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Abstract

With the prevalence of information technology (IT), recommender system has long been
acknowledged as an effective tool for addressing information overload problem, which
makes users easily filter and locate information of their preferences, and allows on-
line platforms to widely publicize the information they produce. In the field of se-
quential recommendation, deep learning methods have received a lot of attention in
the past few years and surpassed traditional models such as Markov chain-based and
factorization-based ones. In this view, this thesis focuses on DL-based sequential rec-
ommender systems by taking the aforementioned issues into consideration. Specifically,
we illustrate the concept of sequential recommendation, propose a convolutional neural
network model to show the effectiveness of sequential recommenders based on CNNs in
several real-life scenarios.

Keywords: Recommender systems, Sequential Recommendation, Sequential data,
Neural networks, Convolutional neural networks, Next-Item recommendation.
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Introduction

A. Background

In our everyday life we make decisions countless times, sometimes even unnoticed. How
to dress up in the morning considering our schedule? Which menu to pick in the restau-
rant? Which television to buy? Thousands of these everyday questions have to be
answered besides couple of crucial ones day by day. To make the correct decision in
some cases we ask our friend’s opinion or an expert, but there are other options that
raised recently to support us in our decisions. We not necessarily need to nag the li-
brarian or the vendor at the bookstore finding a book that would fit to our mood and
preferences, if we have the possibility using Amazon to recommend us a book based on
our previous readings. Youtube also recommends audiovisual content to its users based
on their previous views.

It is the recommender system which is considered one among the most powerful
tools in the present digital world. Explanations are usually provided by it to their
recommendations so that web users are helped to find its products, people and also their
friends who are missing in social communities. In the field of recommender system, there
are various methods and approaches which have been implemented.

Over the last two decades, there has been much work in both industry and academia to
develop new approaches to recommender systems. The interest still remains high because
it constitutes a problem-rich research area and because of the abundance of practical
applications that help users deal with information overload and provide personalised
recommendations, content, and services to them.

One of the first and quite successful research on this subject was the Music Genome
Project in 1999, which aims to “understand” and capture music through its properties.
To this end, more than 450 such properties have been revealed and their relations have
been described using an algorithm. The basis of the procedure is that when the user likes
a song, positive values are assigned to its specific properties (such as style, era, artist,
orchestration, beat, etc.). Songs with similar properties will then be further promoted
on the preference list and brought to the user’s attention. The huge advantage to
collaborative filtering is that very little information is sufficient at startup, while the
former unfortunately requires a lot of users and feedback to identify people with similar
tastes. However, the disadvantage is that usually it can hardly, or not at all make
recommendations outside the user’s music lists, since it is not building on the similarities
between users, only the “understanding” the properties of music as an entity. Pandora
Internet Radio, which has 250 million users, is based on this project even today [1].

We have learned that people are hungry for effective tools for information filtering,
and that collaborative filtering is an exciting complement to existing filtering systems.
Users value both the taste-based recommendations, and the sense of community they
get by participating in a group filtering process. However, there are many open research
problems still in collaborative filtering, In the other hand there is an increasing atten-
tion on sequential recommendation systems to infer the dynamic user preferences with
sequential user interactions. While the semantics of an item can change over time and
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across users, the item correlations defined by user interactions in the short term can be
distilled to capture such change, and help in uncovering the dynamic user preferences.

The recommendation system is based on recommended techniques. The recom-
mended technique, also known as personalized information filtering, is used to predict
whether a given user will like a particular project (predictive problem) or to identify a
set of N items of interest to a given user (top-N recommendation) problem). The rec-
ommendation system proactively provides users with items that may be of interest, es-
sentially by linking users and projects in a certain way, the input data source is followed
by a recommendation algorithm to generate recommendation results for personalized
recommendation. Different recommendation systems use different recommendation al-
gorithms, so the core of the recommendation system is to use different recommendation
algorithms according to different data sources [2].

Recently, deep learning has been revolutionizing the recommendation architectures
dramatically and brings more opportunities to improve the performance of recommender.
Recent advances in deep learning based recommender systems have gained significant
attention by overcoming obstacles of conventional models and achieving high recommen-
dation quality [3].

Given the practical importance of recommender systems, there has been increased
attention to sequential recommender systems in recent years. These systems differ
from many legacy recommenders both in terms of the input they process and the way
they consider sequential information when generating the recommendations. Regarding
the input, sequential recommenders assume that the available preference information is
chronologically ordered or contains timestamps. As for the outputs, sequential methods
take this ordering into account when generating the recommendations, e.g., by focusing
on recent data, making repeated recommendations, or identifying temporal dependencies
in the data.

B. Problem Statement

Browsing on an e-commerce site, is naturally a sequential task, therefore using a matrix
completion formulation would neglect the sequential nature of the data. Using sequential
user interactions is especially important when there are many new or anonymous users as
no long-term historical data about the general tastes of these users is available. Although
convolutional neural networks have shown good results in sequence modelling tasks in
other domains, investigating their usage in sequential recommender systems remains an
open topic of research. The main research question of this thesis is thus formulated as:

How can convolutional neural networks

be used in sequential recommender

systems?
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C. Delimitations

This study is to focus on sequential recommender systems, Data used by sequential
recommender systems called implicit feedback, keeps the sequential order of actions. It
is in this context that sequential recommender systems have emerged.

However, e-commerce companies are not the only ones that use recommendation
systems to push customers to buy additional products. There are use cases in entertain-
ment, gaming, education, advertising, home decor, and some other industries. There
are different applications, from recommending music and events to furniture and dating
profiles.

D. Approach

To answer the research question, a sequential recommender system is presented, Our
deep learning approach is inspired by recent text generation techniques that use CNN
models capable of generating subsequent words from a given phrase (sequence of words).
For our recommendation problem, we replaced sequence of words with sequence of items
and applied the same methodology.

E. Outline

This thesis is structured in three chapters besides a general introduction and a general
conclusion:

� INTRODUCTION

An initiation to recommender systems and the background, problem statement,
and delimitations of the thesis.

� CHAPTER ONE: SEQUENTIAL RECOMMENDER SYSTEMS

In the 1st chapter we present a brief summary on the types of recommender systems
and a general overview of sequential recommender systems and approaches used
for.

� CHAPTER TWO: CONVOLUTIONAL NEURAL NETWORKS

We dedicate the 2nd chapter to the convolutional neurale networks structure, types
and process.

� CHAPTER THREE: SEQUENTIAL RECOMMENDER SYSTEM US-
ING CONVOLUTIONAL NEURAL NETWORKS

Using concepts from the 1st and 2nd chapter, the next chapter introduce our
approach that use convolutional neural networks for a sequential recommender
system development.

� CONCLUSION

The results of this thesis are summarised in the conclusion where we also designate
the directions of our future research.



Chapter 1

Sequential Recommender Systems

”You might also like ... to know how programs know what you want before you do.”

Recommender Systems (RSs) are software tools and techniques providing suggestions
for items to be of use to a user [4].

1.1 Introduction

The internet and modern web services have been increasing within the last few decades;
a surplus of information is now accessible to everyone. It can be challenging for users
to filter through all this information and take away essential aspects [5]. Recommender
Systems (RSs) have evolved into a fundamental tool for making more informative, ef-
ficient and effective choices and decisions in almost every daily aspect of life, working,
business operations, study, entertaining and socialization [6]. A lot of RS models and
techniques have been proposed, including content-based RSs and collaborative filtering-
based RSs but they can only model the user-item interactions in a static way and capture
the users’ general preferences. In contrast, SRSs model the sequential user behaviors,
the interactions between users and items, and the evolution of user’s preferences and
item popularity over time to capture the current and recent preference of a user. A
sequential recommendation system (SRS) aims to predict if an item would be useful to
a user based on his historical information. The use of these systems has been steadily
growing within the last few years. SRSs involve the above aspects for more accurate,
customized and dynamic recommendations.

In this chapter, we present a comprehensive guide to RSs. We highlight different RSs
categories and a methodological overview of the sequence-aware recommender systems
is given.

1.2 Recommender Systems

Recommender system is defined as a decision making strategy for users under complex
information environments [7]. Recommender systems are information filtering systems
that deal with the problem of information overload by filtering vital information fragment
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out of large amount of dynamically generated information according to user’s preferences,
interest, or observed behavior about item [8].

1.3 Data used by recommender systems

Data used by RSs refers to three kinds of objects: items, users, and transactions, i.e.,
relations between users and items [9].

Items. Items are the objects that are recommended. Items may be characterized by
their complexity and their value or utility. The value of an item may be positive if the
item is useful for the user, or negative if the item is not appropriate and the user made
a wrong decision when selecting it.

Users. Users of a RS, may have very diverse goals and characteristics. In order to
personalize the recommendations and the human-computer interaction, RSs exploit a
range of information about the users. This information can be structured in various ways
and again the selection of what information to model depends on the recommendation
technique.

Transactions. We generically refer to a transaction as a recorded interaction between
a user and the RS. Transactions are log-like data that store important information
generated during the human-computer interaction and which are useful for the recom-
mendation generation algorithm that the system is using.

1.4 How do we provide data for recommender systems ?

Called information collection phase This phase gathers vital information about users
and prepares user profiles based on the users’ attribute, behaviors, or resources ac-
cessed. Without constructing a well-defined user profile, the recommendation engine
cannot work properly. A recommendation system is based on inputs that are collected
in different ways, such as explicit feedback, implicit feedback, and hybrid feedback [10].

Explicit and implicit feedback provides different degrees of expressivity of the user’s
preferences [11]:

1.4.1 Explicit feedback

In explicit feedback , the user will provide ratings for items on a Likert scale. The rating
scale will usually go from ‘I like it a lot’ to ‘I do not like it’. Thus explicit feedback
captures both positive and negative user preferences.

1.4.2 Implicit feedback

Implicit feedback can only be positive. For example, if a user did not listen to a track
that does not imply he does not like the track.
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1.4.3 Hybrid feedback

The combination of both explicit and implicit feedback is known as hybrid feedback.

Explicit feedback is generally more accurate than implicit feedback in representing
the user’s interests (although this is dependent on the domain and the RS application)
[11].

