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Abstract 

In the field of computer vision, image classification is considered as one of 

the most dominated research domains. Machine Learning, specifically, deep 

learning becomes the most useful tool that handles image classification tasks. The 

Deep Learning model needs to be trained on a huge number of samples, which 

leads us to one of the most popular issues facing this field "The lack of data". Data 

Augmentation increase the number of training images. 

In this thesis, we clarify the impact of the amount of training data and the 

effect of data augmentation on the performance of CNN models in image 

classification.  

We evaluate this on Kaggle dataset by manipulating it in a different manner 

we created three more datasets from the original one. the first one contains 8% of 

the original dataset, the second one is generated by applying seven image 

manipulation technique(rotation, shifting, horizontal flipping)  on the second 

dataset with random parameters, the last one was created using supervised data 

augmentation  with specific parameters instead of the random one, then we train 

each one of the 4 datasets on two different deep learning architecture ResNet and 

AlexNet. The results obtained show that the more data we feed to the model the 

better performance we get, using data augmentation increase the level of accuracy 

besides of using supervised data augmentation show a little better performance 

than the random augmentation but even a small percentage may make the 

difference   

keywords: Computer Vision, Image Classification, Machine Learning, Deep 

Learning, Data Augmentation, Convolutional Neural Network CNN, AlexNet, 

ResNet  
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INTODUCTION 

Deep learning is the new area of machine learning that moving machine 

learning closer to one of its goals which is Artificial Intelligence, Deep learning 

transformed application that required vision expertise into an engineering 

problem that can be solved using this technique, application that used a rule-based 

algorithm may be solved using training systems that can learn and improve on its 

own by examining computer algorithm offered by deep learning, we are talking 

about application and problems that no one expect that they may be handled 

without human involvement. Machine learning and deep learning expanded the 

computers limit more that we expect.  

Deep learning CNNs convolutional neural network model have shown great 

performance especially on image classification and speech recognition which 

exceed human vision sometimes, deep learning model required a large amount of 

data to train on, so we my face problem related to the lack of data or overfitting 

problem, data augmentation is one of the most used technique that may handle this 

problem, can we get a better performance with small dataset? This what shall show 

in this thesis by training two different famous deep learning architecture using 

manipulated dataset from Kaggle. First, we train our model on the complete dataset 

then do the same thing using only 8% of the same dataset this small percentage is 

extracting randomly, third we augment this 8% of dataset using two method 

random augmentation and supervised augmentation and train them on the same 

previous deep learning architecture besides comparing between the results 

obtained.  

1. BACKGROUND  

This is not the first experimentation made to understand the performance of 

CNN on different amount of data beside how data augmentation may lead to a 

better performance Furthermore higher accuracy. We know that there are many 

controversies published paper in [1] the authors proved that applying a specific 

small transformation on samples may lead to a better performance and robustness 

of the classifier. In more recent paper [2] the author compared between different 

method of data augmentation using three architectures ResNet, VGG16, and 

InceptionV3 it’s shows that the GAN data augmentation shows a little better result 

than the basic image manipulation, combining different color space and position 

augmentation gives the maximum accuracy for this research. 
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2. The Scoop of this Research 

This thesis focuses on study of the impact of the amount of data used on 

training set in image classification by deep learning model, especially architecture 

Deep Residual Learning ResNet which won the first place on the ILSVRC 2015 and 

AlexNet using Keras which is a high-level neural network API written in Python 

and capable of running on to of TensorFlow using either CPU or GPU. 

3. Research Goal and Question  

Our objective is to answer the question: how the quantity of training dataset 

may affect the performance of deep learning models and how can we deal with the 

lack of training data problems. 

4. Structure of Manuscript  

Chapter 1  

Deep Learning is the most powerful tools of machine learning on image 

classification tasks, in this chapter “DEEP LEARNING AND ITS APPLICATION” we 

discuss the relation between machine learning and deep learning and how deep 

learning works from the first idea that is inspired from the biological neuron than 

passing through the Convolutional Neural Network CNN to describe the secret 

behind there fame and how CNN works and arrived to the gradient descent and 

backpropagation algorithm and related problems like overfitting, finally, we 

introduce two of the most famous architecture ResNet and AlexNet briefly. 

Chapter 2  

Describe image data augmentation technique used starting with simple 

image manipulation than color space system and finally, the latest technique GAN-

based data augmentation and neural style transfer and smart augmentation. 

Chapter 3  

Describe the tool, libraries and dataset used in this experimentation, the 

augmentation process and the dataset manipulation finally, briefly discussion and 

analyzation of the results obtained. 
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 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION 

CHAPTER 1 
DEEP LEARNING AND ITS APPLICATION 

Introduction 

in the last years, the artificial intelligence known as AI becomes a subject of intent media 
hype. machine learning and deep learning which are a subfield of artificial intelligence 
come up in countless articles, often outside of technology-minded publications. self-
driving cars, chatbots virtual assistants, and many other fields based on artificial 
intelligence (AI) where the human job will be scarce and economic activity will be handled 
with robots also known as AI agents [3]. our interest in this chapter is Deep Learning 
which is a subfield of Machine learning which is a part of AI (Figure 1) and what is the 
relation between Artificial intelligent and Machine learning and deep learning and how 
and which problems can be handled using these 3 techniques. 

1.1 Historical Context  

1.1.1 Artificial Intelligence [3] 

“Artificial Intelligence or AI is the art of making computers think and behave in the same 

manner as human brain in order to solve more complex problems without the need of 

programmer’s guide” 

Artificial intelligence was born in the 1950s, it all begins when a handful of pioneers from 

the nascent field of computer science, they start asking questions about whether 

computers could be made to behave intelligently and to think like a human, a question 

whose ramifications we’re still exploring today. Chess programmer for example only 

involved hardcoded rules crafted and it didn't qualify as Machine Learning. many of them 

believed that the human-level could be achieved by having programmers handcraft a 

sufficiently large set of explicit rules for manipulating knowledge. this approach was 

known as symbolic AI in the 1950s to the late of 1980s. 

Although symbolic AI shows good improvement in solving well-defined logical problems 

but it’s so hard to figure out explicit rules for solving complex problems such as image 

classification or language translation and speech recognition. that gives a lot of space to a 

new approach which called Machine Learning ML 

 
Figure 1 Deep Learning is a Subfield of Machine Learning wich is a Subfield of AI 
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1.1.2 Machine Learning [3] 

“Machine Learning ML is the art of making computers learn from experiences and previous 

situations this called the natural human learning process. we feed to the computer a 

dataset and the predicted result and let the computer learn and analyze the relationship 

between them in order to learn how could that particular data lead to this result” 

Machine Learning has the attention of searchers in AI and even computer sciences since 

1983 [4], the question was always how a computer can learn from experiences (data) 

rather than programmers crafting data processing rules by hand, and how to learn on its 

own how to perform a specific task these questions lead searchers to a new programming 

paradigm called Machine Learning ML.in  the classical programming or symbolic AI the 

programmer input rules or program (algorithm) and data to be processed depending to 

these rule, and outcome answers, Machine learning everything, the programmer input the 

data with the answers expected according to this data and outcome the rule than matching 

between the data and the answers (Figure 2). the rule can be applied to new data in order 

to produce original answers   

 

Figure 2 Traditional Programming vs. Machine Learning 

 

“It would be useful if computers could learn from experience and thus automatically improve the 

efficiency of their own programs during execution. A simple but effective rote-learning facility can 

be provided within the framework of a suitable programming” [5] 

Machine learning have the ability to learn and improve with experiences. Machine 

learning process begin with the raw data which is used for extracting useful information 

that helps in learning and in decision-making using shallow or deep architecture (Figure 

3) to grant that [6] 
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Figure 3 Difference Between a Simple neural Network and a Deep Learning Neural Network 

Machine Learning system is trained rather than be explicitly programmed, AI focus on 

teaching computers how to learn without being programmed for specific tasks Machine 

Learning can be carried out using following approaches:  

1.1.2.1 Supervised Learning [6] 

in ML and AI, supervised learning is a group of algorithms that determines a predictive 

model using data with known outcomes. The model is leaned by training on those data 

while the outputs are clear and try to make relations between the data and its output in 

order to predict on new data (model generalization) through an appropriate learning 

algorithm such as Neural Network, Random Forests and Linear Regression that works 

through some optimization routine to minimize a loss function. 

1.1.2.2 Unsupervised Learning [6] 

In Machine Learning and Artificial Intelligent Unsupervised learning involves data that 

comprises input without any target output. The objectives of unsupervised learning are 

different for example the clustering used to discover groups of similar data items in order 

to extract the similarities between the data items. The visualization used to reduce our 

data size by projecting high-dimensional space to two or three dimensions in order to 

view the similar data items  

1.1.2.3 Semi-Supervised Learning [6] 

Semi-supervised machine learning is a combination of supervised and unsupervised 

machine learning methods. We already set that supervised learning is the learning that 

occurs during the training of an Artificial Neural Network when the data in our training 

set is labeled, unsupervised learning on the other hand is used when our training data is 

not labeled. Semi-Supervised learning used when we have a combination of both labeled 

and unlabeled data. Let's say we have a large amount of no labeled data well we could go 

forward and manually label some portion of this dataset ourselves and use that portion to 

train our model this call pseudo-labeling [7]. 
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1.1.2.4 Reinforcement Learning 

 Is a type of dynamic programming that trains algorithms using a system of reward and 
punishment, a reinforcement learning algorithm, or agent, learns by interacting with its 
environment. The agent receives rewards by performing correctly and penalties for 
performing incorrectly. The agent learns without intervention from a human by 
maximizing its reward and minimizing its penalty. [8] learning. Reinforcement learning 
has been successful in applications as diverse as autonomous helicopter flight, robot 
legged locomotion, cell-phone network routing, marketing strategy selection, factory 
control and efficient webpage indexing.[6] 

 

Figure 4 Machine Learning Approaches with Algorithm Example 

1.2 Deep Learning 

“The modern term “deep learning” does beyond the neuroscientific perspective on the current breed 

of machine learning models. It apealss to a more general principle of machine learnig multiple 

levels of composition, which can be applied in machine learning frameworks that are not 

necessarily neurally inspired”[9] 

Deep Learning is a subfield of Machine Learning which is a subfield of AI, which gained 

popularity in recent past [6], it’s referred to the architecture which contains multiple 

hidden layers (Deep Network), this architecture allows it to learn features with multiple 

levels of abstraction, from a higher level to low level. The number of layers contributes to 
a model is called the depth. 

