markov Model is referred to the states of the Markov Chains, not to the parameters
of the model.

Each Hidden Markov Model is defined by states, state probabilities, transition probabili-
ties, emission probabilities and initial probabilities. In order to define an HMM completely,
the following components have to be defined:

• A set of N states Q = q1, q2, q3, ..., qN .

• A transition probability matrix A, where A = a11, a12, ..., ann, each aij representing the
probability of moving from state i to state j, so that

∑n
j=1 aij = 1 ∀i.

• An initial probability distribution over states π = π1, π2, ..., πN . πi is the probability
that the Markov Chains will start in state i. Some states may have π = 0, meaning
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that they cannot be initial states. Also,
∑n

i=1 πi = 1.

• A sequence of T observations O = o1, o2, o3, ..., oT , each one drawn from a vocabulary
V = v1, v2, v3, ..., vV .

• A sequence of observation likelihoods, also called emission probabilities B = b11, b12, ..., bnn,
each expressing the probability of an observation ot being generated from a state i
B = bi(ot).

Figure 2.6: HMM graphical model

A first-order Hidden Markov Model instantiates two simplifying assumptions. First, as
with a first-order Markov chain, the probability of a particular state depends only on the
previous state:

Markov Assumption: P (qi = a|q1, ..., qi−1) = P (qi = a|qi−1) (2.2)

Second, the probability of an output observation oi depends only on the state that pro-
duced the observation qi and not on any other states or any other observations:

Output Independence: P (oi = a|q1, qi, ..., qT , o1, oi, ..., oT ) = P (oi|qi) (2.3)
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6.1 The Problems of HMM

This section identifies the three fundamental problems [31] that can be solved using HMMs.

• Problem 1. Evaluation: Given the observation sequence X = x1, x2, x3, ..., xt and
an HMM model λ = (P,B, π) [31], how do we compute the probability of X? The
solution to this problem allows us to select the competing model that best matches the
observation sequence.

• Problem 2. Decoding: Given the observation sequence X = x1, x2, x3, ..., xt and an
HMM model λ = (P,B, π), how do we find the state sequence Q = q1, q2, q3, ..., qt that
best explains the observations [31]? The solution to this problem attempts to uncover
the hidden part of the stochastic model.

• Problem 3. Learning: How do we adjust the model parameters λ = (P,B, π) to
maximize P (X|λ) [31]? The solution to this problem attempts to optimize the model
parameters to best describe the observation sequence.

6.2 Solutions to the Three Basic Problems of HMM

6.2.1 Solution to Problem 1

The solution to Problem 1 involves evaluating the probability of observation sequence X =
x1, x2, x3, ..., xt given the model λ that is P (X|λ). Consider a state sequenceQ = q1, q2, q3, ..., qt,
where q1 and qt are initial and final states, respectively [31]. The probability of an observation
X sequence for a state sequence Q and a model λ can be represented as:

P (X|Q, λ) =
n∏

i=1

P (xt|qt, λ) = bx1(q1).bx2(q2).bx3(q3)...bxn(qn). (2.4)

From the property of Markov chain, the probability of the state sequence can be represented
as:

P (Q|λ) = πq1.pq1,q2.p21,q3.pq3,q4...pqn−1,qn. (2.5)

Summation over all possible state sequences is as follows:

P (X|λ) =
∑
Q

P (X|Q, λ) = P (X|Q, λ).P (Q|λ). (2.6)

P (X|λ) =
∑
Q

πq1.bx1(q1).pq1,q2.bx2(q2).pq2,q3...bxn(qn).pqn−1,qn. (2.7)

Unfortunately, direct computation is not very practical, because it requires 2nNn multipli-
cations. At every t = 1, 2, 3, ..., n,N possible states can be reached, which is a huge number.
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For example, at n = 100 (number of observation sequences) and N = 5 (states), there can
be 2× 100× 5100 = 1072 possible computations. Fortunately, an efficient approach, called the
forward algorithm, achieves the same result.

