
PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA

MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

IBN KHALDOUN UNIVERSITY

THESIS

MATHEMATICS AND COMPUTER SCIENCE FACULTY

DEPARTMENT OF COMPUTER SCIENCE

Specialty: Computer Engineering

Multi-Agent Machine Learning :A Reinforcement Approach

Publicly Defended on

Mr. ALEM Abdelkader

Mr. MOKHTARI Ahmed

Mr. BENAOUDA Habib

S DEMOCRATIC REPUBLIC OF ALGERIA

MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

IBN KHALDOUN UNIVERSITY - TIARET

THESIS
Introduced to

MATHEMATICS AND COMPUTER SCIENCE FACULTY

DEPARTMENT OF COMPUTER SCIENCE

For the graduation of

MASTER
Specialty: Computer Engineering

By

ACHIR Mohamed Amine

ARABI Slimane

On the subject of

Agent Machine Learning :A Reinforcement Approach

 .. / 09 / 2021 in Tiaret in front of the jury composed of :

MAA University of Tiaret

MAA University of Tiaret

MAA University of Tiaret

2020 - 2021

MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

MATHEMATICS AND COMPUTER SCIENCE FACULTY

Agent Machine Learning :A Reinforcement Approach

/ 2021 in Tiaret in front of the jury composed of :

President

Supervisor

Examiner

 ا ا ا

 صلى الله عليه وسلم ��

 ام و ي أن ام اا اي

��� �

���

��

���������������������� �

�� �

�� �

����������������������������������

Acknowledgements

All thanks and praises go to Allah, the Almighty and the Merciful, for

granting us the wisdom and the health to complete this work during this

challenging time.

We would like to acknowledge the help and the supervision provided to us by

Mr. MOKHTARI Ahmed for his availability, recommendations, and confidence.

His office door was always open whenever we ran into a trouble spotor

questioned our project. His direct involvement and encouragement throughout

the study influenced the positive progress and made us stronger and better

students.

A Special Thanks to Mr. ALEM Abdelkader and Mr. BENAOUDA Habib , It is

a great pleasure to have you as the jury for this work. We want to express

our deep gratitude to you having kindly accepted to examine our modest

work.

We would like to express our appreciation to Google for its search engine for

many useful inputs and valuable comments.

Big thanks to the teachers and the Computer Science and Mathematics

faculty administration who watched over our training and our follow-up in our

studies.

Finally, we address our thanks to all those who contributed to this work’s

outcome with their advice, constructive feedback, or encouragement.

i

 Dedication

ii

First, I thank God for granting me success in this work

I have the honor to dedicate this work to my kind parents who

did not spare me financially or morally support and accompanied

me as much as possible throughout the completion of this work.

Also to my brothers Islam and Achraf , the spoiled younger sister

Fatouma and all the family of Achir and Abdelhadi.

I also dedicate the work to my friends DEGHMICHE Oussama and

MADANI Youcef, all my classmates and everyone I know from near

or far

Thank you all

Achir Mohamed Amine

 Dedication

iii

Dedication to my family. A special feeling of gratitude to my

loving parents, whose words of encouragement and push for

tenacity ring in my ears. My brothers Youcef , Abdelbasset , and

Mohamed have never left my side and are very special. In addition,

I will not forget my teacher Othman who has always been a lamp

for us in this life.

To my friends who supported me throughout the process. I will

always appreciate everything they did. I will not mention their

names so as not to forget some of them. Thank you all.

Slimane Arabi.

iv

Abstract

 Learning is a process of improving the performance of a system based on its past

experiences. This method intervenes when the problem seems too complicated to solve in

real time, or when it seems impossible to solve the problem in a classic way. As an example

of learning methods we cite reinforcement learning.

 This method of learning is often used in the field of robotics and agents. It aims to

determine a control law for a mobile robot or agent in an unknown environment. This kind of

technique applies when it is assumed that the only information on the quality of the actions

performed by the robot is a scalar signal that presents a reward or a punishment, the learning

procedure aims to improve the choice of actions in order to maximize the rewards.

 One of the most used algorithms for solving this learning problem is the Q-Learning

algorithm that is based on the Q-Function, and to ensure the generation of this last function

and the proper functioning of the learning system. , the action performed by the mobile robot

in its environment is ensured by the use of a selection function, this action is evaluated by

rewards and punishments.

Key words: Learning, Machine Learning, Multi Agent System, Agent, Reinforcement

Learning, Q-Learning, reward, Punishment.

ا

 ا ا ًء أداء ا ا . و ا ه ا

 ا ة،ا ا و أو ا

.ل ق اط زا ا م.

ف إ من وت . ً ط ا ه ل اوت واء

و ك أو و . ةت اض أن اُ ا عا ا

 إرة ة أو ، وف إاء ا إ دة ااءات ا اوت ،

 . ار ااءات أ ات

 ارز ه ا ًاا ت اارزا ةواLearning -Q ا

وظ Q ، ا ا ة واا ظه ا ءن إماء . ون ا ،

اي اوت ال ل اا وظ ا ، و ا ااء ل

 .و ات ات

ارز ، از ا ،روت، ا ، اء د ا ، ا ا ، ا: ا ات

ا Q،ة، .

