
Academic year 2019-2020

 People’s Democratic Republic of Algeria

 Ministry of Higher Education and Scientific Research

 Ibn Khaldoun university – Tiaret

 Mathematics and Computer Science faculty

 Computer Science department

Thesis

Data Augmentation on the Convolutional Neural

Network for Image Classification

For obtaining Master’s degree

Specialty: Software Engineering

By: MAKBOUL Ilias Sid Ahmed

The jury composed of:

Mr. BEKKI Khadhir MAA University-Ibn-Khaldoun Tiaret President

Mr. CHENINE Abdelkader MAA University-Ibn-Khaldoun Tiaret Supervisor

Mr. ABID Khaled MAA University-Ibn-Khaldoun Tiaret Examiner

Dedication

Praise be to Allah, Lord of the Worlds َرَبِّّ الْعاَلمَّين ّ الْحَمْدُ لِّلَه

I dedicate my dissertation work to my family, A special feeling of gratitude to

my loving parents, Khaled and Halima MAKBOUL whose words of

encouragement and push for tenacity ring in my ears. My brothers Amine,

Youcef and Ismail especially Amine who helped me a lot with his advice and

motivation.

I would like to express my gratitude to all my teachers from whom we learn

a lot during these five years on the computer science department at Ibn

Khaldoun University, a special gratitude to Mr. TALBI Omar who leave a

positive impact on me who thanx to him and his lecture i decide to choose

computer science.

I also dedicate this dissertation to my many friends who have supported me

through the process. Especially those who encourage me to prepare this

research: A. Abdeldjalil, A. Hakim, M. M’hamed, Z. Sofiane, D. Mohammed and

all my friends.

ACKNOWLEGEMENT

I would like to express my gratitude and a special thanx to my supervisor

MR. CHENINE Abdelkader who offered me a wonderful opportunity to work

under his guidance on domain that always fascinated me I got a lot of

experiences on artificial intelligence, deep learning field particularly, so I

thank him for his advices and availability all the time through the process of

realization of this academic research.

I also want to express my gratitude Mr. ABID Khaled and Mr. BEKKI Khadhir

for considering to evaluate my final year thesis.

Abstract

In the field of computer vision, image classification is considered as one of

the most dominated research domains. Machine Learning, specifically, deep

learning becomes the most useful tool that handles image classification tasks. The

Deep Learning model needs to be trained on a huge number of samples, which

leads us to one of the most popular issues facing this field "The lack of data". Data

Augmentation increase the number of training images.

In this thesis, we clarify the impact of the amount of training data and the

effect of data augmentation on the performance of CNN models in image

classification.

We evaluate this on Kaggle dataset by manipulating it in a different manner

we created three more datasets from the original one. the first one contains 8% of

the original dataset, the second one is generated by applying seven image

manipulation technique(rotation, shifting, horizontal flipping) on the second

dataset with random parameters, the last one was created using supervised data

augmentation with specific parameters instead of the random one, then we train

each one of the 4 datasets on two different deep learning architecture ResNet and

AlexNet. The results obtained show that the more data we feed to the model the

better performance we get, using data augmentation increase the level of accuracy

besides of using supervised data augmentation show a little better performance

than the random augmentation but even a small percentage may make the

difference

keywords: Computer Vision, Image Classification, Machine Learning, Deep

Learning, Data Augmentation, Convolutional Neural Network CNN, AlexNet,

ResNet

Content

List of Figures VI

List of Table VIII

INTRODUCTION 1

Background 2

The scope of this Research 2

Research Goal and Question 2

Structure of Manuscript 2

CHAPTER 1 DEEP LEARNING AND IT’S APPLICATION 3

Introduction 3

1.1 Historical context 3

 1.1.1 Artificial intelligence 3

 1.1.2 Machine learning 4

 1.1.2.1 Supervised learning 5

 1.1.2.2 Unsupervised learning 5

 1.1.2.3 Semi-supervised learning 5

 1.1.2.4 Reinforcement learning 6

1.2 Deep learning 6

 1.2.1 The Neuron 8

 1.2.2 Artificial Neuron 8

 1.2.3 Artificial neural networks 10

 1.2.3.1 Input layer 11

 1.2.3.2 Hidden layers 11

 1.2.3.3 Output layer 11

 1.2.3.4 Activate functions 11

 1.2.3.4.1 Linear activation functions 12

 1.2.3.4.2 Non-linear activation function 13

 1.2.3.4.2.1 Sigmoid 13

 1.2.3.4.2.2 Tanh 14

 1.2.3.4.2.3 ReLU 15

 1.2.3.4.2.4 SoftMax 16

 1.2.3.5 Loss functions 16

 1.2.4 Gradient descent 18

 1.2.5 The Back-Propagation Algorithm 20

 1.2.6 Convolutional Neural Networks (CNNs / ConvNets) 23

 1.2.6.1 Convolution operation 23

 1.2.6.2 Architecture of CNN 24

 1.2.6.2.1 Convolution layer 26

 1.2.6.2.1.1 Filter/ Kernel 27

 1.2.6.2.1.2 Hyperparameters 27

 1.2.6.2.2 Pooling layer 29

 1.2.6.2.3 Fully Connected Layer 30

1.3 Regularization for Deep Learning 31

 1.3.1 Underfitting and overfitting 31
 1.3.2 Dropout 32

1.4 Deep Learning Architecture 33

 1.4.1 ResNet 33

 1.4.2 AlexNet 34

CHAPTER 2 DATA AUGMENTATION 35

Introduction 35

2.1 Data Augmentation 36

 2.1.1 Affine Transformation (Basic Image Manipulation) 37

 2.1.1.1 Horizontal Flipping 37

 2.1.1.2 Horizontal and Vertical Shift 37

 2.1.1.3 Rotation 38

 2.1.1.4 Random Cropping 38

 2.1.1.5 Random Erasing 39

 2.1.2 Color Space Why and how color space affect models 40

 2.1.2.1 RGB Color Space 40

 2.1.2.2 HSV Color Space 41

 2.1.2.2.1 Convert RGB to HSV 42

 2.1.2.3 HSL Color Space 44

 2.1.2.3.1 Convert RGB to HSL 44

 2.1.2.4 TV Color Space YUV 45

 2.1.2.4.1 Convert RGB to YUV 46

 2.1.2.5 XYZ and LUV Color Space 47

 2.1.2 Deep Learning Approach 49

 2.1.2.1 GAN-Based Data Augmentation 49

 2.1.2.2 Neural Style Transfer 50

 2.1.3 Smart Augmentation 51

CHAPTER 3 EXPERIMENTATION AND RESULTS 52

3.1 Development Tools 52

 3.1.1 Anaconda 52

 3.1.2 Jupyter Notebook 53

 3.1.3 Python 53

3.2 Libraries 54

 3.2.1 Keras 54

 3.2.2 Tensorflow 54

 3.2.3 Scikit-Image 54

 3.2.4 Pillow 54

 3.2.5 Matplotlib 54

3.3 Kaggle Dataset 54

3.4 Implementation 56

3.5 Experimentation 56

3.6 Discussion Results 57

Conclusion 64

Bibliography 67

Liste of Figures

Figure 1 Deep Learning is a Subfield of Machine Learning wich is a Subfield of AI

Figure 2 Traditional Programming vs. Machine Learning

Figure 3 Difference Between a Simple Neural Network and a Deep Learning Neural Network

Figure 4 Machine Learning Approaches with Algorithm Example

Figure 5 Comparisons between Machine Learning & Deep Learning

Figure 6 Neuron in Biology

Figure 7 Diagram of the Functionality of a Neuron in a Deep Learning Neural Network

Figure 8 Illustration of an Artificial Neuron

Figure 9 Artificial Neural Network Architecture

Figure 10 Activation Function

Figure 11 Linear Activation Function

Figure 12 Sigmoid Function

Figure 13 Tanh Hyperbolic

Figure 14 ReLU Graph

Figure 15 ReLU vs Leaky ReLU

Figure 16 SoftMax

Figure 17 Neural Network Loss Visualization

Figure 18 Neural Network Workflow

Figure 19 The Quadratic Error Surface for a Linear Neuron

Figure 20 Visualizing the Error Surface as a set of Contours

Figure 21 Convergence is difficult when our learning rate is too large

Figure 22 Reference Diagram for the Derivation of the Backpropagation Algorithm

Figure 23 Artificial Neural Network and Convolutional Neural Network

Figure 24 Convolutional Neurol Network Architecture

Figure 25 Convolutional Operation

Figure 26 Example of Convolutional Operation

Figure 27 Filter with Stride (s) = 2

Figure 28 Zero Padding Example with (p)=1

Figure 29 Convolution Operation on Volume

Figure 30 Max Pooling and Avg Pooling

Figure 31 Connection Between Convolutional Layer and Fully Connected Layer

Figure 32 Model Capacity and its Effect on Underfitting and Overfitting

Figure 33 Detection of Overfitting

Figure 34 Neural Network with Three Unit Dropped Randomly

Figure 35 ResNet Residual Learning Block

Figure 36 ResNet-34 Layers Architecture Diagram

Figure 37 Image Data Augmentation for Deep Learning

Figure 38 Image Horizontal Flipping (Mirror)