In fact, ratings are the most popular form of transaction data that a RS collects.These
ratings may be collected explicitly or implicitly. In the explicit collection of ratings, the
user is asked to provide his opinion about an item on a rating scale. Ratings can take
on a variety of forms [9]:

Numerical ratings such as the 1-5 stars provided in the book recommender associated
with Amazon.com.

Ordinal ratings, such as “strongly agree, agree, neutral, disagree, strongly disagree”
where the user is asked to select the term that best indicates her opinion regarding an
item (usually via questionnaire).

Binary ratings that model choices in which the user is simply asked to decide if a
certain item is good or bad.

Unary ratings can indicate that a user has observed or purchased an item, or otherwise
rated the item positively.

In such cases, the absence of a rating indicates that we have no information relating the
user to the item (perhaps he purchased the item somewhere else).

1.5 How does a recommender systems work?

Recommender systems are machine learning systems that help users discover new prod-
uct and services. Every time you shop online, a recommendation system is guiding you
towards the most likely product you might purchase. Recommender systems function
with two kinds of information:

Characteristic information: This is information about items (keywords, categories,
etc.) and users (preferences, profiles, etc.).

User-item interactions: This is information such as ratings, number of purchases,
likes, etc.

1.6 Goals of Recommender Systems

From a business point of view, the primary goal of a recommender system is of course
to increase the profit of the company, through a higher number of sales. To reach this
objective, the system has to be able to meet some requirements [12]:
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Know what the user wants / Relevance. quite obviously, the RS has to suggest
items that are relevant to the users’ tastes, because users are more likely to buy or
consume items they have interest in.

Diversity, Novelty and Serendipity. firstly, if the RS always suggests items of the
same sort to a user, there is a risk that this user would get bored or would not like any
item. Thus, the system has to pay attention to put items of different types, bringing
diversity.

Secondly, even if it can be relevant, the recommended item also has to be something
the user has not already bought or experienced in the past: some novelty is required.

Lastly, the serendipity implies to surprise the user by recommending items he does
not expect. Compared to novelty, the suggested item would belong to a category the
user did not expect at all. This can sometimes lead the user to widen its area of interest,
and help to increase sales diversity.

User satisfaction and fidelity. finally, another goal of the RS is to increase the user
satisfaction and fidelity. A good user interface and accurate recommendations might
encourage the user to connect and use the site again.

These key goals are common to all recommender systems in any application case, and
they need to be integrated carefully during the implementation of the system.

1.7 Recommender Systems Types

There are majorly six types of recommender systems which work primarily in the Media
and Entertainment industry, they are classifed in [9, 12, 13] into the following categories:

1.7.1 Collaborative-Filtering Recommendation Systems

Collaborative Filtering Recommendation System recommends to the active user the
items that other users with similar tastes liked in the past. The similarity in taste
of two users is calculated based on the similarity in the rating history of the users.
Collaborative filtering techniques are classified into item-based filtering and user-based
filtering [9].

1.7.2 Content-Based Recommendation Systems

Content-based approaches use external information about the items, such as keywords,
tags, or profile written as texts in actual language to perform recommendation. By
using item features, the system can provide recommendations of non-experienced items
that have a similar thematic to those he liked in the past [12]. Measuring the utility of
content-based filtering is commonly calculated by using heuristic functions, such as the
cosine similarity metric. Content-based filtering can be employed in many cases, where
the features’ values can easily be extracted [13].
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Figure 1.1: Collaborative-Filtering Recommendation System.

Figure 1.2: Content-Based Recommendation System.

1.7.3 Hybrid-Based Recommendation Systems

Hybrid systems are combining two or more techniques to obtain better performance
[13]. Hybrid RS make the assumption that various sources of input are available at the
same time, which allow to make use of different recommendation approaches inside one
recommendation framework, and combine them to minimize their disadvantages [12].
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Figure 1.3: Hybrid RS combine Content-Based and Collaborative filtering .

1.7.4 Demographic-Based Recommendation Systems

This type of systems assumes the possibility of partitioning the set of users based on their
demographic profile. The demographic features such as the country or age of each user
will decide to which class he belongs to. Then, a set of rules decides which recommen-
dation to perform depending on the class to which the user belongs [12]. Demographic
RSs are especially useful when the amount of product information is limited [13].

1.7.5 Utility-Based Recommendation Systems

Utility-based RS provides recommendations based on generating a utility model of each
item for the user. This system builds multi-attribute users’ utility functions and rec-
ommends the highest utility item based on each item’s calculated user-utility explicitly.
Utility-based RSs are useful because they can factor non-product attributes into utility
functions, such as product availability and vendor reliability. They generate utility com-
putation, which allows them to check both real-time inventory and features of an item.
It enables the visualization of its status to the user [13].

1.7.6 Knowledge-Based Recommendation Systems

Knowledge-based systems recommend items based on specific domain knowledge about
how certain item features meet users needs and preferences and, ultimately, how the item
is useful for the user. Knowledge-based RSs are noted to be advantageous for several
purposes [9].
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1.8 Business Adoption and Applications

RSs were once a novelty technique used by very few e-commerce sites. Now, they have
transformed into a serious tool that is drastically shaping the e-commerce world. Many
of the largest e-commerce businesses utilize RSs to help users determine what they want,
alleviating the information-overload problem. However, RSs are not limited to marketing
products; they have been widely developed in the service industry. They can provide
recommendations in many different areas ranging from location-based information to
movies, music, images, books, etc [13].

Therefore, in this section, we classify RSs based on their business adoption into five
categories of e-commerce, transportation, agriculture, healthcare, and media [13].

1.8.1 Recommendation Systems in e-Commerce

RSs are aimed at providing customized recommendations of products to customers of
websites. They learn from the customer and recommend relevant products to the user.
These systems personalize the experience while attaining user interest. RSs can enhance
sales of e-commerce sites in three ways.

Browsers into buyers: Visitors to an e-commerce site often look over products
without buying anything, but if a site displays relevant recommendations to a user, they
are more likely to purchase.

Cross-sell: Recommendation techniques suggest additional products to the users,
apart from the one they are already buying. With this, the average order size should
increase over time

Loyalty: In an era where a competitor’s site can be visited by a mere click or two,
loyalty is essential. RSs personalize the site for each user, which builds the user-site
relationship. The more a customer uses a system, the more they are training the system,
the more loyal a customer becomes, which also improves the quality of recommendations,
over time

1.8.2 Recommendation Systems in Transportation

RSs can assist in diverse ways with the increasing use of Global Positioning System
(GPS)-enabled devices, especially mobile devices. Because information overload prob-
lems become worse when using mobile devices. The development of wireless communi-
cation services and position detection techniques such as RFID or GPS have promoted
location-based information systems. RSs play a significant role in path recommendation,
smart transport application of goods, tourism industry , or venue recommendation.We
have categorized applications of RSs in transportation into:

• Recommending trip

• Recommending path

• Recommending popular activities in a location
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• Recommending popular locations (restaurants)

• Recommending transporters (goods transporter, bus lines, drivers)

1.8.3 Recommendation Systems in the e-Health Domain

E-health and medical decisions are considered for RSs’ research, aiming to help medical
professionals take fast and proper medical decisions.

1.8.4 Recommendation Systems in Agriculture

In Agriculture, RSs have a significant impact on managing and using the resources
efficiently, such as fertilizers, agrochemicals, irrigation.

1.8.5 Recommendation Systems in Media and Beyond

The technological developments and changes in media and the increasing number of
people visiting cultural places have led to an increase in various cultural items and
offers. Therefore, visitors are bombarded with the information, making it difficult for
them to find their interests. Thus, recommendation systems have become a vital tool to
provide suggestions that ease the information overload in this area.

1.9 The Impact of Recommender Systems

• 35% of the purchases on Amazon are the result of their recommender system,
according to McKinsey.

• Recommendations are responsible for 70% of the time people spend watching
videos on YouTube.

• 75% of what people are watching on Netflix comes from recommendations, accord-
ing to McKinsey.

• Employing a recommender system enables Netflix to save around $1 billion each
year.

1.10 Problems Associated With Recommender Systems

Most of the conventional RSs, discussed previously, suffer from some serious drawbacks
which restrain the effectiveness of the RSs. In this section, some of the major issues are
discussed briefly [14]:
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1.10.1 Limited content analysis

In CBRS, the accuracy of recommendation depends on the extent of user input provided.
If the RS does not contain sufficient information about a user, the performance of the
recommendation will be low. No CBR system can provide suitable suggestions if the
analysed content does not contain enough information to discriminate items the user likes
from items the user does not like. This problem is known as limited content analysis
problem.

1.10.2 Over-specialisation

The aim of a RS is to help users explore new products. Diversity is an important
feature of a good RS. Unfortunately, some recommendation algorithms may do exactly
the opposite. They tend to recommend the popular and highly rated items which are
liked by a particular user. This leads to lower accuracy as CBRS does not recommend
items from a non-homogenous set of items. This is known as the over-specialisation
problem.

1.10.3 Cold start

When a new item or a new user is introduced to an RS, the system will not have any past
records (ratings, preferences, search history, etc.) on the basis of which recommendation
should be made. This is known as the cold start problem. It is also termed as the new
user problem or new item problem.

1.10.4 Sparsity

In practice, the RSs work with very large datasets. Hence, the user-item matrix used for
CF is extremely sparse, which adversely affects the performances of the predictions or
recommendations of the CF systems. It also takes place when a user, having used some
particular product, did not bother to rate it. In other cases, users do not rate items that
are not known to them.

1.10.5 Scalability

As the RSs work on large datasets, the complexity of the RSs increases in case of a
huge number of users and millions of distinct items set. Many systems need to react
immediately to online requirements and make recommendations for all users based on
their purchases and rating history, which demands high scalability items.

1.10.6 Synonymy

Synonymy refers to the problem of multiple words having similar meanings. Most of
the RSs are unable to find the same or similar items with different names (synonyms).
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On account of this incapability, some associated problems emerge. For example, ‘chil-
dren movie’ and ‘children film’ basically denote the same items, but memory-based CF
systems would find no match between them to compute similarity.

1.10.7 Abbreviation

If the RS is not familiar with the abbreviations that the users often use during online
interactions, it will not be able to recognise the item that the user is looking for. This
generates an erroneous recommendation.