 Contenents

v

Acknowledgements .. i

Dedication ... ii

Abstract .. iv

Contenents .. v

List of acronymes ... x

List of equations ... xi

List of figures .. xii

List of tables ... xiv

--
General introduction ... 01

Chapter 01: Machine Learning .. 02

Introduction... 03

1. What is machine learning .. 04

2. Applications of Machine Learning …………………………………………………….. 04

2.1 Software ………………………………………………………………………. 04

2.2 Stock Trading …………………………………………………………………. 04

2.3 Medicine and Healthcare ……………………………………………………... 04

2.4 Robotics ………………………………………………………………………. 05

3. Algorithm Types for Machine Learning ……………………………………………….. 06

3.1 Supervised learning …………………………………………………………… 06

3.2 Unsupervised learning ………………………………………………………... 07

3.3 Reinforcement learning ……………………………………………………….. 08

3.3.1 Definition …………………………………………………………… 08

3.3.2 Reinforcement learning elements …………………………………… 09

3.3.3 Reinforcement learning aims ……………………………………….. 09

3.3.4 Building units for RL .. 09

3.3.5 Bellman Equation …………………………………………………… 10

3.3.6 Monte Carlo Methods ………………………………………………. 10

3.3.7 Markov Decision Process (MDP) …………………………………... 10

3.3.8 The Markov Property ……………………………………………….. 11

3.3.9 State Transition Probability ………………………………………….. 11

 Contenents

vi

4. Difference between ML algorithms .. 12

Conclusion ... 13

Chapter 02 Multi Agent Systems (MAS) ... 14

Introduction ... 15

1.Agent .. 16

1.1 Definition ……………………………………………………………………. 16

1.2 Agents types …………………………………………………………………... 16

1.2.1 Cognitive agents …………………………………………………….. 16

1.2.2 Reactive agents ……………………………………………………... 16

1.3 Properties of Agents .. 16

2. Multi Agent System (MAS) ……………………………………………………………. 17

2.1 Definition ……………………………………………………………………... 17

2.2 MAS composants .. 17

2.3 MAS conception ……………………………………………………………… 17

2.4 Architecture of multi-agent system ... 18

2.4.1 Homogeneous Structure …………………………………………….. 18

2.4.2 Heterogeneous Structure ……………………………………………. 18

2.5 MAS types ……………………………………………………………………. 18

2.5.1 Independent discrete MAS ………………………………………….. 19

2.5.2 Independent MAS with emergent cooperation ……………………... 19

2.5.3 Cooperative MAS …………………………………………………... 19

2.5.3.1 Homogeneous non-communicating MAS 19

2.5.3.2 Homogeneous communicating MAS ……………………... 20

2.5.3.3 Heterogeneous non-communicating MAS ………………... 20

2.5.3.4 Heterogeneous communicating MAS …………………….. 21

2.6 Learning in MAS ……………………………………………………………... 21

2.6.1 Active Learning ……………………………………………………... 21

2.6.2 Reactive Learning …………………………………………………... 22

2.6.3 Learning Based on Consequences …………………………………... 22

2.7 Roles of MAS ………………………………………………………………… 23

2.7.1 Simulation of complex phenomena …………………………………. 23

2.7.2 Solve a problem in a distributed way ……………………………….. 23

2.7.3 Manage and maintain a work environment …………………………. 23

 Contenents

vii

2.7.4 Program conception ………………………………………………… 23

2.8 Communication in Multi-Agent System ……………………………………… 23

2.8.1 Local Communication ……………………………………………... 23

2.8.2 Blackboards …………………………………………………………. 24

2.9 Advantages of MAS .. 25

Conclusion ... 26

Chapter 03: Multi Agent Reinforcement Learning (MARL) .. 27

Introduction ……………………………………………………………………………….. 28

1. What is MARL? ………………………………………………………………………... 29

1.1 Definition ……………………………………………………………………... 29

2. MARL categories ………………………………………………………………………. 30

2.1 Cooperative ……………………………………………………………………. 30

2.2 Competitive……………………………………………………………………. 30

2.3 Some mix of the two …………………………………………………............. 30

3. Benefits of MARL ……………………………………………………………………… 30

4. Limits of MARL ……………………………………………………………………….. 30

4.1 Non stationarity ……………………………………………………………... 30

4.2 Scalability …………………………………………………………………….. 31

5. Multi-agent reinforcement learning goals ……………………………………………... 31

5.1 Convergence ………………………………………………………………….. 31

5.2 Alternative to rationality ……………………………………………………… 31

5.3 Optimality/Compatibility/Safety ……………………………………………... 31

5.4 Stability and adaptation ………………………………………………………. 31

6. MARL algorithms ……………………………………………………………………… 32

Conclusion ... 33

Chapter 04: Our proposed models ... 34

Introduction ……………………………………………………………………………….. 35

1.Q learning ………………………………………………………………………………. 36

1.1 What is “Q”? ………………………………………………………………….. 36

1.2 The Q-learning algorithm in RL ……………………………………………… 36

1.3 Optimality function……………………………………………………………. 36

1.4 Value iteration function ………………………………………………………. 36

1.5 Rewards ………………………………………………………………………. 37

 Contenents

viii

1.6 State Space ……………………………………………………………………. 37

1.7 Action Space ………………………………………………………………….. 37

1.8 Q-learning hyper parameters ………………………………………………….. 37

1.8.1 Alpha ………………………………………………………………... 37

1.8.2 Gamma ……………………………………………………………… 38

1.8.3 Epsilon ……………………………………………………………… 39

1.9 Q-learning algorithm stages …………………………………………………… 40

1.10 The procedural form of Q-learning algorithm …...………………………….. 40

1.10.1 Step 01……………………………………………………………. 41

1.10.2 Step 02 ………………………………….………………………… 41

1.10.3 Step 03 ……………………………………………………………. 42

1.10.4 Step 04 ……………………………………………………………. 42

2.Our case: scenario of robots self drive …………………………………………………. 43

2.1 Define the Environment……………………………………………………….. 43

2.1.1 States ………………………………………………………………... 43

2.1.2 Actions ……………………………………………………………… 44

2.1.3 Rewards …………………………………………………………….. 44

2.2 Our models ……………………………………………………………………. 45

2.2.1 Single Agent model …………………………………………………. 45

2.2.2 Competitive model (non centralized) ………………………………. 45

2.2.3 Cooperative model (centralized) ……………………………………. 45

2.2.4 Communicative model ……………………………………………… 45

2.3 Adapt the Q-learning algorithm to work in a MAS ………………………….. 46

2.3.1 Using threads .. 46

2.3.2 The purpose behind using threads .. 46

2.4 Train the Models ……………………………………………………………… 47

2.4.1 Single Agent model training ………………………………………... 48

2.4.2 Multi agent competitive model training ……………………………. 49

2.4.3 Multi agent cooperative model training …………………………….. 50

2.4.4 Multi agent communicative model training ………………………… 51

3. Comparative study between models …………………………………..……………… 52

3.1 Observation .. 53

3.2 Interpretation .. 53

 Contenents

ix

3.3 Result ...

53

Conclusion ………………………………………………………………………………... 54

General conclusion ………………………………………………………………………. 55

References ………………………………………………………………………………... 56

 list of Acronymes

x

ML: Machine Learning

RL: Reinforcement Learning

MDP: Markov Decision Process

MAS: Multi Agent System

MARL: Multi Agent Reinforcement Learning

QL: Quality Learning

 list of Equations

xii

(01) Cumulative return function ……………………………………………………….. 09

(02) Value Function …………………………………………………………………… 09

(03) Action-Value Function …………………………………………………………… 10

(04) Bellman equation ………………………………………………………………… 10

(05) Q-function updating ………... 10

(06) The Markov Property …………………………………………………………….. 11

(07) State Transition Probability ……………………………………………………….. 11

(08) the reward function depending on the joint policy ………………………………. 29

(09) The Q-function depending on the joint action and on the joint policy …………... 29

(10) Optimal Q-function ………………………………………………………………. 36

(11) Optimality equation ……………………………………………………………… 36

(12) Value iteration function ………………………………………………………….. 36

(13) Reformulated value iteration function …………………………………………… 36

(14) The update function ……………………………………………………………… 36

 list of Figures

xii

Figure 01: Machine learning process ………………………………………………………… 04

Figure 02: Applications of Machine Learning ………………………………………………. 05

Figure 03: Supervised learning algorithm process …………………………………….......... 07

Figure 04: Reinforcement learning process ………………………………………………….. 08

Figure 06: The difference between ML algorithms ………………………………………….. 12

Figure 07 : MAS types ……………………………………………………………………….. 18

Figure 08: Homogeneous non-communicating MAS ………………………………………... 20

Figure 09: Homogeneous communicating MAS …………………………………………….. 20

Figure 10: Heterogeneous non-communicating MAS ……………………………………….. 20

Figure 11: Heterogeneous communicating MAS ……………………………………………. 21

Figure 12: Message Passing Communication between agents ………………………………. 24

Figure 13: Blackboard type communication between agents ……………………………….. 24

Figure 14: Blackboard communication using remote communication between agent groups.. 25

Figure 15: RL structure for a single agent and for an MAS …………………………………. 28

Figure 16: Reward illustration ……………………………………………………………….. 38

Figure 17: Q-learning Algorithm steps ………………………………………………………. 40

Figure 18: Example Q-table mapping states and actions to their corresponding Q-value …... 41

Figure 19: Q-learning update function ………………………………..……………………... 42

Figure 20: States illustration ………….……………………………………………………… 43

Figure 21: Reward values ……………………………………………………………………. 44

Figure 22: code part for thread usage ………………..………………………………………. 46

Figure 23: Initial window ……………………………………………………………………. 47

Figure 24: Single Agent model window ……………………………………………………... 48

 list of Figures

xiii

Figure 25: Multi Agent Competitive model window ………………………………………... 49

Figure 26: Multi Agent Cooperative model window ………………………………………… 50

Figure 27: Multi Agent Communicative model window …………………………………….. 51

 List of Tables

xiv

Table 01: Breakdown of MARL algorithms by the type of task they address ……….. 32

Table 02: Statistic comparative table between models ……………………………….. 53

1

Introduction

 Reinforcement learning (RL) and multi-agent systems (MAS) are promising tools in the

field of artificial intelligence: the first allows to design the behavior of intelligent entities

(agents) using simple rewards , and the second is based on the idea that intelligent behavior

can “emerge” from the collaboration of a group of agents.

 The problem posed is that of an agent placed in an environment within which he must

achieve a goal, be it an end goal or a goal of "maintaining" a state. A first method is to plan

your behavior in advance, knowing a sufficiently complete model of the environment. As this

is often unpredictable, it may be necessary to revise the plan regularly. In the event that no

sufficient model is known, the planning is no longer usable and it will be necessary to learn

by trial and error a behavior that will solve the problem posed to the agent. This is how

reinforcement learning is defined. As part of the decision-making process in Q learning, use

will be made of statistical techniques and dynamic programming methods.

 Different problems arise in such learning type :

1. Should we learn a behavior directly or is it through adaptation to the model of

environment and its results? or conversely, learn a model and deduce the best

possible behavior from it?

2. Knowing that there is a gain to be maximized, how to balance the use of the learning?

already carried out(for immediate gain) and exploring possible behaviors (to improve

future gain)?

3. How to design a single agent model that works with reinforcement learning methods?

4. How to adapt the Q-Learning algorithm to work in a multi agent system?

5. What is the more efficient model between our proposed models?

 In a nutshell, we will present the theoretical aspects of the solution, then implement it

and see the proposed solution in a comprehensive way from all sides.

Chapter 01

Machine Learning (ML)

Chapter 01 Machine Learning (ML)

3

Introduction

 Machine learning is programming computers to optimize a performance criterion using

example data or experience. We need learning in cases where we cannot directly write a

computer program to solve a given problem, but need example data or experience. One case

where learning is necessary is when human expertise does not exist, or when humans

are unable to explain their expertise.

 Another case is when the problem to be solved changes in time, or depends on the

particular environment. We would like to have general purpose systems that can adapt

to their circumstances, rather than explicitly writing a different program for each

special circumstance.

 Already, there are many successful applications of machine learning in various

domains ,this is what we will discuss in this chapter, and we will also talk about the types of

algorithms used in machine learning, especially reinforcement learning, which is one of the

most prominent point of our project.

Chapter 01 Machine Learning (ML)

4

1. What is machine learning [1]

 Machine learning is a field of study concerned with giving computers the ability to

learn without being explicitly programmed.

Figure 01: Machine-learning process

2. Applications of Machine Learning [2]

 So, what can you do with machine learning? Quite a lot, really. This section breaks things

down and describes how machine learning is being used at the moment.

2.1 Software

 Machine learning is widely used in software to enable an improved experience with the

user. With some packages, the software is learning about the user’s behavior after its first use.

After the software has been in use for a period of time it begins to predict what the user wants

to do.

2.2 Stock Trading

 Many platforms aim to help users make better stock trades.

 These platforms have to do a large amount of analysis and computation to make

recommendations. From a machine learning perspective, decisions are being made for you on

whether to buy or sell a stock at the current price. It takes into account the historical opening

and closing prices and the buy and sell volumes of that stock.

2.3 Medicine and Healthcare

 The race is on for machine learning to be used in healthcare analytics. A number of startups

are looking at the advantages of using machine learning with big Data to provide healthcare

professionals with better-informed data to enable them to make better decisions.

Chapter 01 Machine Learning (ML)

5

2.4 Robotics

 Using machine learning, robots can acquire skills or learn to adapt to the environment in

which they are working. Robots can acquire skills such as object placement, grasping objects,

and locomotion skills through either automated learning or learning via human intervention.

With the increasing amount of sensors within robotics, other algorithms could be employed

outside of the robot for further analysis.

 In addition to this, there are many other uses for machine learning, which we can summarize

in the following figure

Figure 02: Applications of Machine Learning

Chapter 01 Machine Learning (ML)

6

3. Algorithm Types for Machine Learning

 We can use many algorithms in machine learning. The required output is what decides

which to use.

 Machine learning algorithms characteristically fall into one of the following types:

 Supervised learning;

 Unsupervised learning;

 Reinforcement learning

3.1 Supervised learning

 Supervised learning refers to working with a set of labeled training data. For every example

in the training data, you have an input object and an output object.

 Therefore, the algorithm generates a function that maps inputs to desired outputs. One

standard formulation of the supervised learning task is the classification problem: the learner

is required to learn (to approximate the behavior of) a function which maps a vector into one

of several classes by looking at several input-output examples of the function.

 In its most abstract form, supervised learning consists in finding a function f : X → Y that

takes as input x ∈ X and gives as output y ∈ Y (X and Y depend on the application): y = f (x).

 In supervised learning, the aim is to learn a mapping from the input to an output

whose correct values are provided by a supervisor.

 An example would be classifying Twitter data. Assume you have the following data from

Twitter; these would be your input data objects:

 Really loving the new St Vincent album!

 #fashion I'm selling my Louboutins! Who's interested?

 I've got my Hadoop cluster working on a load of data.

 In order for your supervised learning classifier to know the outcome result of each tweet,

you have to manually enter the answers; for clarity, I’ve added the resulting output object at

the start of each line.

Chapter 01

 Music Really loving the new St Vince

 Clothing #fashion I'm selling my Louboutins! Who's interested? #louboutins

 Big data I've got my Hadoop cluster working on a load of data. #data

 Obviously, for the classifier to make any sense of the data, when run properly, you have to

work manually on a lot more input data. What you have, though, is a training set that can be

used for later classification of data

 We can describe the process of this algorithm as bellow:

Figure 03

3.2 Unsupervised learning

 Unsupervised learning is a branch of machine learning that learns from

any label. It relates to using and identifying

compression or generative models

 Machine Learning

7

Really loving the new St Vincent album!