Figure 39 Horizontal and Vertical Shift

Figure 40 Rotation Example

Figure 41 Random Cropping

Figure 42 Random Erasing Example

Figure 43 Representation of the RGB Color Space as a Three-Dimensional Unit Cube

Figure 44 A Color Image and its Corresponding RGB Channels

Figure 45 HSV Color Space in Cylindrical Coordinates

Figure 46 HSV Color Components

Figure 47 HSL Color Space

Figure 48 HSL Color Component

Figure 49 YUV Color Space

Figure 50 YUV Color Component

Figure 51 Fake Faces Generated by StyleGAN

Figure 52 GAN Generator and Discriminator

Figure 53 Example of Neural Style Transfer

Figure 54 Anaconda Navigator

Figure 55 Jupyter Notebook Interface

Figure 56 Sample of Cats and Dogs from Kaggle Dataset

Figure 57 Data Augmentation Applied for Each Image

Figure 58 The Process of Dataset Augmentation

Figure 59 ResNet-20 Training Loss

Figure 60 ResNet-20 Validation Accuracy

Figure 61 ResNet-20 Validation Loss

Figure 62 AlexNet Training Loss

Figure 63 AlexNet Validation Accuracy

Figure 64 AlexNet Validation Loss

Liste of Tables

Table Title Page

Table 1 RGB/HSV Values 43

Table 2 RGB/HSL Values 45

Table 3 RGB/YUV Values 47

Table 4 RGB/XYZ/LUV Values 48

Table 5 Comparison of Results for Different Dataset 57

Table 6 Per Class accuracy of ResNet-20 and AlexNet 58

Table 7 ResNet-20 Result 59

Table 8 AlexNet Result 60

1

INTODUCTION

Deep learning is the new area of machine learning that moving machine

learning closer to one of its goals which is Artificial Intelligence, Deep learning

transformed application that required vision expertise into an engineering

problem that can be solved using this technique, application that used a rule-based

algorithm may be solved using training systems that can learn and improve on its

own by examining computer algorithm offered by deep learning, we are talking

about application and problems that no one expect that they may be handled

without human involvement. Machine learning and deep learning expanded the

computers limit more that we expect.

Deep learning CNNs convolutional neural network model have shown great

performance especially on image classification and speech recognition which

exceed human vision sometimes, deep learning model required a large amount of

data to train on, so we my face problem related to the lack of data or overfitting

problem, data augmentation is one of the most used technique that may handle this

problem, can we get a better performance with small dataset? This what shall show

in this thesis by training two different famous deep learning architecture using

manipulated dataset from Kaggle. First, we train our model on the complete dataset

then do the same thing using only 8% of the same dataset this small percentage is

extracting randomly, third we augment this 8% of dataset using two method

random augmentation and supervised augmentation and train them on the same

previous deep learning architecture besides comparing between the results

obtained.

1. BACKGROUND

This is not the first experimentation made to understand the performance of

CNN on different amount of data beside how data augmentation may lead to a

better performance Furthermore higher accuracy. We know that there are many

controversies published paper in [1] the authors proved that applying a specific

small transformation on samples may lead to a better performance and robustness

of the classifier. In more recent paper [2] the author compared between different

method of data augmentation using three architectures ResNet, VGG16, and

InceptionV3 it’s shows that the GAN data augmentation shows a little better result

than the basic image manipulation, combining different color space and position

augmentation gives the maximum accuracy for this research.

2

2. The Scoop of this Research

This thesis focuses on study of the impact of the amount of data used on

training set in image classification by deep learning model, especially architecture

Deep Residual Learning ResNet which won the first place on the ILSVRC 2015 and

AlexNet using Keras which is a high-level neural network API written in Python

and capable of running on to of TensorFlow using either CPU or GPU.

3. Research Goal and Question

Our objective is to answer the question: how the quantity of training dataset

may affect the performance of deep learning models and how can we deal with the

lack of training data problems.

4. Structure of Manuscript

Chapter 1

Deep Learning is the most powerful tools of machine learning on image

classification tasks, in this chapter “DEEP LEARNING AND ITS APPLICATION” we

discuss the relation between machine learning and deep learning and how deep

learning works from the first idea that is inspired from the biological neuron than

passing through the Convolutional Neural Network CNN to describe the secret

behind there fame and how CNN works and arrived to the gradient descent and

backpropagation algorithm and related problems like overfitting, finally, we

introduce two of the most famous architecture ResNet and AlexNet briefly.

Chapter 2

Describe image data augmentation technique used starting with simple

image manipulation than color space system and finally, the latest technique GAN-

based data augmentation and neural style transfer and smart augmentation.

Chapter 3

Describe the tool, libraries and dataset used in this experimentation, the

augmentation process and the dataset manipulation finally, briefly discussion and

analyzation of the results obtained.

3

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

CHAPTER 1
DEEP LEARNING AND ITS APPLICATION

Introduction

in the last years, the artificial intelligence known as AI becomes a subject of intent media
hype. machine learning and deep learning which are a subfield of artificial intelligence
come up in countless articles, often outside of technology-minded publications. self-
driving cars, chatbots virtual assistants, and many other fields based on artificial
intelligence (AI) where the human job will be scarce and economic activity will be handled
with robots also known as AI agents [3]. our interest in this chapter is Deep Learning
which is a subfield of Machine learning which is a part of AI (Figure 1) and what is the
relation between Artificial intelligent and Machine learning and deep learning and how
and which problems can be handled using these 3 techniques.

1.1 Historical Context

1.1.1 Artificial Intelligence [3]

“Artificial Intelligence or AI is the art of making computers think and behave in the same

manner as human brain in order to solve more complex problems without the need of

programmer’s guide”

Artificial intelligence was born in the 1950s, it all begins when a handful of pioneers from

the nascent field of computer science, they start asking questions about whether

computers could be made to behave intelligently and to think like a human, a question

whose ramifications we’re still exploring today. Chess programmer for example only

involved hardcoded rules crafted and it didn't qualify as Machine Learning. many of them

believed that the human-level could be achieved by having programmers handcraft a

sufficiently large set of explicit rules for manipulating knowledge. this approach was

known as symbolic AI in the 1950s to the late of 1980s.

Although symbolic AI shows good improvement in solving well-defined logical problems

but it’s so hard to figure out explicit rules for solving complex problems such as image

classification or language translation and speech recognition. that gives a lot of space to a

new approach which called Machine Learning ML

Figure 1 Deep Learning is a Subfield of Machine Learning wich is a Subfield of AI

4

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

1.1.2 Machine Learning [3]

“Machine Learning ML is the art of making computers learn from experiences and previous

situations this called the natural human learning process. we feed to the computer a

dataset and the predicted result and let the computer learn and analyze the relationship

between them in order to learn how could that particular data lead to this result”

Machine Learning has the attention of searchers in AI and even computer sciences since

1983 [4], the question was always how a computer can learn from experiences (data)

rather than programmers crafting data processing rules by hand, and how to learn on its

own how to perform a specific task these questions lead searchers to a new programming

paradigm called Machine Learning ML.in the classical programming or symbolic AI the

programmer input rules or program (algorithm) and data to be processed depending to

these rule, and outcome answers, Machine learning everything, the programmer input the

data with the answers expected according to this data and outcome the rule than matching

between the data and the answers (Figure 2). the rule can be applied to new data in order

to produce original answers

Figure 2 Traditional Programming vs. Machine Learning

“It would be useful if computers could learn from experience and thus automatically improve the

efficiency of their own programs during execution. A simple but effective rote-learning facility can

be provided within the framework of a suitable programming” [5]

Machine learning have the ability to learn and improve with experiences. Machine

learning process begin with the raw data which is used for extracting useful information

that helps in learning and in decision-making using shallow or deep architecture (Figure

3) to grant that [6]

5

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

Figure 3 Difference Between a Simple neural Network and a Deep Learning Neural Network

Machine Learning system is trained rather than be explicitly programmed, AI focus on

teaching computers how to learn without being programmed for specific tasks Machine

Learning can be carried out using following approaches:

1.1.2.1 Supervised Learning [6]

in ML and AI, supervised learning is a group of algorithms that determines a predictive

model using data with known outcomes. The model is leaned by training on those data

while the outputs are clear and try to make relations between the data and its output in

order to predict on new data (model generalization) through an appropriate learning

algorithm such as Neural Network, Random Forests and Linear Regression that works

through some optimization routine to minimize a loss function.

1.1.2.2 Unsupervised Learning [6]

In Machine Learning and Artificial Intelligent Unsupervised learning involves data that

comprises input without any target output. The objectives of unsupervised learning are

different for example the clustering used to discover groups of similar data items in order

to extract the similarities between the data items. The visualization used to reduce our

data size by projecting high-dimensional space to two or three dimensions in order to

view the similar data items

1.1.2.3 Semi-Supervised Learning [6]

Semi-supervised machine learning is a combination of supervised and unsupervised

machine learning methods. We already set that supervised learning is the learning that

occurs during the training of an Artificial Neural Network when the data in our training

set is labeled, unsupervised learning on the other hand is used when our training data is

not labeled. Semi-Supervised learning used when we have a combination of both labeled

and unlabeled data. Let's say we have a large amount of no labeled data well we could go

forward and manually label some portion of this dataset ourselves and use that portion to

train our model this call pseudo-labeling [7].