1.10.8 Long tail

If an item initially is not well-rated or not rated at all in an RS which follow a top-N
recommendation, then over the time it will perish from the recommendation catalogue.
A user will miss recommendations for many necessary items just because he did not rate
those items or did not have any access to them. This generally leads to the long tail
problem (LT). It occurs when many items remain unrated or low rated.

1.10.9 Black-box problem

The efficiency of the RS is enhanced with the increase in the transparency of recom-
mendation. The satisfaction of the user in the recommendation is entangled with the
trust that the user places on the objectives of recommendation. The black box problem
occurs in RSs when the system is opaque towards the end user, causing decreased levels
of confidence in the system.

1.11 Sequential Data

Sequential data are present in very different fields. There are sequences with a chrono-
logical order such as in device control where we have sequences of successive activity
events, management where we have sequences of successive goods bought by customers
or sequences of types of activity carried out by employees, in web usage analysis where we
have sequences of visited pages , and in life course studies where we have sequences de-
scribing work careers or family life trajectories. In other domains sequences do not have
a time dimension. This is for example the case of sequences of proteins or nucleotides,
or of sequences of letters and words in texts [15].

1.12 Sequential recommender systems (SRSs)

The sequential recommendation is also often referred to as session-based, session-aware,
or sequence-aware recommendation [16].
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A Sequence Aware Recommender System is a recommender system that models the
dynamics in user’s interaction by extracting of sequential features from the logs of his-
torical user activity, with the ultimate goal of adapting to users’ short-term needs and
providing high quality suggestions on the following item(s) the user should interact [17].

Generally, an SRS takes a sequence of user-item interactions as the input and tries
to predict the subsequent user-item interactions that may happen in the near future
through modelling the complex sequential dependencies embedded in the sequence of
user-item interactions. More specifically, given a sequence of user-item interactions, a
recommendation list consisting of top ranked candidate items are generated[18].

1.13 Difference Between Sequential Recommender Systems
(SRSs) and Traditional Recommender Systems (RSs)

Different from the general sequence modelling in which the sequence structure is much
simpler since a sequence is often composed of atomic elements (e.g., real values, genes),
the learning task in SRSs is much more challenging because of the more complex sequence
structure [18].

In traditional item recommendation, the recommender system has to infer the general
user’s preference over the individual items in order to suggest her items that she may
like to explore. Recommendations are usually provided in the form of a list of items
ordered by relevance. In contrast, SRSs treat the user-item interactions as a dynamic
sequence and take the sequential dependencies into account to capture the current and
recent preference of a user for more accurate recommendation [17].

1.14 Representative Tasks

Before formally defining the sequential recommendation tasks, we firstly summarize
the two representative tasks in the literature (as depicted in Figure 1.4): next-item
recommendation and next basket recommendation. In next-item recommendation,
a behavior contains only one object (i.e., item), which could be a product, a song,
a movie, or a location. In contrast, in next-basket recommendation, a behavior
contains more than one object [19].

1.15 Inputs, Outputs, Computational Tasks

Inputs. The main input to sequence-aware recommendation problems is an ordered and
often timestamped list of past user actions. Users can be already known by the system or
anonymous ones. Each action can be associated with one of the recommendable items.
Finally, each action can be of one of several pre-defined types and each action, user, and
item may have a number of additional attributes. Overall, the inputs can be considered
as a sort of enriched click stream data [20].

Outputs. The output of a sequence-aware recommender are ordered lists of items.
In this general form, the outputs are similar to those of a traditional “item-ranking”
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Figure 1.4: Next-item and next-basket recommendation.

recommendation setup. However, in some sequence-aware recommendation scenarios,
the ordering of the objects in the recommendation list can be relevant as well [20].

Computational Tasks. Different computational tasks of sequence-aware recommenders
can be identified in the literature. Most commonly, a task that is not present in tradi-
tional matrix completion setups is the identification of sequence-related patterns in the
recorded user actions. These can be sequential patterns, where the order of the actions
is relevant, or they can be co-occurrence patterns, where it is only important that two
actions happened together [20].

1.16 Specific Computational Tasks

In order to filter and rank the items in the resulting output, different types of compu-
tations are usually done by sequential recommenders, and the particularities of these
calculations again depend on the specific application scenario [17]. Figure 1.5 gives a
high-level overview of the SRS problem [20]:

Beside Computational Tasks, as described in the previous section, a variety of specific
Computational Tasks can be tackled with sequential recommenders. We present here
an overview of what we believe are possible Specific Computational Tasks that can be
accomplished with SRS [17]:

1.16.1 Context adaptation

Context-adaptation can be obtained by extracting frequent sequential patterns from the
historical activity of users and then by mapping it to the most recent user actions.

Context-adaptation with sequential recommenders can be classified in the following
three categories:
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Figure 1.5: High-level Overview of Sequential Recommendation Problems.

Last-N interactions. This is the simplest form of context-adaptation and it is based
on the sequence of the most recent N actions of the user.

Session-based recommendation. In this case recommendation depends exclusively
on the current session. Session-based recommendation is common in systems having
new or anonymous users – i.e. users not registered or logged into the system. For these
kind of users, the only information that is available is the sequence of interactions in the
current session. No historical data is available.

Session-aware recommendation. In this case we instead focus on returning users,
i.e. the user is not new to the system and the recommender system can determine his
historical, long-term preferences from his past activity.

1.16.2 Trend Detection

The detection of trends is another potential, but less explored, goal that can be accom-
plished by sequential recommenders. We can distinguish between the following types
of information that can be extracted from sequential log information to be used in the
recommendation process.

Community trends. Considering the popularity of items within a user community
can be important for successful recommendations in practice. Sequential recommenders
can aim to detect and utilize popularity patterns in the interaction logs to improve the
recommendations.

Individual trends. Changes in the interest in certain items can also happen at an
individual level. These interest changes can be caused when there is a “natural” interest
drift, e.g., when users grow up, or when their preferences change over time.
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1.16.3 Repeated Recommendation

In several application domains, recommending items that the user already knows, has
consumed or purchased in the past can be meaningful.The following categories of re-
peated recommendation scenarios can be identified .

Identifying repeated user behavior patterns. Past interaction logs can be used by
sequence-aware recommenders to identify patterns of repeated user behavior.

Repeated recommendation as reminders. In a different scenario, repeated recom-
mendations can help to remind users of things they were interested in the past.

1.16.4 Order constraints

In certain domains, the characteristics of items may pose a sort of ordering between
interactions. For example, it is reasonable to think that users that have watched a
certain movie will watch its sequels later on.

1.17 Overview of Sequential Recommendation

In this section, we provide a comprehensive overview of the sequential recommendation
[19].

1.17.1 Experience-based behavior sequence

same object , different behavior types. The goal is to predict next item under a target
action type.

Figure 1.6: Experience-based behavior sequence.

1.17.2 Transaction-based behavior sequence

different items, same behavior type ( i.e. buy). The goal is to predict next action object.
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Figure 1.7: Transaction-based behavior sequence.

1.17.3 Interaction-based behavior sequence

multiple items, different behavior types. The goal is to predict both the action type and
the action object.

Figure 1.8: Interaction-based behavior sequence.

1.18 Sequential Recommender Systems approaches

In this section we present a categorization of all the approaches for SRSs [18]:

1.18.1 Traditional Sequence Models for SRSs

Traditional sequence models including sequential pattern mining and Markov chain mod-
els are intuitive solutions to SRSs by taking advantage of their natural strength in mod-
elling sequential dependencies among the user-item interactions in a sequence.

Sequential pattern mining. Sequential pattern-based RSs first mine frequent pat-
terns on sequence data and then utilize the mined patterns to guide the subsequent rec-
ommendations. Although simple and straightforward, sequential pattern mining usually
generates a large number of redundant patterns, which increases unnecessary cost w.r.t.
time and space.

Markov chain models. Markov chain-based RSs adopt Markov chain models to model
the transitions over user-item interactions in a sequence, for the prediction of the next
interaction. According to the specific technique used, Markov chain-based RSs are di-
vided into basic Markov Chain-based approaches and latent Markov embedding-based
approaches.
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1.18.2 Latent Representation Models for SRSs

Latent representation models first learn a latent representation of each user or item, and
then predict the subsequent user-item interactions by utilizing the learned representa-
tions. As a result, more implicit and complex dependencies are captured in a latent
space, which greatly benefits the recommendations.

Factorization machines. Factorization machine-based SRSs usually utilize the matrix
factorization or tensor factorization to factorize the observed user-item interactions into
latent factors of users and items for recommendations.

Embedding. Embedding-based SRSs learn a latent representations for each user and
item for the subsequent recommendations by encoding all the user-item interactions
in a sequence into a latent space. Specifically, some works take the learned latent
representations as the input of a network to further calculate an interaction score between
users and items, or successive users’ actions, while other works directly utilize them to
calculate a metric like the Euclidean distance as the interaction score. This model has
shown great potential in recent years due to its simplicity, efficiency and efficacy.

1.18.3 Deep Neural Network Models for SRSs

Deep neural networks have natural strength to model and capture the comprehensive
relations over different entities (e.g., users, items, interactions) in a sequence, and thus
they nearly dominate SRSs in the past few years.

Basic Deep Neural Networks

The most commonly used deep neural networks for SRSs are recurrent neural networks
(RNN) due to their natural strength in sequence modelling, but they also have defects.
Recently convolutional neural networks (CNN) and graph neural networks (GNN) have
also been applied in SRSs to make up the defects of RNN.

RNN-based SRSs. Given a sequence of historical user-item interactions, an RNN-
based SRS tries to predict the next possible interaction by modelling the sequential
dependencies over the given interactions. Except for the basic RNN, long short-term-
memory (LSTM)-based and gated recurrent unit (GRU)-based, RNN have also been
developed to capture the long-term dependencies in a sequence.