• Forward Algorithm
Consider a forward variable αt(i) that represents the probability of a partial observation
sequence up to time t, such that the underlying Markov process is in state Si at time
t, given the HMM model λ:

αt(i) = P (x1, x2, x3, .., xt, qt = Si|λ). (2.8)

αt(i) computed recursively via the following steps:

1. Initialize the forward probability as a joint probability of state Si and initial
observation x1. Let α1(i) = πibi(x1) for 1 6 i 6 N .

2. Compute αn(j) for all states j and t = n, using the induction procedure, substi-
tuting t = 1, 2, 3, ..., n,:

αt+1(j) =

[
N∑
i=1

αt(i).pij

]
bj(xt), 1 6 t 6 (n− 1), 1 6 j 6 N. (2.9)

3. Using the results from the preceding step, compute P (X|λ) =
∑N

j=1 αn(j).

The total number of computations involved in evaluating the forward probability is
N2n rather than 2nNn, as required by direct computation. For n = 100 and N = 5
the total number of computations is 2, 500, which is 1069 times smaller in magnitude.

• Backward Algorithm
For the backward algorithm a backward variable βt(i) can be defined, that represents
the probability of a partial observation sequence from time t+ 1 to the end (instead of
up to t. as in the forward algorithm), where the Markov process is in state Si at time
t for a given model λ. Mathematically, the backward variable represented as:

βt(i) = P (xt+1, xt+2, ..., xn|qt = Si, λ). (2.10)

αt(i) computed recursively via the following steps:

1. Define βn(i) = 1 for 1 6 i 6 N .

2. Compute βt(i) =
∑N

j=1 pijbj(xt+1)βt+1(j).

• Scaling
A practical impediment in modeling long sequences of HMM is the numerical scaling
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of conditional probabilities. Efficient computation of conditional probabilities helps in
estimating the most likely sequence of states for a given model. For a sufficiently large
sequence the probability of observing a long sequence tends to be so extremely small
that numerical instability occurs. In most cases, the resulting computations exceed
the precision range of essentially any machine (including double-precision). The most
common approach for mitigating this situation is to rescale the conditional probabilities,
using efficient scaling mechanisms.

6.2.2 Solution to Problem 2

Unlike the solution of Problem 1, identifying the optimal state sequence is a complex problem,
because there can be many criteria. Part of the complexity originates from the definition
of the measure of optimality, in which several unique criteria are possible. One solution is
to identify the states qt that are most likely to occur individually at time t. This solution
attempts to maximize the expected number of correct individual states [31]. To implement
the solution to Problem 2, the variable γt(i) as the probability of being in state Si at time t,
given the observation sequence X and model λ, such that

γt(i) = P (qt = Si|X,λ) (2.11)

Using the definition of conditional probability:

γt(i) =
P (X, qt = Si|λ)

P (X,λ)
=

P (X, qt = Si|λ)∑n
i P (X, qt = Si|λ)

(2.12)

Using the forward-backward variable:

γt(i) =
αt(i).βt(i)∑N
i αt(i).βt(i)

(2.13)

Where αt(i) defines the probability of partial observation x1, x2, x3, ..., xt and state Si at
time t, and βt(i) defines the remainder of the probability of observation xt+1, xt+2, xt+2...xt+n,
and state Si at time t. Using γt(i),for the individually most likely state q∗t at each time t
solved by calculating the highest probability of being in state Si at time t, as expressed by
the following equation:

q∗t = arg max
16i6N

[γt(i)] for ∀t = 1...n (2.14)

Although this equation maximizes the expected number of correct states by choosing
the most likely state at each time interval, the state sequence itself may not be valid. For
instance, in the case of the individually most likely states in the sequence qt = Si and
qt+1 = Sj, the transition probability pij may be 0 and hence not valid. This solution identifies
the individually most likely state at any time t without giving any consideration as to the
probability of the occurrence of the sequence of states.
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One way to address this issue is to maximize the occurrence of a sequence of more than
one state. This allows automatic evaluation of valid occurrences of states, while evaluating
for the most likely sequence. One widely used scheme is to find the single most likely sequence
of states that ultimately results in maximizing P (X,Q|λ). This technique, which is based on
dynamic programming, is called a Viterbi algorithm. To find the single best state sequence,
define a variable δt(i) that represents the highest probability along one state sequence (path)
that accounts for first t observations and that ends in state Si, as follows:

δt(i) = max
q1,q2,...,qt−1

(q1, q2, ..., qt = Si, x1, x2, ..., xt|λ). (2.15)

δt+1(i) can be calculated by induction:

δt+1(i) = max
i

[
δt(i).pij

]
.bj(xt+1). (2.16)

from which it is clear that to retrieve the state sequence, it must to track the state that
maximizes δi(i) at each time t. This is done by constructing an array ψt+1(j) that defines
the state at time t from which a transition to state Sj maximizes the probability δt+1(j).
Mathematically, this can be represented as:

ψt+1(i) = arg max
16i6N

[
δt(i).pij

]
. (2.17)

The complete procedure for finding the best state sequence consists of the following steps:

• Initialization
δ1(i) = πi.bi(x1), 1 6 I 6 N (2.18)

ψ1(i) = 0 (2.19)

• Recursion
δ1(i) = max

16i6N

[
δt−1.pij

]
.bj(xt); 1 6 j 6 N ; 2 6 t 6 n (2.20)

ψt(j) = arg max
16i6N

[
δt−1(i).pij

]
1 6 j 6 N ; 2 6 t 6 n (2.21)

• Termination
p∗ = max

16i6N
[δn(i)] (2.22)

q∗n = arg max
16i6N

[δn(i)] (2.23)

• State Sequence Backtracking

q∗t = ψt+1(q
∗
t+1); t = n− 1, n− 2, n− 3, ..., 1. (2.24)

The Viterbi algorithm is similar to the forward procedure, except that it uses maximization
over previous states instead of a summation.
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6.2.3 Solution to Problem 3

The solution to Problem 3 involves a method for adjusting the model parameters (P,B, π)
to maximize the probability of an observation sequence for a given model. In practice there
is no well-known method that maximizes the probability of observation sequence. However,
you can select λ = (P,B, π) , such that P (X|λ) is locally maximized, using an iterative
method, such as the Baum-Welch algorithm [31].

To specify the re-estimation of HMM parameters, you define the variable γt(i, j) as the
probability of being in state Si at time t and in Sj at time t + 1 for a given model λ and
observation sequence X, such that:

γt(i, j) = P (qt = Si, qt+1 = Sj|X,λ) (2.25)

Using the definition of the forward-backward algorithm:

γt(i, j) =
αt(i).pij.bj(xt+1).βt+1(j)

P (X|λ)
(2.26)

γt(i, j) =
αt(i).pij.bj(xt+1).βt+1(j)∑N

i

∑N
j αt(i).pij.bj(xt+1).βt+1(j)

(2.27)

As defined by Equation (2.13), γt(i) is the probability of being in state Si at time t, given
the observation sequence and model. Using this equation, γt(i) to γt(i, j) can be related by
summing over j as:

γt(i) =
N∑
j

γt(i, j) (2.28)

By summing γt(i) over time t, you can quantify the number of times state Si is visited or,
alternatively, the expected number of transitions made from state Si . Similarly, summation
ofγt(i, j) over time t reveals the expected number of transitions from state Si to state Sj .
Given γt(i), γt(i, j) and the current model λ, you can build the method to reestimate the
parameters of the HMM model (λ). The method can be broken down as follows:

1. At time t = 1 the expected frequency at state Si is given by πi = γ1(i)∀i = (1, 2, 3, ..., N).

2. The probability of transiting from state Sito state Sj , which is the desired value of pij,
is given by:

pij =

∑n−1
t=1 γt(i, j)∑n−1
t=1 γt(i)

∀i, j = (1, 2, 3, ..., N). (2.29)

The numerator is the re-estimated value of the expected number of transitions from
state Si to state Sj, the denominator is the expected number of transitions from Si to
any state.
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3. The probability of observing symbol k, given that the model is in state Sj, is given by

bj(k) =

∑n
t=1,xt=k γt(j)∑n

t=1 γt(j)
∀k = (1, 2, 3, ...,M). (2.30)

The numerator of the re-estimated bj(k) is the expected number of times the model
is in state Sj with observation symbol k, the denominator is the expected number of
times the model is in state Sj.