6

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

1.1.2.4 Reinforcement Learning

 Is a type of dynamic programming that trains algorithms using a system of reward and
punishment, a reinforcement learning algorithm, or agent, learns by interacting with its
environment. The agent receives rewards by performing correctly and penalties for
performing incorrectly. The agent learns without intervention from a human by
maximizing its reward and minimizing its penalty. [8] learning. Reinforcement learning
has been successful in applications as diverse as autonomous helicopter flight, robot
legged locomotion, cell-phone network routing, marketing strategy selection, factory
control and efficient webpage indexing.[6]

Figure 4 Machine Learning Approaches with Algorithm Example

1.2 Deep Learning

“The modern term “deep learning” does beyond the neuroscientific perspective on the current breed

of machine learning models. It apealss to a more general principle of machine learnig multiple

levels of composition, which can be applied in machine learning frameworks that are not

necessarily neurally inspired”[9]

Deep Learning is a subfield of Machine Learning which is a subfield of AI, which gained

popularity in recent past [6], it’s referred to the architecture which contains multiple

hidden layers (Deep Network), this architecture allows it to learn features with multiple

levels of abstraction, from a higher level to low level. The number of layers contributes to
a model is called the depth.

Deep learning is a type of machine learning that involves Artificial Neural Networks
(ANN), whose designs are inspired by the way that scientists believe the brain works.

Deep learning architectures such as:

• Deep neural networks

• Recurrent neural networks

• Convolutional neural networks

• Recursive neural networks

https://en.wikipedia.org/wiki/Deep_learning#Deep_neural_networks
https://en.wikipedia.org/wiki/Recurrent_neural_networks
https://en.wikipedia.org/wiki/Convolutional_neural_networks

7

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

have been applied to fields including computer vision, machine vision, speech

recognition, natural language processing, audio recognition, social network

filtering, machine translation, bioinformatics, drug design, medical image analysis,

material inspection and board game programs, where they have produced great results

and in some cases surpassing human expert performance. [10]

Feature engineering is a key step in the model building process. It is a two-step process:

• Feature extraction
• Feature selection

Figure 5 Comparisons between Machine Learning & Deep Learning

feature extraction for image classification is to get the possible features from the dataset

for example corner, edges... and from those features we get we need to extract more

features it means more details about our features in order to get small or hidden features.

Features Selection consist of selecting features that affect the model performance more

this means we need to get some features that we extract from our dataset and feed it to

our model to see the impact caused and then select the best features to our model,

Convolutional Neural Networks (CNNs) do all this by default [11].

https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Machine_vision
https://en.wikipedia.org/wiki/Automatic_speech_recognition
https://en.wikipedia.org/wiki/Automatic_speech_recognition
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Audio_recognition
https://en.wikipedia.org/wiki/Machine_translation
https://en.wikipedia.org/wiki/Bioinformatics
https://en.wikipedia.org/wiki/Drug_design
https://en.wikipedia.org/wiki/Board_game

8

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

1.2.1 The Neuron:

Neurons in deep learning were inspired by neurons in the human brain [3] Figure 6 shows

the anatomy of a brain neuron:

Figure 6 Neuron in Biology

As we can see, neurons have a very interesting structure. Neuron works in groups

together inside the human brain in order to perform functionality that human need and

requite in life. A question was asked by Geoffrey Hinton during his seminal research in

neural networks if we could build an algorithm for the computer to simulate neurons in

the human brain [12]. The hop that if they can mimic brain structure, they might capture

some of its capability.

To do this, researchers and scientists studied the behavior of neurons in the human brain.

An important observation shows up that the neuron by itself is useless. Instead, it requires

networks of neurons (Neuron Network) to generate meaningful tasks. the secret behind

that is because the neuron function by sending and receiving signals to other connected

neurons. The neuron dendrites have the ability to receive signals from the previous

neuron then pass those signals through the axon. the dendrites of the neuron are

connected to another neuron axon. we call this connection as a synapse. synapse concept

has been generalized on deep learning. [13]

1.2.2 Artificial Neuron:

This functional understanding of the neurons in our brain is translated into an artificial

model that can be represented on a computer, Neurons in deep learning models are nodes

through which data and computations flow.

 Neurons work like this (view figure 7):

• Neurons receive one or many input signals from either the raw dataset or from
the previous neuron (the previous layer) of the network.

• Neurons do some calculations.

• Finally, Neuron sends output signals to neurons in the next hidden layer through
a synapse.

9

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

Figure 7 Diagram of the Functionality of a Neuron in a Deep Learning Neural Network

Neurons in Deep Learning models have the ability of connect to more than one neuron in

the preceding layer through synapses. [3]

A neuron receives its input from the previous neurons in the preceding layer of the model,

then adds up signals multiplied by the corresponding weight then pass the result to an

activation function [13] Figure 8 shows the complete process

Figure 8 illustration of an artificial neuron

Mathematically, we have numbers of inputs 𝑥₁, 𝑥₂, 𝑥₃ … , 𝑥ₙ , each one of those inputs is

multiplied by specific weight 𝑤₁, 𝑤₂, 𝑤₃ … , 𝑤ₙ .

10

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

The results of this multiplication are summed together to produce the logit of the

Neuron:

∑ 𝑥ⱼ𝑤ⱼ

𝑛

𝑗=0

(1)

in many cases, the logit also include bias, which is a constant:

∑ 𝑥ⱼ𝑤ⱼ + 𝑏

𝑛

𝑗=0

(2)

This logit passed through a function f in order to produce our output 𝒚 = 𝒇(𝒛).

We may also express this functionality in victor form, our input as a vector

𝒙 = [𝑥₁, 𝑥₂, … , 𝑥ₙ] , and the weights of the neuron as 𝒘 = [𝑤₁, 𝑤₂, … , 𝑤ₙ], so our function

become 𝒚 = 𝒇(𝒙. 𝒘 + 𝒃) , where b is the bias term. [13]

The role of the activation function is to calculate the output value of neurons, the value

obtained passed through the next layer of our network using synapse.

1.2.3 Artificial Neural Networks

Neural networks are one type of model for machine learning; they have been around for

at least 50 years. in the mid-1980s and early 1990s, many important architectural

advancements were made in neural networks. However, the amount of time and data

needed to get good results slowed adoption. In the early 2000s computational power

expanded exponentially and the industry saw a “Cambrian explosion” of computational

techniques that were not possible prior to this, this made the interest come back in Neural

networks [13].

A feed-forward multilayer ANN is used. (Figure 9) shows the general ANN architecture,

which has an input layer, a set of hidden layers and an output layer. In each hidden and

output layer, there are artificial neurons interconnected via adaptive weights. [14]

“Updating the weights is the primary way the neural network learns new information”.

Figure 9 Artificial Neural Network Architecture

11

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

The simplest type of Artificial Neural Networks ANNs was the feedforward Neural

Network cause the information moves in one direction only, forward, from the input layer

nodes through the nodes of the hidden layer and to the output layer nodes, Neural

Network learn (update weight) by learning algorithm called Back-propagation. [14]

1.2.3.1 Input layer [15]

The input layer of Neural Network contains a group of artificial neurons which hold the

initial data for the neural network and brings it to into the system for further processing

by subsequent layers of the artificial neuron, the input layer is the very beginning of the

workflow for the artificial neural network, input layers are followed by one or many hidden

layers. On images processing input layer will hold the pixel intensity of the image for

example an RBG image with width w=64 and height h=64, and depth d=3 will have an input

dimension of 64×64×3.

1.2.3.2 Hidden layers [15]

Hidden layers are an Intermediate between the input and output layer of a neural network.

A hidden layer is a place where all the computation is done where artificial neurons take

in a set of weighted inputs and produce outputs through an activation function. In most

cases hidden neural networks layers weights are randomly assigned, sometimes they are

fine-tuned (used other model’s weights) and calibrated through the backpropagation

process.

1.2.3.3 Output layer [15]

The output layer is the last layer of an artificial neural network, the output layer neurons

produces output value of the network, output layer built in a different way depending on

the setup of the neural network. The final output may be a set of probabilities in cases of

classification or a real valued output in regression problems. The output is controlled by

the type of activation function used on the output layer neurons.

1.2.3.4 Activation Functions

The activation function is a mathematical gate between the input which is a value coming

from the previous neuron and the output which is the value going to the next layer

neurons (Figure 10), we can describe it as a function that turn the neuron output on or off

depending on the rule applicated [15].

Figure 10 Activation Function

12

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

There are 2 type of activation function that can be used on neural network linear

activation functions and no-linear activation function, the second one is the most used

because it can help network to learn complex data, Activation function has also the ability

of filter out data here some usual activation functions:

1.2.3.4.1 Linear Activation Function

A linear activation function takes the form: 𝑓(𝑥) = 𝑐𝑥

Figure 11 Linear Activation Function

This create a signal output identic to the input by taking the inputs and multiply it by the

weight corresponding to each neuron. In one sense, a linear function allows multiple

outputs, not just yes and no, so we can say that is better than a step function.