CNN-based SRSs. Different from RNN, given a sequence of user-item interactions,
a CNN first puts all the embeddings of these interactions into a matrix, and then treats
such a matrix as an “image” in the time and latent spaces. Finally, a CNN learns
sequential patterns as local features of the image using convolutional filters for the
subsequent recommendations. Since a CNN does not have strong order assumptions
over the interactions in a sequence, and they learn patterns between the areas in an
“image” rather than over interactions, therefore, CNN-based SRSs can make up the
aforementioned drawbacks of RNN-based SRSs to some degree. However, CNN-based
SRSs cannot effectively capture long-term dependencies due to the limited sizes of the
filters used in CNN, which limits their applications.

GNN-based SRSs. Recently, with the fast development of GNN, GNN-based SRSs
have been devised to leverage GNN to model and capture the complex transitions over
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user-item interactions in a sequence. Typically a directed graph is first built on the
sequence data by taking each interaction as a node in the graph while each sequence is
mapped to a path. Then, the embeddings of users or items are learned on the graph
to embed more complex relations over the whole graph. Such an approach makes full
use of the advantage of GNN to capture the complex relations in structured relation
datasets. GNN-based SRSs have shown a great potential to provide explainable recom-
mendations by revealing the complex relations between the recommended items and the
corresponding sequential context. Such kind of SRSs are still in their early stages.

Advanced Models

To address the limitations of SRSs built on basic neural network structures, some ad-
vanced models are usually combined together with a certain kind of basic deep neural
networks (e.g., RNN, CNN) to build more powerful SRSs which are able to address
particular challenges.

Attention models. Attention models are commonly employed in SRSs to empha-
size those really relevant and important interactions in a sequence while downplaying
those ones irrelevant to the next interaction. They are widely incorporated into shallow
networks and RNN to handle interaction sequences with noise.

Memory networks. Memory networks are introduced into SRSs to capture the de-
pendencies between any historical user-item interaction and the next one directly by
incorporating an external memory matrix. Such matrix enables it possible to store and
update the historical interactions in a sequence more explicitly and dynamically to im-
prove the expressiveness of the model and reduce the interference of those irrelevant
interactions.

Mixture models. A mixture model-based SRS combines different models that excel
at capturing different kinds of dependencies to enhance the capability of the whole model
in capturing various dependencies for better recommendations.

The categorization of SRS approaches is presented in Figure 1.9.
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Figure 1.9: A categorization of SRS approaches.

1.19 Evaluation Protocols of Sequential Recommender Sys-
tems

In this section, we present the evaluation procedures that can be used in the evaluation
of sequential recommenders [17].

1.19.1 Offline evaluation

In offline evaluation, the quality of RS is measured without inquiring real users, which
is usually a slow, intrusive and expensive procedure. The quality of the results obtained
by an offline evaluation procedure depends strongly on the data partitioning procedure,
on the evaluation protocol and on the metrics that are employed. The whole evaluation
procedure must reflect as much as possible the real application scenario.

1.19.2 Online evaluation

Online evaluation analyzes the behavior of the recommender system in a real-life scenario
by directly monitoring the activity of the users, typically by means of A/B testing. This
allows to analyze the impact of the RS with much more detail. However, the analysis
of large amounts of users on a real system is a costly procedure, and results are hardly
reproducible out of the original environment used for the evaluation. Still, it is generally
agreed by the community that online evaluation provides more significant insights on
the real impact of a recommendation engine than what offline evaluation does.
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1.19.3 Making Reliable Choices

When choosing between algorithms, it is important that we can be confidant that the
algorithm that we choose will also be a good choice for the yet unseen data the system
will be faced with in the future.

1.20 Conclusion

By reviewing the RS types and filtering SRS techniques we can see that research in
the topic of SRS is challenging and at the same time very interesting. The plurality
of algorithms and recommendation filtering methods can be used for different types of
recommendations based on the domain they are applied for. The selection of particular
methods to apply in a RS is based on the desired recommendation results. Thus the
development of a recommendation algorithm must be accompanied by the corresponding
evaluation metrics. The next chapter will present convolutional neural network witch
can be used to develop SRS.



Chapter 2

Convolutional Neural Networks

”Deep learning is inspired by the way that the human brain filters information!”

2.1 Introduction

Deep learning (DL) is playing an increasingly important role in our lives. It has al-
ready made a huge impact in areas such as cancer diagnosis, precision medicine, self-
driving cars, predictive forecasting, speech recognition, etc [21]. Since the re-emergence
of neural networks to the forefront of machine learning, two types of network architec-
tures have played a pivotal role: the convolutional networks, often used for vision and
higher-dimensional input data; and the recurrent networks, typically used for modeling
sequential data [22]. In the early history of neural networks, convolutional models were
specifically proposed as a means of handling sequence data, the idea being that one could
slide a 1-D convolutional filter over the data (and stack such layers together) to predict
future elements of a sequence from past ones. In this chapter, we will first describe what
neural network is. Next, we will explain the motivation behind using convolution neural
networks.

2.2 Artificial intelligence, Machine learning, and Deep learn-
ing

First, we need to define clearly what we’re talking about when we mention AI. What
are artificial intelligence, machine learning, and deep learning (see Figure 2.1) [23]?

20
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Figure 2.1: Artificial intelligence, Machine learning, and Deep learning.

2.2.1 Artificial Intelligence

Artificial intelligence isn’t “new,” but it’s definitely experience a renaissance of sorts.
And the way people use the word is also changing, much to the chagrin of traditionalists.
When Turing first devised his test, the phrase artificial intelligence was largely reserved
for a technology that could broadly mimic the intelligence of humans [24].

Today, the phrase artificial intelligence, or just AI, is broadly and generally used to
refer to any sort of machine learning program [24].

2.2.2 Machine Learning

At its most basic level, machine learning refers to any type of computer program that
can “learn” by itself without having to be explicitly programmed by a human. Today,
machine learning is a widely used term that encompasses many types of programs that
you’ll run across in big data analytics and data mining. At the end of the day, the
“brains” actually powering most predictive programs – including spam filters, product
recommenders, and fraud detectors — are machine learning algorithms [24].

The Optimal Approach

”You have the data, what kind of analysis do you need [25]?”

• Regression

– predict new values based on the past, inference.

– compute the new values for a dependent variable based on the values of one or more
measured attributes.

• Classification

– divide samples in classes.

– use a trained set of previously labeled data.
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• Clustering

– partitioning of a data set into subsets (clusters) so that data in each subset ideally
share some common characteristics.

• Classification is in a some way similar to the clustering, but requires that the analyst
know ahead of time how classes are defined.

Types of Machine Learning Algorithms

Supervised learning, The user trains the program to generate an answer based on a
known and labeled data set. Classification and regression algorithms, including random
forests, decision trees, and support vector machines, are commonly used for supervised
learning tasks [24].

Unsupervised learning, The algorithms generate answers on unknown and unlabeled
data. Data scientists commonly use unsupervised techniques for discovering patterns in
new data sets. Clustering algorithms, such as K-means, are often used in unsupervised
machine learning [24].

Reinforcement learning, Using this algorithm, the machine is trained to make spe-
cific decisions. It works this way: the machine is exposed to an environment where it
trains itself continually using trial and error. This machine learns from past experience
and tries to capture the best possible knowledge to make accurate business decisions.
Example of Reinforcement Learning: Markov Decision Process [26].

2.2.3 Deep Learning

Deep learning is a form of machine learning that can utilize either supervised or unsu-
pervised algorithms, or both. While it’s not necessarily new, deep learning has recently
seen a surge in popularity as a way to accelerate the solution of certain types of dif-
ficult computer problems, most notably in the computer vision and natural language
processing (NLP) fields [24].

2.3 The Applications of Deep Learning

In recent years, there are a number of researchers have applied DL algorithms to various
different fields. This section describes the fields that have been applied with Deep
Learning algorithms in [27–30].

Speech Recognition (SR), Speech recognition is the very first successful application
of deep learning methods at an industry scale [28]. Google has announced that Google
voice search had taken a new turn by adopting Deep Neural Networks (DNN) as the
core technology used to model the sounds of a language in 2012 [27].

Object Recognition and Computer Vision, Over the past two years or so, tremen-
dous progress has been made in applying deep learning techniques to computer vision,
especially in the field of object recognition. The success of deep learning in this area
is now commonly accepted by the computer vision community. It is the second area
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in which the application of deep learning techniques is successful, following the speech
recognition area as we described previously [28].

Natural Language Processing, Recently, neural network based deep learning meth-
ods have been shown to perform well on various NLP tasks such as language modeling,
machine translation, part-of-speech tagging, named entity recognition, sentiment anal-
ysis, and paraphrase detection. The most attractive aspect of deep learning methods is
their ability to perform these tasks without external hand-designed resources or time-
intensive feature engineering [28].

Drug Discovery and Toxicology, In 2015, AtomNet has been introduced as first
structure-based, deep convolutional neural network which designed to predict the bioac-
tivity of small molecules for drug discovery applications. This paper also demonstrates
how to apply the convolutional concepts of feature locality and hierarchical composition
to the modeling of bioactivity and chemical interactions. AtomNet outperforms previous
docking approaches on a diverse set of benchmarks by a large margin, achieving an AUC
greater than 0.9 on 57.8% of the targets in the DUDE benchmark [27].

Customer Relationship Management CRM, Neural networks may be assigned to
different tasks and used in different aspects of CRM systems. [30] elaborates on four
examples of such applications, which exemplify practical aspects of neural networks in
the field of CRM: predicting customer expenses according to behavioural data, assessing
profitability of building customer relationships, assessing probability of customer leaving
the company based on complaint data, determining key customers. These aspects are
of great value to managers, demanding that the CRM system implemented in their
company generates substantial profit and minimises the risk of a failed investment.

Recommendation Systems, Deep Learning is one of the next big things in Recom-
mendation Systems technology. The past few years have seen the tremendous success of
deep neural networks in a number of complex machine learning tasks such as computer
vision, natural language processing and speech recognition. After its relatively slow up-
take by the recommender systems community, deep learning for recommender systems
became widely popular in 2016 [29].

2.4 Artificial Neural Networks

Deep Learning is a subfield of machine learning concerned with algorithms inspired by
the structure and function of the brain called artificial neural networks [31].

Artificial neural networks are information processing structures providing the (of-
ten unknown) connection between input and output data by artificially simulating the
physiological structure and functioning of human brain structures (see Figure 2.2) [32].