With this method, you use the current model λ = (P,B, π) to re-estimate the new model
λ = (P,B, π) , as described by the previous three steps. The re-estimation process is an
iterative method consisting of the following steps:

1. Initialize λ = (P,B, π) with a best guess or random value, or use the existing model.

2. Compute αt(i), βt(i), γt(i), γt(i, j)

3. Re-estimate the model λ = (P,B, π)

4. If P (X|λ) > (P (X|λ), repeat step 2.

The final result of this re-estimation process is called the maximum likelihood estimation
(MLE) of the parameters of the HMM. The forward-backward algorithm yields only the
local maximum.

6.3 Types of Hidden Markov Models

Different kinds of structures for HMMs can be used. The structure is defined by the transition
matrix, A.
The most general structure is the ergodic or fully connected HMM [34]. In this model every
state can be reached from every other state of the model see figure 2.7. The ergodic model
has the property 0 < aij < 1 where the “zero” and the “one” have been excluded in order
to fulfill the ergodic property. The state transition matrix, A, for an ergodic model, can be
described by:

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n


The second structure is the left-right model or Bakis model [34], see figure 2.8 a and b the

property for a left-right model is:
aij = 0, j < i.
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Figure 2.7: ergodic (fully connected HMM)

This implies that no transitions can be made to previous states. The lengths of the transitions
are usually restricted to some maximum length 4.

aij = 0, j > i+4. (2.31)

Note that for a left-right model, the state transitions coefficients for the last state have the
following property:

aNN = 1 (2.32)

aNj = 0, j < N (2.33)

Figure 2.8: left-right model (Bakis model)
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7 HMM application example

Using the theory of this chapter as an example we can apply HMM to weather forecast
knowing that HMM is the 5-tuple 4 = (S,Φ, A,B, π). Note that this components are often
called parameters of HMM in which A,B and π are essential parameters. Going back
weather example is the most common example for understanding how HMM work, suppose
you need to predict how weather tomorrow is: sunny, cloudy or rainy since you know only
observations about the humidity: dry, dryish, damp, soggy. The HMM is totally determined
based on its parameters according to weather example.
We have S = (S1=sunny, S2=cloudy, S3=rainy), Φ = (φ1=dry, φ2=dryish, φ3=damp, φ4=soggy).
The transition probability matrix, A, for this example, can be described by:

A =


sunny cloudy rainy

sunny a11 = 0.50 a12 = 0.25 a13 = 0.25
cloudy a21 = 0.30 a22 = 0.40 a23 = 0.30
rainy a31 = 0.25 a32 = 0.25 a33 = 0.50


From the transition probability matrix, A we can see that:

a11 + a12 + a13 = 1
a21 + a22 + a23 = 1
a31 + a32 + a33 = 1

The initial probability distribution specified as uniform distribution represented as:

sunny cloudy rainy
π1 = 0.34 π2 = 0.33 π3 = 0.33

Table 2.1: Initial probability distribution

from the table 2.1 we have π1 + π2 + π3 = 1
And the emission probability matrix B:

B =


dry dryish damp soggy

sunny b11 = 0.60 b12 = 0.20 b13 = 0.15 b14 = 0.05
cloudy b21 = 0.25 b22 = 0.25 b23 = 0.25 b24 = 0.25
rainy b31 = 0.o5 b32 = 0.10 b33 = 0.35 b34 = 0.50


