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Abstract 

 

   Learning is a process of improving the performance of a system based on its past 

experiences. This method intervenes when the problem seems too complicated to solve in 

real time, or when it seems impossible to solve the problem in a classic way. As an example 

of learning methods we cite reinforcement learning. 

   This method of learning is often used in the field of robotics and agents. It aims to 

determine a control law for a mobile robot or agent in an unknown environment. This kind of 

technique applies when it is assumed that the only information on the quality of the actions 

performed by the robot is a scalar signal that presents a reward or a punishment, the learning 

procedure aims to improve the choice of actions in order to maximize the rewards. 

   One of the most used algorithms for solving this learning problem is the Q-Learning 

algorithm that is based on the Q-Function, and to ensure the generation of this last function 

and the proper functioning of the learning system. , the action performed by the mobile robot 

in its environment is ensured by the use of a selection function, this action is evaluated by 

rewards and punishments. 

Key words: Learning, Machine Learning, Multi Agent System, Agent, Reinforcement 

Learning, Q-Learning, reward, Punishment. 
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Introduction 

   

 

   Reinforcement learning (RL) and multi-agent systems (MAS) are promising tools in the 

field of artificial intelligence: the first allows to design the behavior of intelligent entities 

(agents) using simple rewards , and the second is based on the idea that intelligent behavior 

can “emerge” from the collaboration of a group of agents. 

   The problem posed is that of an agent placed in an environment within which he must 

achieve a goal, be it an end goal or a goal of "maintaining" a state. A first method is to plan 

your behavior in advance, knowing a sufficiently complete model of the environment. As this 

is often unpredictable, it may be necessary to revise the plan regularly. In the event that no 

sufficient model is known, the planning is no longer usable and it will be necessary to learn 

by trial and error a behavior that will solve the problem posed to the agent. This is how 

reinforcement learning is defined. As part of the decision-making process in Q learning, use 

will be made of statistical techniques and dynamic programming methods. 

   Different problems arise in such learning type : 

1. Should we learn a behavior directly or is it through adaptation to the model of 

environment and its results? or conversely, learn a model and deduce the best 

possible behavior from it? 

2. Knowing that there is a gain to be maximized, how to balance the use of the learning? 

already carried out(for immediate gain) and exploring possible behaviors (to improve 

future gain)? 

3. How to design a single agent model that works with reinforcement learning methods? 

4. How to adapt the Q-Learning algorithm to work in a multi agent system? 

5. What is the more efficient model between our proposed models?    

   In a nutshell, we will present the theoretical aspects of the solution, then implement it 

and see the proposed solution in a comprehensive way from all sides. 
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Introduction 

    Machine learning is programming computers to optimize a performance criterion using 

example data or experience.  We need learning in cases where we cannot directly write a 

computer program to solve a given problem, but need example data or experience.  One case 

where learning  is  necessary  is  when  human  expertise  does  not  exist,  or  when  humans  

are unable to explain their expertise. 

   Another  case  is  when  the  problem  to  be  solved  changes  in  time,  or depends on  the  

particular environment.  We  would  like  to  have  general purpose  systems  that  can  adapt  

to  their  circumstances,  rather  than  explicitly  writing  a  different  program  for  each  

special  circumstance. 

   Already,  there  are  many  successful  applications  of  machine  learning  in  various  

domains ,this is what we will discuss in this chapter, and we will also talk about the types of 

algorithms used in machine learning, especially reinforcement learning, which is one of the 

most prominent point of our project. 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 01                                                                                              Machine Learning (ML) 

 

 
4 

 

1. What is machine learning [1] 

   Machine learning is a field of study concerned with giving computers the  ability to 

learn without being explicitly programmed. 

 

Figure 01: Machine-learning process 

2. Applications of Machine Learning [2] 

   So, what can you do with machine learning? Quite a lot, really. This section breaks things 

down and describes how machine learning is being used at the moment. 

2.1 Software 

   Machine learning is widely used in software to enable an improved experience with the 

user. With some packages, the software is learning about the user’s behavior after its first use. 

After the software has been in use for a period of time it begins to predict what the user wants 

to do. 

2.2 Stock Trading 

   Many platforms aim to help users make better stock trades.  

   These platforms have to do a large amount of analysis and computation to make 

recommendations. From a machine learning perspective, decisions are being made for you on 

whether to buy or sell a stock at the current price. It takes into account the historical opening 

and closing prices and the buy and sell volumes of that stock. 

2.3 Medicine and Healthcare 

   The race is on for machine learning to be used in healthcare analytics. A number of startups 

are looking at the advantages of using machine learning with big Data to provide healthcare 

professionals with better-informed data to enable them to make better decisions. 
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2.4 Robotics 

   Using machine learning, robots can acquire skills or learn to adapt to the environment in 

which they are working. Robots can acquire skills such as object placement, grasping objects, 

and locomotion skills through either automated learning or learning via human intervention.      

With the increasing amount of sensors within robotics, other algorithms could be employed 

outside of the robot for further analysis. 

   In addition to this, there are many other uses for machine learning, which we can summarize 

in the following figure 

 

Figure 02: Applications of Machine Learning 
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3. Algorithm Types for Machine Learning 

   We can use many algorithms in machine learning. The required output is what decides 

which to use. 

   Machine learning algorithms characteristically fall into one of the following types: 

 Supervised learning; 

 Unsupervised learning; 

 Reinforcement learning 

3.1 Supervised learning 

   Supervised learning refers to working with a set of labeled training data. For every example 

in the training data, you have an input object and an output object. 

   Therefore, the algorithm generates a function that maps inputs to desired outputs. One 

standard formulation of the supervised learning task is the classification problem: the learner 

is required to learn (to approximate the behavior of) a function which maps a vector into one 

of several classes by looking at several input-output examples of the function.   

   In its most abstract form, supervised learning consists in finding a function f : X → Y that 

takes as input x ∈ X and gives as output y ∈ Y (X and Y depend on the application): y = f (x).  

   In  supervised  learning,  the  aim  is  to  learn  a  mapping  from  the  input  to an output 

whose correct values are provided by a supervisor. 

   An example would be classifying Twitter data. Assume you have the following data from 

Twitter; these would be your input data objects:  

 Really loving the new St Vincent album!  

 #fashion I'm selling my Louboutins! Who's interested? 

 I've got my Hadoop cluster working on a load of data. 

   In order for your supervised learning classifier to know the outcome result of each tweet, 

you have to manually enter the answers; for clarity, I’ve added the resulting output object at 

the start of each line. 
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 Music       Really loving the new St Vince

 Clothing   #fashion I'm selling my Louboutins! Who's interested? #louboutins

 Big data   I've got my Hadoop cluster working on a load of data. #data

   Obviously, for the classifier to make any sense of the data, when run properly, you have to 

work manually on a lot more input data. What you have, though, is a training set that can be 

used for later classification of data

   We can describe the process of this algorithm as bellow:

Figure 03

3.2 Unsupervised learning  

   Unsupervised learning is a branch of machine learning that learns from

any label. It relates to using and identifying

compression or generative models

                                                                                  Machine Learning
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Really loving the new St Vincent album!  

#fashion I'm selling my Louboutins! Who's interested? #louboutins

I've got my Hadoop cluster working on a load of data. #data

Obviously, for the classifier to make any sense of the data, when run properly, you have to 

rk manually on a lot more input data. What you have, though, is a training set that can be 

used for later classification of data [2][3]. 

We can describe the process of this algorithm as bellow:  

3: Supervised learning algorithm process [4]  

Unsupervised learning is a branch of machine learning that learns from data that do not have 

any label. It relates to using and identifying patterns in the data for tasks such as data 

models.[3]    

Machine Learning (ML) 

 

#fashion I'm selling my Louboutins! Who's interested? #louboutins 

I've got my Hadoop cluster working on a load of data. #data 

Obviously, for the classifier to make any sense of the data, when run properly, you have to 

rk manually on a lot more input data. What you have, though, is a training set that can be 

 

   

data that do not have 

patterns in the data for tasks such as data 



Chapter 01                                                                                              Machine Learning (ML) 

 

 
8 

 

   Therefore, unsupervised learning is when you let the algorithm find a hidden pattern in a 

load of data. With unsupervised learning there is no right or wrong answer; it’s just a case of 

running the machine learning algorithm and seeing what patterns and outcomes occur.[3] 

   In unsupervised  learning,  there  is  no  such  supervisor  and  we  only  have  input  data. 

The aim is to find the regularities in the input.  There is  a structure to  the input  space such  

that  certain patterns occur more often than  others,  and we  want  to  see  what  generally  

happens  and  what  does  not.  In statistics, this is called density estimation, and one from its 

most used and known methods is clustering also called cluster analysis.[3] 

3.3 Reinforcement learning 

3.3.1 Definition: “a way of programming agents by reward and punishment without needing 

to specify how the task is to be achieved” [5] 

   Reinforcement Learning is an approach through which intelligent programs, known as 

agents, work in a known or unknown environment to constantly adapt and learn based on 

giving points. The feedback might be positive, also known as rewards, or negative, also called 

punishments. Considering the agents and the environment interaction, we then determine 

which action to take. 