#fashion I'm selling my Louboutins! Who's interested? #louboutins

I've got my Hadoop cluster working on a load of data. #data

Obviously, for the classifier to make any sense of the data, when run properly, you have to

rk manually on a lot more input data. What you have, though, is a training set that can be

used for later classification of data [2][3].

We can describe the process of this algorithm as bellow:

3: Supervised learning algorithm process [4]

Unsupervised learning is a branch of machine learning that learns from data that do not have

any label. It relates to using and identifying patterns in the data for tasks such as data

models.[3]

Machine Learning (ML)

#fashion I'm selling my Louboutins! Who's interested? #louboutins

I've got my Hadoop cluster working on a load of data. #data

Obviously, for the classifier to make any sense of the data, when run properly, you have to

rk manually on a lot more input data. What you have, though, is a training set that can be

data that do not have

patterns in the data for tasks such as data

Chapter 01 Machine Learning (ML)

8

 Therefore, unsupervised learning is when you let the algorithm find a hidden pattern in a

load of data. With unsupervised learning there is no right or wrong answer; it’s just a case of

running the machine learning algorithm and seeing what patterns and outcomes occur.[3]

 In unsupervised learning, there is no such supervisor and we only have input data.

The aim is to find the regularities in the input. There is a structure to the input space such

that certain patterns occur more often than others, and we want to see what generally

happens and what does not. In statistics, this is called density estimation, and one from its

most used and known methods is clustering also called cluster analysis.[3]

3.3 Reinforcement learning

3.3.1 Definition: “a way of programming agents by reward and punishment without needing

to specify how the task is to be achieved” [5]

 Reinforcement Learning is an approach through which intelligent programs, known as

agents, work in a known or unknown environment to constantly adapt and learn based on

giving points. The feedback might be positive, also known as rewards, or negative, also called

punishments. Considering the agents and the environment interaction, we then determine

which action to take.

 Briefly, Reinforcement Learning is based on rewards and punishments.

Figure 04: Reinforcement learning process[6]

Environment State (s+1)

Reward (r+1)

State (s)

Reward (r)

Action (a)

Agent

Chapter 01 Machine Learning (ML)

9

3.3.2 Reinforcement learning elements

 Beyond the agent and the environment, one can identify four main sub elements of a

reinforcement learning system: a policy, a reward, a value function, and, optionally, a model

of the environment.

 An agent: physical or software entity;

 An environment: the area which the agent runs in and reacts with;

 A policy defines the learning agent's way of behaving at a given time;

 A reward signal defines the goal in a reinforcement learning problem;

 A value function specifies what is good in the long run;

 A model of the environment which is something that mimics the behavior of the

environment, or more generally, that allows inferences to be made about how the

environment will behave. [6]

 3.3.3 Reinforcement learning aims

 Improve the strategies used to solve any problem continuously by relying on the

feedback received.

 Maximize the rewards while taking steps to solve the problem

 Achieve optimal steps that maximize the rewards to solve the problem at hand. [10]

3.3.4 Building units for RL [11]

 Policy Function π(a|s): Probabilistic function for actions depending on states, indicating

how to act in a certain situation.

 Return G: Cumulative sum of future rewards in time, scaled by discount factor γ. It is

defined as:

�� = ∑ �������� = ���� + �����
�
����� …………(1)

 Value Function V(s|π): Expected return when policy π is followed at state s, defined as:

��(�)= E[��|�� = �,��]…………(2)

Chapter 01 Machine Learning (ML)

10

 Action-Value Function Q(s,a|π): Expected return when policy π is followed, except action

a at first step at state s, defined as:

��(�,�)= E[���|�� = �,�� = �,�]…………(3)

3.3.5 Bellman Equation

 The goal of RL at some time t = 0 is to find a policy that maximizes the accumulated sum of

rewards over time �� = ∑ γ�r���,where γ ∈ [0,1]�
��� is called the discount factor and

determines how strongly immediate rewards are weighted compared to rewards in the future.

A discount factor � < 1 guarantees that the future discounted return Rt is always a finite

number if the immediate reward is bounded. Since the state transition process is random, the

actually observed accumulated (discounted) reward Rt might be different from the expected

return �[��|�,���] that the agent gets on average applying policy � starting from some initial

state��.The return has the recursive property ∑ γ�r��� = r� + γ�
��� ∑ γ�r���

�
��� .Its expectation

conditioned on the current state s and the policy � is called the value �� of state [12]

��(�)= �[�∑ γ�r���
�
��� |�,�� = �]= ∑ �(�,�)∑ ��,��

�
��∈��∈� ���;��

� + ���(�′)�…………(4)

3.3.6 Monte Carlo Methods [11]

 Monte Carlo Methods uses statistical sampling to approximate Q function. In order to use

such methods, one must wait until simulation ends because cumulative sum of rewards in the

future is used for each state.

 Once state st is visited and action at is taken, return Gt is calculated from its definition using

instant and future rewards waiting to end of episode. Monte Carlo methods aim to minimize

the gap between Q(st,at) and target value Gt for all possible samples.

 With a predetermined learning rate α, Q function is updated as;

�(��,��)← �(�� − �(��,��)) …………(5)

3.3.7 Markov Decision Process (MDP)

 MDP is the mathematics foundation of RL and if we wanted to fully understand RL

algorithms, we always need to start with MDP. [07]

 MDP is basically a framework for decision making under uncertainty. It can provide a way

to compute an optimal decision policy

Chapter 01 Machine Learning (ML)

11

 The MDP consists to the following [08]

 State space S, as a set of all possible states

 Action space A, as a set of all possible actions

 Model Function T(s’|s,a), as a state transition probabilities.

 Reward Function R(s), as rewarding mapping from state, action, next state tuple to

reward.

 Discount Factor γ ∈ [0,1], a real number determining importance of future rewards for

control objective.

 The work will be in three phases:

 Take note of what state you're in.

 Take an action based on your policy and receive a reward.

 Take note of the reward you received by taking that action in that state.

3.3.8 The Markov Property

 Transition : Moving from one state to another is called Transition.

 Transition Probability: The probability that the agent will move from one state to

another is called transition probability. [08]

The Markov Property state that : “Future is Independent of the past given the present”

 Mathematically we can express this statement as :

�[����|�� �]= �[����|��,……,���]…………(6)

S[t] denotes the current state of the agent and S[t+1] denotes the next state. What this equation

means is that the transition from state S[t] to S[t+1] is entirely independent of the past. [08]

3.3.9 State Transition Probability

 As we now know about transition probability we can define state Transition Probability to

another State .For Markov State from S[t] to S[t+1] i.e. any other successor state , the state

transition probability is given by [08]:

���� = P����� = ��|����
�
�…………(7)

Chapter 01 Machine Learning (ML)

12

4. Difference between ML algorithms

 The main difference is about the inputs and outputs of each one from the three algorithms

previously discussed, the figure bellow shows this difference.

Figure 06: The difference between ML algorithms

Chapter 01 Machine Learning (ML)

13

Conclusion

 Through what we discussed in this chapter, reinforcement learning is one of the most

prominent methods used in machine learning in our time, and it has been very popular in the

last twenty years

 Reinforcement learning helps find the situation that needs action and also provides the

learning agent with a reward function and enables it to discover the best way to obtain large

rewards, and is useful in discovering the action that produces the highest reward over the

longest period.

 Because of all these characteristics, many techniques are used in reinforcement learning to

eliminate many intractable problems.

Chapter 02

Multi Agent Systems (MAS)

Chapter 02 Multi Agent Systems (MAS)

15

Introduction

 Multi-agent systems are a problem-solving tool in the field of artificial intelligence. The

starting point is that some problems can be effectively solved by a set of agents rather than

just one, intelligent behavior emerging from the combination of simple behaviors. It is

therefore possible to use agents of low complexity for problems which are a priori difficult.

 If different elements of the problem physically require the intervention of more than one

agent, the multiplicity of agents can be all the more useful.

 In MAS, each agent often has only incomplete information or insufficient capacity to solve

the problem at hand. In addition, there is no overall control system: everyone makes their own

decisions, possibly after having come to an understanding with their peers. These principles

make it possible to use agents that are simple enough not to be too specialized, and therefore

to be reusable.

 In nature, the most visible multi-agent systems are animal societies: ants, men, sheep, even

animal or plant associations which, by their common action, create group or more simply

cooperative behavior. We are therefore interested in seeing how from a set of rather simple

agents intelligent behavior emerges.

 A multi-agent system is considered in its environment. Different elements are examined in

the behavior of MAS: interactions with the environment, communication between agents, and

the organization of society.

Chapter 02 Multi Agent Systems (MAS)

16

1. Agent

1.1 Definition

“An agent is anything that can be viewed as perceiving its environment through sensors and

acting upon that environment through effectors”. [13]

 According to this definition an agent is any entity (physical or virtual one) that

senses its environment and acting over it.

 Physical entities that could be considered as agents are, in the case of a power

system, simple protection relay or any controller that controls directly particular

power system component or part of the system.

 Virtual entity that can be considered as an agent is a piece of software that

receives inputs from an environment and produces outputs that initiate acting over it.

 Often an agent is a combination of physical (computation architecture) and

virtual one (a piece of software running on the computational architecture).[15]

1.2 Agents types

 Agents can be classified according to various criteria. The most common separation into

two categories is next :

1.2.1 Cognitive agents

 Each agent is specialized in a field and knows how to communicate with others. They have

explicit goals and plans to enable them to accomplish their goals. [14]

 Explicit representation of self, environment and other agents.

 Explicit organization.

 Explicit and elaborate interaction.

1.2.2 Reactive agents

 Agents without intelligence (without anticipation, without planning) which react by

stimulus-response to the current state of the environment. Intelligent behaviors can emerge

from their association. [14]

 No explicit representation.

 Implicit / induced organization.

 Communication via the environment.

1.3 Properties of Agents

 Reactive: Responds in a timely fashion to changes in the environment

 Autonomous: Exercises control over its own actions

 Goal-oriented: Does not simply act in response to the environment

 Temporally continuous : is a continuously running process

Chapter 02 Multi Agent Systems (MAS)

17

 Communicative: communicates with other agents

 Learning: changes its behavior based on its previous experience

 Mobile: able to transport itself from one machine to another (this is associated

manly with software agents)

 Flexible: actions are not scripted

These properties are often considered also as a type of agent. [15]

2. Multi Agent System (MAS)

2.1 Definition

“ A multi-agent system is a loosely coupled network of problem-solving entities (agents) that

work together to find answers to problems that are beyond the individual capabilities or

knowledge of each entity (agent)”[16] .

 2.2 MAS composants

 Eenvironment: that is to say a space generally having a metric.