Deep learning is a type of machine learning that involves Artificial Neural Networks 
(ANN), whose designs are inspired by the way that scientists believe the brain works. 

Deep learning architectures such as: 

• Deep neural networks 

• Recurrent neural networks 

• Convolutional neural networks 

• Recursive neural networks 

https://en.wikipedia.org/wiki/Deep_learning#Deep_neural_networks
https://en.wikipedia.org/wiki/Recurrent_neural_networks
https://en.wikipedia.org/wiki/Convolutional_neural_networks
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have been applied to fields including computer vision, machine vision, speech 

recognition, natural language processing, audio recognition, social network 

filtering, machine translation, bioinformatics, drug design, medical image analysis, 

material inspection and board game programs, where they have produced great results 

and in some cases surpassing human expert performance. [10] 

Feature engineering is a key step in the model building process. It is a two-step process:  

• Feature extraction  
• Feature selection 

 
Figure 5 Comparisons between Machine Learning & Deep Learning 

feature extraction for image classification is to get the possible features from the dataset 

for example corner, edges... and from those features we get we need to extract more 

features it means more details about our features in order to get small or hidden features. 

Features Selection consist of selecting features that affect the model performance more 

this means we need to get some features that we extract from our dataset and feed it to 

our model to see the impact caused and then select the best features to our model, 

Convolutional Neural Networks (CNNs) do all this by default [11]. 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Machine_vision
https://en.wikipedia.org/wiki/Automatic_speech_recognition
https://en.wikipedia.org/wiki/Automatic_speech_recognition
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Audio_recognition
https://en.wikipedia.org/wiki/Machine_translation
https://en.wikipedia.org/wiki/Bioinformatics
https://en.wikipedia.org/wiki/Drug_design
https://en.wikipedia.org/wiki/Board_game
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1.2.1 The Neuron: 

Neurons in deep learning were inspired by neurons in the human brain [3] Figure 6 shows 

the anatomy of a brain neuron: 

 

Figure 6 Neuron in Biology 

As we can see, neurons have a very interesting structure. Neuron works in groups 

together inside the human brain in order to perform functionality that human need and 

requite in life. A question was asked by Geoffrey Hinton during his seminal research in 

neural networks if we could build an algorithm for the computer to simulate neurons in 

the human brain [12]. The hop that if they can mimic brain structure, they might capture 

some of its capability. 

To do this, researchers and scientists studied the behavior of neurons in the human brain. 

An important observation shows up that the neuron by itself is useless. Instead, it requires 

networks of neurons (Neuron Network) to generate meaningful tasks. the secret behind 

that is because the neuron function by sending and receiving signals to other connected 

neurons. The neuron dendrites have the ability to receive signals from the previous 

neuron then pass those signals through the axon. the dendrites of the neuron are 

connected to another neuron axon. we call this connection as a synapse. synapse concept 

has been generalized on deep learning. [13] 

1.2.2 Artificial Neuron:  

This functional understanding of the neurons in our brain is translated into an artificial 

model that can be represented on a computer, Neurons in deep learning models are nodes 

through which data and computations flow.  

 Neurons work like this (view figure 7):  

• Neurons receive one or many input signals from either the raw dataset or from 
the previous neuron (the previous layer) of the network. 

• Neurons do some calculations.  

• Finally, Neuron sends output signals to neurons in the next hidden layer through 
a synapse. 
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Figure 7 Diagram of the Functionality of a Neuron in a Deep Learning Neural Network 

Neurons in Deep Learning models have the ability of connect to more than one neuron in 

the preceding layer through synapses. [3] 

A neuron receives its input from the previous neurons in the preceding layer of the model, 

then adds up signals multiplied by the corresponding weight then pass the result to an 

activation function [13] Figure 8 shows the complete process 

 

Figure 8 illustration of an artificial neuron 

Mathematically, we have numbers of inputs 𝑥₁, 𝑥₂, 𝑥₃ … , 𝑥ₙ , each one of those inputs is 

multiplied by specific weight 𝑤₁, 𝑤₂, 𝑤₃ … , 𝑤ₙ . 

 



 

10 
 

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION 

The results of this multiplication are summed together to produce the logit of the  

Neuron:  

∑ 𝑥ⱼ𝑤ⱼ  

𝑛

𝑗=0

 
 

(1) 

in many cases, the logit also include bias, which is a constant: 

∑ 𝑥ⱼ𝑤ⱼ + 𝑏 

𝑛

𝑗=0

 
 

(2) 

This logit passed through a function f in order to produce our output  𝒚 = 𝒇(𝒛). 

We may also express this functionality in victor form, our input as a vector   

𝒙 = [𝑥₁, 𝑥₂, … , 𝑥ₙ] , and the weights of the neuron as  𝒘 = [𝑤₁, 𝑤₂, … , 𝑤ₙ], so our function 

become  𝒚 = 𝒇(𝒙. 𝒘 + 𝒃) , where b is the bias term. [13]  

The role of the activation function is to calculate the output value of neurons, the value 

obtained passed through the next layer of our network using synapse. 

1.2.3 Artificial Neural Networks 

Neural networks are one type of model for machine learning; they have been around for 

at least 50 years. in the mid-1980s and early 1990s, many important architectural 

advancements were made in neural networks. However, the amount of time and data 

needed to get good results slowed adoption. In the early 2000s computational power 

expanded exponentially and the industry saw a “Cambrian explosion” of computational 

techniques that were not possible prior to this, this made the interest come back in Neural 

networks [13].  

A feed-forward multilayer ANN is used. (Figure 9) shows the general ANN architecture, 

which has an input layer, a set of hidden layers and an output layer. In each hidden and 

output layer, there are artificial neurons interconnected via adaptive weights. [14] 

“Updating the weights is the primary way the neural network learns new information”. 

 
Figure 9 Artificial Neural Network Architecture 



 

11 
 

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION 

The simplest type of Artificial Neural Networks ANNs was the feedforward Neural 

Network cause the information moves in one direction only, forward, from the input layer 

nodes through the nodes of the hidden layer and to the output layer nodes, Neural 

Network learn (update weight) by learning algorithm called Back-propagation. [14] 

1.2.3.1 Input layer [15] 

The input layer of Neural Network contains a group of artificial neurons which hold the 

initial data for the neural network and brings it to into the system for further processing 

by subsequent layers of the artificial neuron, the input layer is the very beginning of the 

workflow for the artificial neural network, input layers are followed by one or many hidden 

layers. On images processing input layer will hold the pixel intensity of the image for 

example an RBG image with width w=64 and height h=64, and depth d=3 will have an input 

dimension of 64×64×3. 

1.2.3.2 Hidden layers [15] 

Hidden layers are an Intermediate between the input and output layer of a neural network. 

A hidden layer is a place where all the computation is done where artificial neurons take 

in a set of weighted inputs and produce outputs through an activation function. In most 

cases hidden neural networks layers weights are randomly assigned, sometimes they are 

fine-tuned (used other model’s weights) and calibrated through the backpropagation 

process. 

1.2.3.3 Output layer [15] 

The output layer is the last layer of an artificial neural network, the output layer neurons 

produces output value of the network, output layer built in a different way depending on 

the setup of the neural network. The final output may be a set of probabilities in cases of 

classification or a real valued output in regression problems. The output is controlled by 

the type of activation function used on the output layer neurons. 

1.2.3.4 Activation Functions 

The activation function is a mathematical gate between the input which is a value coming 

from the previous neuron and the output which is the value going to the next layer 

neurons (Figure 10), we can describe it as a function that turn the neuron output on or off 

depending on the rule applicated [15].    

 
Figure 10 Activation Function  
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There are 2 type of activation function that can be used on neural network linear 

activation functions and no-linear activation function, the second one is the most used 

because it can help network to learn complex data, Activation function has also the ability 

of filter out data here some usual activation functions: 

1.2.3.4.1 Linear Activation Function 

A linear activation function takes the form: 𝑓(𝑥) = 𝑐𝑥 

 
Figure 11 Linear Activation Function 

This create a signal output identic to the input by taking the inputs and multiply it by the 

weight corresponding to each neuron. In one sense, a linear function allows multiple 

outputs, not just yes and no, so we can say that is better than a step function. 

Mathematically we can say that the neuron receive input 𝑥₁, 𝑥₂, 𝑥₃ … 𝑥ₙ the output of 

the linear neuron is given by: 

y = w₁𝑥₁ + 𝑤₂𝑥₂ + 𝑤₃𝑥₃ … + 𝑤ₙ𝑥ₙ + 𝑏 (3) 

Where 𝑤₁, 𝑤₂, 𝑤₃ … 𝑤ₙ are the weight corresponding to 𝑥₁, 𝑥₂, 𝑥₃ … 𝑥ₙ respectively 

and 𝑏 is the bias. [15] 

linear activation function can't use backpropagation and gradient descent in order to train 

models the derivative of the function is always constant and it has no relation to the input 

so there is no way to go back through the backpropagation process to understand which 

weight in our input neuron way provide a better prediction.  

we can say that a neural network with a linear activation function is a regression model. 

Linear activation function has a limited ability to handle with complex varying parameters 

of input data. 
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1.2.3.4.2 Non-Linear Activation Function [15] 

Instead of using linear activation function modern models use non-linear activation 

function in order to create a complex mapping between the network's inputs and outputs, 

image processing and dataset that have high dimensionality. 

Non-linear activation functions solve the problems of the linear-activation function  

• Non-linear activation function allows backpropagation process because they 

have a derivative function, the derivative of a linear function is always 0. 