   Briefly, Reinforcement Learning is based on rewards and punishments. 

 

 

 

 

 

 

 

Figure 04: Reinforcement learning process[6] 

 

Environment State (s+1) 

Reward (r+1) 

State (s) 

Reward (r) 

Action (a) 

Agent 
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3.3.2 Reinforcement learning elements 

   Beyond the agent and the environment, one can identify four main sub elements of a 

reinforcement learning system: a policy, a reward, a value function, and, optionally, a model 

of the environment. 

 An agent: physical or software entity; 

 An environment: the area which the agent runs in and reacts with;  

 A policy defines the learning agent's way of behaving at a given time; 

 A reward signal defines the goal in a reinforcement learning problem; 

 A value function specifies what is good in the long run; 

 A model of the environment which is something that mimics the behavior of the 

environment, or more generally, that allows inferences to be made about how the 

environment will behave. [6] 

 3.3.3 Reinforcement learning aims  

 Improve the strategies used to solve any problem continuously by relying on the 

feedback received.  

 Maximize the rewards while taking steps to solve the problem 

 Achieve optimal steps that maximize the rewards to solve the problem at hand. [10] 

3.3.4 Building units for RL [11] 

 Policy Function π(a|s): Probabilistic function for actions depending on states, indicating 

how to act in a certain situation. 

 Return G: Cumulative sum of future rewards in time, scaled by discount factor γ. It is 

defined as:  

�� = ∑ �������� = ���� + �����
�
�����  …………(1) 

 Value Function V(s|π): Expected return when policy π is followed at state s, defined as: 

��(�)= E[��|�� = �,��]…………(2) 
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 Action-Value Function Q(s,a|π): Expected return when policy π is followed, except action 

a at first step at state s, defined as: 

��(�,�)=  E[���|�� = �,�� = �,�]…………(3) 

 

3.3.5 Bellman Equation  

   The goal of RL at some time t = 0 is to find a policy that maximizes the accumulated sum of 

rewards over time �� = ∑ γ�r���,where γ ∈ [0,1]�
���  is called the discount factor and 

determines how strongly immediate rewards are weighted compared to rewards in the future. 

A discount factor � < 1 guarantees that the future discounted return Rt is always a finite 

number if the immediate reward is bounded.   Since the state transition process is random, the 

actually observed accumulated (discounted) reward Rt might be different from the expected 

return �[��|�,���] that the agent gets on average applying policy � starting from some initial 

state��.The return has the recursive property ∑ γ�r��� = r� + γ�
��� ∑ γ�r���

�
��� .Its   expectation 

conditioned on the current state s and the policy � is called the value ��  of state [12] 

��(�)= �[�∑ γ�r���
�
��� |�,�� = �]= ∑ �(�,�)∑ ��,��

�
��∈��∈� ���;��

� + ���(�′)�…………(4) 

3.3.6 Monte Carlo Methods [11] 

   Monte Carlo Methods uses statistical sampling to approximate Q function. In order to use 

such methods, one must wait until simulation ends because cumulative sum of rewards in the 

future is used for each state. 

   Once state st is visited and action at is taken, return Gt is calculated from its definition using 

instant and future rewards waiting to end of episode. Monte Carlo methods aim to minimize 

the gap between Q(st,at) and target value Gt for all possible samples. 

   With a predetermined learning rate α, Q function is updated as; 

�(��,��)← �(�� − �(��,��)) …………(5) 

3.3.7 Markov Decision Process (MDP)  

   MDP is the mathematics foundation of RL and if we wanted to fully understand RL 

algorithms, we always need to start with MDP. [07] 

   MDP is basically a framework for decision making under uncertainty. It can provide a way 

to compute an optimal decision policy 
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   The MDP consists to the following [08] 

 State space S, as a set of all possible states  

 Action space A, as a set of all possible actions  

 Model Function T(s’|s,a), as a state transition probabilities. 

 Reward Function R(s), as rewarding mapping from state, action, next state tuple to 

reward. 

 Discount Factor γ ∈ [0,1], a real number determining importance of future rewards for 

control objective. 

   The work will be in three phases: 

 Take note of what state you're in.  

 Take an action based on your policy and receive a reward.  

 Take note of the reward you received by taking that action in that state.  

3.3.8 The Markov Property 

 Transition : Moving from one state to another is called Transition. 

 Transition Probability: The probability that the agent will move from one state to 

another is called transition probability. [08] 

The Markov Property state that : “Future is Independent of the past given the present” 

   Mathematically we can express this statement as : 

�[����|�� �]= �[����|��,……,���]…………(6) 

S[t] denotes the current state of the agent and S[t+1] denotes the next state. What this equation 

means is that the transition from state S[t] to S[t+1] is entirely independent of the past. [08] 

3.3.9 State Transition Probability 

   As we now know about transition probability we can define state Transition Probability to 

another State .For Markov State from S[t] to S[t+1] i.e. any other successor state , the state 

transition probability is given by [08]: 

���� =  P����� = ��|����
�
�…………(7) 
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4. Difference between ML algorithms 

   The main difference is about the inputs and outputs of each one from the three algorithms 

previously discussed, the figure bellow shows this difference. 

 

Figure 06: The difference between ML algorithms 
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Conclusion 

 

   Through what we discussed in this chapter, reinforcement learning is one of the most 

prominent methods used in machine learning in our time, and it has been very popular in the 

last twenty years 

   Reinforcement learning helps find the situation that needs action and also provides the 

learning agent with a reward function and enables it to discover the best way to obtain large 

rewards, and is useful in discovering the action that produces the highest reward over the 

longest period. 

   Because of all these characteristics, many techniques are used in reinforcement learning to 

eliminate many intractable problems. 
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Introduction 

   Multi-agent systems are a problem-solving tool in the field of artificial intelligence. The 

starting point is that some problems can be effectively solved by a set of agents rather than 

just one, intelligent behavior emerging from the combination of simple behaviors. It is 

therefore possible to use agents of low complexity for problems which are a priori difficult. 

   If different elements of the problem physically require the intervention of more than one 

agent, the multiplicity of agents can be all the more useful. 

   In MAS, each agent often has only incomplete information or insufficient capacity to solve 

the problem at hand. In addition, there is no overall control system: everyone makes their own 

decisions, possibly after having come to an understanding with their peers. These principles 

make it possible to use agents that are simple enough not to be too specialized, and therefore 

to be reusable. 

   In nature, the most visible multi-agent systems are animal societies: ants, men, sheep, even 

animal or plant associations which, by their common action, create group or more simply 

cooperative behavior. We are therefore interested in seeing how from a set of rather simple 

agents intelligent behavior emerges. 

   A multi-agent system is considered in its environment. Different elements are examined in 

the behavior of MAS: interactions with the environment, communication between agents, and 

the organization of society. 
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1. Agent 

1.1 Definition  

“An agent is anything that can be viewed as perceiving its environment through sensors and 

acting upon that environment through effectors”. [13] 

   According  to  this  definition  an  agent  is  any  entity  (physical  or  virtual  one)  that  

senses  its environment and acting over it.  

 Physical entities that could be considered as agents are,  in the case of a power 

system, simple protection  relay  or  any  controller  that  controls  directly  particular  

power  system  component  or part of the system.  

 Virtual  entity  that  can  be  considered  as  an  agent  is  a  piece  of  software  that  

receives  inputs from an environment and produces outputs that initiate acting over it.   

 Often  an  agent  is  a  combination  of  physical  (computation  architecture)  and  

virtual  one  (a piece of software running on the computational architecture).[15] 

1.2 Agents types  

   Agents can be classified according to various criteria. The most common separation into 

two categories is next : 

1.2.1 Cognitive agents  

   Each agent is specialized in a field and knows how to communicate with others. They have 

explicit goals and plans to enable them to accomplish their goals. [14] 

 Explicit representation of self, environment and other agents. 

 Explicit organization. 

 Explicit and elaborate interaction. 

1.2.2 Reactive agents 

   Agents without intelligence (without anticipation, without planning) which react by 

stimulus-response to the current state of the environment. Intelligent behaviors can emerge 

from their association. [14] 

 No explicit representation. 

 Implicit / induced organization. 

 Communication via the environment. 

1.3 Properties of Agents  

 Reactive: Responds  in  a  timely  fashion  to  changes  in the environment 

 Autonomous: Exercises control over its own actions 

 Goal-oriented: Does  not  simply  act  in  response  to  the environment 

 Temporally continuous : is a continuously running process 
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 Communicative: communicates with other agents 

 Learning: changes  its  behavior  based  on  its  previous experience 

 Mobile: able  to  transport  itself  from one  machine  to another  (this  is  associated  

manly  with software agents) 

 Flexible: actions are not scripted 

These properties are often considered also as  a  type  of  agent. [15] 

2. Multi Agent System (MAS) 

2.1 Definition 

“ A multi-agent system is a loosely coupled network of problem-solving entities (agents) that 

work together  to  find answers  to  problems  that  are beyond the individual  capabilities  or 

knowledge of each entity (agent)”[16] .  

 2.2 MAS composants  

 Eenvironment: that is to say a space generally having a metric. 