Mathematically we can say that the neuron receive input 𝑥₁, 𝑥₂, 𝑥₃ … 𝑥ₙ the output of

the linear neuron is given by:

y = w₁𝑥₁ + 𝑤₂𝑥₂ + 𝑤₃𝑥₃ … + 𝑤ₙ𝑥ₙ + 𝑏 (3)

Where 𝑤₁, 𝑤₂, 𝑤₃ … 𝑤ₙ are the weight corresponding to 𝑥₁, 𝑥₂, 𝑥₃ … 𝑥ₙ respectively

and 𝑏 is the bias. [15]

linear activation function can't use backpropagation and gradient descent in order to train

models the derivative of the function is always constant and it has no relation to the input

so there is no way to go back through the backpropagation process to understand which

weight in our input neuron way provide a better prediction.

we can say that a neural network with a linear activation function is a regression model.

Linear activation function has a limited ability to handle with complex varying parameters

of input data.

13

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

1.2.3.4.2 Non-Linear Activation Function [15]

Instead of using linear activation function modern models use non-linear activation

function in order to create a complex mapping between the network's inputs and outputs,

image processing and dataset that have high dimensionality.

Non-linear activation functions solve the problems of the linear-activation function

• Non-linear activation function allows backpropagation process because they

have a derivative function, the derivative of a linear function is always 0.

• Non-linear activation function gives high accuracy comparing to the linear one

Those are the most used non-linear activation function

a) Sigmoid [15]

which uses the function:

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 (4)

The Sigmoid function assumes an S-shape (Figure 12), if the input is small then the output
of the sigmoid function is close to 0, otherwise, a large value gives an output closer to 1.

Figure 12 Sigmoid Function

14

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

b) Tanh [13]

Which is similar to sigmoid function but instead of ranging from 0 to 1, the output of tanh

range from -1 to 1, use 𝑓(𝑥) = tanh(𝑥) it’s the ratio of the hyperbolic sine to the

hyperbolic cosine:

tanh(𝑥) =
sinh (𝑥)

cosh (𝑥)
 (5)

The graph of tanh function is similar to the sigmoid function (Figure 13)

Figure 13 Tanh Hyperbolic

During the backpropagation step the gradients become smaller and smaller until

eventually they vanish, no gradients means no learning this as called the vanish gradient

problem. it happens because of the sigmoid function it squeezes information. The solution

of this problem is to use an activation function that doesn’t squeeze information like RELU

[16].

15

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

c) ReLU [16]

Rectified Linear Unit use the function 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥), ReLU is probably the most used

activation function in the world now. It used in almost all the Convolutional Neural

Network (CNNs) or deep learning.

Figure 14 ReLU Graph

As we can see, 𝑓(𝑥) is zero when 𝑥 is less then zero and 𝑓(𝑥) is equal to 𝑥 when 𝑥 is above

or equal to zero.

As we can see all the negative values become zero immediately, that may decrease the

ability of the model to fit or train from the data properly because the ReLU block all the

inputs less than zero that's called "dying ReLU problem" introducing some activation even

in the negative cases solve this problem

Leaky ReLU is an attempt to solve the dying ReLU problem

Figure 15 ReLU vs Leaky ReLU

Leaky ReLU have handled this problem pretty well.

16

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

d) SoftMax [17]

SoftMax (Figure 16) handles the activation of the output neuron, we can use SoftMax to

solve classification problems. the number of classes equal to the number of neurons in the

last layer the value obtained from the SoftMax represents the probability of belonging to

a particular class.

Figure 16 SoftMax

A strong prediction mean that one output is too close to 1, while the other output

obviously close to 0, Otherwise, our prediction is weak.

1.2.3.5 Loss Functions

loss function quantifies how close given neural network is to the ideal toward which is

training. [18] In deep learning project, configuring the loss function is one of the most

important steps to ensure the model will work in the intended manner. The loss function

can give a lot of practical flexibility to the neural network.

There are serval tasks neural network can perform, from predicting continuous values to

classifying discrete classes. Each different task would require a different type of loss

function since the output format will be different. For specialized tasks, it’s up to us how

we want to define the loss. The loss function (Figure 17) can be defined as a function with

two parameters: Predicted Output and the True Output

17

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

Figure 17 Neural Network Loss Visualization

the function above calculate how poorly our model is preforming by comparing the

actual value that we supposed to get as output and what the model is predicting, in the

case of Y_pred value is very far from Y the loss will be high, and if the 2 values are

similar the loss value will become low [3].

If the loss is very high, this huge value will propagate through the network while it’s

training and the weight will be changed let’s say optimized a little more than usual

(Figure 18). If the loss is small than the weight will not change a lot since the network

is already doing a good job [17].

Figure 18 Neural Network Workflow

The objective is to found the optimal weights possible for our network, the weights that

minimize the error, the way to do that is by applying an optimization algorithm like

gradient descent.

18

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

If we put 𝑡⁽ⁱ⁾ is the true answer for the 𝑖⁽ᵀʰ⁾ training sample and 𝑦⁽ⁱ⁾ is the value obtained

by the Neural Network E is the function that minimize the value of the square error: [13]

𝐸 =
1

2
∑(𝑡(ⁱ) − 𝑦⁽ⁱ⁾)²

𝑖

 (6)

1.2.4 Gradient Descent [13]

Gradient descent is an optimization technique used to minimize the error by calculating

the gradient necessary in order to update the value of neural network parameters [6].

Let’s visualize how we might minimize the squared error over all of the training examples

by simplifying the problem. Let’s say our linear neuron only has two inputs

(and thus only two weights, w1and w2). Then we can imagine a three-dimensional

space where the horizontal dimensions correspond to the weights w1and w2, and the

vertical dimension corresponds to the value of the error function E. In this space,

points in the horizontal plane correspond to different settings of the weights, and the

height at those points corresponds to the incurred error. If we consider the errors, we

make over all possible weights, we get a surface in this three-dimensional space, in

particular, a quadratic bowl as shown in Figure 19

Figure 19 The Quadratic Error Surface for a Linear Neuron

now we are able to develop a strategy for how to find the values of weights that minimizes

the error function, the weights are randomly initialized for our network so we find

ourselves somewhere in the horizontal plane. By evaluating the gradient at our current

position, we can find the direction of steepest descent, and then take a step on that

direction, now we find ourselves in at a new position closer to the minimum than before.

By taking the gradient at this new direction we can reevaluate the direction of steepest

descent and taking a step in this direction as shown in Figure 20, by following this strategy

19

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

it will get us to the point minimum (minimum error), this is known as the Gradient

Descent Algorithm, it used to tackle the problem of training individual neurons and the

more general challenge of training entire networks.

Figure 20 Visualizing the Error Surface as a set of Contours

The learning rate is of the most important hyperparameter in this process.

We need to determine how fare we want to walk before recalculating our new direction.

This distance need to depend on the steepness of the surface because the closer we are to

the minimum the shorter we want to step forward, the closer to the minimum we are the

more flatter our surface become, so we can use the steepness as an indicator of how close

we are to the minimum, however, if our surface is rather mellow, training can take a large

amount of time. As a result, we often multiply the gradient by a factor 𝜖, the learning rate.

Picking the learning rate is a hard problem (Figure 21). If we pick a small learning rate,

we risk taking too long during the training process but if we pick a big value for the

learning rate we’ll mostly likely start diverging away from the minimum.

20

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

Figure 21 Convergence is Difficult when our Learning Rate is too Large

Now, we are finally ready to derive the delta rule for training our linear neuron. In order

to calculate how to change each weight, we evaluate the gradient, which is essentially the

partial derivative of the error function with respect to each of the weights. In other words,

we want:

∆𝑤ₖ = − 𝜖
𝜕𝐸

𝜕𝑤ₖ

= −𝜖
𝜕

𝜕𝑤ₖ
 (

1

2
∑ (𝑡⁽ⁱ⁾ − 𝑦⁽ⁱ⁾)

2

𝑖
)

= ∑ 𝜖(𝑡⁽ⁱ⁾ − 𝑦⁽ⁱ⁾)
𝑖

𝜕𝑦ᵢ

𝜕𝑤ₖ
= ∑ 𝜖𝑥ₖ

⁽ⁱ⁾(𝑡⁽ⁱ⁾ − 𝑦⁽ⁱ⁾)
𝑖

(7)

By applying this function, we are finally able to use gradient descent

1.2.5 The Back-Propagation Algorithm [13]

Back propagation is a technique used to train multilayer neural network, by David E.

Rumelhart, Geuffry E. Hinton and Ronald J. Williams in 1986. [19] The main idea behind

backpropagation is to compute how fast the error changes as we change a hidden activity.

From there we can figure out how fast the error changes when we change the weight of

an individual connection. Essentially, we’ll be trying to find the path of steepest descent!

The deference now is that we are going to work in an extremely high-dimensional space

instead of two weight in the previous example. We start by calculating the error

derivatives with respect to a single training example.

21

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

Each hidden unit can affect many output units. Thus, we need to combine many separate

effects on the error in an informative way. Our strategy will be one of dynamic

programming. Once we have the error derivative for one layer of hidden units, we’ll use

them to compute the error derivative for the activities of the layer below. And once we

find the error derivatives for the activities of the hidden units, it’s quite easy to get the

error derivative for the weights leading into the hidden unit. We’ll redefine some notation

for ease of discussion and refer to (Figure 22) the subscript we used refer to the layer of

the neuron, y refers to the activity of the neuron, z refers to the logit of the neuron.

Figure 22 Reference Diagram for the Derivation of the Backpropagation Algorithm

Now we stat by taking a look at the base of the dynamic programming problem.