• Non-linear activation function gives high accuracy comparing to the linear one  

Those are the most used non-linear activation function  

a) Sigmoid [15] 

which uses the function: 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 (4) 

The Sigmoid function assumes an S-shape (Figure 12), if the input is small then the output 
of the sigmoid function is close to 0, otherwise, a large value gives an output closer to 1.  

 
Figure 12 Sigmoid Function  
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b) Tanh [13] 

Which is similar to sigmoid function but instead of ranging from 0 to 1, the output of tanh 

range from -1 to 1, use 𝑓(𝑥) = tanh(𝑥) it’s the ratio of the hyperbolic sine to the 

hyperbolic cosine: 

tanh(𝑥) =
sinh (𝑥)

cosh (𝑥)
 (5) 

The graph of tanh function is similar to the sigmoid function (Figure 13)  

 
Figure 13 Tanh Hyperbolic 

During the backpropagation step the gradients become smaller and smaller until 

eventually they vanish, no gradients means no learning this as called the vanish gradient 

problem. it happens because of the sigmoid function it squeezes information. The solution 

of this problem is to use an activation function that doesn’t squeeze information like RELU 

[16].  
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c) ReLU [16] 

Rectified Linear Unit use the function 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥), ReLU is probably the most used 

activation function in the world now. It used in almost all the Convolutional Neural 

Network (CNNs) or deep learning. 

 
Figure 14 ReLU Graph  

As we can see, 𝑓(𝑥) is zero when 𝑥 is less then zero and 𝑓(𝑥)  is equal to 𝑥 when 𝑥 is above 

or equal to zero. 

As we can see all the negative values become zero immediately, that may decrease the 

ability of the model to fit or train from the data properly because the ReLU block all the 

inputs less than zero that's called "dying ReLU problem" introducing some activation even 

in the negative cases solve this problem 

Leaky ReLU is an attempt to solve the dying ReLU problem  

 
Figure 15 ReLU vs Leaky ReLU 

Leaky ReLU have handled this problem pretty well. 
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d) SoftMax [17] 

SoftMax (Figure 16) handles the activation of the output neuron, we can use SoftMax to 

solve classification problems. the number of classes equal to the number of neurons in the 

last layer the value obtained from the SoftMax represents the probability of belonging to 

a particular class. 

 
Figure 16 SoftMax 

A strong prediction mean that one output is too close to 1, while the other output 

obviously close to 0, Otherwise, our prediction is weak. 

1.2.3.5 Loss Functions 

loss function quantifies how close given neural network is to the ideal toward which is 

training. [18] In deep learning project, configuring the loss function is one of the most 

important steps to ensure the model will work in the intended manner. The loss function 

can give a lot of practical flexibility to the neural network. 

There are serval tasks neural network can perform, from predicting continuous values to 

classifying discrete classes. Each different task would require a different type of loss 

function since the output format will be different. For specialized tasks, it’s up to us how 

we want to define the loss. The loss function (Figure 17) can be defined as a function with 

two parameters: Predicted Output and the True Output  
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Figure 17 Neural Network Loss Visualization 

the function above calculate how poorly our model is preforming by comparing the 

actual value that we supposed to get as output and what the model is predicting, in the 

case of Y_pred value is very far from Y the loss will be high, and if the 2 values are 

similar the loss value will become low [3]. 

If the loss is very high, this huge value will propagate through the network while it’s 

training and the weight will be changed let’s say optimized a little more than usual 

(Figure 18). If the loss is small than the weight will not change a lot since the network 

is already doing a good job [17].  

 

Figure 18 Neural Network Workflow  

The objective is to found the optimal weights possible for our network, the weights that 

minimize the error, the way to do that is by applying an optimization algorithm like 

gradient descent.  
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If we put 𝑡⁽ⁱ⁾ is the true answer for the 𝑖⁽ᵀʰ⁾ training sample and 𝑦⁽ⁱ⁾  is the value obtained 

by the Neural Network E is the function that minimize the value of the square error: [13] 

𝐸 =
1

2
∑(𝑡(ⁱ) − 𝑦⁽ⁱ⁾)²

𝑖

 (6) 

1.2.4 Gradient Descent [13] 

Gradient descent is an optimization technique used to minimize the error by calculating 

the gradient necessary in order to update the value of neural network parameters [6]. 

Let’s visualize how we might minimize the squared error over all of the training examples 

by simplifying the problem. Let’s say our linear neuron only has two inputs 

(and thus only two weights, w1and w2). Then we can imagine a three-dimensional 

space where the horizontal dimensions correspond to the weights w1and w2, and the 

vertical dimension corresponds to the value of the error function E. In this space, 

points in the horizontal plane correspond to different settings of the weights, and the 

height at those points corresponds to the incurred error. If we consider the errors, we 

make over all possible weights, we get a surface in this three-dimensional space, in 

particular, a quadratic bowl as shown in Figure 19 

 
Figure 19 The Quadratic Error Surface for a Linear Neuron  

now we are able to develop a strategy for how to find the values of weights that minimizes 

the error function, the weights are randomly initialized for our network so we find 

ourselves somewhere in the horizontal plane. By evaluating the gradient at our current 

position, we can find the direction of steepest descent, and then take a step on that 

direction, now we find ourselves in at a new position closer to the minimum than before. 

By taking the gradient at this new direction we can reevaluate the direction of steepest 

descent and taking a step in this direction as shown in Figure 20, by following this strategy 
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it will get us to the point minimum (minimum error), this is known as the Gradient 

Descent Algorithm, it used to tackle the problem of training individual neurons and the 

more general challenge of training entire networks. 

 
Figure 20 Visualizing the Error Surface as a set of Contours 

The learning rate is of the most important hyperparameter in this process. 

We need to determine how fare we want to walk before recalculating our new direction. 

This distance need to depend on the steepness of the surface because the closer we are to 

the minimum the shorter we want to step forward, the closer to the minimum we are the 

more flatter our surface become, so we can use the steepness as an indicator of how close 

we are to the minimum,  however, if our surface is rather mellow, training can take a large 

amount of time. As a result, we often multiply the gradient by a factor 𝜖, the learning rate. 

Picking the learning rate is a hard problem (Figure 21). If we pick a small learning rate, 

we risk taking too long during the training process but if we pick a big value for the 

learning rate we’ll mostly likely start diverging away from the minimum. 
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Figure 21 Convergence is Difficult when our Learning Rate is too Large 

Now, we are finally ready to derive the delta rule for training our linear neuron. In order 

to calculate how to change each weight, we evaluate the gradient, which is essentially the 

partial derivative of the error function with respect to each of the weights. In other words, 

we want: 

∆𝑤ₖ = − 𝜖
𝜕𝐸

𝜕𝑤ₖ
 

= −𝜖
𝜕

𝜕𝑤ₖ
 (

1

2
∑ (𝑡⁽ⁱ⁾ − 𝑦⁽ⁱ⁾)

2

𝑖
) 

= ∑ 𝜖(𝑡⁽ⁱ⁾ − 𝑦⁽ⁱ⁾)
𝑖

𝜕𝑦ᵢ

𝜕𝑤ₖ
= ∑ 𝜖𝑥ₖ

⁽ⁱ⁾(𝑡⁽ⁱ⁾ − 𝑦⁽ⁱ⁾)
𝑖

 

(7) 

By applying this function, we are finally able to use gradient descent 

1.2.5 The Back-Propagation Algorithm [13] 

Back propagation is a technique used to train multilayer neural network, by David E. 

Rumelhart, Geuffry E. Hinton and Ronald J. Williams in 1986. [19] The main idea behind 

backpropagation is to compute how fast the error changes as we change a hidden activity. 

From there we can figure out how fast the error changes when we change the weight of 

an individual connection. Essentially, we’ll be trying to find the path of steepest descent! 

The deference now is that we are going to work in an extremely high-dimensional space 

instead of two weight in the previous example. We start by calculating the error 

derivatives with respect to a single training example. 
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Each hidden unit can affect many output units. Thus, we need to combine many separate 

effects on the error in an informative way. Our strategy will be one of dynamic 

programming. Once we have the error derivative for one layer of hidden units, we’ll use 

them to compute the error derivative for the activities of the layer below. And once we 

find the error derivatives for the activities of the hidden units, it’s quite easy to get the 

error derivative for the weights leading into the hidden unit. We’ll redefine some notation 

for ease of discussion and refer to (Figure 22) the subscript we used refer to the layer of 

the neuron, y refers to the activity of the neuron, z refers to the logit of the neuron.  

 
Figure 22 Reference Diagram for the Derivation of the Backpropagation Algorithm  

Now we stat by taking a look at the base of the dynamic programming problem. 