 A set of objects: These objects are located, that is to say that, for any object, it is possible 

at a given moment, to associate a position in the environment. These objects are passive, 

that is to say that they can be perceived, created, destroyed and modified by agents. 

 A set of agents: which represent the active entities of the system. 

 A set of relations: that unite objects and agents to each other. 

 A set of operations allowing agents A to perceive, produce, consume, transform and 

manipulate the objects. 

 Operators responsible for representing the application of these operations and the 

reaction of the world to this attempted modification, which will be called the laws of the 

universe. [14] 

2.3 MAS conception  

   To design an MAS, it is necessary to define: [14] 

   MAS model 

 the model of each of the agents that will come into action (microscopic level); 

 define their environment and their interactions (macroscopic level); 

 define the social organizations (macro level) which structure them. 

   A concrete model of MAS 

 which creates, initializes the agents, 

 set up their organization and; 

 launches the agents who must intervene for a particular execution. 
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2.4 Architecture of multi-agent system 

   Based  on  the  internal  architecture  of  the  particular  individual  agents  forming  the 

multi-agent system, it may be classified as two types:  

 Homogeneous structure  

 Heterogeneous structure  

2.4.1 Homogeneous Structure  

     In  a  homogeneous  architecture,  all  agents  forming  the  multi-agent  system  have  the 

same  internal  architecture.  Internal  architecture  refers  to  the  Local  Goals,  Sensor 

Capabilities,  Internal  states,  Inference  Mechanism  and  Possible  Actions [17]  .  The 

difference between the agents is its physical location and the part of the environment where  

the  action  is  done.  Each  agent  receives  an  input  from  different  parts  of  the 

environment.  There  may  be  overlap  in  the  sensor  inputs  received.  In  a  typical 

distributed environment, overlap of sensory inputs is rarely present [18] . 

 2.4.2 Heterogeneous Structure  

   In  a  heterogeneous  architecture,  the  agents  may  differ  in ability,  structure  and 

functionality [19] . Based on the dynamics of the environment and the location of the 

particular agent, the actions chosen by agent might differ from the agent located in a different 

part but it will have the same functionality. Heterogeneous architecture helps to make 

modelling applications much closer to real-world [20] .Each agent can have different  local  

goals  that  may  contradict  the  objective  of  other  agents.  A  typical example of this can be 

seen in the Predator-Prey game . Here both the prey and the predator can be modelled as 

agents. The objectives of the two agents are likely to be in direct contradiction one to the 

other [21]. 

2.5 MAS types 

   A typology of cooperation from [22] seems the simplest and here we start with this typology 

as the basis for MAS classification. The typology is given in Figure 07. 

 

Figure 07 : MAS types 
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   A  MAS  is  independent  if  each  individual  agent  pursues  its  own  goals  independently  

of  the others. A MAS is discrete if it is independent, and if the goals of the agents bear no 

relation to one  another.  Discrete  MAS  involve  no  cooperation.  However  agents  can  

cooperate  with  no intention  of  doing  so  and  if  this  is  the  case  then  the  cooperation  is  

emergent[15] 

2.5.1 Independent discrete MAS  

   This  type  of  MAS  is  encountered  in  the  environments  that  permit  decoupling  or 

decomposition  (spatial,  temporal).  As  an  example  of  this  type  of  MAS  we  use  two  

agents (controllers)  controlling  synchronous  generator  in  a  power  system:  automatic  

voltage regulator  (AVR)  and  speed  governor.  They  have  different  goals  that  bear  no  

relation  to  one another. AVR  goal  is  to keep  terminal  voltage at predefined value and  

speed  governor  goal  is to keep angular speed at synchronous value. [15] 

2.5.2 Independent MAS with emergent cooperation  

   In  this  MAS  agents  are  designed  independently  and  each  individual  agent  pursues  its  

own goals  independently  of  the  others.  It  is  more  important  to  stress  that  in  this  MAS  

the individual agents are not aware of existence of other agents and each agent considers 

others as a  part  of  the  environment.  Since  agents  exist  in  the  same  environment  they  

can  affect  each other  indirectly  and  the  cooperation  can  emerge  with  no  intention  of  

doing  so.  The cooperation among independent agents can emerge in two ways: 

 individual  agents  receive  as  sensory  inputs  (directly  or  they  estimate  them)  the  

inputs or control of one or more other agents in the environment, 

 individual  agents,  by  their  actions,  change  sensory  inputs  of  another  agent  in  a 

cooperative way without explicit intention of doing so. [15] 

2.5.3 Cooperative MAS 

   Cooperative MAS is presented from  two dimensions:  agent  heterogeneity  and  amount  of 

communication among individual agents within a MAS. With respect to these two dimensions 

cooperative MAS can be classified in four groups: [15] 

 Homogeneous non-communicating MAS, 

 Homogeneous communicating MAS, 

 Heterogeneous non-communicating MAS, 

 Heterogeneous communicating MAS. 

2.5.3.1 Homogeneous non-communicating MAS 

   In  this  MAS  there  are  several  different  agents  with  identical  structure.  All  individual  

agents have  the  same  goals,  domain  knowledge,  and  possible  actions.  They  also  have  

the  same procedure for selecting among their actions. The only differences among individual 

agents are their  sensory  inputs  and  the  actual  actions  they  take,  or  in  other  words  they  

are  situated (placed) differently in the environment. [15] 
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2.5.3.2 Homogeneous communicating MAS

   In  this  MAS  individual  agents  can  communicate  with  each  other  directly.  With  the  

aid  of communication,  agents  can  coordinate  more  effectively.  

Figure 09: 

2.5.3.3 Heterogeneous non-communicating MAS

   Individual  agents  within  a  MAS  might  be  heterogeneous  in  a  number  of  ways,  from  

having different  goals  to  having  different  domain  knowledge  and  actions.  Adding  the  

possibility  of heterogeneous  agents  in  a  MAS  adds  a  great  deal  of  potential  power  at  

the  price  of  added complexity.

Figure 10: 
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Figure 08: Homogeneous non-communicating MAS[15

2.5.3.2 Homogeneous communicating MAS 

In  this  MAS  individual  agents  can  communicate  with  each  other  directly.  With  the  

aid  of communication,  agents  can  coordinate  more  effectively.  [15] 

Figure 09: Homogeneous communicating MAS[15] 
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2.5.3.4 Heterogeneous communicating MAS 

   In this type of MAS, ndividual  agents  (with  different  goals,  actions, and /or  domain  

knowledge)  can  communicate  with  one  another.  This  MAS  inherits  the  issues  of 

communicating  from  homogeneous  communicating  MAS  but  heterogeneity  brings 

additional issues  to  the  communication.  Two  most  important  issues  are:  communication  

protocols  and theories  of  commitment.  Also,  the  issue  of  benevolence  vs.  

competitiveness  becomes  more complicated for this type of MAS. [15] 

 

Figure 11: Heterogeneous communicating MAS[15] 

2.6 Learning in MAS  

   The learning of an agent can be defined as building or modifying the belief structure based 

on the knowledge base, input information available and the consequences or actions needed to 

achieve the local goal [38]. Based on the above definition, agent learning can be classified 

into three types.   

 Active learning  

 Reactive learning  

 Learning based on consequence 

2.6.1 Active Learning  

   Active learning can be described as a process of analysing the observations to create a belief 

or internal model of the corresponding situated agent's environment. The active learning 

process can be performed by using a deductive, inductive or probabilistic reasoning approach.  

   In the deductive learning approach, the agent draws a deductive inference to explain a 

particular instance or state-action sequence using its knowledge base. Since the result learned 

is implied or deduced from the original knowledge base which already exists, the information 

learnt by each agent is not a new but useful inference. The local goal of each agent could form 

a part of the knowledge base. In the deductive learning approach, the uncertainty or the 

inconsistency associated with the agent knowledge is usually disregarded. This makes it not 

suitable for real-time applications. [41]  
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   In an inductive learning approach, the agent learns from observations of stateaction pair. 