Specifically, we calculate the error function derivative at the output layer:

𝐸 =
1

2
∑ (𝑡ⱼ − 𝑦ⱼ)2 ⇒

𝜕𝐸

𝜕𝑦ⱼ
= −(𝑡ⱼ − 𝑦ⱼ)

j ∈ output
 (8)

Now we tackle the inductive step. Let’s presume we have the error derivatives for

layer j. We now aim to calculate the error derivatives for the layer below it, layer 𝑖. To

do so, we must accumulate information about how the output of a neuron in layer 𝑖 affects

the logits of every neuron in layer 𝑗. This can be done as follows, using the fact that the

22

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

partial derivative of the logit with respect to the incoming output data from the layer

beneath is merely the weight of the connection 𝑤ᵢⱼ

𝜕𝐸

𝜕𝑦ᵢ
= ∑

𝜕𝐸𝜕𝑧ⱼ

𝜕𝑧ⱼ 𝜕𝑦ᵢⱼ
= ∑ 𝑤ᵢⱼ

𝜕𝐸

𝜕𝑧ⱼ𝑗
 (9)

Furthermore, we observe the following:

𝜕𝐸

𝜕𝑧ⱼ
=

𝜕𝐸

𝜕𝑦ⱼ

𝜕𝑦ⱼ

𝜕𝑧ⱼ
= 𝑦ⱼ(1 − 𝑦ⱼ)

𝜕𝐸

𝜕𝑦ⱼ
 (10)

Combining these two together, we can finally express the error derivatives of layer 𝑖 in

terms of the error derivatives of layer 𝑗:

𝜕𝐸

𝜕𝑤ᵢⱼ
= ∑ 𝑤ᵢⱼ𝑦ⱼ(1 − 𝑦ⱼ)

𝜕𝐸

𝜕𝑦ⱼ𝑗
 (11)

Then once we’ve gone through the whole dynamic programming routine, having filled up

the table appropriately with all of our partial derivatives (of the error function with

respect to the hidden unit activities), we can then determine how the error changes with

respect to the weights. This gives us how to modify the weights after each training

example:

𝜕𝐸

𝜕𝑤ᵢⱼ
=

𝜕𝑧ⱼ

𝜕𝑤ᵢⱼ

𝜕𝐸

𝜕𝑧ⱼ
= 𝑦ᵢ𝑦ⱼ(1 − 𝑦ⱼ)

𝜕𝐸

𝜕𝑦ⱼ
 (12)

Finally, to complete the algorithm, just as before, we merely sum up the partial derivatives

over all the training examples in our dataset. This gives us the following modification

formula:

∆𝑤ᵢⱼ = − ∑ ∈ 𝑦𝑖
(𝑘)

𝑦𝑗
(𝑘)

𝑘∈ 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
(1 − 𝑦𝑗

(𝑘)
)

𝜕𝐸(𝑘)

𝜕𝑦𝑗
(𝑘)

(13)

23

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

1.2.6 Convolutional Neural Networks (CNNs / ConvNets)

Convolutional neural networks CNN often called ConvNet, are a family of models that

where inspired by how the visual cortex of human brain works when recognizing objects.

The development of CNN’s goes back to the 1990’s, when Yann LeCun and his colleagues

proposed a novel neural network architecture for classifying handwritten digits from

images. [20] Due to the great performance of CNNs specially for image classification tasks,

CNNs gained a lot of attention, this leads to tremendous improvements in Machine

Learning and computer vision applications [21]

ConvNets has deep feed-forward architecture and has astonishing ability to generalize in

a better way as compared to networks with fully connected layers [10], it can learn highly

abstract features and can identify objects efficiently. CNN is considered above other

classical models because, CNN can be trained smoothly and does not suffer overfitting and

it is much difficult to implement large networks using general models of Artificial Neural

Network (ANN) than implementing in CNN. CNNs are widely being used in various

domains due to their remarkable performance such as object detection, speech

recognition, face detection, facial expression recognition, natural language processing,

image classification and many more. The main concept of CNNs s to obtain local features

from input (usually an image) at higher layers and combine them into more complex

features at the lower layers. [11]

1.2.6.1 Convolution Operation

Kernel convolution isn’t only used in ConvNets it’s also used on many other computer

vision algorithms. It’s a simple process where we need to take a small matrix

(Kernel/Filter), then pass through the target image and transform it based on kernel

values, the result of this operation is a feature map. Feature map values are calculated by

the following formula:

G[m, n] = (f × h)[m, n] = ∑ ∑ h[j, k]f[m − j, n − k]

kj

 (14)

Our input image is denoted with f and our kernel by h. The indexes of rows and columns

of the result matrix are marked with m and n respectively. [15]

First of all, we need to place the filter over a selected pixel (region of the input matrix),

then multiplying each value from the kernel with the corresponding value from the image

(input matrix) using a dot product, not matrices multiplication. Finally, we sum up the

results we get then place it in the right place in our feature map

24

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

1.2.6.2 Architecture of CNN

In traditional neural networks, each hidden layer is made up of a number of neurons,

where each neuron is fully connected to all neurons in the preceding layer. The major

difference between a traditional Artificial Neural Network (ANN) and Convolutional

Neural Network CNN is that only the last layer of a CNN is fully connected whereas in ANN,

it means that each neuron is connected to every other neuron (full connection) as shown

in (Figure 23) [22]

Figure 23 Artificial Neural Network and Convolutional Neural Network

ANNs are not appropriate to images it leads to over-fitting easily due to image size.

Consider an image of size [32x32x3]. If this image is passed through an ANN, it will be

flattened into a vector of size 32x32x3 which means 3072 rows. so, our ANN must have

3072 weights in its first layer to receive this input vector. For larger images, say

[300x300x3], it results in a complex vector (270,000 weights), which requires a more

powerful processor to process. [22]

All CNN fundamentals are based on three properties: local connectivity, parameter

(weight) sharing, pooling and sampling of hidden units.

a) Local Receptive Field

Also known as local connectivity we have already explained that the ANN neurons are

fully connected, as for CNN have local receptive field architecture, that’s means each

hidden unit can only connect to a small region of the input called local receptive field. This

is accomplished by making the filter/weight matrix smaller than the input. Using the local

25

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

receptive field, the neurons will be able to extract elementary visual features like point

and corners, etc. [23]

b) Weights sharing

In CNN, the matrix of parameter (kernel or weight matrix) is shared between the hidden

units organized in the same feature map. Hidden units within a feature map cover

different position(part) of the image, same filter can be used for all local receptive fields.

c) Subsampling (pooling)

Pooling and sampling of hidden units, subsampling reduces the size of the input, in order

to improve the computation. There are many techniques used, the most common

subsampling technique is max-pooling. [15]

Convolutional Neural Network is based on a sequence of layers to achieve different tasks.

The figure below shows the architecture of a typical ConvNet that contains the following

layers divided on two-part Features Learning and Classification:

 Convolutional layers,

 Features Learning Activation function layer (ReLU),

 Pooling layer,

 Fully connected layer,

 Classification

 Output layer with activation function (Softmax)

Figure 24 Convolutional Neurol Network Architecture

These layers are connected together to make a full Convolutional Neural Network

architecture, Convolutional and activation layer followed by an optional pooling layer.

Fully connected layer makes up the last layer of the CNN, [22] using a SoftMax function

(Sigmoid function may be used on binary classification) in the last layer produces the

probability of which class included our input when it comes to a classification problem

like the previous figure. [15]

26

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

1.2.6.2.1 Convolution layer

Network which uses convolutional operation (*) which called also an element-wise

product used instead of general matrix multiplication who takes too long. The

Convolutional Layer consists of a set of filters (kernel or feature detector), where each

filter is applied across all areas of the input data (the image) (Figure 25). A filter is defined

by a set of learnable weights. [6] The number of feature maps is equal to the specified

number of filters. [15]

Figure 25 Convolutional Operation

The main task of convolutional layer is to detect features found within local region of the

input image. A feature map is obtained for each filter.

27

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

1.2.6.2.1.1 Filters/Kernels

Each filter contains some features like corners, edge, and during the pass, the filter is slide

across the width and height (according to the stride parameter) of the input generating

feature map of that filter, they may be multiple kernels in each convolutional layer. [23]

Figure 26 Example of Convolutional Operation

A feature map is obtained after adding a bias term and then applying a nonlinear function

to the output of the convolutional operation.

1.2.6.2.1.2 Hyperparameters

The convolutional and pooling layers have hyperparameter whose value must be defined

beforehand, they are used to control the behavior of the model, here some important

hyperparameters in the convolutional layer of the CNN:

a) Filter Size

Filer can take any size greater than 2 × 2 [23], it should be less than the size of the input.

The largest size used is 7 × 7 but only in the first convolutional layer, [13] a 2D

convolutional filter will always have a third dimension in size. The third dimension is

equal to the number of channels of the input image. For example, we apply a 3x3x1

convolution filter on gray-scale image that has 1 black and white channel like the previous

example (Figure 26). We apply a 3x3x3 convolution filter on a colored image with 3

channels, Red, Green and Blue (figure 29).