Specifically, we calculate the error function derivative at the output layer:  

𝐸 =
1

2
∑ (𝑡ⱼ − 𝑦ⱼ)2 ⇒

𝜕𝐸

𝜕𝑦ⱼ
= −(𝑡ⱼ − 𝑦ⱼ)

j ∈ output
 (8) 

Now we tackle the inductive step. Let’s presume we have the error derivatives for 

layer j. We now aim to calculate the error derivatives for the layer below it, layer 𝑖. To 

do so, we must accumulate information about how the output of a neuron in layer 𝑖 affects 

the logits of every neuron in layer 𝑗. This can be done as follows, using the fact that the 
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partial derivative of the logit with respect to the incoming output data from the layer 

beneath is merely the weight of the connection 𝑤ᵢⱼ 

𝜕𝐸

𝜕𝑦ᵢ
= ∑

𝜕𝐸𝜕𝑧ⱼ

𝜕𝑧ⱼ 𝜕𝑦ᵢⱼ
= ∑ 𝑤ᵢⱼ

𝜕𝐸

𝜕𝑧ⱼ𝑗
  (9) 

Furthermore, we observe the following: 

𝜕𝐸

𝜕𝑧ⱼ
=

𝜕𝐸

𝜕𝑦ⱼ

𝜕𝑦ⱼ

𝜕𝑧ⱼ
= 𝑦ⱼ(1 − 𝑦ⱼ)

𝜕𝐸

𝜕𝑦ⱼ
 (10) 

Combining these two together, we can finally express the error derivatives of layer 𝑖 in 

terms of the error derivatives of layer 𝑗: 

𝜕𝐸

𝜕𝑤ᵢⱼ
= ∑ 𝑤ᵢⱼ𝑦ⱼ(1 − 𝑦ⱼ)

𝜕𝐸

𝜕𝑦ⱼ𝑗
 (11) 

Then once we’ve gone through the whole dynamic programming routine, having filled up 

the table appropriately with all of our partial derivatives (of the error function with 

respect to the hidden unit activities), we can then determine how the error changes with 

respect to the weights. This gives us how to modify the weights after each training 

example: 

𝜕𝐸

𝜕𝑤ᵢⱼ
=

𝜕𝑧ⱼ

𝜕𝑤ᵢⱼ

𝜕𝐸

𝜕𝑧ⱼ
= 𝑦ᵢ𝑦ⱼ(1 − 𝑦ⱼ)

𝜕𝐸

𝜕𝑦ⱼ
 (12) 

Finally, to complete the algorithm, just as before, we merely sum up the partial derivatives 

over all the training examples in our dataset. This gives us the following modification 

formula: 

∆𝑤ᵢⱼ = − ∑ ∈ 𝑦𝑖
(𝑘)

𝑦𝑗
(𝑘)

𝑘∈ 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
(1 − 𝑦𝑗

(𝑘)
)

𝜕𝐸(𝑘)

𝜕𝑦𝑗
(𝑘)

 

 

(13) 
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1.2.6 Convolutional Neural Networks (CNNs / ConvNets)  

Convolutional neural networks CNN often called ConvNet, are a family of models that 

where inspired by how the visual cortex of human brain works when recognizing objects. 

The development of CNN’s goes back to the 1990’s, when Yann LeCun and his colleagues 

proposed a novel neural network architecture for classifying handwritten digits from 

images. [20] Due to the great performance of CNNs specially for image classification tasks, 

CNNs gained a lot of attention, this leads to tremendous improvements in Machine 

Learning and computer vision applications [21] 

ConvNets has deep feed-forward architecture and has astonishing ability to generalize in 

a better way as compared to networks with fully connected layers [10], it can learn highly 

abstract features and can identify objects efficiently. CNN is considered above other 

classical models because, CNN can be trained smoothly and does not suffer overfitting and 

it is much difficult to implement large networks using general models of Artificial Neural 

Network (ANN) than implementing in CNN. CNNs are widely being used in various 

domains due to their remarkable performance such as object detection, speech 

recognition, face detection, facial expression recognition, natural language processing, 

image classification and many more. The main concept of CNNs s to obtain local features 

from input (usually an image) at higher layers and combine them into more complex 

features at the lower layers. [11] 

1.2.6.1 Convolution Operation  

Kernel convolution isn’t only used in ConvNets it’s also used on many other computer 

vision algorithms. It’s a simple process where we need to take a small matrix 

(Kernel/Filter), then pass through the target image and transform it based on kernel 

values, the result of this operation is a feature map. Feature map values are calculated by 

the following formula: 

G[m, n] = (f × h)[m, n] = ∑ ∑ h[j, k]f[m − j, n − k]

kj

 (14) 

Our input image is denoted with f and our kernel by h. The indexes of rows and columns 

of the result matrix are marked with m and n respectively. [15] 

First of all, we need to place the filter over a selected pixel (region of the input matrix), 

then multiplying each value from the kernel with the corresponding value from the image 

(input matrix) using a dot product, not matrices multiplication. Finally, we sum up the 

results we get then place it in the right place in our feature map 
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1.2.6.2 Architecture of CNN 

In traditional neural networks, each hidden layer is made up of a number of neurons, 

where each neuron is fully connected to all neurons in the preceding layer. The major 

difference between a traditional Artificial Neural Network (ANN) and Convolutional 

Neural Network CNN is that only the last layer of a CNN is fully connected whereas in ANN, 

it means that each neuron is connected to every other neuron (full connection) as shown 

in (Figure 23) [22] 

 

Figure 23 Artificial Neural Network and Convolutional Neural Network  

ANNs are not appropriate to images it leads to over-fitting easily due to image size. 

Consider an image of size [32x32x3]. If this image is passed through an ANN, it will be 

flattened into a vector of size 32x32x3 which means 3072 rows. so, our ANN must have 

3072 weights in its first layer to receive this input vector. For larger images, say 

[300x300x3], it results in a complex vector (270,000 weights), which requires a more 

powerful processor to process. [22] 

All CNN fundamentals are based on three properties: local connectivity, parameter 

(weight) sharing, pooling and sampling of hidden units. 

a) Local Receptive Field 

Also known as local connectivity we have already explained that the ANN neurons are 

fully connected, as for CNN have local receptive field architecture, that’s means each 

hidden unit can only connect to a small region of the input called local receptive field. This 

is accomplished by making the filter/weight matrix smaller than the input. Using the local 
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receptive field, the neurons will be able to extract elementary visual features like point 

and corners, etc. [23] 

b) Weights sharing 

In CNN, the matrix of parameter (kernel or weight matrix) is shared between the hidden 

units organized in the same feature map. Hidden units within a feature map cover 

different position(part) of the image, same filter can be used for all local receptive fields. 

c) Subsampling (pooling) 

Pooling and sampling of hidden units, subsampling reduces the size of the input, in order 

to improve the computation. There are many techniques used, the most common 

subsampling technique is max-pooling. [15] 

Convolutional Neural Network is based on a sequence of layers to achieve different tasks. 

The figure below shows the architecture of a typical ConvNet that contains the following 

layers divided on two-part Features Learning and Classification: 

                                                  Convolutional layers, 

   Features Learning           Activation function layer (ReLU), 

                                           Pooling layer, 

                                           Fully connected layer, 

   Classification           

                                           Output layer with activation function (Softmax) 

 

Figure 24 Convolutional Neurol Network Architecture  

These layers are connected together to make a full Convolutional Neural Network 

architecture, Convolutional and activation layer followed by an optional pooling layer. 

Fully connected layer makes up the last layer of the CNN, [22] using a SoftMax function 

(Sigmoid function may be used on binary classification) in the last layer produces the 

probability of which class included our input when it comes to a classification problem 

like the previous figure. [15] 
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1.2.6.2.1 Convolution layer  

Network which uses convolutional operation (*) which called also an element-wise 

product used instead of general matrix multiplication who takes too long. The 

Convolutional Layer consists of a set of filters (kernel or feature detector), where each 

filter is applied across all areas of the input data (the image) (Figure 25). A filter is defined 

by a set of learnable weights. [6] The number of feature maps is equal to the specified 

number of filters. [15] 

 

Figure 25 Convolutional Operation 

The main task of convolutional layer is to detect features found within local region of the 

input image. A feature map is obtained for each filter. 
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1.2.6.2.1.1 Filters/Kernels 

Each filter contains some features like corners, edge, and during the pass, the filter is slide 

across the width and height (according to the stride parameter) of the input generating 

feature map of that filter, they may be multiple kernels in each convolutional layer. [23] 

 

Figure 26 Example of Convolutional Operation 

A feature map is obtained after adding a bias term and then applying a nonlinear function 

to the output of the convolutional operation. 

1.2.6.2.1.2 Hyperparameters 

The convolutional and pooling layers have hyperparameter whose value must be defined 

beforehand, they are used to control the behavior of the model, here some important 

hyperparameters in the convolutional layer of the CNN: 

a) Filter Size 

Filer can take any size greater than 2 × 2 [23], it should be less than the size of the input. 

The largest size used is 7 × 7 but only in the first convolutional layer, [13] a 2D 

convolutional filter will always have a third dimension in size. The third dimension is 

equal to the number of channels of the input image. For example, we apply a 3x3x1 

convolution filter on gray-scale image that has 1 black and white channel like the previous 

example (Figure 26). We apply a 3x3x3 convolution filter on a colored image with 3 

channels, Red, Green and Blue (figure 29). 

In general, each image has dimensions W × H × D where W is the width in pixels, H is the 

height in pixels and D represent the dimension or the depth which is the number of 

channels. [23] 

b) Number of filters 

There can be any reasonable number of filters, GoogLeNet has 128 filters of 3 × 3 kernel 

size and 32 filter of 5 × 5 size, AlexNet used 96 filters of size 11 × 11 in the first 

convolution layer. [6] 
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c) Stride 

It governs how many cells the filter is moved in the input to calculate the next cell in the 

result, that means the number of pixels to move at a time to define the local receptive field 

for filter (Figure 27), too small stride will lead to overlapping receptive field and the large 

one resulting output with smaller dimension. [6] 

 

Figure 27 Filter with Stride (s) = 2 

d) Zero padding 

This hyperparameter describes the number of pixels to pad the input image (matrix), [6], 

we add to the image a padding with p pixel(Figure 28). It helps to keep more of the 

information at the border of an image [13]. Without padding, very few values at the next 

layer would be affected [6]. 

 

Figure 28 Zero Padding example with (p)=1 
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Notice that the dimension of the result has changed due to padding if we compare it with 

the previous example (figure 29)  

Each filter in the convolution layer produce a feature map of size ([A − K + 2P]/S) + 1, 

where: A the input volume size, K size of the filter, P the number of padding applied and S 

the stride. [6]  

Suppose the input image has size 6 × 6 × 3, and 3 filters of size 3 × 3 are applied, where 

stride s = 1 and padding  p = 0 (figure 7), we already say that the number of feature maps 

generated equal to the number of filters/kernels applied i.e. 5. the size of each feature map 

will be (
[6−3+0]

1
) + 1 #4, therefore, the output volume will be 4 × 4 × 3 . Convolution 

of 3D image will give a 2D output. 