These viewed as the instantiation of some underlying general rules or theories without the aid 

of a teacher or a reference model. Inductive learning is effective when the environment can be 

presented in terms of some generalized statements. Well known inductive learning approaches 

utilize the correlation between the observations and the final action space to create the internal 

state model of the agent. The functionality of inductive learning may be enhanced if the 

knowledge base is used as a supplement to infer the state model. The inductive learning 

approach suffers at the beginning of operation as statistically significant data pertaining to the  

agent may not be available. [41] 

   The probabilistic learning approach is based on the assumption that the agent knowledge 

base or the belief model can be represented as probabilities of occurrence of events. The 

agent's observation of the environment is used to predict the internal state of the agent. One of 

the best examples of probabilistic learning is that of the Bayesian theorem. According to the 

Bayesian theorem, the posterior probability of an event can be determined by the prior 

probability of that event and the likelihood of its occurrence. The likelihood probability can 

be calculated based on observations of the samples collected from the environment and prior 

probability can be updated using the posterior probability calculated in the previous time step 

of the learning process. [41] 

2.6.2 Reactive Learning  

   The process of updating a belief without having the actual knowledge of what needs to be 

learnt or observed is called as Reactive Learning. This method is particularly useful when the 

underlying model of the agent or the environment is not known clearly and are designated as 

black box. Reactive learning can be seen in agents which use connectionist systems such as 

neural networks. Neural networks depend on the mechanism which maps the inputs to output 

data samples using inter-connected computational layers. Learning is done by the adjustment 

of the synaptic weights between the layers. In [39], reactive multi-agent based feed forward 

neural networks have been used and its application to the identification of non-linear dynamic 

system have been demonstrated. In [40] many other reactive learning methods such as 

accidental learning, go-with-the-flow, channel multiplexing and a shopping around approach 

have been discussed. Most of these methods are rarely employed in a real application 

environment as they depend on the application domain. [41] 

2.6.3 Learning Based on Consequences  

   Learning methods presented in the previous sections were concerned with understanding the 

environment based on the belief model update and analysis of patterns in sample 

observations. This section will deal with the learning methods based on the evaluation of the 

goodness of selected action. This may be performed by reinforcement learning methods.[41] 
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2.7 Roles of MAS 

2.7.1 Simulation of complex phenomena 

   Multi-agent systems are used to simulate interactions between autonomous agents. We try 

to determine the evolution of this system in order to predict the resulting organization. For 

example, in sociology, we can configure the different agents that make up a community. By 

adding constraints, we can try to understand which will be the most efficient component to 

achieve an expected result (construction of a bridge). They even make it possible to 

experiment with scenarios that would not be feasible on real populations, whether for 

technical or ethical reasons [23]. 

2.7.2 Solve a problem in a distributed way 

   Agent actions are object transformations related to the description of a problem.[14] 

2.7.3 Manage and maintain a work environment 

   The physical or social actions carried out by agents are real actions, they evolve over time 

and modify the world: football robots, agents negotiating a meeting with the user's 

profile.[14] 

2.7.4 Program conception 

   At the same time, software engineering has evolved into increasingly autonomous 

components. MASs can be seen as the meeting of software engineering and distributed 

artificial intelligence, with a very important contribution from distributed systems. Compared 

to an object, an agent can take initiatives, can refuse to obey a request, can move around ... 

Autonomy allows the designer to concentrate on a humanly understandable part of the 

software [24] 

2.8 Communication in Multi-Agent System  

   Communication is one of the crucial components in multi-agent systems that needs  careful  

consideration.  Unnecessary  or  redundant  intra-agent  communication  can  increase the cost 

and cause instability. Communication in a multi-agent system can be classified as two types. 

This is based on the architecture of the agent system and the type  of  information  which  is  

to  be  communicated  between  the  agents[18]. The various  issues  arising  in  MAS  system  

with  homogeneous  and  heterogeneous architecture has been considered and explained by 

using a predator/prey and by the  use of robotic soccer games[16]. Based on the information 

communication between the agents [25] ,  MAS  can  classified  as  local  communication   or  

Blackboard.  Mobile  communication  can  be  categorized into class of local communication  

2.8.1   Local Communication  

   Local communication has no place to store the information and there is no intermediate 

communication media present to act as a facilitator. The term message passing is used to 

emphasize the direct communication between the agents. Figure 12 shows the structure of the 
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message passing communication between agents. In this type of communication, the 

information flow is bidirectional. It creates a distributed architecture and it reduces the 

bottleneck caused by failure of central agents[41]. This type of communication has been used 

in [26] [27] [28]. 

 

Figure 12: Message Passing Communication between agents[41] 

2.8.2 Blackboards 

   Another way of exchanging information between agents is through Blackboards Agent-

based blackboards, like federation systems, use grouping to manage the  interactions between 

agents. There are significant differences between the federation  agent architecture and the 

blackboard communication.  

   In blackboard communication, a group of agents share a data repository which is provided 

for efficient storage and retrieval of data actively shared between the agents. The repository 

can hold both the design data as well as the control knowledge that can be accessed by the 

agents. The type of data that can be accessed by an agent can be controlled through the use of 

a control shell. This acts as a network interface that notifies the agent when relevant data is 

available in the repository. The control shell can be programmed to establish different types of 

coordination among the agents. Neither the agent groups nor the individual agents in the 

group need to be physically located near the blackboards. It is possible to establish 

communication between various groups by remote interface communication. The major issue 

is due to the failure of blackboards. This could render the group of agents useless depending 

on the specific blackboard. However, it is possible to establish some redundancy and share 

resources between various blackboards. Figure 13. shows a single blackboard with the group 

of agents associated with it. Figure 14. shows blackboard communication between two 

different agent groups and also the facilitator agents present in each group. [41] 

 

Figure 13: Blackboard type communication between agents. [41] 
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Figure 14: Blackboard communication using remote communication between agent groups. 

[41] 

2.9 Advantages of MAS [15] 

   Main advantages of MAS are robustness and scalability.  

 Robustness refers to the ability that if control and  responsibilities are  sufficiently  

shared  among  agents  within  MAS,  the  system  can tolerate failures of one or more 

agents. 

 Scalability  of  MAS  originates  from  its  modularity.  It  should  be  easier  to  add  

new  agents  to  a MAS. 
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Conclusion 

   In  this  chapter, we talked about the agent, its types and characteristics, a  brief  survey  of  

the  existing  architectures in multi agents,  communication requirements, roles of MAS. 

  All this allowed us to take an expanded view of the agents, their method of work and their 

communication, especially in the event of a multiplicity of them, which will motivate us in 

further discoveries such as discovering the method of their work and their cooperation after 

contact and knowing the extent of their achievement of the desired goals. 
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Introduction 

   In the field of machine learning (ML), reinforcement learning (RL) has attracted the 

attention of the scientific community owing to its ability to solve a wide range of tasks by 

using a simple architecture and without the need for prior knowledge of the dynamics of the 

problem to solve.  

   RL has found uses in many applications, from finance and robotics, to natural language 

processing  and telecommunications. 

    The core of a RL system is the agent that operates in an environment that models the task 

that it has to fulfill. In all of the above applications, the RL agents interact with the 

environment via a trial and error approach, within which they receive rewards (reinforcement) 

for their actions.  

   This mechanism, similar to human learning, guides the agent to the improvement of its 

future decisions in order to maximize the upcoming rewards. Despite the success of this 

approach, a large number of real-world problems cannot be fully solved by a single active 

agent that interacts with the environment; the solution to that problem is the multiagent 

system (MAS), in which several agents learn concurrently how to solve a task by interacting 

with the same environment.  

   In Figure 15 , we show the representation of the RL structure for a single (a) agent and for 

an MAS (b). 

 

Figure 15: RL structure for a single agent and for an MAS  
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1. What is MARL? 

Definition: Multi-agent reinforcement learning is an extension of reinforcement learning 

concept to multi-agent environments. Reinforcement learning allows to program agents by 

reward and punishment without specifying how to achieve the task. Formally agent-

environment interaction in multi-agent reinforcement learning is presented as a discounted 

stochastic game. [30]   

   In the multi-agent scenario, much like in the single-agent scenario, each agent is still trying 

to solve the sequential decision-making problem through a trial-and-error procedure. The 

difference is that the evolution of the environmental state and the reward function that each 

agent receives is now determined by all agents' joint actions. As a result, agents need to take 

into account and interact with not only the environment but also other learning agents. A 

decision-making process that involves multiple agents is usually modeled through a stochastic 

game (Shapley, 1953), also known as a Markov game (Littman, 1994). 

   Therefore, MARL is the generalization of the Markov decision process to the multi-agent 

systems case, which known as stochastic game [31].    

1.1 Definition: A stochastic game is a tuple 〈�, ��, … , ��, �, ��, … , ��〉 [31] 

where  

 n is the number of agents 

 X is the finite set of environment states 

 ��, … , �� are the finite sets of actions available to the agents, yielding the joint action set 

 � = �� × … × �� , �: � × � × � → [0,1] is the state transition probability function. 

 ��: � × � × � → ℝ, i = 1 … n  are the reward functions of the agents. 

   We assume that the reward functions are bounded. In the multi-agent case, the state 

transitions are the result of the joint action of all the agents,������,�
� , … , ��,�

� �
�

, �� ∈ �, ��,� ∈

��, where T denotes vector transpose. 

   The policies ℎ�: � × �� → [0,1]  form together the joint policy h. Because the rewards ��,��� 

of the agents depend on the joint action, their returns depend on the joint policy: 

��
�(�) = ��∑ ����,���

�
��� ��� = �, ℎ�……………(8) 

   The Q-function of each agent depends on the joint action and on the joint policy,            

��
�: � × � → ℝ   with     

��
�(�, �) = ��∑ ����,���

�
��� ��� = �, �� = �, ℎ� …………(9) 
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2. MARL categories  

   MARL algorithms can be coarsely divided into three groups depending on the kind of reward 

given by the environment: fully cooperative, fully competitive, and mixed cooperative–

competitive. [32] 

2.1 Cooperative: All agents working towards a common goal. [32] 

2.2 Competitive: Agents competing with one another to accomplish a goal[32] 

2.3 Some mix of the two: Group of coordinating agents in competition with an other group of 

coordinating agents. [32] 

   The best way to understand this category is the following example: Think a 5 vs 5 basketball 

game, where individuals on the same team are coordinating with one another, but the two 

teams are competing against one another. [32] 

3. Benefits of MARL 

   Experience sharing can help RL agents with similar tasks learn faster and reach better 

performance. For instance, the agents can exchange information using communication [33] , 

skilled agents may serve as teachers for the learner[34], or the learner may watch and imitate 

the skilled agents [35]. 