In general, each image has dimensions W × H × D where W is the width in pixels, H is the

height in pixels and D represent the dimension or the depth which is the number of

channels. [23]

b) Number of filters

There can be any reasonable number of filters, GoogLeNet has 128 filters of 3 × 3 kernel

size and 32 filter of 5 × 5 size, AlexNet used 96 filters of size 11 × 11 in the first

convolution layer. [6]

28

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

c) Stride

It governs how many cells the filter is moved in the input to calculate the next cell in the

result, that means the number of pixels to move at a time to define the local receptive field

for filter (Figure 27), too small stride will lead to overlapping receptive field and the large

one resulting output with smaller dimension. [6]

Figure 27 Filter with Stride (s) = 2

d) Zero padding

This hyperparameter describes the number of pixels to pad the input image (matrix), [6],

we add to the image a padding with p pixel(Figure 28). It helps to keep more of the

information at the border of an image [13]. Without padding, very few values at the next

layer would be affected [6].

Figure 28 Zero Padding example with (p)=1

29

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

Notice that the dimension of the result has changed due to padding if we compare it with

the previous example (figure 29)

Each filter in the convolution layer produce a feature map of size ([A − K + 2P]/S) + 1,

where: A the input volume size, K size of the filter, P the number of padding applied and S

the stride. [6]

Suppose the input image has size 6 × 6 × 3, and 3 filters of size 3 × 3 are applied, where

stride s = 1 and padding p = 0 (figure 7), we already say that the number of feature maps

generated equal to the number of filters/kernels applied i.e. 5. the size of each feature map

will be (
[6−3+0]

1
) + 1 #4, therefore, the output volume will be 4 × 4 × 3 . Convolution

of 3D image will give a 2D output.

Figure 29 Convolution Operation on Volume

1.2.6.2.2 Pooling Layer

Subsampling layers commonly known as pooling layers, do not have any learnable

parameters, for instance, there are no weights or bias units in pooling layers, in CNNs, the

sequence of convolution layers and activation function layer is followed by an optional

pooling layer [24] to reduce the spatial size of the input this will reduce the number of

parameters in the network. [6] Pooling layer makes the model more robust to variations

in the position of the features in the input image by taking each feature map output from

the convolutional layer and down-sample it, it summarizes a region of neurons in the

convolution layer. Many pooling technique max and average pooling are the most

common pooling technique used, [23] (Figure 30) it’s a pooling operation that select the

maximum element (value) from the region of the feature map covered by the filter, the

output after max-pooling layer would be a feature map containing the most important

features of the previous feature map and discards less signification data. The average
pooling calculates the average instead of take the maximum value from the input matrix.

30

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

Figure 30 Max Pooling and Avg Pooling

1.2.6.2.3 Fully Connected Layer [6]

In ConvNets the previous sequence (Convolutional Layer, Pooling layer) is followed by a

fully connected layer. Convolutional neural network composed of two stage: Feature

extraction and classification stage, the stack of convolutional layer and the pooling layer

represent the part of the feature extraction, while the classification stage is composed of

the fully connected layer (one or more) followed by a SoftMax function layer. The main

role of the first part is to detect enough features from input images. The role of the last

layer which probably composed of Softmax function will calculate the probability that

these features represent each class that mean obtain the class score. each neuron from

previous layer (convolution layer or pooling layer or fully connected layer) is connected

to every neuron in the next layer and every value contributes in predicting how strongly

a value matches a particular class. (Figure 31) fully connected layer can learn more

sophisticated combinations of features. the two main classifiers used in CNNs are Softmax

and Support Victor Machines (SVMs) as we said Softmax produce the probabilities of each

class with total of probability of 1, SVM produce the class scores, the class having the

highest score is the treated as the correct one.

 Feature maps Fully connected

Figure 31 Connection between Convolutional Layer and Fully Connected Layer

31

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

1.3 Regularization for Deep Learning

Regularization for deep learning is as collection of techniques prevent overfitting

problems this technique can improve the accuracy of models, the problem is that the

model shows a good performance in training set and a bad performance on the test data

(new data), we can say that the model in this case can’t generalize well what he learn to

new data, many strategies used in machine learning to solve this problems, these

strategies are known as regularization. [9]

1.3.1 Underfitting and overfitting

there are 2 major problem the first one is underfitting and the second one is overfitting,

the first one is when the error rate for the training data is high that obviously mean that

the error rate for the test data will be high also many expert said that if the model accuracy

in training set is less than 75% that mean that the model architecture need to be changed

or configurated, the second problem is the worst it happen when the model show a great

performance on the training data but the accuracy is low for the test data (validation data)

(Figure 32) that happens when the model overfit the data but it can’t generalize well on

new data that he never seen, the major cause of overfitting problem is the lack of training

data. [21]

Figure 32 Model Capacity and its Effect on Underfitting and Overfitting

When the capacity is low both of the training error and test error are high, when the

capacity increase, the training error decrease, the test error initially decrease than it starts

to increase and that lead to an overfitting, when the generalization gap is big, (Figure 33)

changing model parameters or the model itself is the key to avoid underfitting, but what

about overfitting when the model is doing well on training dataset and can’t generalize on

test or validation data many technique can be used the most efficient one is Data

Augmentation when we don’t have enough data to train our model. (see Chapter 2)

32

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

Figure 33 Detection of Overfitting

1.3.2 Dropout

Dropout is an activity to regularize weights in the fully connected layers of convolutional

neural network in order to avoid overfitting. [6] Some neuron with their connection are

randomly dropped from the network during training set (Figure 34), the remaining

neurons can learn important features all by themselves and not rely on cooperation from

other neurons. [16] The high cooperation between neuron lead to overfitting since it does

well on the training dataset, the random dropout technique show a great improvement on

generalization

Figure 34 Neural Network with three unit Dropped Randomly

33

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

1.4 Deep Learning Architecture

The last few years many Deep Learning architecture appear and evolved achieving top

scores on many tasks including images classification, they can achieve high accuracy, [6]

one of the most architecture called ResNet

1.4.1 ResNet [25]

As the number of layers of deep networks increases, the accuracy improves and the

accuracy saturates once the network has converged. However, if the depth is further

increased, then the performance starts getting degraded rapidly. This degradation is

caused by adding more layers to an already converged deep model which results

in higher training error. Thus, there is a need for a strategy that obtains an optimal

deep network for a given application. ResNet was proposed with a residual learning

framework that lets new layers to fit a residual mapping. It is easier to push the

residual to zero when a model has converged than to fit the mapping by a stack of

nonlinear layers [6].

Given an underline mapping 𝐻(𝑥) to be fit by a few stacked layers, where 𝑥 is the input to

these layers, the residual learning use the residual function

𝐹(𝑥) = 𝐻(𝑥) − 𝑥 (15)

It is easier to optimize the residual mapping than to optimize the original, and it can be

realized by a feedforward neural network with shortcut connection as shown in Fig.35

The shortcut link simply accomplishes identity mapping, and the output of. [6]

 Figure 35 ResNet Residual Learning Block

The architecture diagram of ResNet-34 is shown in (Figure 36)

34

 CHAPTER 1 DEEP LEARNING AND ITS APPLICATION

Figure 36 ResNet-34 Layers Architecture Diagram

1.4.2 AlexNet

The AlexNet CNN architecture [26] was developed by Alex Krizhevsky, Ilya Sutskever and

Geoffrey Hinton in 2012, AlexNet won the ImageNet ILSVRC (ImageNet Large-Scale Visual

Recognition Challenge) competition in the same year. The model consists of five

convolutional layers, three pooling layers, three fully connected layers, and a 1000-way

Softmax classifier [6].

The original paper’s primary result proved that the depth of the model has a huge impact

on the model performance, a deep model was computationally expensive, but it’s become

workable due to the utilization of the Graphis Processing Units GPU during training. [15]

35

 CHAPTER 2 DATA AUGMENTATION

Chapter 2

 Data Augmentation

Introduction

Deep learning is the fastest-growing field these days in the machine learning (ML) field

and between many DNN structures, the Convolutional Neural Networks (CNNs) are

currently the main tool used for image classification and analysis purposes. Although

great achievements and perspectives, deep neural networks have many pertinent

challenges to tackle. One of them is the lack of sufficient amount of training data this

considered as the most frequent problem in this field for example in the medical imaging

domain is how to cope with a limited amount of data and small datasets, [27] especially in

the case of supervised machine learning that requires labeled data and larger training

examples for the model to train [28]. The more data we fit the more accuracy we get,

another problem we may face called Overfitting, many techniques used in order to deal

with these two problems (the lack of data and overfitting) called Data Augmentation [29].

In this Chapter, we focus on Data Augmentation techniques used and how can we solve

the problems of overfitting and the lack of data using those techniques

36

 CHAPTER 2 DATA AUGMENTATION

2.1 Data Augmentation

Data augmentation is concerning the process of creating new data from the original data

by manipulating the data we have we can generate new data. A recent study proved that

the performance of ConvNets is logarithmically proportional to the number of training

samples [30]. Conversely, without enough training samples, Convolutional Neural

Networks face overfitting because of memorizing a detailed features of training data that

cannot be generalized when the model predicts on new data those features will be useless.

[31] For example, for images data augmentation increases the variety of images and

generate more data by manipulating them in different ways such as resizing, flipping,

rotating, random cropping, …etc. [32], or by changing images color space and noise

injection. This process increases the diversity of the data available for training models

without the need of collecting new data, not only manipulating images can be used, many

techniques and studies address this problem (Figure 37), translating the training images

a few pixels in each direction can improve generalization also, even if the model has

already been designed to be partially translation invariant by using the convolution and

pooling techniques.