2.4.1 Networks

One efficient way of solving complex problems is following the lemma “divide and con-
quer”. A complex system may be decomposed into simpler elements, in order to be
able to understand it. Networks are one approach for achieving this. There are a large
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Figure 2.2: A-biological-neuron-in-comparison-to-an-artificial-neuron.

number of different types of networks, but they all are characterized by the following
components [33]: a set of nodes, and connections between nodes.

The nodes can be seen as computational units. They receive inputs, and process
them to obtain an output.

The connections determine the information flow between nodes. They can be uni-
directional, when the information flows only in one sense, and bidirectional, when the
information flows in either sense.

2.4.2 Structure of a Neural Network

Artificial neural networks are composed of elementary computational units called neu-
rons (McCulloch & Pitts, 1943) combined according to different architectures. For exam-
ple, they can be arranged in layers (multi-layer network), or they may have a connection
topology [32]. Layered networks consist of:

• Input layer, made of n neurons (one for each network input);

• Hidden layer, composed of one or more hidden (or intermediate) layers consisting of
m neurons;

• Output layer, consisting of p neurons (one for each network output).

The connection mode allows distinguishing between two types of architectures:

• The feedback architecture, with connections between neurons of the same or previous
layer;

• The feedforward architecture, without feedback connections (signals go only to the
next layer’s neurons).
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Figure 2.3: Artificial Neural Network Architecture.

2.4.3 Neurons

Mc Culloch and Pitts, proposed in 1943, one of the first computational models of the
biological neurons. Figure 2.4 illustrates the operation of each proposed neural compu-
tational unit. As illustrated in Figure 2.4, a neuron Nj receives inputs from n other
previous neurons x1, x2, ..., xn. The output of each neuron x1, x2, ..., xn in the previous
layer is multiplied by the corresponding synaptic weight w1j , w2j , ..., wnj , also know as
synaptic efficacy. The combined weighted input is transformed mathematically using a
certain non-linear transfer function or an activationfunction ϕ, generating an output
oj . In the original Mc Culloch and Pitts’ neural model the activation function was a
thresholding gate, giving as neural output a digital signal . This digital output neuron
was the core of the first generation of neural networks [34].

Figure 2.4: Diagram of an artificial neuron with n inputs with their corresponding
synaptic weights. All weighted inputs are added and an activation function controls

the generation of the output signal.

2.4.4 Perceptron

In 1958, Rosenblatt proposed the perceptron. The architecture of the perceptron is
shown in Figure 2.5. In Figure 2.5, the computational units or neurons are represented by
circles, interconnected through trainable weights representing the synaptic connections.
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The original perceptron consisted of a single layer of input neurons fully interconnected
in a feedforward way to a layer of output neurons. This single layer perceptron was able
to solve only linearly separable problems [34].

Figure 2.5: Architecture of a single layer perceptron.

2.4.5 Multi Layer Perceptron

In section 2.4.3,our general neuron is introduced like processing unit [35]:

a = ϕ (
∑
j

wjxj + b)

where the xj are the inputs to the unit, the wj are the weights, b is the bias, ϕ is the
nonlinear activation function, and a is the unit’s activation.

For now, we’ll concern ourselves with feed-forward neural networks, where the
units are arranged into a graph without any cycles, so that all the computation can be
done sequentially. This is in contrast with recurrent neural networks, where the
graph can have cycles, so the processing can feed into itself [35].

The simplest kind of feed-forward network is a multilayer perceptron (MLP), as
shown in Figure 2.6. Here, the units are arranged into a set of layers, and each layer
contains some number of identical units. Every unit in one layer is connected to every
unit in the next layer; we say that the network is fully connected. The first layer is
the input layer, and its units take the values of the input features. The last layer is
the output layer, and it has one unit for each value the network outputs (i.e. a single
unit in the case of regression or binary classifiation, or K units in the case of K-class
classification). All the layers in between these are known as hidden layers, because
we don’t know ahead of time what these units should compute, and this needs to be
discovered during learning. The units in these layers are known as input units, output
units, and hidden units, respectively. The number of layers is known as the depth, and
the number of units in a layer is known as the width. Terminology for the depth is very
inconsistent. A network with one hidden layer could be called a one-layer, two-layer, or
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three-layer network, depending if you count the input and output layers. As you might
guess, “deep learning” refers to training neural nets with many layers [35].

Figure 2.6: A multilayer perceptron with two hidden layers. Left: with the units
written out explicitly. Right: representing layers as boxes.

2.4.6 Training Algorithms

The learning algorithm constitutes the main part of Deep Learning. The number of
layers differentiates the deep neural network from shallow ones. The higher the number
of layers, the deeper it becomes. Each layer can be specialized to detect a specific aspect
or feature [36].

The goal of the learning algorithm is to find the optimal values for the weight vectors
to solve a class of problem in a domain. Some of the well-known training algorithms are
[36]:

1. Gradient Descent

2. Stochastic Gradient Descent

3. Momentum

4. Levenberg–Marquardt algorithm

5. Backpropagation through time

Gradient Descent
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Gradient Descent is a very generic optimization algorithm capable of finding optimal
solutions to a wide range of problems. The general idea of Gradient Descent is to tweak
parameters iteratively in order to minimize a cost function [37].

Suppose you are lost in the mountains in a dense fog; you can only feel the slope of the
ground below your feet. A good strategy to get to the bottom of the valley quickly is to
go downhill in the direction of the steepest slope. This is exactly what Gradient Descent
does: it measures the local gradient of the error function with regards to the parameter
vector θ, and it goes in the direction of descending gradient. Once the gradient is zero,
you have reached a minimum [37]!

Concretely, it start by filling θ with random values (this is called random initial-
ization), and then improve it gradually, taking one baby step at a time, each step
attempting to decrease the cost function (e.g., the MSE), until the algorithm converges
to a minimum (see Figure 2.7) [37].

Figure 2.7: Gradient Descent.

Cost function is one half the square of the difference between the desired output
minus the current output as shown below [36].

C =
1

2
(yexpected − yactual)2

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is the most common variation and implementation
of gradient descent. In gradient descent, the process go through all the samples in the
training dataset before applying the updates to the weights. While in SGD, updates are
applied after running through a minibatch of n number of samples. Since the weights are
updating more frequently in SGD than in GD, it can converge towards global minimum
much faster [36].
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Momentum

In the standard SGD, learning rate is used as a fixed multiplier of the gradient to compute
step size or update to the weight. This can cause the update to overshoot a potential
minima, if the gradient is too steep, or delay the convergence if the gradient is noisy.
Using the concept of momentum in physics, the momentum algorithm presents a velocity
V variable that configured as an exponentially decreasing average of the gradient. This
helps prevent costly descent in the wrong direction [36].

Levenberg-Marquardt algorithm

Levenberg-Marquadt algorithm (LMA) is primarily used in solving non-linear least
squares problems such as curve fitting. In least squares problems, we try to fit a given
data points with a function with the least amount of sum of the squares of the errors
between the actual data points and points in the function. LMA uses a combination of
gradient descent and Gauss-Newton method. Gradient descent is employed to reduce the
sum of the squared errors by updating the parameters of the function in the direction of
the steepest-descent, while the Gauss-Newton method minimizes the error by assuming
the function to be locally quadratic and finds the minimum of the quadratic [36].

Backpropagation through time

Backpropagation through time (BPTT) is the standard method to train the recurrent
neural network. the unrolling of RNN in time makes it appears like a feedforward
network. But unlike the feedforward network, the unrolled RNN has the same exact set
of weight values for each layer and represents the training process in time domain. The
backward pass through this time domain network calculates the gradients with respect
to specific weights at each layer. It then averages the updates for the same weight at
different time increments (or layers) and changes them to ensure the value of weights at
each layer continues to stay uniform [36].

There exist also more sophisticated algorithms, called adaptive algorithms. One of the
most famous is the RMSProp algorithm, or Adam (for Adaptive Moments) algorithm.

2.5 Recurrent Neural Networks

Another category of neural networks is the recurrent neural networks. In this type, the
hidden layer saves its output to be used for future prediction. The output becomes
part of its new input. The key feature of the RNN is that it allows us to process
sequential data and exploit the dependency among data. RNNs are widely used in
language related tasks such as the language modeling, text generating, machine transla-
tion, speech recognition and image caption generation. Commonly used RNN structures
include bi-directional RNNs, LSTM networks and deep RNNs. Given a sequence of
input data x = x1, x2, ......, xT , a standard RNN compute the hidden vector sequence
h = h1, h2, ......, hT and the output sequence y = y1, y2, ......, yT for every time step
t = 1, 2, ..., T as:

ht = f(Wihxt +Whhht−1 + bh)

yt = Whoht + bo
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where Wih, Whh, Who and bh, bo are the weight matrices and the bias vectors. f is
the activation function of the hidden layer, A recurrent neural network can be seen as
multiple copies of the same neural network, each passing a value to its successor [38].

Figure 2.8: Recurrent Neural Network.

2.6 Convolutional Neural Networks

Convolutional networks, also known as convolutional neural networks, convnets or CNNs
for short, are a specialized kind of neural networks for processing data that has a known,
grid-like topology. Examples include time-series data, which can be thought of as a 1D
grid taking samples at regular time intervals, and image data, which can be thought
of as a 2D grid of pixels. Convolutional networks have been tremendously successful
in practical applications. The name “convolutional neural network” indicates that the
network employs a mathematical operation called convolution [39].

2.6.1 kernels

A kernel can be described as a grid of discrete values or numbers, where each value
is known as the weight of this kernel. During the starting of training process of an
CNN model, all the weights of a kernel are assigned with random numbers (different
approaches are also available there for initializing the weights). Then, with each training
epoch, the weights are tuned and the kernel learned to extract meaningful features [40].

2.6.2 Convolution

Before we go any deeper, let us first understand the convolution operation, If we take a
gray scale image of 4x4 dimension, and an 2x2 kernel with randomly initialized weights
(see Figure 2.9) [40].
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Now, convolution operation, take the 2x2 kernel and slide it over all the complete
4x4 image horizontally as well as vertically and along the way it take the dot product
between kernel and input image by multiplying the corresponding values of them and
sum up all values to generate one scaler value in the output feature map. This process
continues until the kernel can no longer slide further [40].