From the the emission probability matrix B we have:

b11 + b12 + b13 + b14 = 1
b21 + b22 + b23 + b24 = 1
b31 + b32 + b33 + b34 = 1
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Figure 2.9: HMM for weather forecast

From the above data, we can embody the HMM in a graphical model showed in figure 2.9
With the defined HMM , given a sequence of humidity observation (soggy, dry, dryish, dry,
dry, dryish, damp, soggy, soggy, dry, dryish, damp, soggy), It can calculate the Viterbi path
or the most likely sequence of states (weather forecast-start, rainy, sunny, sunny, sunny,
sunny, sunny, rainy, rainy, rainy, sunny, sunny, rainy, rainy) and It’s probability 23.94287,
then basing on it we can determine the next day’s weather using the given probabilities
(A,B and π).

8 Conclusion

Computers are powerful tools to the aid of human beings when used the right way, enabling
them to achieve great results with sufficient data and specialized models. Through modeling,
scientists can create many different models as solutions to different problems they encounter
in every field possible.

Models mainly are a part of AI systems that empower computers and recreate results
that humans can do but are laborious, time and resource consuming. ML is an important
aspect of it, which helps to recreate the learning process humans can follow.

ML has many models that it can exploit, one of which is HMM a statistical model that
is fairly easier to understand and use and has a straightforward approach to problem solving
using relations between what is known “observables” and the unknown “Hidden states” to
determine the later one, by calculating the most likely hidden state.



Chapter 3
An HMM Architecture for SARS Development

1 Introduction

Recommender systems can be used to enhance user experience by making personalized and
useful recommendations for each user. In order to personalize recommendations, traditional
Recommender systems often need to build up a user profile.

However, this may not be always possible: new users may not have any profile, or not
logged, or deleted their browsing history. An alternative is to make Sequence-Aware Rec-
ommender Systems. In this setting, the recommender system makes recommendations based
only on the user sequences. Hidden Markov Model (HMM) were recently proposed for the
Sequence-Aware Recommender Systems task that had significant improvements over tradi-
tional recommendation models. In this chapter, the application of HMM for SARS are further
studied.

2 Sequence-Aware Recommendations with HMMs

This work’s focus is the preferences of users, which is presented as time-stamped sequences.
These sequences consist of a list of items (Tracks) the user previously had an interest in or
interacted with, this model’s purpose is to predict and recommend future interests based on
the sequences (see figure 3.1).

To incorporate the sequential information of user’s preferences into recommendation,
Hidden Markov Model models are adopted. Treating a user’s preferences sequence as a
sentence in a statistical language model, the probability of the current item depends only on
the probability of the former item based on Markov assumption (first order Markov chain).
To reach our goal which is to predict next-item using the hole sequence we integrated the
concept of high-order Markov Chains (the probability of the current item depends on the

39
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probability of all items in the sequence).

Figure 3.1: Illustration of the studied recommendation system

2.1 HMM Model architecture

This section shows us the the architecture of the proposed Hidden Markov Model. The
figure 3.2 bellow illustrates the proposed graphical Hidden Markov Model of the proposed
architecture.

Figure 3.2: HMM graphical model

The table 3.1 bellow enumerates the parameters and their signification and description of
the proposed architecture.
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Parameter signification Description

N Number of hidden states Number of hours (12 or 24)

T Number of observations Number of unique tracks

πi Start probabilities occurrence of each hidden state

aij Transition probabilities probability of navigating from each state

bij Emission probabilities probability between states and observations

qi Hidden states Timestamped values (hours)

oi Observation sequence user track sequences

Table 3.1: Hidden Markov Model parameters

2.2 DataSet

There are several kinds of data sets for RS. This paper conducted a set of experiments with
real usage of Last.fm1 dataset which is collected from Last.fm API2 by Oscar Celma, about
user’s music listening activity to make personalized recommendations at the online radio
station.

• Data Format:
The data is formatted one entry per line as follows (tab separated):
(user id, timestamp, artist-id, artist name, track id, track-name)

• Data Statistics:
Total Lines: 19,150,868
Unique Users: 992

In this work we only used user-id, timestamped and track-name columns in addition of a
reasonable set of users.