Figure 37 Image Data Augmentation for Deep Learning

Here is some basic image augmentation technique that can be applied to generate more

images data

37

 CHAPTER 2 DATA AUGMENTATION

2.1.1 Affine transformation (Basic image manipulation)

the most popular practice for data augmentation is the affine image transformation, [29]

and color modification, as the affine transformation we define:

2.1.1.1 Horizontal Flipping [33]

the amount of data will be doubled by applying a single operation of horizontal flipping

on the dataset

Figure 38 Image Horizontal Flipping (Mirror)

Mathematically this operation consists of flipping the 3 matrices R, G and B matrices

values horizontally:

M = [
1 2 3
4 5 6
7 8 9

] M′ = [
3 2 1
6 5 4
9 8 7

] (16)

A horizontal flip of a picture of a cat or a dog, a bird (figure 38) for example may make

sense, because the photo could have been taken from the left or the right, a vertical flip of

the images not make any sense and would probably not be efficient on improving models

accuracy in most of cases, it may also cause wrong information detection this taken from

the hand-written digit recognition models, for example, we pass an image with the label

6, if we flip that image vertically our input image will become 9, but our label is still 6, so

we are passing wrong labels through our model, and this will affect the performance of

our model.

2.1.1.2 Horizontal and vertical shift

In shift-invariance CNN such prepossessed test images will make no difference in

prediction, but this operation can generate more training samples (Figure 39), small

displacement of object can make the model more efficient on learning features and allow

it to generalize and predict correctly. This process can be done by shifting the 3 RGB

matrices in the target direction here is an example of shifting matrix by one pixel to the

right

38

 CHAPTER 2 DATA AUGMENTATION

M = [
1 2 3
4 5 6
7 8 9

] M′ = [
0 1 2
0 4 5
0 7 8

] (17)

Figure 39 Horizontal and Vertical Shift

2.1.1.4 Rotation [34]

Before applicate rotation, we should analyze every class and its possible rotations in order

not too ruined image features. This operation can be done by flipping images with a

specific degree, this can generate more samples and make our model more detectable to

small changes in samples.

Figure 40 Rotation Example

2.1.1.5 Random cropping [35]

Random crop is a data augmentation technique based on taking a random subset from the

original image. This technique allows the model to generalize better because the object of

interest and features we want our model to learn and detect are note always wholly visible

in the image or the same scale in our training data.

39

 CHAPTER 2 DATA AUGMENTATION

Figure 41 Random Cropping

2.1.1.6 Random erasing: [36]

Occlusion is a critical influencing factor on the generalization ability of CNNs (Figure 42).

It is desirable that invariance to various levels of occlusion is achieved. When some parts

of an object are occluded, a strong classification model should be able to recognize its

category from the overall object structure

Figure 42 Random Erasing Example

Random erasing is considered as one of the most effective augmentation techniques, it

shows great results

There are many other transformations that could be used to augment dataset like Kernel

filter, mixing images [35] and other technique that manipulate images to get more data.

40

 CHAPTER 2 DATA AUGMENTATION

2.1.2 Color Space Transformations

Color images play an important role in everyday activities such as photography, television.

It’s involved in every aspect of our lives, it’s a complicated phenomenon that has occupied

the interest of scientist for hundreds of years, there are many color space that we can use

for our treatment (OpenCV library contain more than 150 color space), changing color

space of dataset could improve the performance of our models [37] to get better accuracy

and avoid overfitting

2.1.2.1 RGB Color Space [38]

It’s the most used color space as a standard in training models cause it’s the simplest color

space, the RGB color schema encodes color as a combination of the three primary colors:

red (R), green(G), and blue (B) with different proportions, each parameter (red, green and

blue) defines the intensity of the color as an integer between 0 and 255(one byte). the

color depth is another description of the range of intensity, the good thing on RGB is being

supported in analog devices such as TV and digital device such as computer and cameras

and in all browsers. This make RGB as the most useful color space, mixing the three

primary colors value allow us to get all combination possible, we can represent it also as

a three-dimensional coordinate plane where we place for R (red), G (green), and B (blue)

on each axis, (Figure 43) This coordinate plane yields a cube represent the RGB color

space:

Figure 43 Representation of the RGB Color Space as a Three-Dimensional Unit Cube

There is another representation where RGB value are normalized to the interval [0, 1]

instead of [0, 255] so that the resulting color space forms a unit cube. The point 𝑆 = (0,0,0)

corresponds to the color black, 𝑊 = (1, 1, 1) corresponds to the color white. [39] All

points are between S and W are shades of gray created from equal color components 𝑅 =

𝐺 = 𝐵 (Figure 44) show a color test images and its corresponding RGB color components

41

 CHAPTER 2 DATA AUGMENTATION

Figure 44 A Color Image and its Corresponding RGB Channels

2.1.2.2 HSV Color Space [40]

which mean Hue Saturation Value it’s based on cylindrical coordinate representation of

point in an RGB color model (Figure 45 (1)) where the vertical axis 𝑉 represents the

brightness value (The chromatic notion of intensity), the 𝐻 which is the angle, 𝑆 which is

the radius (The amount of white color mixed with a hue). It’s a conversion from the RGB

color model into this cylinder, the lower the value the darker the outcome color and the

higher the value the more the outcome color resemble the color itself (Figure 45 (2)), then

we change these three parameters in order to create different combination of colors

Figure 45 HSV Color Space in Cylindrical Coordinates

42

 CHAPTER 2 DATA AUGMENTATION

2.1.2.2.1 Convert RGB to HSV

The RGB values are divided by 255 to change the range from 0…255 to 0…1

𝑅′ =
𝑅

255
 , 𝐺′ =

𝐺

255
 , 𝐵′ =

𝐵

255
 (18)

𝐶ₘₐₓ and 𝐶ₘᵢₙ are the max and the min of (𝑅, 𝐺, 𝐵) then obtain the value of 𝛥

𝐶ₘₐₓ = max (R′, G′, B′)

𝐶ₘᵢₙ = min (R′, G′, B′)

𝛥 = 𝐶ₘₐₓ − 𝐶ₘᵢₙ

(19)

When the RGB value have the same value(𝑅 = 𝐺 = 𝐵) then we are dealing with

achromatic (gray) pixel the value of 𝛥 will be obviously 0

Hue calculation:

0° , 𝛥 = 0

60° × (
G′−B′

𝛥
mod 6) , 𝐶ₘₐₓ = 𝑅′

60° × (
B′−R′

𝛥
+ 2) , 𝐶ₘₐₓ = 𝐺′

60° × (
R′−G′

𝛥
+ 4) , 𝐶ₘₐₓ = 𝐵′

(20)

Saturation calculation

0 , 𝐶ₘₐₓ = 0

 𝑆 = (21)
𝛥

𝐶ₘₐₓ
 , 𝐶ₘₐₓ ≠ 0

Value calculation

𝑉 = 𝐶ₘₐₓ (22)

43

 CHAPTER 2 DATA AUGMENTATION

So, the RGB space unit cube is mapped to a cylinder. All RGB color coordinate may be

represented on this cylinder in HSV space. The mapping from the RGB to HSV space in

nonlinear can be noted by examining how the black point stretches [37] Figure 46 shows

the individual HSV components of the test image as grayscale images

Figure 46 HSV Color Components

The table below show the variation between the RGB and HSV color space

Color
Color

name
Hex (R,G,B) (H,S,V)

 Black #000000 (0,0,0) (0°,0%,0%)

 White #FFFFFF (255,255,255) (0°,0%,100%)

 Red #FF0000 (255,0,0) (0°,100%,100%)

 Lime #00FF00 (0,255,0) (120°,100%,100%)

 Blue #0000FF (0,0,255) (240°,100%,100%)

 Yellow #FFFF00 (255,255,0) (60°,100%,100%)

 Cyan #00FFFF (0,255,255) (180°,100%,100%)

 Magenta #FF00FF (255,0,255) (300°,100%,100%)

Table 1 RGB/HSV Values

44

 CHAPTER 2 DATA AUGMENTATION

2.1.2.3 HSL Color Space [41]

HSL is short of Hue, Saturation and Luminance (or brightness) similar to the HSV, the hue

is what we normally call color is based on the position around the wheel, Saturation define

how pure a color is and saturation is based on the distance from the center of this wheel,

if we want to desaturate we move inward, and if we want to saturate we move outward.

At full desaturation our color becomes achromatic, or colorless finally the Lightness and

its represented as the value of the L axis, HSV take the form of a double (Figure 47), the

black color in the bottom tip and white on the top.