   A speed-up can be realized in MARL thanks to parallel computation, when the agents 

exploit the decentralized structure of the task. 

   When one or more agents fail in a multi-agent system, the remaining agents can take over 

some of their tasks. This implies that MARL is inherently robust. Furthermore, by design 

most multi-agent systems also allow the easy insertion of new agents into the system, leading 

to a high degree of scalability. 

   Existing MARL algorithms often require some additional preconditions to theoretically 

guarantee and to exploit the above benefits . Relaxing these conditions and further improving 

the performance of MARL algorithms in this context is an active field of study [35]. 

4. Limits of MARL 

   The transition from single-agent to multi-agent settings introduces new challenges that 

require a different design approach for the algorithms, the most important limits are: 

4.1 Non stationarity  

   The environment in a multi-agent setting can be modified by the actions of all agents; thus, 

from the single-agent perspective, the environment becomes non-stationary. The effectiveness 

of most reinforcement learning algorithms is tied to the Markov property, which does not hold 

in non-stationary environments [36]. Policies created in a non-stationary environment are 

deemed to have become outdated. Despite the loss of theoretical support, algorithms designed 
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for the single-agent setting have been applied in multi-agent settings, such as independent 

learners (IL), occasionally achieving desirable results [33] 

4.2 Scalability  

   As the number of agents increases, there is a growth in the joint action space. For this 

reason, centralized approaches, in which an observer selects the actions after receiving the 

action–state information of every agent, require large amounts of computational resources and 

memory to work with more than a couple of agents. A possible solution to the curse of 

dimensionality in MARL is to use independent learners, but as we have seen, this approach is 

unable to obtain consistent results in a non-stationary environment. A third model of agent 

connection is the decentralized setting with networked agents. In this setting, every agent is 

able to interact with the environment and to exchange information with few other agents 

(those in its vicinity), creating a time-varying communication network between all the agents. 

Algorithms developed for this setting are scalable to a massive number of agents and more 

real-world-oriented applications, as the absence of a central controller and uncertainty in 

communication links are typical requirements in a large number of applications. [30] 

5. Multi-agent reinforcement learning goals  

5.1 Convergence 

   Convergence to equilibria is a basic stability requirement . It means the agents' strategies 

should eventually converge to a coordinated equilibrium. [30] 

5.2 Alternative to rationality 

   An alternative to rationality is the concept of no-regret, which is defined as the requirement 

that the agent achieves a return that is at least as good as the return of any stationary strategy, 

and this holds for any set of strategies of the other agents. This requirement prevents the 

learner from ‘being exploited’ by the other agents. [30] 

5.3 Optimality/Compatibility/Safety 

   Targeted optimality/compatibility/safety are adaptation requirements expressed in the form 

of bounds on the average reward . Targeted optimality demands an average reward, against a 

targeted set of algorithms, which is at least the average reward of a best-response. 

Compatibility prescribes an average reward level in self-play, i.e., when the other agents use 

the learner’s algorithm. Safety demands a safety-level average reward against all other 

algorithms. An algorithm satisfying these requirements does not necessarily converge to a 

stationary strategy. [30] 

5.4 Stability and adaptation 

   MARL  can also be related to stability and adaptation. For instance, opponent-independent 

learning is related to stability, whereas opponent-aware learning is related to adaptation. An 

opponent-independent algorithm converges to a strategy that is part of an equilibrium solution 

regardless of what the other agents are doing. An opponent-aware algorithm learns models of 
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the other agents and reacts to them using some form of best-response. Prediction and 

rationality are related to stability and adaptation, respectively. Prediction is the agent’s 

capabilityto learn accurate models of the other agents. An agent is called rational if it 

maximizes its expected return given its models of the other agents. [30] 

 

6. MARL algorithms 

   MARL algorithms can be classified along the categories or task type previously cited 

   The type of task considered by the learning algorithm leads to a corresponding classification 

of MARL techniques into those addressing  cooperative, competitive, or mixed stochastic 

games. 

   A significant number of algorithms are designed for static (stateless) tasks only. 

   The following table summarizes the MARL algorithms by task type (category) 

 

Cooperative 
competitive 

Mixed 

Static Dynamic Static Dynamic 

 JAL 
 FMQ 

 Team-Q 
 Distributed-

Q 
 OAL 

 Minimax-Q  Fictitious 
Play 

 MetaStrategy 
 IGA 
 WoLF-IGA 
 GIGA 
 GIGA-

WoLF 
 AWESOME 
 Hyper-Q 

 Single-agent 
RL 

 Nash-Q 
 CE-Q 
 Asymmetric-

Q 
 NSCP 
 WoLF-PHC 
 PD-WoLF 
 EXORL 

 

Table 01: Breakdown of MARL algorithms by the type of task they address. Reproduced 

from [37] 
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Conclusion 

   Multi-agent reinforcement learning (MARL ) is a young, but active and rapidly expanding 

field of research. MARL aims to provide an array of algorithms that enable multiple agents to 

learn the solution of difficult tasks, using limited or no prior knowledge. To this end, MARL 

integrates results from single-agent RL , game theory, and direct policy search. 

   This chapter has provided an extensive overview of MARL . we have presented what is 

MARL and its categories, the main benefits and challenges of MARL , as well as the different 

viewpoints on defining the MARL learning goal. Then, we have gave in a summarized way a 

set of MARL algorithms for fully cooperative, fully competitive, and mixed tasks. 
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Introduction 

 

  As we have seen previously, multi Agent systems (MAS) and reinforcement learning can 

solve specific problems using multiple agents.  

   The MAS and RL “mix”, using simple agents, makes it possible to solve complex problems. 

We will try to combine the advantages of both tools to create a flexible and efficient system. 

   In this section, that represents our work, we will design four models of reinforcement 

learning: one in the case of single agent and three in multi agent case using the Q-Learning 

algorithm.  

   First, we will represent our agents in a way that permits to them to work in different 

environments and easy to manipulate, by using “Threads”. This way of representation will 

help us to adapt the Q-Learning algorithm to work in a multi agent system; because the        

Q-learning is a single agent reinforcement learning algorithm.      

   Then, we will present our models separately starting by the basic one: the single agent 

model for giving a general view of reinforcement learning and seeing the behavior of the 

agent during its interaction with the environment. 

   After that, we will enter in the multi agent framework starting by a competitive model, then 

a cooperative model, and finally a communicative model. 

   Finally, we will give a statistical comparison between our models according to the number 

of attempts and the time token to achieve the goal in the same environment conditions and see 

which model is more efficient. 
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1.Q learning  

1.1 What is “Q”? 

   The “Q” in Q-learning stands for quality. Quality here represents how useful a given action 

is in gaining some future rewards.[41] 

1.2 The Q-Learning algorithm in RL 

   Of all the types of algorithms available in reinforcement learning, ever wondered why this 

Q-learning has always been the sought-after one? Here is the answer: 

<< Q-learning is a model-free, value-based, off-policy learning algorithm >> 

 Model-free: The algorithm that estimates its optimal policy without the need for any 

transition or reward functions from the environment. 

 Value-based: Q learning updates its value functions based on equations, (say Bellman 

equation) rather than estimating the value function with a greedy policy. 

 Off-policy: The function learns from its own actions and doesn’t depend on the current 

policy 

   In the Q-Learning algorithm, the goal is to learn iteratively the optimal Q-value function 

using the Optimality function. 

   To do so, we store all the Q-values in a table that will be updated at each time step using the 

Q-Learning iteration.[41] 

1.3 Optimality function 

   Recall the definition of the (optimal) Q-function: 

�(�, �) ≜ �(�, �) + � ∑ �(� ′��, �)�∗(�′)�′  ……………..(10) 

   The optimality equation is then 

�∗(�) = �����(�, �), � ∈ � ……………..(11) 

1.4 Value iteration function 

   The value iteration function is given by: 

����(�) = ������(�, �) + � ∑ �(� ′��, �)��(� ′)�′ �, � ∈ � ……………..(12) 

   With �� ← �∗  it can be reformulated as: 

���� = �(�, �) + � ∑ �(� ′��, �)����′��(� ′, �′)�′  ……………..(13) 

   Then the update function become as: 

�(�, �) ← �(�, �) + ��� + �. ����′�(� ′, �′) − �(�, �)� , � ← �′ ……………..(14) 
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1.5 Rewards 

   Since the agent is reward motivated and going to learn how to control the moves by 

trial experiences in the environment, we need to decide the rewards and/or penalties and 

their magnitude accordingly. Here a few points to consider: 

 The agent should receive a high positive reward for a successful move because this 

behavior is highly desired. 

 The agent should be penalized if it moves to an obstacle state. 