Figure 2.9: Illustrating the first 5 steps of convolution operation.

2.6.3 Convolutional Neural Networks Architecture

Over the last years, Convolutional Neural Networks (CNN) have yielded state-of-the-art
results for a wide variety of tasks in the field of computer vision, such as object clas-
sification, traffic sign recognition and image caption generation. The use of CNN was
not limited to the field of computer vision, and these models were adapted successfully
to a variety of audio processing and natural language processing tasks such as speech
recognition, and sentence classification. When applying a convolutional layer on some
data, this layer is extracting features from local patches of the data and often is fol-
lowed by a pooling mechanism to pool values of features over neighboring patches. The
extracted features can be the input of the next layer in a neural network, possibly an-
other convolutional layer or a classifier. Models using convolutional layers for extracting
features from raw data can outperform models using hand-crafted features and achieve
state-of-the-art-results [41].
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Figure 2.10: A basic architecture of a Convolutional Neural Network.

2.6.4 Convolutional Neural Networks Types

1D Convolutional Neural Network

In Conv 1D, the kernel slides in one dimension.

Figure 2.11: 1D Convolutional Neural Network.

2D Convolutional Neural Network

This is the first standard convolutional neural network introduced in the Lenet-5 archi-
tecture. Conv 2D is usually used for image data. It is called a 2D CNN because the
kernel slides along the data in 2 dimensions, as shown in the figure below.

3D Convolutional Neural Network

In Conv3D, the kernel slides in 3 dimensions, as shown below.
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Figure 2.12: 2D Convolutional Neural Network.

Figure 2.13: 3D Convolutional Neural Network.

The three types are shown in (Figure 2.14) .

Figure 2.14: 1D, 2D and 3D Convolutional Neural Network.

2.7 Features Engineering

Feature engineering is the process of using your own knowledge about the data and
about the machine-learning algorithm at hand (in this case, a neural network) to make
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the algorithm work better by applying hardcoded (nonlearned) transformations to the
data before it goes into the model. In many cases, it isn’t reasonable to expect a
machinelearning model to be able to learn from completely arbitrary data. The data
needs to be presented to the model in a way that will make the model’s job easier [3].

Fortunately, modern deep learning removes the need for most feature engineering,
because neural networks are capable of automatically extracting useful features from
raw data. Does this mean you don’t have to worry about feature engineering as long as
you’re using deep neural networks? No, for two reasons [3]:

• Good features still allow you to solve problems more elegantly while using fewer re-
sources. For instance, it would be ridiculous to solve the problem of reading a clock face
using a convolutional neural network.

• Good features let you solve a problem with far less data. The ability of deep-learning
models to learn features on their own relies on having lots of training data available;
if you have only a few samples, then the information value in their features becomes
critical.

2.8 Layers

The fundamental data structure in neural networks is the layer, to which we will intro-
duce in this section. A layer is a data-processing module that takes as input one or more
tensors and that outputs one or more tensors. A CNN layer typically includes 3 opera-
tions: convolution, activation and pooling .Some layers are stateless, but more frequently
layers have a state: the layer’s weights, one or several tensors learned with stochastic gra-
dient descent, which together contain the network’s knowledge [42]. Different layers
are appropriate for different tensor formats and different types of data processing. For
instance, simple vector data, stored in 2D tensors of shape (samples, features), is often
processed by densely connected layers, also called fully connected or dense layers (the
Dense class in Keras). Sequence data, stored in 3D tensors of shape (samples, timesteps,
features), is typically processed by recurrent layers such as an LSTM layer. Image data,
stored in 4D tensors, is usually processed by 2D convolution layers (Conv2D) [42].

2.8.1 Convolution Layer

The convolution operation is one of the fundamental building blocks of a convolutional
neural network. The convolutional layer’s parameters consist of a set of learnable filters
(kernels). Every filter is small spatially (along width and height), but extends through
the full depth of the input volume. Typical filter sizes might have size 3x3, 5x5, 7x7.
The third dimension of the filter corresponds to the number of channels in the input.
The grayscale image depth is 1 and the color image has 3 (RGB) color channels [43].

During the forward propagation, each filter performs convolution on the input volume
across the width and height and compute the dot products between the entries of the
filter and the input at any position, this operation is followed by a nonlinear activation
function (sigmoid, tanh, ReLU etc.), the resulting outputs are called feature maps. The
feature map (also known as an activation map), gives the responses of the filter at every
spatial position. An example of convolution layer followed by nonlinear activation is
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shown in Figure 2.15 We stack these activation maps along the depth dimension and
produce the output volume. The output volume depends on three hyperparameters:
depth, stride and padding [43].

Figure 2.15: Convolution Layer.

• The depth of the output volume represents the number of filters that are used in the
convolution operation. Each filter is learning something different in the input, edges,
blobs, colors.

• The stride is the number of steps that we slide the filter in the input. When the stride
is 1 then we move the filters one pixel at a time. When the stride is 2 then the filters
jump 2 pixels at a time as we slide them around. Th is will produce smaller output
volumes spatially.

• Padding allows controlling the output size. Applying convolution to an input, reduce
the output size that leads to losing information. To avoid that, we pad the input volume
with zeros around the border. Two common choices are valid convolution and the same
convolution. The valid convolution means no padding, the same convolution means that
the output size remains the same as the input size.

The output size is calculated in the following way:

(n+ 2p− f)/s+ 1

Where n is the number of filters, p is the amount of padding, f is the filter size and s is
the stride.

2.8.2 Pooling Layer

CNNs often use pooling layer operation after convolution layers, its function is to re-
duce the dimension, also referred as subsampling or downsampling. Hyperparameters of
pooling layer represent the filter size and strides. Most commonly used pooling layer is
with filter size 2 and with stride 2. Two common types of pooling layers are max pool-
ing and average pooling, where the maximum and average value is taken, respectively.
And we can use average pooling instead of max pooling, where each local input patch is
transformed by taking the average value of each channel over the patch, rather than the
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max. But max pooling tends to work better than these alternative solutions [42]. Max
pooling is used often than average pooling. Pooling layer does not have parameters to
learn. The intuition of what max pooling is doing is that the large number means that
there may be detected a feature. An example of convolution layer followed by pooling
layer is shown in Figure 2.16 [43].

Figure 2.16: Convolution Layer followed by Pooling Layer.

2.8.3 Fully Connected Layer

After several convolution and pooling layers, the CNN generally ends with several fully
connected layers. The tensor that we have at the output of these layers is transformed
into a vector and then we add several neural network layers. The fully connected layers
typically are the last few layers of the architecture as shown in the Figure 2.17, the
dropout regularization technique can be applied in the fully connected layers to prevent
overfitting. The final fully connected layer in the architecture contains the same amount
of output neurons as the number of classes to be recognized [43].

Figure 2.17: Two Convolutional Layers followed by a Fully Connected Layer.
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2.8.4 Loss Functions

The last layer is a loss layer. Loss functions quantify the agreement between the predicted
output (or label) and the ground truth output. We use loss functions to determine the
penalty for an incorrect classification or regression of an input vector [44]. Let us suppose
t is the corresponding target (ground-truth) value for the input x1 , then a cost or loss
function can be used to measure the discrepancy between the CNN prediction xL and
the target t. For example, a simple loss function could be:

z =
1

2
||t− xL||2

Although more complex loss functions are usually used. This squared l2 loss can be
used in a regression problem. In a classification problem, the cross entropy loss is often
used [45].

2.9 Activation Functions

Activation functions decide whether a neuron should be activated or not by calculating
the weighted sum and further adding bias with it. They are differentiable operators
to transform input signals to outputs, while most of them add non-linearity. Because
activation functions are fundamental to deep learning [46].

Activation functions are a choice that you must make for each layer. Generally, you
can follow this guideline:

• Hidden Layers - RELU

• Output Layer - Softmax for classification, linear for regression.

• ReLU function is the most widely used function and performs better than other acti-
vation functions in most of the cases.

• ReLU function has to be used only in the hidden layers and not in the outer layer.

Without activation functions, the outputs can be anything on the ranging [−Inf,+Inf ],
so the neurons really don’t know the bounds of the value [46]. Some of the common
activation functions are listed here (see Figure 2.18)[47]:

Binary Step Function

Binary Step Function is the simplest activation function that exists and it can be im-
plemented with simple if-else statements in Python. While creating a binary classifier
binary activation function are generally used. But, binary step function cannot be used
in case of multiclass classification in target carriable. Also, the gradient of the binary
step function is zero which may cause a hinderance in back propagation step i.e if we
calculate the derivative of f(x) with respect to x, it is equal to zero. Mathematically
binary step function can be defined as:

f(x) = 1 , x >= 0

f(x) = 0 , x < 0



38

Linear

The linear activation function is directly proportional to the input. The main drawback
of the binary step function was that it had zero gradient because there is no component
of x in binary step function. In order to remove that, linear function can be used. It
can be defined as:

F (x) = ax

The value of variable a can be any constant value chosen by the user.

Sigmoid

It is the most widely used activation function as it is a non-linear function. Sigmoid
function transforms the values in the range 0 to 1. It can be defined as:

f(x) = 1/e−x

Sigmoid function is continuously differentiable and a smooth S-shaped function. The
derivative of the function is:

f ′(x) = 1− sigmoid(x)

Also, sigmoid function is not symmetric about zero which means that the signs of all
output values of neurons will be same. This issue can be improved by scaling the sigmoid
function.

Tanh

It is Hyperbolic Tangent function. Tanh function is similar to the sigmoid function but
it is symmetric to around the origin. This results in different signs of outputs from
previous layers which will be fed as input to the next layer. It can be defined as:

f(x) = 2sigmoid(2x)− 1

Tanh function is continuous and differentiable, the values lies in the range -1 to 1. As
compared to the sigmoid function the gradient of tanh function is more steep. Tanh is
preferred over sigmoid function as it has gradients which are not restricted to vary in a
certain direction and also, it is zero centered.