 A set of objects: These objects are located, that is to say that, for any object, it is possible

at a given moment, to associate a position in the environment. These objects are passive,

that is to say that they can be perceived, created, destroyed and modified by agents.

 A set of agents: which represent the active entities of the system.

 A set of relations: that unite objects and agents to each other.

 A set of operations allowing agents A to perceive, produce, consume, transform and

manipulate the objects.

 Operators responsible for representing the application of these operations and the

reaction of the world to this attempted modification, which will be called the laws of the

universe. [14]

2.3 MAS conception

 To design an MAS, it is necessary to define: [14]

 MAS model

 the model of each of the agents that will come into action (microscopic level);

 define their environment and their interactions (macroscopic level);

 define the social organizations (macro level) which structure them.

 A concrete model of MAS

 which creates, initializes the agents,

 set up their organization and;

 launches the agents who must intervene for a particular execution.

Chapter 02 Multi Agent Systems (MAS)

18

2.4 Architecture of multi-agent system

 Based on the internal architecture of the particular individual agents forming the

multi-agent system, it may be classified as two types:

 Homogeneous structure

 Heterogeneous structure

2.4.1 Homogeneous Structure

 In a homogeneous architecture, all agents forming the multi-agent system have the

same internal architecture. Internal architecture refers to the Local Goals, Sensor

Capabilities, Internal states, Inference Mechanism and Possible Actions [17] . The

difference between the agents is its physical location and the part of the environment where

the action is done. Each agent receives an input from different parts of the

environment. There may be overlap in the sensor inputs received. In a typical

distributed environment, overlap of sensory inputs is rarely present [18] .

 2.4.2 Heterogeneous Structure

 In a heterogeneous architecture, the agents may differ in ability, structure and

functionality [19] . Based on the dynamics of the environment and the location of the

particular agent, the actions chosen by agent might differ from the agent located in a different

part but it will have the same functionality. Heterogeneous architecture helps to make

modelling applications much closer to real-world [20] .Each agent can have different local

goals that may contradict the objective of other agents. A typical example of this can be

seen in the Predator-Prey game . Here both the prey and the predator can be modelled as

agents. The objectives of the two agents are likely to be in direct contradiction one to the

other [21].

2.5 MAS types

 A typology of cooperation from [22] seems the simplest and here we start with this typology

as the basis for MAS classification. The typology is given in Figure 07.

Figure 07 : MAS types

Chapter 02 Multi Agent Systems (MAS)

19

 A MAS is independent if each individual agent pursues its own goals independently

of the others. A MAS is discrete if it is independent, and if the goals of the agents bear no

relation to one another. Discrete MAS involve no cooperation. However agents can

cooperate with no intention of doing so and if this is the case then the cooperation is

emergent[15]

2.5.1 Independent discrete MAS

 This type of MAS is encountered in the environments that permit decoupling or

decomposition (spatial, temporal). As an example of this type of MAS we use two

agents (controllers) controlling synchronous generator in a power system: automatic

voltage regulator (AVR) and speed governor. They have different goals that bear no

relation to one another. AVR goal is to keep terminal voltage at predefined value and

speed governor goal is to keep angular speed at synchronous value. [15]

2.5.2 Independent MAS with emergent cooperation

 In this MAS agents are designed independently and each individual agent pursues its

own goals independently of the others. It is more important to stress that in this MAS

the individual agents are not aware of existence of other agents and each agent considers

others as a part of the environment. Since agents exist in the same environment they

can affect each other indirectly and the cooperation can emerge with no intention of

doing so. The cooperation among independent agents can emerge in two ways:

 individual agents receive as sensory inputs (directly or they estimate them) the

inputs or control of one or more other agents in the environment,

 individual agents, by their actions, change sensory inputs of another agent in a

cooperative way without explicit intention of doing so. [15]

2.5.3 Cooperative MAS

 Cooperative MAS is presented from two dimensions: agent heterogeneity and amount of

communication among individual agents within a MAS. With respect to these two dimensions

cooperative MAS can be classified in four groups: [15]

 Homogeneous non-communicating MAS,

 Homogeneous communicating MAS,

 Heterogeneous non-communicating MAS,

 Heterogeneous communicating MAS.

2.5.3.1 Homogeneous non-communicating MAS

 In this MAS there are several different agents with identical structure. All individual

agents have the same goals, domain knowledge, and possible actions. They also have

the same procedure for selecting among their actions. The only differences among individual

agents are their sensory inputs and the actual actions they take, or in other words they

are situated (placed) differently in the environment. [15]

Chapter 02

Figure 08:

2.5.3.2 Homogeneous communicating MAS

 In this MAS individual agents can communicate with each other directly. With the

aid of communication, agents can coordinate more effectively.

Figure 09:

2.5.3.3 Heterogeneous non-communicating MAS

 Individual agents within a MAS might be heterogeneous in a number of ways, from

having different goals to having different domain knowledge and actions. Adding the

possibility of heterogeneous agents in a MAS adds a great deal of potential power at

the price of added complexity.

Figure 10:

 Multi Agent Systems

20

Figure 08: Homogeneous non-communicating MAS[15

2.5.3.2 Homogeneous communicating MAS

In this MAS individual agents can communicate with each other directly. With the

aid of communication, agents can coordinate more effectively. [15]

Figure 09: Homogeneous communicating MAS[15]

communicating MAS

Individual agents within a MAS might be heterogeneous in a number of ways, from

having different goals to having different domain knowledge and actions. Adding the

rogeneous agents in a MAS adds a great deal of potential power at

the price of added complexity. [15]

Figure 10: Heterogeneous non-communicating MAS[15

Multi Agent Systems (MAS)

[15]

In this MAS individual agents can communicate with each other directly. With the

Individual agents within a MAS might be heterogeneous in a number of ways, from

having different goals to having different domain knowledge and actions. Adding the

rogeneous agents in a MAS adds a great deal of potential power at

[15]

Chapter 02 Multi Agent Systems (MAS)

21

2.5.3.4 Heterogeneous communicating MAS

 In this type of MAS, ndividual agents (with different goals, actions, and /or domain

knowledge) can communicate with one another. This MAS inherits the issues of

communicating from homogeneous communicating MAS but heterogeneity brings

additional issues to the communication. Two most important issues are: communication

protocols and theories of commitment. Also, the issue of benevolence vs.

competitiveness becomes more complicated for this type of MAS. [15]

Figure 11: Heterogeneous communicating MAS[15]

2.6 Learning in MAS

 The learning of an agent can be defined as building or modifying the belief structure based

on the knowledge base, input information available and the consequences or actions needed to

achieve the local goal [38]. Based on the above definition, agent learning can be classified

into three types.

 Active learning

 Reactive learning

 Learning based on consequence

2.6.1 Active Learning

 Active learning can be described as a process of analysing the observations to create a belief

or internal model of the corresponding situated agent's environment. The active learning

process can be performed by using a deductive, inductive or probabilistic reasoning approach.

 In the deductive learning approach, the agent draws a deductive inference to explain a

particular instance or state-action sequence using its knowledge base. Since the result learned

is implied or deduced from the original knowledge base which already exists, the information

learnt by each agent is not a new but useful inference. The local goal of each agent could form

a part of the knowledge base. In the deductive learning approach, the uncertainty or the

inconsistency associated with the agent knowledge is usually disregarded. This makes it not

suitable for real-time applications. [41]

Chapter 02 Multi Agent Systems (MAS)

22

 In an inductive learning approach, the agent learns from observations of stateaction pair.

These viewed as the instantiation of some underlying general rules or theories without the aid

of a teacher or a reference model. Inductive learning is effective when the environment can be

presented in terms of some generalized statements. Well known inductive learning approaches

utilize the correlation between the observations and the final action space to create the internal

state model of the agent. The functionality of inductive learning may be enhanced if the

knowledge base is used as a supplement to infer the state model. The inductive learning

approach suffers at the beginning of operation as statistically significant data pertaining to the

agent may not be available. [41]

 The probabilistic learning approach is based on the assumption that the agent knowledge

base or the belief model can be represented as probabilities of occurrence of events. The

agent's observation of the environment is used to predict the internal state of the agent. One of

the best examples of probabilistic learning is that of the Bayesian theorem. According to the

Bayesian theorem, the posterior probability of an event can be determined by the prior

probability of that event and the likelihood of its occurrence. The likelihood probability can

be calculated based on observations of the samples collected from the environment and prior

probability can be updated using the posterior probability calculated in the previous time step

of the learning process. [41]

2.6.2 Reactive Learning

 The process of updating a belief without having the actual knowledge of what needs to be

learnt or observed is called as Reactive Learning. This method is particularly useful when the

underlying model of the agent or the environment is not known clearly and are designated as

black box. Reactive learning can be seen in agents which use connectionist systems such as

neural networks. Neural networks depend on the mechanism which maps the inputs to output

data samples using inter-connected computational layers. Learning is done by the adjustment

of the synaptic weights between the layers. In [39], reactive multi-agent based feed forward

neural networks have been used and its application to the identification of non-linear dynamic

system have been demonstrated. In [40] many other reactive learning methods such as

accidental learning, go-with-the-flow, channel multiplexing and a shopping around approach

have been discussed. Most of these methods are rarely employed in a real application

environment as they depend on the application domain. [41]

2.6.3 Learning Based on Consequences

 Learning methods presented in the previous sections were concerned with understanding the

environment based on the belief model update and analysis of patterns in sample

observations. This section will deal with the learning methods based on the evaluation of the

goodness of selected action. This may be performed by reinforcement learning methods.[41]

Chapter 02 Multi Agent Systems (MAS)

23

2.7 Roles of MAS

2.7.1 Simulation of complex phenomena

 Multi-agent systems are used to simulate interactions between autonomous agents. We try

to determine the evolution of this system in order to predict the resulting organization. For

example, in sociology, we can configure the different agents that make up a community. By

adding constraints, we can try to understand which will be the most efficient component to

achieve an expected result (construction of a bridge). They even make it possible to

experiment with scenarios that would not be feasible on real populations, whether for

technical or ethical reasons [23].

2.7.2 Solve a problem in a distributed way

 Agent actions are object transformations related to the description of a problem.[14]

2.7.3 Manage and maintain a work environment

 The physical or social actions carried out by agents are real actions, they evolve over time

and modify the world: football robots, agents negotiating a meeting with the user's

profile.[14]

2.7.4 Program conception

 At the same time, software engineering has evolved into increasingly autonomous

components. MASs can be seen as the meeting of software engineering and distributed

artificial intelligence, with a very important contribution from distributed systems. Compared

to an object, an agent can take initiatives, can refuse to obey a request, can move around ...