 

Figure 29 Convolution Operation on Volume 

1.2.6.2.2 Pooling Layer 

Subsampling layers commonly known as pooling layers, do not have any learnable 

parameters, for instance, there are no weights or bias units in pooling layers, in CNNs, the 

sequence of convolution layers and activation function layer is followed by an optional 

pooling layer [24] to reduce the spatial size of the input this will reduce the number of 

parameters in the network. [6] Pooling layer makes the model more robust to variations 

in the position of the features in the input image by taking each feature map output from 

the convolutional layer and down-sample it, it summarizes a region of neurons in the 

convolution layer. Many pooling technique max and average pooling are the most 

common pooling technique used, [23] (Figure 30) it’s a pooling operation that select the 

maximum element (value) from the region of the feature map covered by the filter, the 

output after max-pooling layer would be a feature map containing the most important 

features of the previous feature map and discards less signification data. The average 
pooling calculates the average instead of take the maximum value from the input matrix. 
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Figure 30 Max Pooling and Avg Pooling 

1.2.6.2.3 Fully Connected Layer [6] 

In ConvNets the previous sequence (Convolutional Layer, Pooling layer) is followed by a 

fully connected layer. Convolutional neural network composed of two stage: Feature 

extraction and classification stage, the stack of convolutional layer and the pooling layer 

represent the part of the feature extraction, while the classification stage is composed of 

the fully connected layer (one or more) followed by a SoftMax function layer. The main 

role of the first part is to detect enough features from input images. The role of the last 

layer which probably composed of Softmax function will calculate the probability that 

these features represent each class that mean obtain the class score. each neuron from 

previous layer (convolution layer or pooling layer or fully connected layer) is connected 

to every neuron in the next layer and every value contributes in predicting how strongly 

a value matches a particular class. (Figure 31) fully connected layer can learn more 

sophisticated combinations of features. the two main classifiers used in CNNs are Softmax 

and Support Victor Machines (SVMs) as we said Softmax produce the probabilities of each 

class with total of probability of 1, SVM produce the class scores, the class having the 

highest score is the treated as the correct one. 

 

                                

 

 

 

                                                     Feature maps                                                Fully connected  

Figure 31 Connection between Convolutional Layer and Fully Connected Layer 
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1.3 Regularization for Deep Learning  

Regularization for deep learning is as collection of techniques prevent overfitting 

problems this technique can improve the accuracy of models, the problem is that the 

model shows a good performance in training set and a bad performance on the test data 

(new data), we can say that the model in this case can’t generalize well what he learn to 

new data, many strategies used in machine learning to solve this problems, these 

strategies are known as regularization. [9] 

1.3.1 Underfitting and overfitting 

there are 2 major problem the first one is underfitting and the second one is overfitting, 

the first one is when the error rate for the training data is high that obviously mean that 

the error rate for the test data will be high also many expert said that if the model accuracy 

in training set is less than 75% that mean that the model architecture need to be changed 

or configurated, the second problem is the worst it happen when the model show a great 

performance on the training data but the accuracy is low for the test data (validation data) 

(Figure 32) that happens when the model overfit the data but it can’t generalize well on 

new data that he never seen, the major cause of overfitting problem is the lack of training 

data. [21] 

 

Figure 32 Model Capacity and its Effect on Underfitting and Overfitting  

When the capacity is low both of the training error and test error are high, when the 

capacity increase, the training error decrease, the test error initially decrease than it starts 

to increase and that lead to an overfitting, when the generalization gap is big, (Figure 33) 

changing model parameters or the model itself is the key to avoid underfitting, but what 

about overfitting when the model is doing well on training dataset and can’t generalize on 

test or validation data many technique can be used the most efficient one is Data 

Augmentation  when we don’t have enough data to train our model. (see Chapter 2) 
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Figure 33 Detection of Overfitting 

 

1.3.2 Dropout  

Dropout is an activity to regularize weights in the fully connected layers of convolutional 

neural network in order to avoid overfitting. [6] Some neuron with their connection are 

randomly dropped from the network during training set (Figure 34), the remaining 

neurons can learn important features all by themselves and not rely on cooperation from 

other neurons. [16] The high cooperation between neuron lead to overfitting since it does 

well on the training dataset, the random dropout technique show a great improvement on 

generalization   

 

Figure 34 Neural Network with three unit Dropped Randomly 
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1.4 Deep Learning Architecture  

The last few years many Deep Learning architecture appear and evolved achieving top 

scores on many tasks including images classification, they can achieve high accuracy, [6] 

one of the most architecture called ResNet  

1.4.1 ResNet [25] 

As the number of layers of deep networks increases, the accuracy improves and the 

accuracy saturates once the network has converged. However, if the depth is further 

increased, then the performance starts getting degraded rapidly. This degradation is 

caused by adding more layers to an already converged deep model which results 

in higher training error. Thus, there is a need for a strategy that obtains an optimal 

deep network for a given application. ResNet was proposed with a residual learning 

framework that lets new layers to fit a residual mapping. It is easier to push the 

residual to zero when a model has converged than to fit the mapping by a stack of 

nonlinear layers [6]. 

Given an underline mapping 𝐻(𝑥) to be fit by a few stacked layers, where 𝑥 is the input to 

these layers, the residual learning use the residual function  

𝐹(𝑥) = 𝐻(𝑥) − 𝑥 (15) 

It is easier to optimize the residual mapping than to optimize the original, and it can be 

realized by a feedforward neural network with shortcut connection as shown in Fig.35 

The shortcut link simply accomplishes identity mapping, and the output of. [6] 

 
 Figure 35 ResNet Residual Learning Block  

The architecture diagram of ResNet-34 is shown in (Figure 36) 
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Figure 36 ResNet-34 Layers Architecture Diagram 

1.4.2 AlexNet 

The AlexNet CNN architecture [26] was developed by Alex Krizhevsky, Ilya Sutskever and 

Geoffrey Hinton in 2012, AlexNet won the ImageNet ILSVRC (ImageNet Large-Scale Visual 

Recognition Challenge) competition in the same year. The model consists of five 

convolutional layers, three pooling layers, three fully connected layers, and a 1000-way 

Softmax classifier [6].  

The original paper’s primary result proved that the depth of the model has a huge impact 

on the model performance, a deep model was computationally expensive, but it’s become 

workable due to the utilization of the Graphis Processing Units GPU during training. [15] 
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Chapter 2 

 Data Augmentation  

 

 

 

 

 

 

Introduction 

Deep learning is the fastest-growing field these days in the machine learning (ML) field 

and between many DNN structures, the Convolutional Neural Networks (CNNs) are 

currently the main tool used for image classification and analysis purposes. Although 

great achievements and perspectives, deep neural networks have many pertinent 

challenges to tackle. One of them is the lack of sufficient amount of training data this 

considered as the most frequent problem in this field for example in the medical imaging 

domain is how to cope with a limited amount of data and small datasets, [27] especially in 

the case of supervised machine learning that requires labeled data and larger training 

examples for the model to train [28]. The more data we fit the more accuracy we get, 

another problem we may face called Overfitting, many techniques used in order to deal 

with these two problems (the lack of data and overfitting) called Data Augmentation [29]. 

In this Chapter, we focus on Data Augmentation techniques used and how can we solve 

the problems of overfitting and the lack of data using those techniques 
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2.1 Data Augmentation  

Data augmentation is concerning the process of creating new data from the original data 

by manipulating the data we have we can generate new data. A recent study proved that 

the performance of ConvNets is logarithmically proportional to the number of training 

samples [30]. Conversely, without enough training samples, Convolutional Neural 

Networks face overfitting because of memorizing a detailed features of training data that 

cannot be generalized when the model predicts on new data those features will be useless. 

[31] For example, for images data augmentation increases the variety of images and 

generate more data by manipulating them in different ways such as resizing, flipping, 

rotating, random cropping, …etc. [32], or by changing images color space and noise 

injection. This process increases the diversity of the data available for training models 

without the need of collecting new data, not only manipulating images can be used, many 

techniques and studies address this problem  (Figure 37), translating the training images 

a few pixels in each direction can improve generalization also, even if the model has 

already been designed to be partially translation invariant by using the convolution and 

pooling techniques.  

 
Figure 37 Image Data Augmentation for Deep Learning 

Here is some basic image augmentation technique that can be applied to generate more 

images data 
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2.1.1 Affine transformation (Basic image manipulation) 

the most popular practice for data augmentation is the affine image transformation, [29] 

and color modification, as the affine transformation we define: 

2.1.1.1 Horizontal Flipping [33]  

the amount of data will be doubled by applying a single operation of horizontal flipping 

on the dataset  

 
Figure 38 Image Horizontal Flipping (Mirror) 

Mathematically this operation consists of flipping the 3 matrices R, G and B matrices 

values horizontally: 

M = [
1 2 3
4 5 6
7 8 9

]   M′ = [
3 2 1
6 5 4
9 8 7

] (16) 

A horizontal flip of a picture of a cat or a dog, a bird (figure 38) for example may make 

sense, because the photo could have been taken from the left or the right, a vertical flip of 

the  images not make any sense and would probably not be efficient on improving models 

accuracy in most of cases, it may also cause wrong information detection this taken from 

the hand-written digit recognition models, for example, we pass an image with the label 

6, if we flip that image vertically our input image will become 9, but our label is still 6, so 

we are passing wrong labels through our model, and this will affect the performance of 

our model. 

2.1.1.2 Horizontal and vertical shift 

In shift-invariance CNN such prepossessed test images will make no difference in 

prediction, but this operation can generate more training samples (Figure 39), small 

displacement of object can make the model more efficient on learning features and allow 

it to generalize and predict correctly. This process can be done by shifting the 3 RGB 

matrices in the target direction here is an example of shifting matrix by one pixel to the 

right  
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M = [
1 2 3
4 5 6
7 8 9

]   M′ = [
0 1 2
0 4 5
0 7 8

] (17) 

 
Figure 39 Horizontal and Vertical Shift 

2.1.1.4 Rotation [34]  

Before applicate rotation, we should analyze every class and its possible rotations in order 

not too ruined image features. This operation can be done by flipping images with a 

specific degree, this can generate more samples and make our model more detectable to 

small changes in samples. 