 

1.6 State Space 

   The State Space is the set of all possible situations our agent could inhabit. The state should 

contain useful information the agent needs to make the right action. 

 

1.7 Action Space 

   In each case, the agent takes action .The action in our case can be to move in the direction 

or to determine the announcement of the achievement of the desired goal. 

   This is the action space: the set of all the actions that our agent can take in a given state. 

 

1.8 Q-learning hyper parameters 

 

   The hyper parameters of your model are the parameters that are external to the model that 

you will set yourself (think of the   value in an algorithm such as  -nearest neighbors; this is a 

hyper parameter. You have to set it yourself as there is nothing inherent in the data that 

determines what   should be).[08] 

   The three most important hyper parameters for your agent are as follows: 

Alpha: The learning rate 

Gamma: The discount rate 

Epsilon: The exploration rate 

 

1.8.1 Alpha – deterministic versus stochastic environments 

   The agent's learning rate “alpha” ranges from zero to one. Setting the learning rate to zero 

will cause your agent to learn nothing, all of its exploration of its environment and the 

rewards it receives will affect its behavior at all, and it will continue to behave completely 

randomly. 
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   Setting the learning rate to one will cause your agent to learn policies that are fully specific 

to a deterministic environment. One important distinction to understand is between 

deterministic and stochastic environments and policies. 

   Briefly, in a deterministic environment, the output is totally determined by the initial 

conditions and there is no randomness involved. We always take the same action from the 

same state in a deterministic environment. 

   In a stochastic environment, there is randomness involved and the decisions that we make 

are given as probability distributions. In other words, we don't always take the same action 

from the same state.[08] 

 

1.8.2 Gamma – current versus future rewards 

   Let us discuss the concept of current rewards versus future rewards. Your agent's discount 

rate gamma has a value between zero and one, and its function is to discount future rewards 

against immediate rewards. 

   Your agent is deciding what action to take based not only on the reward it expects to get for 

taking that action, but on the future rewards it might be able to get from the state it will be in 

after taking that action. 

   One easy way to illustrate discounting rewards is with the following example of a mouse in 

a maze collecting cheese as rewards and avoiding cats and traps (that is, electric shocks): 

 

Figure 16: Reward illustration 
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 The rewards that are closest to the cats, even though their point values are higher (three 

versus one), should be discounted if we want to maximize how long the mouse agent lives and 

how much cheese it can collect. These rewards come with a higher risk of the mouse being 

killed, so we lower their value accordingly. In other words, collecting the closest cheese 

should be given a higher priority when the mouse decides what actions to take. 

   When we discount a future reward, we make it less valuable than an immediate reward 

(similar to how we take into account the time value of money when making a loan and treat a 

dollar received today as more valuable than a dollar received a year from now). 

   The value of gamma that we choose varies according to how highly we value future 

rewards: 

 If we choose a value of zero for gamma, the agent will not care about future rewards at 

all and will only take current rewards into account 

 Choosing a value of one for gamma will make the agent consider future rewards as 

highly as current rewards[08] 

1.8.3 Epsilon – exploration versus exploitation 

   Your agent's exploration rate epsilon also ranges from zero to one. As the agent explores its 

environment, it learns that some actions are better to take than others, but what about states 

and actions that it hasn't seen yet? We don't want it to get stuck on a local maximum, taking 

the same currently highest-valued actions over and over when there might be better actions it 

hasn't tried to take yet. 

   When you set your epsilon value, there will be a probability equal to epsilon that your agent 

will take a random (exploratory) action, and a probability equal to 1-epsilon that it will take 

the current highest Q-valued action for its current state.  

As the agent gets more and more familiar with its environment, we want it to start sticking to 

the high-valued actions it's already discovered and do less exploration of the states it hasn't 

seen. We achieve this by having epsilon decay over time as the agent learns more about its 

environment and the Q-table converges on its final optimal values. There are many different 

ways to decay epsilon, either by using a constant decay factor or basing the decay factor on 

some other internal variable. Ideally, we want the epsilon decay function to be directly based 

on the Q-values that we've already discovered.[08] 
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1.9 Q-learning algorithm stages 

 

 

 

Figure 17: Q-learning Algorithm steps [08] 

 

1.10 The procedural form of Q-learning algorithm 
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1.10.1 Step 1: Initialize the Q-table:  

   The Q-table is a simple data structure that we use to keep track of the states, actions, and 

their expected rewards. More specifically, the Q-table maps a state-action pair to a Q-value 

(the estimated optimal future value) which the agent will learn. At the start of the Q-Learning 

algorithm, the Q-table is initialized to all zeros indicating that the agent doesn’t know anything 

about the world. As the agent tries out different actions at different states through trial and 

error, the agent learns each state-action pair’s expected reward and updates the Q-table with 

the new Q-value. Using trial and error to learn about the world is called Exploration. 

   One of the goals of the Q-Learning algorithm is to learn the Q-Value for a new environment. 

The Q-Value is the maximum expected reward an agent can reach by taking a given action A 

from the state S. After an agent has learned the Q-value of each state-action pair, the agent at 

state S maximizes its expected reward by choosing the action A with the highest expected 

reward. Explicitly choosing the best known action at a state is called Exploitation.[08] 

 

 

Figure 18: Example Q-table mapping states and actions to their corresponding Q-value 

 

1.10.2 Step 02: Choose an action using the Epsilon-Greedy Exploration Strategy:  

   A common strategy for tackling the exploration-exploitation tradeoff is the Epsilon Greedy 

Exploration Strategy. 

 At every time step when it’s time to choose an action, roll a dice 
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 If the dice has a probability less than epsilon, choose a random action 

 Otherwise take the best known action at the agent’s current state 

   Note that at the beginning of the algorithm, every step the agent takes will be random which 

is useful to help the agent learn about the environment it’s in. As the agent takes more and 

more steps, the value of epsilon decreases and the agent starts to try existing known good 

actions more and more. Note that epsilon is initialized to 1 meaning every step is random at 

the start. Near the end of the training process, the agent will be exploring much less and 

exploiting much more.[08] 

1.10.3 Step 03:  Measure Reward:  

   He takes action and waits for the reward result.[08] 

1.10.4 Step 04: Evaluation: 

   Needs job update the function Q(s,a). 

   This process is repeated again and again until the learning is stopped. In this way the Q-

Table is been updated and the value function Q is maximized. Here the Q(state, action) 

returns the expected future reward of that action at that state.[08] 

 

 

Figure 19: Q-learning update function 
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2. Our case: scenario of robots self

   In the context of teaching robots to self

outside of the user's control, as these 

After launch, the robots must reach a specific location.

   In order to ensure maximum efficiency, the robots will need to know the path between the 

launch area and the target area without hitting some of 

   We will be using Q-Learning to get this job done!

 

2.1 Define the Environment 

   The environment consists of states, actions, and rewards. States and actions are inputs for 

the Q-learning agent, while the possible actions are the

2.1.1 States 

   The states in the environment are all of the possible locations within the environment. Some 

of these locations are obstacles (black squares), while other locations are aisles that the robot 

can use to travel  (white squares). The green square indicates the goal state.

   The bottom line used as robot's start positions

The agent starts in the white squares of the bottom line as per his ID for example the agent "1" 

will start in the position (10,1)

 

   The agent's objective is to know the path between the starting area and the arrival area, 

passing through the permitted areas

Agent 
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obots self drive 

In the context of teaching robots to self-driving, each robot makes decisions on its own, 

outside of the user's control, as these decisions will be appropriate for the environment.

bots must reach a specific location. 

In order to ensure maximum efficiency, the robots will need to know the path between the 

launch area and the target area without hitting some of the obstacles in place.

Learning to get this job done! 

 

The environment consists of states, actions, and rewards. States and actions are inputs for 

learning agent, while the possible actions are the agent’s outputs. 

The states in the environment are all of the possible locations within the environment. Some 

of these locations are obstacles (black squares), while other locations are aisles that the robot 

es). The green square indicates the goal state.

as robot's start positions. Let us take a simple example of 10x10 states

The agent starts in the white squares of the bottom line as per his ID for example the agent "1" 

the position (10,1)  

Figure 20 : States illustration 

to know the path between the starting area and the arrival area, 

passing through the permitted areas only. 

Our proposed models 

 

driving, each robot makes decisions on its own, 

decisions will be appropriate for the environment. 

In order to ensure maximum efficiency, the robots will need to know the path between the 

the obstacles in place. 