Autonomy allows the designer to concentrate on a humanly understandable part of the

software [24]

2.8 Communication in Multi-Agent System

 Communication is one of the crucial components in multi-agent systems that needs careful

consideration. Unnecessary or redundant intra-agent communication can increase the cost

and cause instability. Communication in a multi-agent system can be classified as two types.

This is based on the architecture of the agent system and the type of information which is

to be communicated between the agents[18]. The various issues arising in MAS system

with homogeneous and heterogeneous architecture has been considered and explained by

using a predator/prey and by the use of robotic soccer games[16]. Based on the information

communication between the agents [25] , MAS can classified as local communication or

Blackboard. Mobile communication can be categorized into class of local communication

2.8.1 Local Communication

 Local communication has no place to store the information and there is no intermediate

communication media present to act as a facilitator. The term message passing is used to

emphasize the direct communication between the agents. Figure 12 shows the structure of the

Chapter 02 Multi Agent Systems (MAS)

24

message passing communication between agents. In this type of communication, the

information flow is bidirectional. It creates a distributed architecture and it reduces the

bottleneck caused by failure of central agents[41]. This type of communication has been used

in [26] [27] [28].

Figure 12: Message Passing Communication between agents[41]

2.8.2 Blackboards

 Another way of exchanging information between agents is through Blackboards Agent-

based blackboards, like federation systems, use grouping to manage the interactions between

agents. There are significant differences between the federation agent architecture and the

blackboard communication.

 In blackboard communication, a group of agents share a data repository which is provided

for efficient storage and retrieval of data actively shared between the agents. The repository

can hold both the design data as well as the control knowledge that can be accessed by the

agents. The type of data that can be accessed by an agent can be controlled through the use of

a control shell. This acts as a network interface that notifies the agent when relevant data is

available in the repository. The control shell can be programmed to establish different types of

coordination among the agents. Neither the agent groups nor the individual agents in the

group need to be physically located near the blackboards. It is possible to establish

communication between various groups by remote interface communication. The major issue

is due to the failure of blackboards. This could render the group of agents useless depending

on the specific blackboard. However, it is possible to establish some redundancy and share

resources between various blackboards. Figure 13. shows a single blackboard with the group

of agents associated with it. Figure 14. shows blackboard communication between two

different agent groups and also the facilitator agents present in each group. [41]

Figure 13: Blackboard type communication between agents. [41]

Chapter 02 Multi Agent Systems (MAS)

25

Figure 14: Blackboard communication using remote communication between agent groups.

[41]

2.9 Advantages of MAS [15]

 Main advantages of MAS are robustness and scalability.

 Robustness refers to the ability that if control and responsibilities are sufficiently

shared among agents within MAS, the system can tolerate failures of one or more

agents.

 Scalability of MAS originates from its modularity. It should be easier to add

new agents to a MAS.

Chapter 02 Multi Agent Systems (MAS)

26

Conclusion

 In this chapter, we talked about the agent, its types and characteristics, a brief survey of

the existing architectures in multi agents, communication requirements, roles of MAS.

 All this allowed us to take an expanded view of the agents, their method of work and their

communication, especially in the event of a multiplicity of them, which will motivate us in

further discoveries such as discovering the method of their work and their cooperation after

contact and knowing the extent of their achievement of the desired goals.

Chapter 03

Multi Agent Reinforcement Learning

(MARL)

Chapter 03 Multi Agent Reinforcement Learning (MARL)

28

Introduction

 In the field of machine learning (ML), reinforcement learning (RL) has attracted the

attention of the scientific community owing to its ability to solve a wide range of tasks by

using a simple architecture and without the need for prior knowledge of the dynamics of the

problem to solve.

 RL has found uses in many applications, from finance and robotics, to natural language

processing and telecommunications.

 The core of a RL system is the agent that operates in an environment that models the task

that it has to fulfill. In all of the above applications, the RL agents interact with the

environment via a trial and error approach, within which they receive rewards (reinforcement)

for their actions.

 This mechanism, similar to human learning, guides the agent to the improvement of its

future decisions in order to maximize the upcoming rewards. Despite the success of this

approach, a large number of real-world problems cannot be fully solved by a single active

agent that interacts with the environment; the solution to that problem is the multiagent

system (MAS), in which several agents learn concurrently how to solve a task by interacting

with the same environment.

 In Figure 15 , we show the representation of the RL structure for a single (a) agent and for

an MAS (b).

Figure 15: RL structure for a single agent and for an MAS

Chapter 03 Multi Agent Reinforcement Learning (MARL)

29

1. What is MARL?

Definition: Multi-agent reinforcement learning is an extension of reinforcement learning

concept to multi-agent environments. Reinforcement learning allows to program agents by

reward and punishment without specifying how to achieve the task. Formally agent-

environment interaction in multi-agent reinforcement learning is presented as a discounted

stochastic game. [30]

 In the multi-agent scenario, much like in the single-agent scenario, each agent is still trying

to solve the sequential decision-making problem through a trial-and-error procedure. The

difference is that the evolution of the environmental state and the reward function that each

agent receives is now determined by all agents' joint actions. As a result, agents need to take

into account and interact with not only the environment but also other learning agents. A

decision-making process that involves multiple agents is usually modeled through a stochastic

game (Shapley, 1953), also known as a Markov game (Littman, 1994).

 Therefore, MARL is the generalization of the Markov decision process to the multi-agent

systems case, which known as stochastic game [31].

1.1 Definition: A stochastic game is a tuple 〈�, ��, … , ��, �, ��, … , ��〉 [31]

where

 n is the number of agents

 X is the finite set of environment states

 ��, … , �� are the finite sets of actions available to the agents, yielding the joint action set

 � = �� × … × �� , �: � × � × � → [0,1] is the state transition probability function.

 ��: � × � × � → ℝ, i = 1 … n are the reward functions of the agents.

 We assume that the reward functions are bounded. In the multi-agent case, the state

transitions are the result of the joint action of all the agents,������,�
� , … , ��,�

� �
�

, �� ∈ �, ��,� ∈

��, where T denotes vector transpose.

 The policies ℎ�: � × �� → [0,1] form together the joint policy h. Because the rewards ��,���

of the agents depend on the joint action, their returns depend on the joint policy:

��
�(�) = ��∑ ����,���

�
��� ��� = �, ℎ�……………(8)

 The Q-function of each agent depends on the joint action and on the joint policy,

��
�: � × � → ℝ with

��
�(�, �) = ��∑ ����,���

�
��� ��� = �, �� = �, ℎ� …………(9)

Chapter 03 Multi Agent Reinforcement Learning (MARL)

30

2. MARL categories

 MARL algorithms can be coarsely divided into three groups depending on the kind of reward

given by the environment: fully cooperative, fully competitive, and mixed cooperative–

competitive. [32]

2.1 Cooperative: All agents working towards a common goal. [32]

2.2 Competitive: Agents competing with one another to accomplish a goal[32]

2.3 Some mix of the two: Group of coordinating agents in competition with an other group of

coordinating agents. [32]

 The best way to understand this category is the following example: Think a 5 vs 5 basketball

game, where individuals on the same team are coordinating with one another, but the two

teams are competing against one another. [32]

3. Benefits of MARL

 Experience sharing can help RL agents with similar tasks learn faster and reach better

performance. For instance, the agents can exchange information using communication [33] ,

skilled agents may serve as teachers for the learner[34], or the learner may watch and imitate

the skilled agents [35].

 A speed-up can be realized in MARL thanks to parallel computation, when the agents

exploit the decentralized structure of the task.

 When one or more agents fail in a multi-agent system, the remaining agents can take over

some of their tasks. This implies that MARL is inherently robust. Furthermore, by design

most multi-agent systems also allow the easy insertion of new agents into the system, leading

to a high degree of scalability.

 Existing MARL algorithms often require some additional preconditions to theoretically

guarantee and to exploit the above benefits . Relaxing these conditions and further improving

the performance of MARL algorithms in this context is an active field of study [35].

4. Limits of MARL

 The transition from single-agent to multi-agent settings introduces new challenges that

require a different design approach for the algorithms, the most important limits are:

4.1 Non stationarity

 The environment in a multi-agent setting can be modified by the actions of all agents; thus,

from the single-agent perspective, the environment becomes non-stationary. The effectiveness

of most reinforcement learning algorithms is tied to the Markov property, which does not hold

in non-stationary environments [36]. Policies created in a non-stationary environment are

deemed to have become outdated. Despite the loss of theoretical support, algorithms designed

Chapter 03 Multi Agent Reinforcement Learning (MARL)

31

for the single-agent setting have been applied in multi-agent settings, such as independent

learners (IL), occasionally achieving desirable results [33]

4.2 Scalability

 As the number of agents increases, there is a growth in the joint action space. For this

reason, centralized approaches, in which an observer selects the actions after receiving the

action–state information of every agent, require large amounts of computational resources and

memory to work with more than a couple of agents. A possible solution to the curse of

dimensionality in MARL is to use independent learners, but as we have seen, this approach is

unable to obtain consistent results in a non-stationary environment. A third model of agent

connection is the decentralized setting with networked agents. In this setting, every agent is

able to interact with the environment and to exchange information with few other agents

(those in its vicinity), creating a time-varying communication network between all the agents.

Algorithms developed for this setting are scalable to a massive number of agents and more

real-world-oriented applications, as the absence of a central controller and uncertainty in

communication links are typical requirements in a large number of applications. [30]

5. Multi-agent reinforcement learning goals

5.1 Convergence

 Convergence to equilibria is a basic stability requirement . It means the agents' strategies

should eventually converge to a coordinated equilibrium. [30]

5.2 Alternative to rationality

 An alternative to rationality is the concept of no-regret, which is defined as the requirement

that the agent achieves a return that is at least as good as the return of any stationary strategy,

and this holds for any set of strategies of the other agents. This requirement prevents the

learner from ‘being exploited’ by the other agents. [30]

5.3 Optimality/Compatibility/Safety

 Targeted optimality/compatibility/safety are adaptation requirements expressed in the form

of bounds on the average reward . Targeted optimality demands an average reward, against a

targeted set of algorithms, which is at least the average reward of a best-response.