ReLU

ReLU stands for rectified liner unit and is a non-linear activation function which is widely
used in neural network. The upper hand of using ReLU function is that all the neurons
are not activated at the same time. This implies that a neuron will be deactivated only
when the output of linear transformation is zero. It can be defuned mathematically as:

f(x) = max (0, x)

Leaky ReLU

Leaky ReLU is an improvised version of ReLU function where for negative values of x,
instead of defining the ReLU functions’ value as zero, it is defined as extremely small
linear component of x. It can be expressed mathematically as:

f(x) = 0.01x , x < 0
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f(x) = x , x >= 0

Parametrized ReLU

It is also a variant of Rectified Linear Unit with better performance and a slight variation.
It resolves the problem of gradient of ReLU becoming zero for negative values of x by
introducing a new parameter of the negative part of the function i.e Slope. It is expressed
as:

f(x) = x , x >= 0

f(x) = ax , x < 0

The value of a, when set to 0.01, it behaves as leaky ReLU function but here a is also a
trainable parameter. For faster and optimum convergence, the network learns the value
of a.

Exponential Linear Unit

Exponential Linear Unit or ELU is also a variant of Rectified Linear Unit. ELU intro-
duces a parameter slope for the negative values of x. It uses a log curve for defining the
negative values.

f(x) = x , x >= 0

f(x) = a(ex − 1) , x < 0

Swish

Swish function is a relatively new activation function which was discovered by researchers
at GOOGLE. The distinguishing feature of Swish function is that it is nit Monotonic,
which means that the value of function may decrease even though the values of inputs are
increasing. In some cases, Swish outperforms even the ReLU function. It is expressed
mathematically as:

f(x) = x ∗ sigmoid(x)

f(x) = x/(1− e−x)

SoftMax

Softmax function is a combination of multiple sigmoid functions. As we know that a
sigmoid function returns values in the range 0 to 1, these can be treated as probabilities
of a particular class’ data points. Softmax function unlike sigmoid functions which are
used for binary classification, can be used for multiclass classification problems. The
function, for every data point of all the individual classes, returns the probability. It
can be expressed as:

σ(Z)j =
ezj∑k
k=1 e

zk
for j = 1, ..., k
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Figure 2.18: Common activation functions in ANN.

2.10 Convolutional Neural Networks for Sequence Data

Such 1D convnets can be competitive with RNNs on certain sequence-processing prob-
lems, usually at a considerably cheaper computational cost. Recently, 1D convnets,
typically used with dilated kernels, have been used with great success for audio gener-
ation and machine translation. In addition to these specific successes, it has long been
known that small 1D convnets can offer a fast alternative to RNNs for simple tasks such
as text classification and timeseries forecasting [42].

The convolution layers introduced previously were 2D convolutions, extracting 2D
patches from image tensors and applying an identical transformation to every patch. In
the same way, we can use 1D convolutions, extracting local 1D patches (sub-sequences)
from sequences (see Figure 2.19) [42].

Such 1D convolution layers can recognize local patterns in a sequence. Because the
same input transformation is performed on every patch, a pattern learned at a certain
position in a sentence can later be recognized at a different position, making 1D convnets
translation invariant (for temporal translations). For instance, a 1D convnet processing
sequences of characters using convolution windows of size 5 should be able to learn words
or word fragments of length 5 or less, and it should be able to recognize these words in
any context in an input sequence. A character-level 1D convnet is thus able to learn
about word morphology [42].
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Figure 2.19: How 1D convolution works: each output timestep is obtained from a
temporal patch in the input sequence.

2.10.1 1D pooling for sequence data

Such as 2D average pooling and max pooling, used in convnets to spatially downsample
image tensors. The 2D pooling operation has a 1D equivalent: extracting 1D patches
(subsequences) from an input and outputting the maximum value (max pooling) or
average value (average pooling). Just as with 2D convnets, this is used for reducing the
length of 1D inputs (subsampling) [42].

2.11 Why Deep Neural Networks for Recommendation?

Before diving into the details of our work, it is beneficial to understand the reasons of
applying deep learning techniques to recommender systems. It is evident that numerous
deep recommender systems have been proposed in a short span of several years. The
field is indeed bustling with innovation. At this point, it would be easy to question
the need for so many different architectures and/or possibly even the utility of neural
networks for the problem domain. Along the same tangent, it would be apt to provide a
clear rationale of why each proposed architecture and to which scenario it would be most
beneficial for. All in all, this question is highly relevant to the issue of task, domains and
recommender scenarios. One of the most attractive properties of neural architectures
is that they are (1) end-to-end differentiable and (2) provide suitable inductive biases
catered to the input data type. As such, if there is an inherent structure that the model
can exploit, then deep neural networks ought to be useful. For instance, CNNs and
RNNs have long exploited the instrinsic structure in vision (and/or human language).
Similarly, the sequential structure of sequences, sessions or click-logs are highly suitable
for the inductive biases provided by recurrent/convolutional models [3].

When dealing with textual data (reviews, tweets etc.), image data (social posts,
product images), CNNs/RNNs become indispensable neural building blocks. Here, the
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traditional alternative (designing modality-specific features etc.) becomes significantly
less attractive and consequently, the recommender system cannot take advantage of joint
(end-to-end) representation learning [3].

Pertaining to the interaction-only setting (i.e., matrix completion or collaborative
ranking problem), the key idea here is that deep neural networks are justified when there
is a huge amount of complexity or when there is a large number of training instances
[3].

2.12 Conclusion

In this chapter, the architecture of Convolutional Neural Networks (CNN) in conjunction
with it’s few applications, in brief, have been discussed. Also, the evolution of the various
ANN architectures has been presented clearly along with their components. The CNN
is better than other alternative deep learning networks in applications such as computer
vision and natural language processing as it can mitigate the error rate significantly
and hence improve network performances. By analyzing this chapter, one can gain a
better understanding of why CNN is employed in numerous applications and facilitates in
several machine learning fields. and finally discussed how convolutional neural network
provides a unified and flexible network structure for capturing both general preferences
and sequential patterns in a sequential recommender system. The next chapter will
present the CNN model that will be used to build an SRS.



Chapter 3

Sequential Recommendation
Using Convolutional Neural
Networks

“sequence models have proved useful in recommender systems”

3.1 Introduction

Recent works have applied sequence models for dynamic recommender systems as well.
These techniques usually involve using a specific sequence model, such as RNN or Convo-
lutional Neural Networks (CNN), to encode users’ past interactions into a latent feature
space, which is then used for future predictions [48].

Sequence models, CNNs and RNNs are two important architectures for sequence
modeling. The sequential nature of RNN has made it the default choice for sequence
modeling, such 1D CNNs can be competitive with RNNs on certain sequence-processing
problems, usually at a considerably cheaper computational cost. Recently, 1D CNNs,
typically used with dilated kernels, have been used with great success for audio gener-
ation and machine translation. In addition to these specific successes, it has long been
known that small 1D CNNs can offer a fast alternative to RNNs for simple tasks such as
text classification and timeseries forecasting [48]. In this chapter we will introduce our
model to show how convolutional neural networks can be used to develop a sequential
recommender system.

3.2 Time Series Forecasting

Time series forecasting is difficult. Unlike the simpler problems of classification and
regression, time series problems add the complexity of order or temporal dependence
between observations. This can be difficult as specialized handling of the data is re-
quired when fitting and evaluating models. This temporal structure can also aid in
modeling, providing additional structure like trends and seasonality that can be lever-
aged to improve model skill. Traditionally, time series forecasting has been dominated
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by linear methods like ARIMA because they are well understood and effective on many
problems [49]. But these classical methods also suffer from some limitations, such as
[49]:

• Focus on complete data: missing or corrupt data is generally unsupported.

• Focus on linear relationships: assuming a linear relationship excludes more com-
plex joint distributions.

• Focus on fixed temporal dependence: the relationship between observations at
different times, and in turn the number of lag observations provided as input, must be
diagnosed and specified.

• Focus on univariate data: many real-world problems have multiple input variable

• Focus on one-step forecasts: many real-world problems require forecasts with a
long time horizon.

3.3 Convolutional Neural Networks for Time Series

The ability of CNNs to learn and automatically extract features from raw input data
can be applied to time series forecasting problems. A sequence of observations can be
treated like a one-dimensional image that a CNN model can read and distill into the
most salient elements [49].

This capability of CNNs has been demonstrated to great effect on time series classifi-
cation tasks such as automatically detecting human activities based on raw accelerator
sensor data from fitness devices and smartphones [49].

CNNs get the benefits of Multilayer Perceptrons for time series forecasting, namely
support for multivariate input, multivariate output and learning arbitrary but complex
functional relationships, but do not require that the model learn directly from lag ob-
servations. Instead, the model can learn a representation from a large input sequence
that is most relevant for the prediction problem [49].

3.4 Convolutional Neural Networks for Sequential Recom-
mendation

We generate item recommendations by learning item feature vector embeddings. Our
work is similar to approaches like Word2Vec or Glove used to generate a good vec-
tor representation of words in a natural language corpus. We treat the items that a
user interacted with as words and the string of items interacted with in a sequence as
sentences. This ‘corpus’ of items is then used as an input to a Convolutional Neural
Network. The Neural Network then learn item vector representations and capture the
relationship between items and capture the patterns from sequences. The similarity
between items is captured in the representation of the item vectors. We then use these
item-item similarities to generate recommendations for users based on their browsing
history.
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3.4.1 What Are Word Embeddings?

A word embedding is a learned representation for text where words that have the same
meaning have a similar representation. It is this approach to representing words and
documents that may be considered one of the key breakthroughs of deep learning on
challenging natural language processing problems.

Word embeddings are in fact a class of techniques where individual words are repre-
sented as real-valued vectors in a predefined vector space. Each word is mapped to one
vector and the vector values are learned in a way that resembles a neural network, and
hence the technique is often lumped into the field of deep learning.

Key to the approach is the idea of using a dense distributed representation for each
word. Each word is represented by a real-valued vector, often tens or hundreds of
dimensions. This is contrasted to the thousands or millions of dimensions required for
sparse word representations, such as a one hot encoding.