 
Figure 40 Rotation Example  

2.1.1.5 Random cropping [35]  

Random crop is a data augmentation technique based on taking a random subset from the 

original image. This technique allows the model to generalize better because the object of 

interest and features we want our model to learn and detect are note always wholly visible 

in the image or the same scale in our training data. 
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Figure 41 Random Cropping 

2.1.1.6 Random erasing: [36]  

Occlusion is a critical influencing factor on the generalization ability of CNNs (Figure 42). 

It is desirable that invariance to various levels of occlusion is achieved. When some parts 

of an object are occluded, a strong classification model should be able to recognize its 

category from the overall object structure 

 
Figure 42 Random Erasing Example 

Random erasing is considered as one of the most effective augmentation techniques, it 

shows great results 

There are many other transformations that could be used to augment dataset like Kernel 

filter, mixing images [35] and other technique that manipulate images to get more data. 
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2.1.2 Color Space Transformations 

Color images play an important role in everyday activities such as photography, television. 

It’s involved in every aspect of our lives, it’s a complicated phenomenon that has occupied 

the interest of scientist for hundreds of years, there are many color space that we can use 

for our treatment (OpenCV library contain more than 150 color space), changing color 

space of dataset could improve the performance of our models [37] to get better accuracy 

and avoid overfitting  

2.1.2.1 RGB Color Space [38]  

It’s the most used color space as a standard in training models cause it’s the simplest color 

space, the RGB color schema encodes color as a combination of the three primary colors: 

red (R), green(G), and blue (B) with different proportions, each parameter (red, green and 

blue) defines the intensity of the color as an integer between 0 and 255(one byte). the 

color depth is another description of the range of intensity, the good thing on RGB is being 

supported in analog devices such as TV and digital device such as computer and cameras 

and in all browsers. This make RGB as the most useful color space, mixing the three 

primary colors value allow us to get all combination possible, we can represent it also as 

a three-dimensional coordinate plane where we place for R (red), G (green), and B (blue) 

on each axis, (Figure 43) This coordinate plane yields a cube represent the RGB color 

space: 

 

 
Figure 43 Representation of the RGB Color Space as a Three-Dimensional Unit Cube 

There is another representation where RGB value are normalized to the interval [0, 1] 

instead of [0, 255] so that the resulting color space forms a unit cube. The point 𝑆 = (0,0,0) 

corresponds to the color black, 𝑊 = (1, 1, 1) corresponds to the color white. [39] All 

points are between S and W are shades of gray created from equal color components 𝑅 =

𝐺 = 𝐵 (Figure 44) show a color test images and its corresponding RGB color components 
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Figure 44 A Color Image and its Corresponding RGB Channels 

2.1.2.2 HSV Color Space [40]  

which mean Hue Saturation Value it’s based on cylindrical coordinate representation of 

point in an RGB color model (Figure 45 (1)) where the vertical axis 𝑉 represents the 

brightness value (The chromatic notion of intensity), the 𝐻 which is the angle, 𝑆 which is 

the radius (The amount of white color mixed with a hue). It’s a conversion from the RGB 

color model into this cylinder, the lower the value the darker the outcome color and the 

higher the value the more the outcome color resemble the color itself (Figure 45 (2)), then 

we change these three parameters in order to create different combination of colors  

 
Figure 45 HSV Color Space in Cylindrical Coordinates 
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2.1.2.2.1 Convert RGB to HSV  

The RGB values are divided by 255 to change the range from 0…255 to 0…1 

𝑅′ =
𝑅

255
    ,    𝐺′ =

𝐺

255
    ,     𝐵′ =

𝐵

255
 (18) 

𝐶ₘₐₓ and 𝐶ₘᵢₙ  are the max and the min of (𝑅, 𝐺, 𝐵) then obtain the value of 𝛥  

𝐶ₘₐₓ = max (R′, G′, B′) 

𝐶ₘᵢₙ = min (R′, G′, B′) 

𝛥 =  𝐶ₘₐₓ − 𝐶ₘᵢₙ 

(19) 

When the RGB value have the same value(𝑅 = 𝐺 = 𝐵) then we are dealing with 

achromatic (gray) pixel the value of 𝛥 will be obviously 0  

Hue calculation: 

0°      ,    𝛥 = 0 

60° × (
G′−B′

𝛥
mod 6)   ,  𝐶ₘₐₓ = 𝑅′ 

60° × (
B′−R′

𝛥
+ 2)        ,   𝐶ₘₐₓ = 𝐺′ 

60° × (
R′−G′

𝛥
+ 4)       ,   𝐶ₘₐₓ = 𝐵′ 

(20) 

Saturation calculation 

0    ,   𝐶ₘₐₓ = 0 

                                          𝑆 =                                                                                        (21)                                  
𝛥

𝐶ₘₐₓ
   ,   𝐶ₘₐₓ ≠ 0  

Value calculation 

𝑉 = 𝐶ₘₐₓ (22) 
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So, the RGB space unit cube is mapped to a cylinder. All RGB color coordinate may be 

represented on this cylinder in HSV space. The mapping from the RGB to HSV space in 

nonlinear can be noted by examining how the black point stretches [37] Figure 46 shows 

the individual HSV components of the test image as grayscale images  

 
Figure 46 HSV Color Components  

The table below show the variation between the RGB and HSV color space  

Color 
Color 

name 
Hex (R,G,B) (H,S,V) 

  Black #000000 (0,0,0) (0°,0%,0%) 

  White #FFFFFF (255,255,255) (0°,0%,100%) 

  Red #FF0000 (255,0,0) (0°,100%,100%) 

  Lime #00FF00 (0,255,0) (120°,100%,100%) 

  Blue #0000FF (0,0,255) (240°,100%,100%) 

  Yellow #FFFF00 (255,255,0) (60°,100%,100%) 

  Cyan #00FFFF (0,255,255) (180°,100%,100%) 

  Magenta #FF00FF (255,0,255) (300°,100%,100%) 

Table 1 RGB/HSV Values 

 

 

 

 

 

 

 

 

 



 

44 
 

 CHAPTER 2 DATA AUGMENTATION 

2.1.2.3 HSL Color Space [41] 

HSL is short of Hue, Saturation and Luminance (or brightness) similar to the HSV, the hue 

is what we normally call color is based on the position around the wheel, Saturation define 

how pure a color is and saturation is based on the distance from the center of this wheel, 

if we want to desaturate we move inward, and if we want to saturate we move outward. 

At full desaturation our color becomes achromatic, or colorless finally the Lightness and 

its represented as the value of the L axis, HSV take the form of a double (Figure 47), the 

black color in the bottom tip and white on the top. 

 
Figure 47 HSL Color Space  

2.1.2.3.1 Convert RGB to HSL  

In the HSL model, the hue is computed in the same way as in the HSV model  

𝐻ₕₛₗ = 𝐻ₕₛᵥ (23) 

The other values Saturation and Lightness, are computed as follows 

𝐿 =
𝐶ₘₐₓ + 𝐶ₘᵢₙ

2
 (24) 

0    ,    𝛥 = 0 

                                      𝑆 =                                              

       
𝛥

1−∣2𝐿−1∣
   ,   𝛥 <> 0  

(25) 
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Figure 48 HSL Color Component 

The table below show the variation between the RGB and HSL color space  

Color 
Color 

name 
Hex (R,G,B) (H,S,L) 

  Black #000000 (0,0,0) (0°,0%,0%) 

  White #FFFFFF (255,255,255) (0°,0%,100%) 

  Red #FF0000 (255,0,0) (0°,100%,50%) 

  Lime #00FF00 (0,255,0) (120°,100%,50%) 

  Blue #0000FF (0,0,255) (240°,100%,50%) 

  Yellow #FFFF00 (255,255,0) (60°,100%,50%) 

  Cyan #00FFFF (0,255,255) (180°,100%,50%) 

  Magenta #FF00FF (255,0,255) (300°,100%,50%) 

Table 2 RGB/HSL Values 

2.1.2.4 TV Color Space YUV 

YUV also is known as YCbCr in the word of computer color model is adopted by European 

TV systems Phase Alternating Line (PAL Standard) which is a color encoding system for 

analog television [42] and NTSC (National Television System Committee). The Y 

component determines the color brightness (referred to as luminance), while the U and V 

components determine the color itself (the chroma). Y is the luminance value it’s the 

overall brightness of the pixel, Y ranges from 0 to 1 (or 0 to 255 in digital format), this 

effectively a grayscale value (Figure 50). while U or (CB) and V or (CR) range from -0.5 to 

0.5 (or -128 to 127 in signed digital form) [43]. Coordinate representation of YUV color 

space has been shown in Figure 49 
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Figure 49 YUV Color Space 

2.1.2.4.1 Convert RGB to YUV [43] 

The first equation gives conversion from RGB to YUV 

                     𝑌 = 0.299 × R + 0.587 × G + 0.144 × B 
𝑈 = −0.14713 × R − 0.22472 × G + 0.436 × B 

                     𝑉 = 0.615 × R − 0.51498 × G + 0.10001 × B 
(26) 

The second equation gives the inverse function that convert from YUV to RGB  

𝑅 = 0.7492 × Y − 0.50901 × U + 1.1398 × V 

 𝐺 = 1.0836 × Y − 0.22472 × U − 0.5876 × V 

     𝐵 = 0.97086 × Y + 1.9729 × U − 0.000015 × V 

(27) 

 
Figure 50 YUV Color Component 
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The table below show the variation between the RGB and YUV color space  

Color 
Color 

name 
Hex (R,G,B) (Y,U,V) 

  Black #000000 (0,0,0) (16,128,128) 

  White #FFFFFF (255,255,255) (235,128,128) 

  Red #FF0000 (255,0,0) (82,90,240) 

  Lime #00FF00 (0,255,0) (145,54 ,34) 

  Blue #0000FF (0,0,255) (41,240 ,110) 

  Yellow #FFFF00 (255,255,0) (210,16 ,146) 

  Cyan #00FFFF (0,255,255) (170,166,16) 

  Magenta #FF00FF (255,0,255) (107,102,221) 

Table 3 RGB/YUV Values 

2.1.2.5 XYZ and LUV Color Space [44] 

RGB color space is linear space which is always used in computation of color optical flow. 