Compatibility prescribes an average reward level in self-play, i.e., when the other agents use

the learner’s algorithm. Safety demands a safety-level average reward against all other

algorithms. An algorithm satisfying these requirements does not necessarily converge to a

stationary strategy. [30]

5.4 Stability and adaptation

 MARL can also be related to stability and adaptation. For instance, opponent-independent

learning is related to stability, whereas opponent-aware learning is related to adaptation. An

opponent-independent algorithm converges to a strategy that is part of an equilibrium solution

regardless of what the other agents are doing. An opponent-aware algorithm learns models of

Chapter 03 Multi Agent Reinforcement Learning (MARL)

32

the other agents and reacts to them using some form of best-response. Prediction and

rationality are related to stability and adaptation, respectively. Prediction is the agent’s

capabilityto learn accurate models of the other agents. An agent is called rational if it

maximizes its expected return given its models of the other agents. [30]

6. MARL algorithms

 MARL algorithms can be classified along the categories or task type previously cited

 The type of task considered by the learning algorithm leads to a corresponding classification

of MARL techniques into those addressing cooperative, competitive, or mixed stochastic

games.

 A significant number of algorithms are designed for static (stateless) tasks only.

 The following table summarizes the MARL algorithms by task type (category)

Cooperative
competitive

Mixed

Static Dynamic Static Dynamic

 JAL
 FMQ

 Team-Q
 Distributed-

Q
 OAL

 Minimax-Q Fictitious
Play

 MetaStrategy
 IGA
 WoLF-IGA
 GIGA
 GIGA-

WoLF
 AWESOME
 Hyper-Q

 Single-agent
RL

 Nash-Q
 CE-Q
 Asymmetric-

Q
 NSCP
 WoLF-PHC
 PD-WoLF
 EXORL

Table 01: Breakdown of MARL algorithms by the type of task they address. Reproduced

from [37]

Chapter 03 Multi Agent Reinforcement Learning (MARL)

33

Conclusion

 Multi-agent reinforcement learning (MARL) is a young, but active and rapidly expanding

field of research. MARL aims to provide an array of algorithms that enable multiple agents to

learn the solution of difficult tasks, using limited or no prior knowledge. To this end, MARL

integrates results from single-agent RL , game theory, and direct policy search.

 This chapter has provided an extensive overview of MARL . we have presented what is

MARL and its categories, the main benefits and challenges of MARL , as well as the different

viewpoints on defining the MARL learning goal. Then, we have gave in a summarized way a

set of MARL algorithms for fully cooperative, fully competitive, and mixed tasks.

Chapter 04

Our proposed models

Chapter 04 Our proposed models

35

Introduction

 As we have seen previously, multi Agent systems (MAS) and reinforcement learning can

solve specific problems using multiple agents.

 The MAS and RL “mix”, using simple agents, makes it possible to solve complex problems.

We will try to combine the advantages of both tools to create a flexible and efficient system.

 In this section, that represents our work, we will design four models of reinforcement

learning: one in the case of single agent and three in multi agent case using the Q-Learning

algorithm.

 First, we will represent our agents in a way that permits to them to work in different

environments and easy to manipulate, by using “Threads”. This way of representation will

help us to adapt the Q-Learning algorithm to work in a multi agent system; because the

Q-learning is a single agent reinforcement learning algorithm.

 Then, we will present our models separately starting by the basic one: the single agent

model for giving a general view of reinforcement learning and seeing the behavior of the

agent during its interaction with the environment.

 After that, we will enter in the multi agent framework starting by a competitive model, then

a cooperative model, and finally a communicative model.

 Finally, we will give a statistical comparison between our models according to the number

of attempts and the time token to achieve the goal in the same environment conditions and see

which model is more efficient.

Chapter 04 Our proposed models

36

1.Q learning

1.1 What is “Q”?

 The “Q” in Q-learning stands for quality. Quality here represents how useful a given action

is in gaining some future rewards.[41]

1.2 The Q-Learning algorithm in RL

 Of all the types of algorithms available in reinforcement learning, ever wondered why this

Q-learning has always been the sought-after one? Here is the answer:

<< Q-learning is a model-free, value-based, off-policy learning algorithm >>

 Model-free: The algorithm that estimates its optimal policy without the need for any

transition or reward functions from the environment.

 Value-based: Q learning updates its value functions based on equations, (say Bellman

equation) rather than estimating the value function with a greedy policy.

 Off-policy: The function learns from its own actions and doesn’t depend on the current

policy

 In the Q-Learning algorithm, the goal is to learn iteratively the optimal Q-value function

using the Optimality function.

 To do so, we store all the Q-values in a table that will be updated at each time step using the

Q-Learning iteration.[41]

1.3 Optimality function

 Recall the definition of the (optimal) Q-function:

�(�, �) ≜ �(�, �) + � ∑ �(� ′��, �)�∗(�′)�′ ……………..(10)

 The optimality equation is then

�∗(�) = �����(�, �), � ∈ � ……………..(11)

1.4 Value iteration function

 The value iteration function is given by:

����(�) = ������(�, �) + � ∑ �(� ′��, �)��(� ′)�′ �, � ∈ � ……………..(12)

 With �� ← �∗ it can be reformulated as:

���� = �(�, �) + � ∑ �(� ′��, �)����′��(� ′, �′)�′ ……………..(13)

 Then the update function become as:

�(�, �) ← �(�, �) + ��� + �. ����′�(� ′, �′) − �(�, �)� , � ← �′ ……………..(14)

Chapter 04 Our proposed models

37

1.5 Rewards

 Since the agent is reward motivated and going to learn how to control the moves by

trial experiences in the environment, we need to decide the rewards and/or penalties and

their magnitude accordingly. Here a few points to consider:

 The agent should receive a high positive reward for a successful move because this

behavior is highly desired.

 The agent should be penalized if it moves to an obstacle state.

1.6 State Space

 The State Space is the set of all possible situations our agent could inhabit. The state should

contain useful information the agent needs to make the right action.

1.7 Action Space

 In each case, the agent takes action .The action in our case can be to move in the direction

or to determine the announcement of the achievement of the desired goal.

 This is the action space: the set of all the actions that our agent can take in a given state.

1.8 Q-learning hyper parameters

 The hyper parameters of your model are the parameters that are external to the model that

you will set yourself (think of the value in an algorithm such as -nearest neighbors; this is a

hyper parameter. You have to set it yourself as there is nothing inherent in the data that

determines what should be).[08]

 The three most important hyper parameters for your agent are as follows:

Alpha: The learning rate

Gamma: The discount rate

Epsilon: The exploration rate

1.8.1 Alpha – deterministic versus stochastic environments

 The agent's learning rate “alpha” ranges from zero to one. Setting the learning rate to zero

will cause your agent to learn nothing, all of its exploration of its environment and the

rewards it receives will affect its behavior at all, and it will continue to behave completely

randomly.

Chapter 04 Our proposed models

38

 Setting the learning rate to one will cause your agent to learn policies that are fully specific

to a deterministic environment. One important distinction to understand is between

deterministic and stochastic environments and policies.

 Briefly, in a deterministic environment, the output is totally determined by the initial

conditions and there is no randomness involved. We always take the same action from the

same state in a deterministic environment.

 In a stochastic environment, there is randomness involved and the decisions that we make

are given as probability distributions. In other words, we don't always take the same action

from the same state.[08]

1.8.2 Gamma – current versus future rewards

 Let us discuss the concept of current rewards versus future rewards. Your agent's discount

rate gamma has a value between zero and one, and its function is to discount future rewards

against immediate rewards.

 Your agent is deciding what action to take based not only on the reward it expects to get for

taking that action, but on the future rewards it might be able to get from the state it will be in

after taking that action.

 One easy way to illustrate discounting rewards is with the following example of a mouse in

a maze collecting cheese as rewards and avoiding cats and traps (that is, electric shocks):

Figure 16: Reward illustration

Chapter 04 Our proposed models

39

 The rewards that are closest to the cats, even though their point values are higher (three

versus one), should be discounted if we want to maximize how long the mouse agent lives and

how much cheese it can collect. These rewards come with a higher risk of the mouse being

killed, so we lower their value accordingly. In other words, collecting the closest cheese

should be given a higher priority when the mouse decides what actions to take.

 When we discount a future reward, we make it less valuable than an immediate reward

(similar to how we take into account the time value of money when making a loan and treat a

dollar received today as more valuable than a dollar received a year from now).

 The value of gamma that we choose varies according to how highly we value future

rewards:

 If we choose a value of zero for gamma, the agent will not care about future rewards at

all and will only take current rewards into account

 Choosing a value of one for gamma will make the agent consider future rewards as

highly as current rewards[08]

1.8.3 Epsilon – exploration versus exploitation

 Your agent's exploration rate epsilon also ranges from zero to one. As the agent explores its

environment, it learns that some actions are better to take than others, but what about states

and actions that it hasn't seen yet? We don't want it to get stuck on a local maximum, taking

the same currently highest-valued actions over and over when there might be better actions it

hasn't tried to take yet.

 When you set your epsilon value, there will be a probability equal to epsilon that your agent

will take a random (exploratory) action, and a probability equal to 1-epsilon that it will take

the current highest Q-valued action for its current state.

As the agent gets more and more familiar with its environment, we want it to start sticking to

the high-valued actions it's already discovered and do less exploration of the states it hasn't

seen. We achieve this by having epsilon decay over time as the agent learns more about its

environment and the Q-table converges on its final optimal values. There are many different

ways to decay epsilon, either by using a constant decay factor or basing the decay factor on

some other internal variable. Ideally, we want the epsilon decay function to be directly based

on the Q-values that we've already discovered.[08]

Chapter 04 Our proposed models

40

1.9 Q-learning algorithm stages

Figure 17: Q-learning Algorithm steps [08]

1.10 The procedural form of Q-learning algorithm

Chapter 04 Our proposed models

41

1.10.1 Step 1: Initialize the Q-table:

 The Q-table is a simple data structure that we use to keep track of the states, actions, and

their expected rewards. More specifically, the Q-table maps a state-action pair to a Q-value

(the estimated optimal future value) which the agent will learn. At the start of the Q-Learning

algorithm, the Q-table is initialized to all zeros indicating that the agent doesn’t know anything

about the world. As the agent tries out different actions at different states through trial and

error, the agent learns each state-action pair’s expected reward and updates the Q-table with

the new Q-value. Using trial and error to learn about the world is called Exploration.

 One of the goals of the Q-Learning algorithm is to learn the Q-Value for a new environment.

The Q-Value is the maximum expected reward an agent can reach by taking a given action A

from the state S. After an agent has learned the Q-value of each state-action pair, the agent at

state S maximizes its expected reward by choosing the action A with the highest expected

reward. Explicitly choosing the best known action at a state is called Exploitation.[08]

Figure 18: Example Q-table mapping states and actions to their corresponding Q-value

1.10.2 Step 02: Choose an action using the Epsilon-Greedy Exploration Strategy:

 A common strategy for tackling the exploration-exploitation tradeoff is the Epsilon Greedy

Exploration Strategy.