2.3 Development process

This section of the chapter explains how we develop Sequence-Aware Recommender Systems
using Hidden Markov Model passing by three main algorithms(data processing, parameter
initialization and the Next-Item recommendation):

1ocelma.net/MusicRecommendationDataset/lastfm-1K.html
2last.fm/api
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2.3.1 Data processing

Algorithm 1: Data processing

1: Split the dataset.
2: Extract the set of observations (O = o1, o2, o3, ..., oT ) (unique tracks).
3: Extract observation sequences (user tracks sequences).
4: Extract hidden states (Q = q1, q2, q3, ..., qN)(timestamps).
5: Encode the observation.

The first algorithm describes the first step of developing Sequence-Aware Recommender
Systems with HMM witch is data processing, since we are working with last.fm dataset
considering it’s format our interest is in the sequences of tracks as observations and the
timestamps as hidden states grouped by the number of hours, and due to the huge amount
of data in last.fm we have reduced it (reasonable number of users to work with), as shown
in figure 3.3 a slice of the last.fm dataset, which in this work only took a reasonable amount
of data based on the number of users.

Figure 3.3: The last.fm Data slice

Secondly, we extract the observation (unique tracks) besides the encoding step3 for

3pomegranate.readthedocs.io/en/latest/Distributions.html?highlight=DiscreteDistribution
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assigning them to the HMM, Then extract both the sequences of observations, and the
hidden states in our model we have two set oh hidden states, the 12 hidden state model
hour1, hour2, ..., hour12 and the 24 hidden state model hour1, hour2, ..., hour24 knowing that
in the 12 hidden state each state regroup two hours and one hour in the 24 hidden state
model.Next we split the sequence of observation into a user’s input sequence and a test
sequence that we aimed to predict and evaluate the HMM with. The length of the input
sequence is set to 60 and the test sequence is set to 20.
The figure 3.4 shows a set of unique tracks(songs) or refers to as the observations of the
proposed model and their encoding allowing the model to properly understand and read the
data.

Figure 3.4: encoded-tracks

Figure 3.5 represent a portion of user-track sequences or the observation sequences, the length
of each sequence is set to 80, the choice of this split was random.
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Figure 3.5: User-Track sequences

2.3.2 Parameter initialization

Algorithm 2: Initialize the model parameter

1: Compute the start probability π = π1, π2, ..., πN .
2: Compute transition probability A = a11, a12, ..., aNN .
3: Compute emission probability B = b11, b12, ..., bNT .
4: Initialize HMM λ = (A,B, π).

After data processing step, it comes to data relationship computation and compute the
different probabilities(start, transition and emissions).
First, we calculate the start probability distribution which is the occurrence of each hidden
state see figure 3.6.

Figure 3.6: Start probability for 12 hidden state
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Secondly, calculate the transition probability which is the probabilities between states (the
probability of navigating from state i to state j) see figure 3.7.

Figure 3.7: Transition probability for 12 hidden state

Lastly calculate the emission probability, the probability of each observation with each state
see figure 3.8, and then assign each of this values to the HMM.

Figure 3.8: Emission probability for 12 hidden state
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2.3.3 Next-Item Recommendation

Algorithm 3: Next-Item Recommendation

1: extract the most likely hidden states sequence based on the observation sequence.
2: Predict next hidden state qt+1 using the transition probability.
3: Recommend Next-Item using the emission probability.
4: Evaluate the HMM.

Given an observation sequence using the Viterbie4 algorithm we predict the most likely
hidden states sequence (which corresponds to the given sequence) and it’s probability, then
we predict the next hidden state using the HMM parameters, based on the last hidden state
and the transition probabilities.

Then calculate the equation ot+1 = arg maxi p(i|qt+1).p(qt+1|qt) which means the insertion
of the high-order MC, the probability of the next-item depends on all items in the sequence,
and sort the output and recommend Top-K item on the input sequence, to make sure our
model work properly it must go by the evaluation step using the evaluation metrics on the
test sequence.