For the nonlinear character of the human vision, RGB color space appears obviously non-

uniform effect. When an object is changed from one location to another in RGB color space, 

if only the original image location is changed and the distance remain unchanged, the 

difference of variation can be visually felt. In order to obtain the real uniform color space 

from human vision, CIE (the International Commission on Illumination )defines the LUV 

color space, which is derived from XYZ color space. The XYZ color space can be obtained 

from RGB color space by following linear transformation: 

[
𝑋
𝑌
𝑍

] =  [  
 0.430 0.342 0.178  
 0.222 0.707 0.071 
 0.020 0.130 0.939  

] [
𝑅
𝐺
𝐵

] (28) 

Further, two middle variables should be defined in the transition from CEI XYZ color 

space to CEI LUV color space  

𝑢` =
4𝑋

𝑋 + 15𝑌 + 𝑍
 (28) 

https://en.wikipedia.org/wiki/International_Commission_on_Illumination
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If the reference luminance of white light is considered, then 𝑋, 𝑌, 𝑍 can be expressed as 

𝑋ₙ , 𝑌ₙ ,  𝑍ₙ , and then U and V computed as  

 

Where, L is as follow: 

to convert RGB to CIELUV, first we convert RGB to CIEXYZ and then we convert CIEXYZ 

to 

CIELUV 

Color 
Color 

name 
Hex (R,G,B) (X,Y,Z) (L,U,V) 

  Black #000000 (0,0,0) (0, 0, 0) (0, 0, 0) 

  White #FFFFFF (255,255,255) (95.05,100,108.89) (100,0.00089, -0.017) 

  Red #FF0000 (255,0,0) (41.24,21.26,1.93) (53.23,175.053,37.75) 

  Lime #00FF00 (0,255,0) (35.76,71.52,11.92) (87.73, -83.07, 107.40) 

  Blue #0000FF (0,0,255) (18.05, 7.22 ,95.05) (32.30, -9.39, -130.35) 

  Yellow #FFFF00 (255,255,0) (77, 92.78, 13.85) (97.13, 7.70, 106.78) 

  Cyan #00FFFF (0,255,255) (53.81,78.74,106.97) (91.11, -70.47, -15.21) 

  Magenta #FF00FF (255,0,255) (59.29,28.48,96.98) (60.31,84.07, -108.71) 

Table 4 RGB/XYZ/LUV Values 

𝑣` =
9𝑋

𝑋 + 15𝑌 + 𝑍
 (29) 

𝑈 = 13𝐿(𝑢` − 𝑢`ₙ) , 𝑉 = 13𝐿(𝑣` − 𝑣`ₙ) (30) 

𝐿 = 166 (
𝑌

𝑌ₙ
)

1/3
− 16 , 

𝑌

𝑌ₙ
< 0.08865   (31) 
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2.1.2 Deep Learning Approaches 

The methods discussed above are applied to images in the input space, Traditional 
augmentation approaches are firmly limited, especially in tasks where the images follow 

strict standards, as in the case of medical datasets. The most used technique is called GAN 

2.1.2.1 GAN-Based Data Augmentation  

GAN refer to Generative Adversarial Network, the idea of GANs was conceived in 2014 by 

Ian Goodfellow, [45] GANs can learn about your data and learn to synthesize, generate 

never-before-seen data to augment the dataset it’s considered as an approach of 

unsupervised learning and even semi-supervised learning (when the some of the data are 

labeled and rest are not), GANs allow us to generate unlabeled data from our labeled data. 

A basic GAN consist of two model that play against each other a generator and a 

discriminator, we can think of the generator as counterfeiter who tries to replicate the 

input data in order to produce fake data, on the other hand the discriminator is like a cop 

who need to be able to distinguishes real data which is form the dataset and the fake data 

which is produced by the generator [46] the loss of the discriminator is used as an 

objective function for the generator in the next time round. The idea is awesome creating 

a fake dataset from the original one will completely solve the problem of the lack of data, 

NVDIA has create their own model based on GANs architecture which allow them to 

produce fake human faces as we can see in Figure 51.  [47] It’s hard to believe that those 

faces are fake and had been generated from a GAN model.  

 

Figure 51 Fake Faces Generated by StyleGAN 

Building a GAN model consist of different steps, first we need to define the architecture of 

the GAN a neural network for example then we need to train the discriminator model to 

distinguish between real and fake data, the next step is to train the generator, we need to 

modify parameters of the generative model to maximize the loss of the discriminator then 
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we repeat the training of the generator and the discriminator over 𝑛 epoch after every 

iteration the generator will get better at fooling the discriminator, finally the 

discriminator will not be able to tell the real images of the dataset from the generated ones 

by the generator once the training is complete we synthesize data from the generator and 

this can be used to augment our dataset or use it as is. There are many types of GANs let’s 

take the most useful one which is the Deep Convolutional GAN (DCGAN) this type used 

CNNs in generator and discriminator  

 
Figure 52 GAN Generator and Discriminator  

Let’s go back to the example of generating images of faces like we see in NVIDIA’s IA the 

discriminator will take input face image either from the generator or the dataset and 

output real if it believe the image is of an actual face or fake if it believe the face is not of a 

human, the generator will be given some data as an input and will have to come up with a 

face this is done through a D-Convolutional Neural Net. 

2.1.2.2 Neural Style Transfer [48] 

Neural style transfer is the flashiest demonstration of technique of deep learning 

capabilities. The general idea behind the Neural Style Transfer is to use CNN to transfer 

the style of a given painting to any image (Figure 53). Neural Style Transfer is probably 

best known for its artistic applications, but it also used on Data Augmentation, it’s done 

by manipulating the sequential representation across a CNN such that the style of one 

image can be transferred to another while preserving the original one.  

 
Figure 53 Example of Neural Style Transfer 
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Smart data augmentation [45] 

Smart augmentation is the latest technique, both neural style transfer and smart 

augmentation are new research field, the smart augmentation consist of creating a neural 

that learn how to generate augmented data during the training process in order to get 

more data. This technique allows us to learn augmentation that minimize the error of 

network. The goal of Smart Augmentation is to learn the best augmentation strategy for a 

given class of input data. It does this by learning to merge two or more samples in one 

class.  This merged sample is then used to train a target network. The loss of the target 

network is used to inform the augmenter at the same time. This method might be used to 

generate more data that for the training process. This process often includes letting the 

network come up with unusual and unexpected highly performant augmentation 

strategies.  
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CHAPTER 3 

EXPERIMENTATION AND RESULTS 

The main focus throughout this thesis has shown the impact of the quantity of the data on 

the performance of deep learning model in image classification and the effect of the data 

augmentation when facing the lack of dataset or overfitting problems. 

In this chapter we will discuss the development tools used such as anaconda and Jupyter 

notebook and the main libraries as Keras and Tensorflow using python as a programming 

language then the Kaggle dataset used. The second part contain the implementation and 

discussion of result we obtain  

3.1 Development Tools 

3.1.1 Anaconda [50] 

Anaconda is a free and open source distribution of python and R programming language 

more than 20 million person use this technology, platform to solve the toughest problem 

[www.anaconda.com] specially for scientific computing such as machine learning 

application, data science and data processing, Anaconda aims to simplify deployment and 

package management, package version are managed by the package management conda 

(Figure 54), Anaconda distributions are suitable to Windows, Linux and even MacOS. 

 
Figure 54 Anaconda Navigator 
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3.1.2 Jupyter Notebook [51] 

Jupyter notebook is an open source software and a service for interactive computing 

across nearly 40 programming language providing a web-based application suitable for 

capturing the whole computation process developing, executing code, documentation and 

communicating the results. The jupyter notebook combine two components  

A web application which is a browser-based tool for interactive authoring of documents 

which combine explanatory text, mathematics, computations and their rich media output. 

Notebook documents: a representation of all content visible in the web application, 

including inputs and outputs of the computations, explanatory text, mathematics, images, 

and rich media representations of objects. 

Figure 55 Jupyter Notebook Interface 

3.1.3 Python [52] 

Python is an interpreted, high-level and general-purpose programming language created 

by Guido van Rossum and first released in 1991, its language constructs and object-

oriented approach helps to write logical and clear code and there is no compilation step. 

Many machine learning applications written in python, it’s become the most used 

language in the field of machine leaning, data analysis and data processing. 

 

 

 

https://en.wikipedia.org/wiki/Interpreted_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/Guido_van_Rossum


 

54 
 

 CHAPTER 3 EXPERIMENTATION AND RESULTS 

3.2 Libraries  

3.2.1 Keras [53] 

Keras is a deep-learning framework for Python that provides a convenient way to define 

and train almost any kind of deep-learning model. Keras was initially developed for 

researchers, with the aim of enabling fast experimentation. Keras allow the same code to 

run on CPU and GPU, it has also a user-friendly API that make deep learning programming 

easier, it has built-in support for convolutional networks (for computer vision), recurrent 

networks (for sequence processing), and any combination of both. It supports arbitrary 

network architectures: multi-input or multi-output models, layer sharing, model sharing, 

and so on. This means Keras is appropriate for building essentially any deep-learning 

model, from a generative adversarial network to a neural Turing machine. 

3.2.2 Tensorflow [54] 

Tensoflow was developed by google on the google brain project and it’s become free and 

open source in 2015, this software library for dataflow and differentiable 

programming  across a range of tasks. It is a symbolic math library, and is also used for 

machine learning and deep learning applications such as neural networks it is used for 

both research and production at Google.  