 At every time step when it’s time to choose an action, roll a dice

Chapter 04 Our proposed models

42

 If the dice has a probability less than epsilon, choose a random action

 Otherwise take the best known action at the agent’s current state

 Note that at the beginning of the algorithm, every step the agent takes will be random which

is useful to help the agent learn about the environment it’s in. As the agent takes more and

more steps, the value of epsilon decreases and the agent starts to try existing known good

actions more and more. Note that epsilon is initialized to 1 meaning every step is random at

the start. Near the end of the training process, the agent will be exploring much less and

exploiting much more.[08]

1.10.3 Step 03: Measure Reward:

 He takes action and waits for the reward result.[08]

1.10.4 Step 04: Evaluation:

 Needs job update the function Q(s,a).

 This process is repeated again and again until the learning is stopped. In this way the Q-

Table is been updated and the value function Q is maximized. Here the Q(state, action)

returns the expected future reward of that action at that state.[08]

Figure 19: Q-learning update function

Chapter 04

2. Our case: scenario of robots self

 In the context of teaching robots to self

outside of the user's control, as these

After launch, the robots must reach a specific location.

 In order to ensure maximum efficiency, the robots will need to know the path between the

launch area and the target area without hitting some of

 We will be using Q-Learning to get this job done!

2.1 Define the Environment

 The environment consists of states, actions, and rewards. States and actions are inputs for

the Q-learning agent, while the possible actions are the

2.1.1 States

 The states in the environment are all of the possible locations within the environment. Some

of these locations are obstacles (black squares), while other locations are aisles that the robot

can use to travel (white squares). The green square indicates the goal state.

 The bottom line used as robot's start positions

The agent starts in the white squares of the bottom line as per his ID for example the agent "1"

will start in the position (10,1)

 The agent's objective is to know the path between the starting area and the arrival area,

passing through the permitted areas

Agent

Chapter 04 Our proposed models

43

obots self drive

In the context of teaching robots to self-driving, each robot makes decisions on its own,

outside of the user's control, as these decisions will be appropriate for the environment.

bots must reach a specific location.

In order to ensure maximum efficiency, the robots will need to know the path between the

launch area and the target area without hitting some of the obstacles in place.

Learning to get this job done!

The environment consists of states, actions, and rewards. States and actions are inputs for

learning agent, while the possible actions are the agent’s outputs.

The states in the environment are all of the possible locations within the environment. Some

of these locations are obstacles (black squares), while other locations are aisles that the robot

es). The green square indicates the goal state.

as robot's start positions. Let us take a simple example of 10x10 states

The agent starts in the white squares of the bottom line as per his ID for example the agent "1"

the position (10,1)

Figure 20 : States illustration

to know the path between the starting area and the arrival area,

passing through the permitted areas only.

Our proposed models

driving, each robot makes decisions on its own,

decisions will be appropriate for the environment.

In order to ensure maximum efficiency, the robots will need to know the path between the

the obstacles in place.

The environment consists of states, actions, and rewards. States and actions are inputs for

The states in the environment are all of the possible locations within the environment. Some

of these locations are obstacles (black squares), while other locations are aisles that the robot

es). The green square indicates the goal state.

s take a simple example of 10x10 states

The agent starts in the white squares of the bottom line as per his ID for example the agent "1"

to know the path between the starting area and the arrival area,

Chapter 04

 As shown in the image above, there are 100

arranged randomly in a grid co

identified by its row and column index

2.1.2 Actions

 The actions that are available to the agent are to move the robot in one of four directions:

 Up

 Right

 Down

 Left

2.1.3 Rewards

 The final component of the environment that we need to identify is rewards. To help the

agent learn, each state (location) is assigned a value.

for each state.

Chapter 04 Our proposed models

44

As shown in the image above, there are 100 possible cases (locations). These states are

arranged randomly in a grid containing 10 row, and 10 columns. Each location can thus be

ied by its row and column index ,for example the goal position is (4,

available to the agent are to move the robot in one of four directions:

The final component of the environment that we need to identify is rewards. To help the

agent learn, each state (location) is assigned a value. The figure bellow shows rewards value

Figure 21: Reward values

Our proposed models

possible cases (locations). These states are

columns. Each location can thus be

,7).

available to the agent are to move the robot in one of four directions:

The final component of the environment that we need to identify is rewards. To help the

The figure bellow shows rewards value

Chapter 04 Our proposed models

45

 Via its cumulative rewards (by reducing cumulative penalties), the agent can find the

shortest paths between the access area (green square) and all other locations where the robot is

allowed to travel (white squares). The agent will also need to learn how to avoid hitting any of

the obstacles (black squares)!

2.2 Our models

2.2.1 Single Agent model

 The agent is alone in the environment and will search for the target by following the steps of

the Q-learning previously described.

2.2.2 Competitive model (non centralized)

 In this model, the number of agents will be greater or equal to two, where each agent has its

own Q-table and is independent of the others, so each agent will search for the target alone,

so there is something of competition.

2.2.3 Cooperative model (centralized)

 The same characteristics as the previous model, but this time the Q-table will be shared by

all agents, and therefore it will be a kind of cooperation between them in finding the way

to the goal

 In the event that one of the agents finds the way, it will be followed by the other agents

even though they do not find the way

 This model will allow to shorten the time due to the advantage of cooperation in it.

2.2.4 Communicative model

 After reaching a specific number of operations without reaching the goal, we will start at

this models.

 In this model, there will be communication between agents in making decisions to move

from one state to another.

 This communication is based on asking questions by an agent in a current state to other

agents about the decision they made when they were in that state .

Chapter 04 Our proposed models

46

2.3 Adapt the Q-learning algorithm to work in MAS

 Every one know that Q-Learning algorithm is intended to work in non-multi-agent systems,

so in order to adapt it to work in a multi-agent system, we proposed a simple approach which

is to use threads.

 We used threads as agents and each one has an identifier that distinguishes him from the

others

2.3.1 Using threads

 The use of threads in our application was in the function <startgame> which is responsable

to start agent to work by the command < . start > as the Figure shows

Figure 22: code part for thread usage

2.3.2 The purpose behind using threads

 The goal behind using threads is that they are easy to manipulate by virtue of our study of it

over the previous years, in addition to the fact that the operating system monitors it

automatically through the division of time and priorities, and any other matters related to it

Chapter 04 Our proposed models

47

2.4 Train the Models

 All models are implemented through the same steps, but with a slight difference according

to each model, such as the number of agents and the “common or private” Q-table.

Our next task is for our agent to learn about their environment by applying the Q-Learning

model. The learning process will follow these steps:

1. Choose an infinite random state (white square) for the worker to start this new loop.

2. Choose an action (move up, right, down, or left) for the current position. Actions will be

determined using the greedy Epsilon algorithm. This algorithm will usually choose the

most promising action of the agent, but will sometimes choose a less promising option to

encourage the agent to explore the environment.

3. Perform the chosen action, go to the next state (i.e. go to the next location).

4. Get the bonus of moving to the new state.

5. Update the Q value of the previous state and action pair.

6. If the new (current) state is a terminal state, then go to #1. Otherwise, go to #2.

7. This entire process will be repeated by a number of user-defined loops. This will give the

agent enough opportunity to know the paths where the robot is allowed to walk, while

avoiding hitting any of the obstacles at the same time!

Figure 23: Initial window

Chapter 04 Our proposed models

48

2.4.1 Single Agent model training

 After choosing single agent model, its window will appear

 The user enters the number of episodes in addition to the rest of Q-Learning’s hyper

parameters, maze height and width and goal position.

 We click “save” in order to save these parameters, a confirmation message will appear.

 Then click start button.

 The agent will seek to find the target, and after finding it, the results will appear in the

output field

 To stop the model running click “stop” button and “back” to return at initial window

The figure bellow shows the operations cited above

Figure 24: Single Agent model window

Back button Stop button Start button

Output field

Save button

Parameters insertion

Chapter 04 Our proposed models

49

2.4.2 Multi agent competitive model training

 After choosing multi agent competitive model, its window will appear.

 The user enters number of episodes in addition to the rest of Q-Learning’s hyper

parameters, maze height and width and goal position, but this time user should enter the

number of agents also.

 We click “save” in order to save these parameters, a confirmation message will appear.

 Then click start button.

 Agents will seek to find the target, and after finding it, the results will appear in the output

field

 To stop the model running click “stop” button and “back” to return at initial window

NB: In this model, agents enter into a kind of competition, so each agent will search for the

way alone without resorting to others.

 What confirm this are the simulation results, where we often find that each agent takes his

own path, except in some rare cases in which they take the same path, but this does not mean

that they cooperate in searching for it, but rather the results of their search were similar. In

addition to the results of the table for each agent where we find the results are not the same

Figure 25: Multi Agent Competitive model window

Back button Stop button Start button

Output field

Save button

Parameters insertion

Chapter 04 Our proposed models

50

2.4.3 Multi agent cooperative model training

 After choosing multi agent cooperative model, its window will appear.

 The user enters the number of agents, number of episodes in addition to the rest of Q-

Learning's hyper parameters, maze height and width and goal position.

 We click "save" in order to save these parameters, a confirmation message will appear.

 Then click start button.

 Agents will seek to find the target, and after finding it, the results will appear in the output

field

 To stop the model running click “stop” button and “back” to return at initial window

NB: In this model, agents cooperate to find the target.

 What confirm this are the simulation results, where we find that all agents take the same

path.

Figure 26: Multi Agent Cooperative model window

Back button Stop button Start button

Output field

Save button

Parameters insertion

Chapter 04 Our proposed models

51

2.4.4 Multi agent communicative model training

 After choosing multi agent communicative model, its window will appear.

 The user enters the number of agents, number of episodes in addition to the rest of Q-

Learning's hyper parameters, maze height and width and goal position.

 We click "save" in order to save these parameters, a confirmation message will appear.

 Then click start button.

 Agents will seek to find the target, and after finding it, the results will appear in the output

field

 To stop the model running click “stop” button and “back” to return at initial window

NB: In this model, agents make communication between them to find the target.

 What confirm this are the simulation results, where we find that some agents waiting in their

current states to get information from the others in order to take the best decision to move.

Figure 27: Multi Agent Communicative model window

Back button Stop button Start button

Output field

Save button

Parameters insertion

Chapter 04 Our proposed models

52

3. Comparative study between models

 In order to know which model was more efficient, we present a comparative study between

our models. This study is based on two factors: the number of attempts and the time token by

all agents to rich the goal state.