2.4 Implementation

This section will introduce the softwares, tools and Hardware that were used in this work.

2.4.1 Software

The implementation was done in Python 3.6.12 with the The Jupiter Notebook and Hidden
Markov Model were implemented with Pomegranate.

2.4.1.1 Python
Python5 is a widely-used, interpreted, object-oriented, and high-level programming lan-

guage with dynamic semantics, used for general-purpose programming (figure 3.9). It was
created by Guido van Rossum, and first released on February 20, 1991. It can be used to
create approximately any kind of software (Web and Internet development, Scientific and
numeric computing, Desktop GUIs, Software Development, and many more). Over the last
few years the open source community has developed increasingly-sophisticated data manip-
ulation, statistical analysis, and Machine learning libraries for Python (Pandas, NumPy,
Matplotlib...), which has added to its popularity. There are many reasons why Python is
one of the most used programming languages for data science, including: Speed, Availability,
Design goal(intuitive, easy to understand and easy to obtain).

4pomegranate.readthedocs.io/en/latest/HiddenMarkovModel.viterbi.html?highlight=viterbipomegranate.hmm
5python.org
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Figure 3.9: python programming langague logo

2.4.1.2 Pomegranate
Pomegranate6 (figure 3.10) is a Python package that implements fast and flexible proba-

bilistic models ranging from individual probability distributions to compositional models such
as Bayesian networks and Hidden Markov Models. The core philosophy behind pomegranate
is that all probabilistic models can be viewed as a probability distribution in that they all
yield probability estimates for samples and can be updated given samples and their associated
weights. The primary consequence of this view is that the components that are implemented
in pomegranate can be stacked more flexibly than other packages.

In addition to a variety of probability distributions and models, pomegranate has a variety
of built-in features that are implemented for all of the models. These include different training
strategies such as semi-supervised learning, learning with missing values, and mini-batch
learning.

Figure 3.10: Pomegranate logo

2.4.1.3 Anaconda Navigator
Anaconda7 (figure 3.11) is a free and open source distribution of Python and R program-

ming languages. with an amazing collection pre-installed data science and Machine learning
packages, tools, resources, and IDEs,

Anaconda Navigator is a desktop graphical user interface included in Anaconda distri-
bution that allows to launch applications and easily manage Conda packages, environments,
and channels without using command-line commands. Our work has done with The Jupyter
Notebook.

6pomegranate.readthedocs.io/en/latest
7docs.anaconda.com/
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Figure 3.11: Anaconda Navigator logo

2.4.1.3.1 The Jupiter Notebook

Figure 3.12: Jupiter Navigator logo

The Jupiter Notebook8 is an interactive computing environment9 (figure 3.12) that enables
users to author notebook documents that include (Live code, Interactive widgets, Plots,
Narrative text, Equations, Images and Videos. These documents provide a complete and
self-contained record of a computation that can be converted to various formats and shared
with others.
The Jupyter Notebook combines three components:

1. The notebook web application: An interactive web application for writing and running
code interactively and authoring notebook documents.

2. Kernels: Separate processes started by the notebook web application that runs user’s
code in a given language and returns output back to the notebook web application.

8jupyter.org/
9jupyter-notebook.readthedocs.io/en/stable/notebook.html
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3. Notebook documents: Self-contained documents that contain a representation of all
content visible in the notebook web application, including inputs and outputs of the
computations, narrative text, equations...

2.4.2 Hardware

Our work was performed using a DELL personal computer with the following hardware
configuration:

• Model: DELL Latitude-E5470.

• Processor: Intelr Core™ i5-6440HQ CPU @ 2.60GHz × 4.

• Random Access Memory: 8 GiB DDR4.

• Graphics: Mesa Intelr HD Graphics 530 (SKL GT2).

• Storage Capacity: 128Go SSD.

• OS name: Ubuntu 20.04.2 LTS, 64-bit.