3.4.2 Items Embedding (Word2Vec)

We used the Word2Vec techniques implemented in the gensim toolbox. This implemen-
tation accepts a list of sentences which are themselves are a list of words. These words
are used to create the internal dictionary which holds the words and their frequencies.
Afterwards the model is trained using the input data and the dictionary. The output of
the technique is continuous vector representation of words, which can be used as features
by different applications. During the training various parameters can be tuned which
affects the performance, in terms of time and quality [50].

There are several similarities between the Word2Vec techniques and the recommen-
dation process: First, the input data used in Word2Vec techniques is actually similar to
what is used in the recommendation process. In the recommendation process a list of
items that the user preferred/rated in the past are used and these lists can be divided
into individual items. In other words, the sentences used in Word2Vec can be mapped
into past preferences of users in recommendation process and the words in Word2Vec to
individual items used in recommendation process. Second, the purpose of the Word2Vec
techniques and the recommendation process are similar. Word2Vec model aims to pre-
dict the words based on the observed words, which can be mapped to predicting the
items to be recommended based on already preferred/used items [50].

In Figure 3.1 An illustrative example of Word2Vec embedding is shown.
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Figure 3.1: Word2Vec embedding.

3.4.3 Supervised Learning with Sliding Windows

Sliding window models convert the next-in-sequence prediction problem into a tradi-
tional supervised learning problem that can be solved with any classifier such as decision
trees, feed-forward neural networks and learning-to-rank methods. The general idea of
the approach, which resembles auto-regressive models, is as follows. A sliding window
of size W is moved over each sequence (see Figure 3.2). At each step, all items within
the window are used to derive the feature values of the supervised learning problem and
the identifier of the immediately next item is used as target variable. As a result, the
sequence prediction problem is turned into a multi-class classification problem, or into
a multi-label classification in case multiple target items are allowed [20].

Figure 3.2: supervised learning with sliding windows.
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3.4.4 Network architecture

The general neural network architecture can be seen in Figure 3.3. Considering a se-
quence with t interactions, the first step taken by the network is to convert each of the
items in the t interactions to their corresponding embedding by taking them through
an embedding layer. For embeddings of dimensionality d, the input to the first con-
volutional layer is of shape t × d. Stride is taken as 1 and padding is set so that the
spatial output dimensionality is also t. d kernels are applied in each layer to produce
d stacked activation maps, making the final output of each convolutional layer t × d.
By using convolutions and retaining the spatial dimensionality, the final convolutional
layer produces a d-dimensional output embedding for each time step in the sequence,
µ1, ...., µt. The output embedding used to make a prediction over the whole sequence
is thus in the last slice t, where all interactions have been seen by the network. To
make the analogy simple two types of layers are proposed in compact 1D CNNs: 1) the
so-called “CNNlayers” where both 1D convolutions and sub-sampling (pooling) occur,
and 2) Fully-connected layers that are identical to the layers of a typical Multi-layer
Perceptron (MLP) and hence called as “MLP-layers”. The configuration of a 1D-CNN
is determined by the following hyper-parameters:

• Number of hidden CNN and MLP layers/neurons.

• Filter (kernel) size in each CNN layer.

• Subsampling factor in each CNN layer.

• The choice of pooling and activation operators.

Figure 3.3: Architecture of convolutional neural network for sequential recommender
system.
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3.5 Experiments

3.5.1 Last.fm Dataset

What is Last.fm Dataset1?

This dataset contains <user, timestamp, artist, song> tuples collected from Last.fm
API, using the user.getRecentTracks() method.

This dataset represents the whole listening habits (till May, 5th 2009) for nearly 1,000
users.

Data Statistics:

Total Lines: 19,150,868

Unique Users: 992

Data Format:

The data is formatted one entry per line as follows (tab separated, ”\t”):

userid-timestamp-artid-artname-traid-traname.tsv

userid \t timestamp \t musicbrainz-artist-id \t artist-name \t musicbrainz-track-id
\t track-name

Splitting the Data:

The dataset is comprised of items viewed by users. These views were converted to se-
quences by sorting the interactions of each user by time. The user-item views were split
into a train set 90% and a test set 10%. The split is time-based, meaning that any
interaction in the test set is at least as late as the latest interaction in the train set.
The advantage of this split is that it reassembles a more realistic setting than randomly
splitting user-item views which would break the sequential nature of the data(see Fig-
ure 3.4). Further, sequences of length less than 2 were removed from the dataset since
predictions can not be made from empty sequences [51].

3.5.2 Evaluation Metrics

Recommendation qualities are commonly expressed through a number of metrics and
methods. The choice of these is often based on the type of dataset used in the system,
the use case, expected outcome, etc. Arguably the most common metric in recommender
systems (and information retrieval) is the precision (P) and recall (R) pair [Her+04].
These metrics are usually applied in offline train/test scenarios, where algorithms are
trained using a portion of the available data and then evaluated by comparing predictions
to a withheld portion of the data, i.e. true positive recommendation.

Precision is the fraction of relevant retrieved documents. In a recommender system
evaluation setting it corresponds to the true positive fraction of recommended items.

1http://ocelma.net/MusicRecommendationDataset/lastfm-1K.html
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Figure 3.4: Splitting data technique.

Recall is the fraction of all relevant items which are retrieved. The formula for calculating
precision is shown in Eq.(3.3) while recall is shown in Eq.(3.2). In both equations,
relevant refers to the complete set of relevant items, and retrieved refers to the complete
set of retrieved items.

P =
|{relevant} ∩ {retrieved}|

|{retrieved}|
(3.1)

R =
|{relevant} ∩ {retrieved}|

|{relevant}|
(3.2)

Commonly, precision is expressed as precision at k where k is the length of the list of
recommended items, e.g. P@1 = 1 would indicate that one item was recommended, and
the item was deemed to be a true positive recommendation, P@2 = 0.5 would indicate
that two items were recommended and one them was deemed a true positive, etc [52].
Another commonly used measure is F-measure that is defined as:

F −measure =
2.P recision.Recall

Precision+Recall
(3.3)

3.5.3 Implementation

The implementation was done in Python 3.7 with the jupyter notebook. And the neural
networks were implemented in Keras.
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3.5.3.1 Python

Python2 is an interpreted, object-oriented, high-level programming language with dy-
namic semantics. Its high-level built in data structures, combined with dynamic typing
and dynamic binding, make it very attractive for Rapid Application Development, as
well as for use as a scripting or glue language to connect existing components together.
Python’s simple, easy to learn syntax emphasizes readability and therefore reduces the
cost of program maintenance. Python supports modules and packages, which encourages
program modularity and code reuse. The Python interpreter and the extensive standard
library are available in source or binary form without charge for all major platforms,
and can be freely distributed.

Figure 3.5: Python programming language logo.

3.5.3.2 Jupyter Notebook

The Jupyter Notebook3 is an open-source web application that allows you to create
and share documents that contain live code, equations, visualizations and narrative
text. Uses include: data cleaning and transformation, numerical simulation, statistical
modeling, data visualization, machine learning, and much more.

Figure 3.6: Jupyter notebook logo.

2https://www.python.org/
3https://jupyter.org/
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3.5.3.3 Keras

Keras4 is an open-source software library that provides a Python interface for artificial
neural networks. Keras acts as an interface for the TensorFlow library.

Figure 3.7: Keras library logo.

3.5.4 Results

Figure 3.8 shows a scatter plot that provide clear comparisons between the test values
(test items) and the values predicted by the proposed CNN model (predicted items).

Figure 3.8: Scatter plot of test items and predicted items.

Table 3.1 shows the results of the proposed CNN model on the Last.fm Dataset. Several
architectures were examined and a single layer of Convolution was found to be the best
performer. adding additional layers always resulted in worse performance, the exact
reason of this is still unknown and requires further research.

4https://keras.io/
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Results

Embedding size:1 Embedding size:10

1 convolution
layer

2 convolution lay-
ers

1 convolution
layer

2 convolution lay-
ers

Precision: 0.0345 Precision: 0.0210 Precision: 0.0254 Precision: 0,0338
Recall: 0.5183 Recall: 0.4802 Recall: 0.3305 Recall: 0.4403
F-Mesure: 0,0646 F-Mesure: 0,0402 F-Mesure: 0,0471 F-Mesure: 0,0627

Table 3.1: Convolutional neural network results.

3.6 Conclusion

In this chapter, we have proposed a convolutional neural network model to make se-
quential recommendations. The (Word2Vec) is further introduced to produce items
embedding. We also touched on a number of ways to evaluate the performance of rec-
ommender systems to show the importance of using a deep learning model to make
sequential recommendation.



Conclusion

A. Summary

Sequential Recommendation is a highly relevant problem in practice. Researchers have
developed a variety of algorithmic proposals over the past fifteen years. In the first chap-
ter of this thesis we present types of recommender systems, traditional recommenders
systems challenges and general principles of empirical research and current state of prac-
tice in sequential recommendation techniques were presented.

In Chapter 2, deep learning was investigated in depth from fundamentals, i.e. neural
networks, learning algorithms, activation functions, for the purpose of adopting a deep
learning approach which is convolutional neural networks in sequential recommenda-
tions.

To answer the research questions, a sequential recommender system was designed,
built, and tested in chapter 3. The model provides recommendations with a convolu-
tional neural network.

The thesis is concluded by reflecting back to the research question. The research
question was:

”How can convolutional neural networks

be used in sequential recommender

systems?”

With our approach, we showed how convolutional neural networks can be used to
incorporate sequential data in recommender systems.

53
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B. Directions for future research

The convolutional neural network architecture used in this thesis is relatively simple.
It could be further extended on by including more advanced deep learning techniques
such as dropout and weight normalization, shown successful in other sequence mod-
elling domains. Adding more advanced techniques could further improve the predictive
performance of the network.

Whilst the current network only considers sequences with fixed length, the network
could also be extended to incorporate sequences with different length and compare results
to each other.

In the future, more experiments can be done using other datasets used in the rec-
ommendation literature and Compare the model to a set of commonly used baselines to
observe the effectiveness of the proposed method.

Although theory suggests that convolutional networks are faster than recurrent net-
works, empirically evaluating the time performance for sequential recommendations dur-
ing both training and prediction would be an interesting study and could further mo-
tivate the use of convolutional networks instead of recurrent networks in time-critical
domains such as recommender systems.
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