 The following table represents the results of eight simulations for each model

Model Simulation Attempts Time (ms)
Average
 attempts

Average
 time (ms)

Single agent

01 75345 4500

72828 4349,68

02 72743 4345

03 73043 4363

04 72390 4324

05 74060 4423

06 73009 4360

07 72003 4300

08 70032 4183

Multi agent
competitive

01 75013 4480

76593 4574,38

02 76103 4545

03 77752 4644

04 79068 4722

05 75639 4518

06 75107 4486

07 75871 4531

08 78194 4670

Multi agent
 cooperative

01 12331 1980

12726 2043,35

02 14956 5613

03 12553 2016

04 12907 2072

05 12091 1941

06 13339 2142

07 12936 2077

08 10691 1717

Multi agent
communicative

01 159555 25407

158262 25201,15

02 160092 25493

03 157242 25039

04 154667 24629

05 164989 26272

06 160074 25490

07 153579 24455

08 155900 24825

Table 02: Statistic comparative table between models

Chapter 04 Our proposed models

53

3.1 Observation

 Through the simulation results, we note that the agents in the cooperative model made the

least number of attempts in the least time, in contrast to the communicative model, which took

a large number of attempts and time during the agents’ search for the goal. As for the

individual and competitive models, their results were very conflicting.

3.2 Interpretation

 The results of the previous simulation can be interpreted as follows:

 Cooperative model: The search time and the number of attempts were few due to the

presence of direct cooperation between the agents and their participation in the search

for the target.

 Communicative model: the length of time can be explained by the presence of a time

margin in the process of communication between agents. As for the high number of

attempts, it is because the agent was originally trying some states, and when he

communicates, he will try the states suggested by other agents.

 Single and Competitive models: the convergence of the results of these two models

is because they are two models with the same architecture: the competitive model is a

group of individual models that compete.

3.3 Result

 From the foregoing, we conclude that the cooperative model was more effective in

accomplishing tasks, followed by the individual and competitive models, and then the

communicative model.

Chapter 04 Our proposed models

54

Conclusion

 In this chapter, we have presented the implementation of the Q-Learning algorithm in

different types of systems

 First, we have presented the Q-Learning algorithm, its theoretical concepts and how to adapt

it to work in multi agent system.

. We have opted for choices of tools and techniques that we have used.

 Then, we have exposed the basic functionalities offered in our models through examples.

 Finally, we have presented a statistic comparative study between our proposed models in

order to know which model was more efficient.

55

Conclusion

 As mentioned in the introduction, the point of view of artificial intelligence that we have

adopted throughout this thesis is to design systems that operate in a rational manner (i.e. to

achieve a goal), a system decided by the term "agent". This let us to take a first look at

machine learning and specifically the field of reinforcement learning, which fits this

definition well. But since we are also interested in the results that can be obtained from

emerging phenomena, we also decided to work in the field of multi-agent systems starting

with a single agent and applying inter-agent communication models.

 Therefore, this thesis was an opportunity to use simultaneously the above propositions via

the Q learning algorithm.

 The mentioned algorithm is one of the most commonly used algorithms to solve the

learning problem, which is based on the Q function, to ensure the creation of the last function

and the proper operation of the system.

 For the individual agent, it is designed in such a way that immediate behavior is taken,

adapted to the environment and rewarded for taking the best possible comportment with it.

 As for the multi-agents, a unique model that has always been difficult to achieve by using

Q-learning, so we adapted the Q Learning algorithm via multi-threaded programming, which

greatly helped us to implement this model and made it easy to adapt the algorithm to

competitive and collaborative multi-Agent.

 As for the communicative model, we found some obstacles, especially with regard to

finding a way for agents to communicate effectively, so we proposed our own method that

proved to be remarkably effective. It is worth noting that there is no unified or 100%

effective communication system so far, as all communication systems are just ssuggested by

developers

 Finally, and as a result of the statistical comparative study between models, we arrived to

know that the cooperative model was the more efficient one.

 References

56

[01] Artificial Intelligence and Machine Learning Fundamentals by Zsolt Nagy

[02] Machine Learning Hands-On for Developers and Technical Professionals by Jason Bell

[03] An Introduction to Deep Reinforcement Learning Vincent François-Lavet, Peter

Henderson, Riashat Islam, Marc G. Bellemare and Joelle Pineau (2018)

 [04] Supervised-Learning-[SB-Kotsiantis]

[05] Kaelbling, Littman, & Moore, 96

[06] Reinforcement Learning: An Introduction Richard S. Sutton and Andrew G. Barto2014,

2015

[07] https://web.stanford.edu/class/cme241/lecture_slides/rich_sutton_slides/5-6-MDPs.pdf

[08] Hands-On Q-Learning with Python: Practical Q-learning with OpenAI Gym (English

Edition) by Nazia Habib

[09] C.J.C.H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3–4):279–292, 1992

[10] Dr. Sunil Kumar Chinnamgari - R Machine Learning Projects_ Implement supervised,

unsupervised, and reinforcement learning techniques using R 3.5

[11] ğurcan Özalp, Artificial Intelligence Engineer /Researcher- ugurcanozalp.medium.com

[12] Reinforcement Learning in a Nutshell V. Heidrich-Meisner, M. Lauer, C. Igel and M.

Riedmiller,January 2007

[13] S. Russel, P. Norvig, “Artificial intelligence – A modern approach”, Prentice Hall, 1995.

[14]Introduction aux Systèmes Multi-Agents C. HANACHI, C. SIBERTIN-BLANC

Université Toulouse I & IRIT.

 [15] Agents and Multi-Agent Systems: A Short Introduction for Power Engineers -Technical

ReportDr. Mevludin Glavic May, 2006

[16] P. Stone, M. Veloso, “ Multiagent systems: A survey from a machine learning

perspective” , Autonomous Robots, vol. 8, no. 3, 2000.

[17] Tien C.Hsia and Michael Soderstrand, “Development of a micro robot system for playing

soccer games,” In Proceedings of the Micro-Robot World Cup Soccer Tournament, pp. 149-

152, 1996

[18] Balaji P.G and D.Srinivasan, “Distributed multi-agent type-2 fuzzy architecture for urban

traffic signal control,” In IEEE Internationa Conference on Fuzzy Systems, pp. 1624-1632,

2009

[19] Lynne E.Parker, “Heterogeneous multi-robot cooperation,” PhD Thesis, Massachusetts

Institute of Technology, 1994

 References

57

[20] Lynne E.Parker, “Life-long adaptation in hetergeneous multi-robot teams:response to

continual variation in robot performance,” Autonomous Robots, vol. 8, no. 3, 2000

[21] Rafal Drezewski and Leszek Siwik, “Co-evolutionary multi-agent system with

predatorprey mechanism for multi-objective optimization,” In Adaptive and Natural

Computing Algorithms, LNCS, vol. 4431, pp. 67-76, 2007

[22] J. Doran, S. Franklin, N. R. Jenkins, T. J. Norman, “ On cooperation in multi-

agent systems” , In UK Workshop on Foundations of Multi-agent Systems, Warwick, 1996.

[23] Nigel Gilbert, « Computational Social Science », Agent-Based Modelling and Simulation

in the Social and Human Sciences, Bardwell Press, 2007

[24] Ferber, P.52-54

[25] Budianto, “An overview and survey on multi agent system,” in Seminar Nasional “Soft

Computing, Intelligent Systems and Information Technology” , SIIT 2005

[26] Choy, M C, D Srinivasan and R L Cheu, "Neural Networks for Continuous Online

Learning and Control," IEEE Transactions on Neural Networks, vol. 17, no. 6, pp. 1511-1531,

2006

[27] M.C.Choy, D.Srinivasan and R.L.Cheu, “ Cooperative, hybrid agent architecture for

realtime traffic signal control,” IEEE Trans. On Systems, Man and Cybernetics-Part A:

Systems and Humans, vol. 33, no. 5, pp. 597-607, 2003

[28] Balaji P.G, D.Srinivasan and C.K.Tham, “ Coordination in distributed multi-agent

system using type-2 fuzzy decision systems,” in Proceedings of IEEE International

Conference on Fuzzy Systems, pp. 2291-2298, 2008

[29] Susan E.Lander, “Issues in multiagent design systems,” IEEE Expert, vol.12, no. 2 , pp.

18-26, 1997

[30] Multi-Agent Reinforcement Learning Algorithms Natalia Akchurina Dissertation in

Computer Science submitted to the Faculty of Electrical Engineering, Computer Science and

Mathematics University of Paderborn in partial fulfillment of the requirements for the degree

of doctor rerum naturalium (Dr. rer. nat.) Paderborn, February 2010

[31] L. Bus¸oniu, R. Babuˇ ska, and B. De Schutter, “Multi-agent reinforcement learning: An

overview,” Chapter 7 in Innovations in Multi-Agent Systems and Applications – 1 (D.

Srinivasan and L.C. Jain, eds.), vol. 310 of Studies in Computational Intelligence, Berlin,

Germany: Springer, pp. 183–221, 2010.

[32] Pierre Haou Multi-Agent Reinforcement Learning (MARL) and Cooperative AI

[33] Tan, M.: Multi-agent reinforcement learning: Independent vs. cooperative agents. (1993)

 References

58

[34] Clouse, J.: Learning from an automated training agent. In: W orking Notes Workshop on

Agents that Learn from Other Agents, 12th International Conference on Machine Learning

(ICML-95). Tahoe City, US (1995)

[35] Price, B., Boutilier, C.: Accelerating reinforcement learning through implicit imitation.

Journal of Artificial Intelligence Research 19, 569–629 (2003)

[36] Sutton, R.S.; Barto, A.G. Reinforcement Learning I: Introduction; MIT Press:

Cambridge, MA, USA, 1998

[37] Bus¸oniu, L., Babuˇ ska, R., De Schutter, B.: A comprehensive survey of multi-agent

reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics. Part C:

Applications and Reviews 38(2), 156–172 (2008)

[38] L. Lhotska, “Learning in multi-agent systems: Theoretical issues,” Computer Aided

Systems Theory – EUROCAST’97, LNCS-1333, pp.394-405, 1997

[39] Gomez.F, Schmidhuber.J and Miikkulainen.R, “Efficient non-linear control through

neuro evolution,” Proceedings of ECML 2006, pp. 654-662

[40] Jiming Jiu, Autonomous Agents and Multi-agent Systems, World Scientific Publication

[41] P.G. Balaji and D. Srinivasan An Introduction to Multi-Agent Systems Department of

Electrical and Computer Engineering National university of Singapore

[42] A beginners Guide to Q-Learning, Model Free Reinforcement Learning By Chathurangi

Shyalika, 2019.