The environment consists of states, actions, and rewards. States and actions are inputs for 

The states in the environment are all of the possible locations within the environment. Some 

of these locations are obstacles (black squares), while other locations are aisles that the robot 

es). The green square indicates the goal state. 

s take a simple example of 10x10 states 

The agent starts in the white squares of the bottom line as per his ID for example the agent "1" 

 

to know the path between the starting area and the arrival area, 
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   As shown in the image above, there are 100 

arranged randomly in a grid co

identified by its row and column index 

2.1.2 Actions 

   The actions that are available to the agent are to move the robot in one of four directions:

 Up 

 Right 

 Down 

 Left 

2.1.3 Rewards 

   The final component of the environment that we need to identify is rewards. To help the 

agent learn, each state (location) is assigned a value.

for each state.  
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As shown in the image above, there are 100 possible cases (locations). These states are 

arranged randomly in a grid containing 10 row, and 10 columns. Each location can thus be 

ied by its row and column index ,for example the goal position is (4,

available to the agent are to move the robot in one of four directions:

The final component of the environment that we need to identify is rewards. To help the 

agent learn, each state (location) is assigned a value. The figure bellow shows rewards value 

Figure 21: Reward values 

Our proposed models 

 

possible cases (locations). These states are 

columns. Each location can thus be 

,7). 

available to the agent are to move the robot in one of four directions: 

The final component of the environment that we need to identify is rewards. To help the 

The figure bellow shows rewards value 
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   Via its cumulative rewards (by reducing cumulative penalties), the agent can find the 

shortest paths between the access area (green square) and all other locations where the robot is 

allowed to travel (white squares). The agent will also need to learn how to avoid hitting any of 

the obstacles (black squares)! 

 

2.2 Our models 

2.2.1 Single Agent model  

   The agent is alone in the environment and will search for the target by following the steps of 

the  Q-learning previously described. 

2.2.2 Competitive model (non centralized)  

   In this model, the number of agents will be greater or equal to two, where each agent has its 

own Q-table  and is independent of the others, so each agent will search for the target alone, 

so there is something of competition. 

2.2.3 Cooperative model (centralized) 

 The same characteristics as the previous model, but this time the Q-table will be shared by 

all agents, and therefore it will be a kind of cooperation between them in finding the way 

to the goal 

 In the event that one of the agents finds the way, it will be followed by the other agents 

even though they do not find the way 

 This model will allow to shorten the time due to the advantage of cooperation in it. 

2.2.4 Communicative model 

 After reaching a specific number of operations without reaching the goal, we will start at 

this models. 

 In this model, there will be communication between agents in making decisions to move 

from one state to another. 

 This communication is based on asking questions by an agent in a current state to other 

agents about the decision they made when they were in that state . 
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2.3 Adapt the Q-learning algorithm to work in MAS 

   Every one know that Q-Learning algorithm is intended to work in non-multi-agent systems, 

so in order to adapt it to work in a multi-agent system, we proposed a simple approach which 

is to use threads. 

   We used threads as agents and each one has an identifier that distinguishes him from the 

others 

2.3.1 Using threads 

   The use of threads in our application was in the function <startgame> which is responsable 

to start agent to work by the command < . start > as the Figure shows 

 

 

Figure 22: code part for thread usage 

 

2.3.2 The purpose behind using threads 

   The goal behind using threads is that they are easy to manipulate by virtue of our study of it 

over the previous years, in addition to the fact that the operating system monitors it 

automatically through the division of time and priorities, and any other matters related to it 
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2.4 Train the Models 

   All models are implemented through the same steps, but with a slight difference according 

to each model, such as the number of agents and the “common or private” Q-table. 

Our next task is for our agent to learn about their environment by applying the Q-Learning 

model. The learning process will follow these steps: 

1. Choose an infinite random state (white square) for the worker to start this new loop. 

2. Choose an action (move up, right, down, or left) for the current position. Actions will be 

determined using the greedy Epsilon algorithm. This algorithm will usually choose the 

most promising action of the agent, but will sometimes choose a less promising option to 

encourage the agent to explore the environment. 

3. Perform the chosen action, go to the next state (i.e. go to the next location). 

4. Get the bonus of moving to the new state. 

5. Update the Q value of the previous state and action pair. 

6. If  the  new (current) state is a terminal state, then go to #1. Otherwise, go to #2. 

7. This entire process will be repeated by a number of user-defined loops. This will give the 

agent enough opportunity to know the paths where the robot is allowed to walk, while 

avoiding hitting any of the obstacles at the same time! 

 

 

 

 

Figure 23: Initial window 
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2.4.1 Single Agent model training 

 

 After choosing single agent model, its window will appear 

 The user enters the number of episodes in addition to the rest of Q-Learning’s hyper 

parameters, maze height and width and goal position. 

 We click “save” in order to save these parameters, a confirmation message will appear. 

 Then click start button. 

 The agent will seek to find the target, and after finding it, the results will appear in the 

output field 

 To stop the model running click “stop” button and “back” to return at initial window 

 

The figure bellow shows the operations cited above  

 

 

 

 

Figure 24: Single Agent model window 

 

 

Back button Stop button Start button 

Output field 

Save button 

Parameters insertion 
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2.4.2 Multi agent competitive model training 

 After choosing multi agent competitive model, its window will appear. 

 The user enters number of episodes in addition to the rest of Q-Learning’s hyper 

parameters, maze height and width and goal position, but this time user should enter the 

number of agents also.  

 We click “save” in order to save these parameters, a confirmation message will appear. 

 Then click start button. 

 Agents will seek to find the target, and after finding it, the results will appear in the output 

field 

 To stop the model running click “stop” button and “back” to return at initial window 

NB: In this model, agents enter into a kind of competition, so each agent will search for the 

way alone without resorting to others. 

   What confirm this are the simulation results, where we often find that each agent takes his 

own path, except in some rare cases in which they take the same path, but this does not mean 

that they cooperate in searching for it, but rather the results of their search were similar. In 

addition to the results of the table for each agent where we find the results are not the same 

 

 

Figure 25: Multi Agent Competitive model window 

Back button Stop button Start button 

Output field 

Save button 

Parameters insertion 



Chapter 04                                                                                               Our proposed models 

 

 
50 

 

2.4.3 Multi agent cooperative model training 

 

 After choosing multi agent cooperative model, its window will appear. 

 The user enters the number of agents, number of episodes in addition to the rest of Q-

Learning's hyper parameters, maze height and width and goal position.  

 We click "save" in order to save these parameters, a confirmation message will appear. 

 Then click start button. 

 Agents will seek to find the target, and after finding it, the results will appear in the output 

field 

 To stop the model running click “stop” button and “back” to return at initial window 

 

NB: In this model, agents cooperate to find the target. 

   What confirm this are the simulation results, where we find that all agents take the same 

path. 

 

 

 

Figure 26: Multi Agent Cooperative model window 
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2.4.4 Multi agent communicative model training 

 

 After choosing multi agent communicative model, its window will appear. 

 The user enters the number of agents, number of episodes in addition to the rest of Q-

Learning's hyper parameters, maze height and width and goal position.  

 We click "save" in order to save these parameters, a confirmation message will appear. 

 Then click start button. 

 Agents will seek to find the target, and after finding it, the results will appear in the output 

field 

 To stop the model running click “stop” button and “back” to return at initial window 

 

NB: In this model, agents make communication between them to find the target. 

   What confirm this are the simulation results, where we find that some agents waiting in their 

current states to get information from the others in order to take the best decision to move. 

 

 

 

 

Figure 27: Multi Agent Communicative model window 
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3. Comparative study between models 

   In order to know which model was more efficient, we present a comparative study between 

our models. This study is based on two factors: the number of attempts and the time token by 

all agents to rich the goal state. 

   The following table represents the results of eight simulations for each model 

Model Simulation Attempts Time (ms) 
Average 
 attempts 

Average 
 time (ms) 

Single agent 

01 75345 4500 

72828 4349,68 

02 72743 4345 

03 73043 4363 

04 72390 4324 

05 74060 4423 

06 73009 4360 

07 72003 4300 

08 70032 4183 

Multi agent  
competitive 

01 75013 4480 

76593 4574,38 

02 76103 4545 

03 77752 4644 

04 79068 4722 

05 75639 4518 

06 75107 4486 

07 75871 4531 

08 78194 4670 

Multi agent 
 cooperative 

01 12331 1980 

12726 2043,35 

02 14956 5613 

03 12553 2016 

04 12907 2072 

05 12091 1941 

06 13339 2142 

07 12936 2077 

08 10691 1717 

Multi agent 
communicative 

01 159555 25407 

158262 25201,15 

02 160092 25493 

03 157242 25039 

04 154667 24629 

05 164989 26272 

06 160074 25490 

07 153579 24455 

08 155900 24825 

Table 02: Statistic comparative table between models  
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3.1 Observation 

   Through the simulation results, we note that the agents in the cooperative model made the 

least number of attempts in the least time, in contrast to the communicative model, which took 

a large number of attempts and time during the agents’ search for the goal. As for the 

individual and competitive models, their results were very conflicting. 

3.2 Interpretation 

   The results of the previous simulation can be interpreted as follows: 

 Cooperative model: The search time and the number of attempts were few due to the 

presence of direct cooperation between the agents and their participation in the search 

for the target. 

 Communicative model: the length of time can be explained by the presence of a time 

margin in the process of communication between agents. As for the high number of 

attempts, it is because the agent was originally trying some states, and when he 

communicates, he will try the states suggested by other agents. 

 Single and Competitive models: the convergence of the results of these two models 

is because they are two models with the same architecture: the competitive model is a 

group of individual models that compete. 