2.5 Experiments

2.5.1 Evaluation Metrics

The performances of the proposed model is evaluated by precision and recall. These two
measures are among the common metrics used for online evaluation of recommendation al-
gorithms where the binary type of feedback is available [37].
The precision and recall are computed as:

Precision =
TP

TP + FP
(3.1)

recall =
TP

TP + FN
(3.2)

Where TP represents the number of correct recommendations, and FP indicate the number of
incorrect recommendations. FN indicates the number of relevant items that are not included
in the recommendation list [37]. Another commonly used measure is F -measure that is
defined as:

F −measure =
2.P recision.Recall

Precision+Recall
(3.3)
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2.6 Results

This section shows the results of the proposed Hidden Markov Model on the Last.fm dataset.
Table 3.2 set forth the results of the 12 hidden stat model and the table 3.3 shows the 24
hidden state model results with the application of several parameters (number of observation
and user-track sequences), it is permissible to say that each change of HMM parameter is
considered as a model in it self.

12 Hidden states

Observations Sequences Precision Recall F-Mesure

3092 200 0.0368 0.2015 0.0623

11038 925 0.0173 0.0930 0.0292

14837 1168 0.0140 0.0756 0.0236

Table 3.2: Hidden Markov Model results with 12 hidden states

24 Hidden states

Observations Sequences Precision Recall F-Mesure

3092 200 0.0175 0.0949 0.0296

11038 925 0.0117 0.0634 0.0198

14837 1168 0.0096 0.0521 0.0163

Table 3.3: Hidden Markov Model results with 24 hidden states

2.7 Discussion

Several architectures were examined from where observations, sequences and hidden states
number and a 12 hidden states of HMM with the smallest number of observations was found
to be the best performer depending on Precision and the F-Mesure values but with a higher
value in recall. adding additional observations or hidden states always resulted in worse
performances, due to the fact that precision and recall yielded a decrease in their values.
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3 Conclusion

This chapter focuses on the use of one of the Machine learning models: HMM on Sequence-
Aware Recommender Systems, which are becoming one of the most important recommenda-
tion approaches in practice for many domains, the proposed model for SARS submitted with
different set of parameters that allows us to understand how to deal with HMM and extract
the best behavior in terms of the three evaluation metrics introduced: precision, recall and
f-mesure.

From that we conclude that the HMM works better with small amount of hidden states
and observations or at least the gap between the observations and the hidden states number
is not big, similarly the more the number of hidden states increases the more the results
are unsatisfactory because it causes the emission probabilities to be less balanced (i.e. each
observable won’t have relations with many hidden states).



General conclusion

Summary

First, Recommender systems reported in Chapter 1 were surveyed to identify the key chal-

lenges of recommendations in most of the fields, such as the absence of users’ profiles and

the very short lifetime of users’ interests. Most users are anonymous. Based on this thesis,

Sequence-Aware Recommender Systems were proposed and their position was clarified among

other Recommender systems. Also, a categorization was given, and different approaches of

SARS were explained.

In Chapter 2, Machine learning was investigated in depth from developing a learning

machine, types and to challenges, for the purpose of adopting an approach which is Hidden

Markov Model for the development of Sequence-Aware Recommender Systems.

To answer the research question, in chapter 3 a Sequence-Aware Recommender Systems

was designed, tested and evaluated an Hidden Markov Model with multiple parameters. The

thesis is concluded by reflecting on the research question:

How can Hidden Markov Model be used in Sequence-Aware Recommender Systems

development?
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Directions for future research

The Hidden Markov Model architecture used in this thesis is relatively simple. It could be

further extended by adding more advanced techniques if possible, that could further improve

the predictive performance of the model.However, several points still need to be addressed

for the improvement of the recommendation, such as:

• Adding the re-estimation step for taking new observabels into count automatically.

• Re-build the model with a different set of datasets in other domain such as e-commerce

for the Strengthening the meaning of the given results.

• Compare the model to a set of commonly used baselines.

• Considering more contextual factors that may affect a user’s choice.
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