3.2.3 Scikit-image  

It’s an open source library for image processing for python programming language [55], 

scikit-image library contains algorithm of geometric transformation, segmentation, and 

color space manipulation, analysis and filtering and more. Scikit-image was designed to 

interoperate with the python numerical and scientific libraries SciPy and NumPy.    

3.2.4 Pillow [56] 

Python Imaging Library abbreviated as PIL called Pillow in new version in a free open-

source library for python programming language that used for opening manipulating and 

saving images, Pillow allow us to applicate many geometric transformations on images 

that we need in this thesis to generate more images data from the existing one. 

3.2.5 Matplotlib [57] 

Matplotlib was originally written by John D. Hunter, since then it has an active 

development community, it’s the most used plotting library for the python programmers. 

Matplotlib provides an object-oriented API for embedding plots into application using 

general-purpose GUI toolkits like QT and TKinter.    

3.3 Kaggle Dataset  

A subsidiary of Google LLC, is an online community of data scientists and machine 

learning practitioners. Kaggle allows users to find and publish data sets, explore and build 

models in a web-based data-science environment, work with other data scientists and 

machine learning engineers, and enter competitions to solve data science challenges. 

Kaggle got its start in 2010 by offering machine learning competitions and now also offers 

a public data platform, a cloud-based workbench for data science, and Artificial 

Intelligence education. 

https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Dataflow_programming
https://en.wikipedia.org/wiki/Differentiable_programming
https://en.wikipedia.org/wiki/Differentiable_programming
https://en.wikipedia.org/wiki/John_D._Hunter
https://en.wikipedia.org/wiki/Google_LLC
https://en.wikipedia.org/wiki/Data_science
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
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The chosen dataset for our study is one of the most available and used dataset for both 

beginners and even expert machine learning developers, we are clearly talk about dog and 

cat classification, I chose this dataset because it contains only 2 classes and it so easy to 

observe and evaluate those 2 class. Kaggle dataset provide us a complete dataset of 25000 

labeled images divided on 2 class that mean 12500 image of dogs and 12500 images of 

cats for the test data it contains 12500 no labeled images [58]  

 
Figure 56 Sample of Cats and Dogs from Kaggle Dataset 

Now we have 2 folders the first one contains cats’ images and the other one contains dogs’ 

images, as pretreatment is to add all this images to a NumPy Array of size 25000 element 

of size (100, 100, 3), 80% of this dataset will be used in training set and 20% used for the 

validation set.   

After fitting the complete dataset, we extracted 8% of dataset that means 2000 images 

and for the validation set we used 600 images. 

Third we augment this 8% of data to become 16000 images that mean we applied 8 

random augmentation for each image, then we did the same using supervised data 

augmentation, supervised means that we define the operation used for the data 

augmentation, the operation applied was mirror then 2 rotation (+20, -20) for both 

images the original and the flipped one and 2 horizontal shifting  

 
Figure 57 Data Augmentation Applied for Each Image 
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Figure 58 The Process of Dataset Augmentation  

 

3.4 implementation  

For the implementation, ResNet-20 model was used on our different amount of data, 

Tensorflow and keras was used as a base for this project. We used the 

ImageDataGenerator class from keras library in order to apply the random geometric 

transformations on the Kaggle dataset to generate more data (augment our training 

dataset from 2000 image to 16000 image), then we did the same thing to the same dataset 

of 2000 this time instead of Keras we used Pillow library to apply a supervised data 

augmentation (we control the type of augmentation this time instead of applying a 

random operations) to generate the same number of samples 16000 divided on two class, 

keras library was also used to load ana save training models the record of the history of 

the training to be able to draw chart line or confusion matrix using matplotlib library to 

compare result and the performance of each model and make prediction. 

3.5 Experimentation  

After we prepared four different dataset, the first one is the complete Kaggle dataset, the 

second one which contain 8% from the first dataset that means 2000 training samples, 

the third dataset is the second one augmented randomly from 2000 to 16000 training 

samples, and finally the fourth dataset generated by applying a supervised data 

augmentation to the second dataset it contain the same number of samples as the previous 

one.  

We have trained the models into different architecture ResNet-20 and AlexNet, we set the 

number of epochs to 50 because of the limited computation resources. The low number 

of epochs won’t impact the results we got since the purpose of this study is only to 

understand the impact of the data size on the performance of the CNN not to maximize 

the performance of the models used.  

The models were trained using GPU NVIDIA GeForce 920MX with 4GB RAM with Keras 

backend. ResNet-20 took around 10 hours when using the complete dataset, and 6 to 8 

hours when using supervised and random data augmentation  

DATASET 

RANDOM DATA AUGMENTAION SUPERVISED DATA AUGMENTAION 

SAVE DATASET 
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The AlexNet model was faster than the ResNet-20 it takes around 6 to 7 hours to train the 

model using the complete Kaggle dataset and around 4 hours to train the augmented 

dataset. 

We store the weights of the CNN model for every epoch while training and record the 

accuracy and loss for each epoch to be able to evaluate and compare the results obtained.   

Discussion of the Results  

From the experiment that we have conducted the results shown in table 5 was obtained, 

we observed that there are some changes in the model accuracy the best accuracy was 

obtained in the smallest dataset with 99.95% using ResNet-20 and 100% using AlexNet, 

otherwise the validation accuracy does not exceed 75.00% using ResNet-20 and reach 

82.6% using AlexNet with the complete dataset , it’s so clear that using the 8% of the 

dataset produce an overfitting because of the lack of training data.  

 

Table 5 Comparison of Results for Different Dataset 

The training accuracy can reach the highest value on training that refer to the model itself 

the model will overfit the data some point when using a limited amount of data as we can 

see in the second dataset, on the other hand the validation accuracy is higher when we 

use a large amount of data, Data Augmentation may raise the validation accuracy as we 

can in the previous table it raise the validation accuracy from 64.83% to 73.17% using 

ResNet-20, and from 72% to 75% using AlexNet, even small percentage may make 

difference. 

The model performance of the model can be further understood by looking at the per class 

recognition accuracy of the CNN table 6 shows the results obtained by testing our models 

on 1000 images divided on two class  

  

 

 

  

Data set 

Complete 

dataset 

8% of the 

dataset 

Random data 

augmentation 

Supervised 

data 

augmentation 

 

 

ResNet-20 

Accuracy 96.62% 99.95% 96.53% 97.32% 

Validation 

accuracy 

75.00% 64.83% 70.67% 73.17% 

 

 

AlexNet 

Accuracy 98.11% 100% 97.72% 98.84% 

Validation 

accuracy 

82.60% 72% 75% 74.83% 
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Table 6 Per Class Accuracy of ResNet-20 and AlexNet 

The highest accuracy changed from a dataset to another, the class cat in ResNet-20 highest 

accuracy 78% was obtained using the Supervised Data Augmentation, the class dog 

highest accuracy reaches 74.6% using the complete dataset. Meanwhile using AlexNet 

gives different results 90.20% for cat class using the complete dataset as a highest 

accuracy and 88% as the highest accuracy for the second class obtained when using the 

Random Data Augmentation.  

The table 7 and Table 8 shows the graph obtained using ResNet-20 and AlexNet 

respectively we can clearly see that the model has the same behaviors all the training loss 

is going down while the test loss still going up and that’s an indicator of overfitting.  

 

 

 

 

 

 

 

 

 

 

 

  

Data set 

Complete 

dataset 

8% of the 

dataset 

Random data 

augmentation 

Supervised 

data 

augmentation 

 

 

ResNet-20 

Cat 73.00% 67.80% 65.20% 78.00% 

Dog  74.60% 62.20% 74.00% 63.60% 

 

 

AlexNet 

Cat 90.20% 75.40% 62.80% 82.80% 

Dog 77.00% 76.00% 88.00% 72.40% 
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Comparing the Results Using ResNet-20  

Looking at the plot obtained using ResNet-20 on different dataset, we can see that the 

model training loss have the same behavior (Figure 59), the model trained on the 

complete dataset and the augmented one are less overfit (Figure 60) (Figure 61) 

comparing to the plot when we use only 8% of the dataset, random data augmentation 

and supervised data augmentation shows a good concurrence, the supervised data 

augmentation almost reach the same value as the curve when using the complete dataset. 

 
Figure 59 ResNet-20 Training Loss  

 
Figure 60 ResNet-20 Validation Accuracy 
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Figure 61 ResNet-20 Validation Loss 

 

Comparing the Results Using AlexNet 

The model trained on the complete dataset is less overfit then the other models followed 

by the other models using Keras random data augmentation and the supervised data 

augmentation, the model trained on the 8% of Kaggle dataset show the highest overfit as 

we can see in Figure 63 and Figure 64 meanwhile the training loss reach the minimum 

value cause the model overfit the data.  

 

 
Figure 62 AlexNet Training Loss  
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Figure 63 AlexNet Validation Accuracy 

 

 

 
Figure 64 AlexNet Validation Loss 
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 CONCLUSION 

CONCLUSION  

Using the complete dataset and a part of it has shown a major change in accuracy. the 

complete dataset overrides the partial one with 11.83% using ResNet-20 and with 10.8% 

using AlexNet. The large difference of the amount of data leads to a big accuracy gap 

between the 2 datasets, meanwhile data augmentation based on image manipulation 

shows that it is a good way to deal with the lack of data problem, using Random data 

augmentation on the partial dataset increase the validation accuracy by 5.84% using 

ResNet-20 and 3% using AlexNet. Supervised data augmentation is also showing a great 

improvement by increasing the validation accuracy by 8.34% using ResNet-20 and 2.83% 

using AlexNet. The results prove that There is a positive relation between the amount of 

data and the accuracy of the model “More training data means more accuracy”.  

Data augmentation showed that it’s a good alternative to handle with the lack of data and 

overfitting problems in deep learning. Even small percentage in accuracy may make the 
difference.  

Using data augmentation with a supervised way may increase the model’s accuracy more 

than using a random operation, that open the door to another research including what are 
the transformation that may increase the accuracy more … etc.  

So, we may see in the future models that training on small dataset and reach the maximum 

accuracy using different data augmentation techniques.   
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