3.3 Result 

   From the foregoing, we conclude that the cooperative model was more effective in 

accomplishing tasks, followed by the individual and competitive models, and then the 

communicative model. 
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Conclusion 

  In this chapter, we have presented the implementation of the Q-Learning algorithm in 

different types of systems 

   First, we have presented the Q-Learning algorithm, its theoretical concepts and how to adapt 

it to work in multi agent system.    

. We have opted for choices of tools and techniques that we have used. 

  Then, we have exposed the basic functionalities offered in our models through examples. 

  Finally, we have presented a statistic comparative study between our proposed models in 

order to know which model was more efficient.  
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Conclusion 

   

   As mentioned in the introduction, the point of view of artificial intelligence that we have 

adopted throughout this thesis is to design systems that operate in a rational manner (i.e. to 

achieve a goal), a system decided by the term "agent". This let us to take a first look at 

machine learning and specifically the field of reinforcement learning, which fits this 

definition well. But since we are also interested in the results that can be obtained from 

emerging phenomena, we also decided to work in the field of multi-agent systems starting 

with a single agent and applying inter-agent communication models. 

   Therefore, this thesis was an opportunity to use simultaneously the above propositions via 

the Q learning algorithm. 

   The mentioned algorithm is one of the most commonly used algorithms to solve the 

learning problem, which is based on the Q function, to ensure the creation of the last function 

and the proper operation of the system. 

   For the individual agent, it is designed in such a way that immediate behavior is taken, 

adapted to the environment and rewarded for taking the best possible comportment with it. 

   As for the multi-agents, a unique model that has always been difficult to achieve by using 

Q-learning, so we adapted the Q Learning algorithm via multi-threaded programming, which 

greatly helped us to implement this model and made it easy to adapt the algorithm to 

competitive and collaborative multi-Agent.  

   As for the communicative model, we found some obstacles, especially with regard to 

finding a way for agents to communicate effectively, so we proposed our own method that 

proved to be remarkably effective. It is worth noting that there is no unified or 100% 

effective communication system so far, as all communication systems are just ssuggested by 

developers 

   Finally, and as a result of the statistical comparative study between models, we arrived to 

know that the cooperative model was the more efficient one.  

 



                       References 

 
56 

 

[01] Artificial Intelligence and Machine Learning Fundamentals by Zsolt Nagy 

[02] Machine Learning Hands-On for Developers and Technical Professionals by Jason Bell 

[03] An Introduction to Deep Reinforcement Learning Vincent François-Lavet, Peter 

Henderson, Riashat Islam, Marc G. Bellemare and Joelle Pineau (2018) 

 [04] Supervised-Learning-[SB-Kotsiantis] 

[05] Kaelbling, Littman, & Moore, 96 

[06] Reinforcement Learning: An Introduction Richard S. Sutton and Andrew G. Barto2014, 

2015 

[07] https://web.stanford.edu/class/cme241/lecture_slides/rich_sutton_slides/5-6-MDPs.pdf 

[08] Hands-On Q-Learning with Python: Practical Q-learning with OpenAI Gym (English 

Edition) by Nazia Habib  

[09] C.J.C.H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3–4):279–292, 1992 

[10] Dr. Sunil Kumar Chinnamgari - R Machine Learning Projects_ Implement supervised, 

unsupervised, and reinforcement learning techniques using R 3.5 

[11] ğurcan Özalp, Artificial Intelligence Engineer /Researcher- ugurcanozalp.medium.com 

[12] Reinforcement Learning in a Nutshell V. Heidrich-Meisner, M. Lauer, C. Igel and M. 

Riedmiller,January 2007 

[13] S. Russel, P. Norvig, “Artificial intelligence – A modern approach”, Prentice Hall, 1995. 

[14]Introduction aux Systèmes Multi-Agents C. HANACHI, C. SIBERTIN-BLANC 

Université Toulouse I & IRIT. 

 [15] Agents and Multi-Agent Systems: A Short Introduction for Power Engineers -Technical 

ReportDr. Mevludin Glavic May, 2006 

[16] P.  Stone,  M.  Veloso,  “ Multiagent  systems:  A  survey  from  a  machine  learning 

perspective” , Autonomous Robots, vol. 8, no. 3, 2000. 

[17] Tien C.Hsia and Michael Soderstrand, “Development of a micro robot system for playing 

soccer games,” In Proceedings of the Micro-Robot World Cup Soccer Tournament, pp.  149-

152, 1996 

[18] Balaji P.G and D.Srinivasan, “Distributed multi-agent type-2 fuzzy architecture for urban  

traffic signal control,” In IEEE Internationa Conference on Fuzzy Systems, pp. 1624-1632, 

2009     

[19] Lynne E.Parker, “Heterogeneous multi-robot cooperation,” PhD Thesis, Massachusetts  

Institute of Technology, 1994 



                       References 

 
57 

 

[20] Lynne E.Parker, “Life-long adaptation in hetergeneous multi-robot teams:response to  

continual variation in robot performance,” Autonomous Robots, vol. 8, no. 3, 2000 

[21] Rafal Drezewski and Leszek Siwik, “Co-evolutionary multi-agent system with 

predatorprey mechanism for multi-objective optimization,” In Adaptive and Natural 

Computing Algorithms, LNCS, vol. 4431, pp. 67-76, 2007 

[22] J.  Doran,  S.  Franklin,  N.  R.  Jenkins,  T.  J.  Norman,  “ On  cooperation  in  multi-

agent systems” , In UK Workshop on Foundations of Multi-agent Systems, Warwick, 1996. 

[23] Nigel Gilbert, « Computational Social Science », Agent-Based Modelling and Simulation 

in the Social and Human Sciences, Bardwell Press, 2007 

[24] Ferber, P.52-54 

[25] Budianto, “An overview and survey on multi agent system,” in Seminar Nasional “Soft  

Computing, Intelligent Systems and Information Technology” , SIIT 2005 

[26] Choy, M C, D Srinivasan and R L Cheu, "Neural Networks for Continuous Online  

Learning and Control," IEEE Transactions on Neural Networks, vol. 17, no. 6, pp. 1511-1531, 

2006 

[27] M.C.Choy, D.Srinivasan and R.L.Cheu, “ Cooperative, hybrid agent architecture for 

realtime traffic signal control,” IEEE Trans. On Systems, Man and Cybernetics-Part A:  

Systems and Humans, vol. 33, no. 5, pp. 597-607, 2003  

[28]  Balaji P.G, D.Srinivasan and C.K.Tham, “ Coordination in distributed multi-agent 

system using type-2 fuzzy decision systems,” in Proceedings of IEEE International 

Conference on Fuzzy Systems, pp. 2291-2298, 2008 

[29]  Susan E.Lander, “Issues in multiagent design systems,” IEEE Expert, vol.12, no. 2 , pp. 

18-26, 1997 

[30] Multi-Agent Reinforcement Learning Algorithms Natalia Akchurina Dissertation in 

Computer Science submitted to the Faculty of Electrical Engineering, Computer Science and 

Mathematics University of Paderborn in partial fulfillment of the requirements for the degree 

of doctor rerum naturalium (Dr. rer. nat.) Paderborn, February 2010 

[31] L. Bus¸oniu, R. Babuˇ ska, and B. De Schutter, “Multi-agent reinforcement learning: An 

overview,” Chapter 7 in Innovations in Multi-Agent Systems and Applications – 1 (D. 

Srinivasan and L.C. Jain, eds.), vol. 310 of Studies in Computational Intelligence, Berlin, 

Germany: Springer, pp. 183–221, 2010. 

[32] Pierre Haou Multi-Agent Reinforcement Learning (MARL) and Cooperative AI 

[33] Tan, M.: Multi-agent reinforcement learning: Independent vs. cooperative agents. (1993) 



                       References 

 
58 

 

[34] Clouse, J.: Learning from an automated training agent. In: W orking Notes Workshop on 

Agents that Learn from Other Agents, 12th International Conference on Machine Learning 

(ICML-95). Tahoe City, US (1995) 

[35] Price, B., Boutilier, C.: Accelerating reinforcement learning through implicit imitation. 

Journal of Artificial Intelligence Research 19, 569–629 (2003) 

[36] Sutton, R.S.; Barto, A.G. Reinforcement Learning I: Introduction; MIT Press: 

Cambridge, MA, USA, 1998 

[37] Bus¸oniu, L., Babuˇ ska, R., De Schutter, B.: A comprehensive survey of multi-agent 

reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics. Part C: 

Applications and Reviews 38(2), 156–172 (2008) 

[38]  L. Lhotska, “Learning in multi-agent systems: Theoretical issues,” Computer Aided  

Systems Theory – EUROCAST’97, LNCS-1333, pp.394-405, 1997 

[39]  Gomez.F, Schmidhuber.J and Miikkulainen.R, “Efficient non-linear control through 

neuro evolution,” Proceedings of ECML 2006, pp. 654-662  

[40]  Jiming Jiu, Autonomous Agents and Multi-agent Systems, World Scientific Publication 

[41] P.G. Balaji and D. Srinivasan An Introduction to Multi-Agent Systems Department of 

Electrical and Computer Engineering National university of Singapore 

[42] A beginners Guide to Q-Learning, Model Free Reinforcement Learning By Chathurangi 

Shyalika, 2019. 