Figure 47 HSL Color Space

2.1.2.3.1 Convert RGB to HSL

In the HSL model, the hue is computed in the same way as in the HSV model

𝐻ₕₛₗ = 𝐻ₕₛᵥ (23)

The other values Saturation and Lightness, are computed as follows

𝐿 =
𝐶ₘₐₓ + 𝐶ₘᵢₙ

2
 (24)

0 , 𝛥 = 0

 𝑆 =

𝛥

1−∣2𝐿−1∣
 , 𝛥 <> 0

(25)

45

 CHAPTER 2 DATA AUGMENTATION

Figure 48 HSL Color Component

The table below show the variation between the RGB and HSL color space

Color
Color

name
Hex (R,G,B) (H,S,L)

 Black #000000 (0,0,0) (0°,0%,0%)

 White #FFFFFF (255,255,255) (0°,0%,100%)

 Red #FF0000 (255,0,0) (0°,100%,50%)

 Lime #00FF00 (0,255,0) (120°,100%,50%)

 Blue #0000FF (0,0,255) (240°,100%,50%)

 Yellow #FFFF00 (255,255,0) (60°,100%,50%)

 Cyan #00FFFF (0,255,255) (180°,100%,50%)

 Magenta #FF00FF (255,0,255) (300°,100%,50%)

Table 2 RGB/HSL Values

2.1.2.4 TV Color Space YUV

YUV also is known as YCbCr in the word of computer color model is adopted by European

TV systems Phase Alternating Line (PAL Standard) which is a color encoding system for

analog television [42] and NTSC (National Television System Committee). The Y

component determines the color brightness (referred to as luminance), while the U and V

components determine the color itself (the chroma). Y is the luminance value it’s the

overall brightness of the pixel, Y ranges from 0 to 1 (or 0 to 255 in digital format), this

effectively a grayscale value (Figure 50). while U or (CB) and V or (CR) range from -0.5 to

0.5 (or -128 to 127 in signed digital form) [43]. Coordinate representation of YUV color

space has been shown in Figure 49

46

 CHAPTER 2 DATA AUGMENTATION

Figure 49 YUV Color Space

2.1.2.4.1 Convert RGB to YUV [43]

The first equation gives conversion from RGB to YUV

 𝑌 = 0.299 × R + 0.587 × G + 0.144 × B
𝑈 = −0.14713 × R − 0.22472 × G + 0.436 × B

 𝑉 = 0.615 × R − 0.51498 × G + 0.10001 × B
(26)

The second equation gives the inverse function that convert from YUV to RGB

𝑅 = 0.7492 × Y − 0.50901 × U + 1.1398 × V

 𝐺 = 1.0836 × Y − 0.22472 × U − 0.5876 × V

 𝐵 = 0.97086 × Y + 1.9729 × U − 0.000015 × V

(27)

Figure 50 YUV Color Component

47

 CHAPTER 2 DATA AUGMENTATION

The table below show the variation between the RGB and YUV color space

Color
Color

name
Hex (R,G,B) (Y,U,V)

 Black #000000 (0,0,0) (16,128,128)

 White #FFFFFF (255,255,255) (235,128,128)

 Red #FF0000 (255,0,0) (82,90,240)

 Lime #00FF00 (0,255,0) (145,54 ,34)

 Blue #0000FF (0,0,255) (41,240 ,110)

 Yellow #FFFF00 (255,255,0) (210,16 ,146)

 Cyan #00FFFF (0,255,255) (170,166,16)

 Magenta #FF00FF (255,0,255) (107,102,221)

Table 3 RGB/YUV Values

2.1.2.5 XYZ and LUV Color Space [44]

RGB color space is linear space which is always used in computation of color optical flow.

For the nonlinear character of the human vision, RGB color space appears obviously non-

uniform effect. When an object is changed from one location to another in RGB color space,

if only the original image location is changed and the distance remain unchanged, the

difference of variation can be visually felt. In order to obtain the real uniform color space

from human vision, CIE (the International Commission on Illumination)defines the LUV

color space, which is derived from XYZ color space. The XYZ color space can be obtained

from RGB color space by following linear transformation:

[
𝑋
𝑌
𝑍

] = [
 0.430 0.342 0.178
 0.222 0.707 0.071
 0.020 0.130 0.939

] [
𝑅
𝐺
𝐵

] (28)

Further, two middle variables should be defined in the transition from CEI XYZ color

space to CEI LUV color space

𝑢` =
4𝑋

𝑋 + 15𝑌 + 𝑍
 (28)

https://en.wikipedia.org/wiki/International_Commission_on_Illumination

48

 CHAPTER 2 DATA AUGMENTATION

If the reference luminance of white light is considered, then 𝑋, 𝑌, 𝑍 can be expressed as

𝑋ₙ , 𝑌ₙ , 𝑍ₙ , and then U and V computed as

Where, L is as follow:

to convert RGB to CIELUV, first we convert RGB to CIEXYZ and then we convert CIEXYZ

to

CIELUV

Color
Color

name
Hex (R,G,B) (X,Y,Z) (L,U,V)

 Black #000000 (0,0,0) (0, 0, 0) (0, 0, 0)

 White #FFFFFF (255,255,255) (95.05,100,108.89) (100,0.00089, -0.017)

 Red #FF0000 (255,0,0) (41.24,21.26,1.93) (53.23,175.053,37.75)

 Lime #00FF00 (0,255,0) (35.76,71.52,11.92) (87.73, -83.07, 107.40)

 Blue #0000FF (0,0,255) (18.05, 7.22 ,95.05) (32.30, -9.39, -130.35)

 Yellow #FFFF00 (255,255,0) (77, 92.78, 13.85) (97.13, 7.70, 106.78)

 Cyan #00FFFF (0,255,255) (53.81,78.74,106.97) (91.11, -70.47, -15.21)

 Magenta #FF00FF (255,0,255) (59.29,28.48,96.98) (60.31,84.07, -108.71)

Table 4 RGB/XYZ/LUV Values

𝑣` =
9𝑋

𝑋 + 15𝑌 + 𝑍
 (29)

𝑈 = 13𝐿(𝑢` − 𝑢`ₙ) , 𝑉 = 13𝐿(𝑣` − 𝑣`ₙ) (30)

𝐿 = 166 (
𝑌

𝑌ₙ
)

1/3
− 16 ,

𝑌

𝑌ₙ
< 0.08865 (31)

49

 CHAPTER 2 DATA AUGMENTATION

2.1.2 Deep Learning Approaches

The methods discussed above are applied to images in the input space, Traditional
augmentation approaches are firmly limited, especially in tasks where the images follow

strict standards, as in the case of medical datasets. The most used technique is called GAN

2.1.2.1 GAN-Based Data Augmentation

GAN refer to Generative Adversarial Network, the idea of GANs was conceived in 2014 by

Ian Goodfellow, [45] GANs can learn about your data and learn to synthesize, generate

never-before-seen data to augment the dataset it’s considered as an approach of

unsupervised learning and even semi-supervised learning (when the some of the data are

labeled and rest are not), GANs allow us to generate unlabeled data from our labeled data.

A basic GAN consist of two model that play against each other a generator and a

discriminator, we can think of the generator as counterfeiter who tries to replicate the

input data in order to produce fake data, on the other hand the discriminator is like a cop

who need to be able to distinguishes real data which is form the dataset and the fake data

which is produced by the generator [46] the loss of the discriminator is used as an

objective function for the generator in the next time round. The idea is awesome creating

a fake dataset from the original one will completely solve the problem of the lack of data,

NVDIA has create their own model based on GANs architecture which allow them to

produce fake human faces as we can see in Figure 51. [47] It’s hard to believe that those

faces are fake and had been generated from a GAN model.

Figure 51 Fake Faces Generated by StyleGAN

Building a GAN model consist of different steps, first we need to define the architecture of

the GAN a neural network for example then we need to train the discriminator model to

distinguish between real and fake data, the next step is to train the generator, we need to

modify parameters of the generative model to maximize the loss of the discriminator then

50

 CHAPTER 2 DATA AUGMENTATION

we repeat the training of the generator and the discriminator over 𝑛 epoch after every

iteration the generator will get better at fooling the discriminator, finally the

discriminator will not be able to tell the real images of the dataset from the generated ones

by the generator once the training is complete we synthesize data from the generator and

this can be used to augment our dataset or use it as is. There are many types of GANs let’s

take the most useful one which is the Deep Convolutional GAN (DCGAN) this type used

CNNs in generator and discriminator

Figure 52 GAN Generator and Discriminator

Let’s go back to the example of generating images of faces like we see in NVIDIA’s IA the

discriminator will take input face image either from the generator or the dataset and

output real if it believe the image is of an actual face or fake if it believe the face is not of a

human, the generator will be given some data as an input and will have to come up with a

face this is done through a D-Convolutional Neural Net.

2.1.2.2 Neural Style Transfer [48]

Neural style transfer is the flashiest demonstration of technique of deep learning

capabilities. The general idea behind the Neural Style Transfer is to use CNN to transfer

the style of a given painting to any image (Figure 53). Neural Style Transfer is probably

best known for its artistic applications, but it also used on Data Augmentation, it’s done

by manipulating the sequential representation across a CNN such that the style of one

image can be transferred to another while preserving the original one.

Figure 53 Example of Neural Style Transfer

51

 CHAPTER 2 DATA AUGMENTATION

Smart data augmentation [45]

Smart augmentation is the latest technique, both neural style transfer and smart

augmentation are new research field, the smart augmentation consist of creating a neural

that learn how to generate augmented data during the training process in order to get

more data. This technique allows us to learn augmentation that minimize the error of

network. The goal of Smart Augmentation is to learn the best augmentation strategy for a

given class of input data. It does this by learning to merge two or more samples in one

class. This merged sample is then used to train a target network. The loss of the target

network is used to inform the augmenter at the same time. This method might be used to

generate more data that for the training process. This process often includes letting the

network come up with unusual and unexpected highly performant augmentation

strategies.

52

 CHAPTER 3 EXPERIMENTATION AND RESULTS

CHAPTER 3

EXPERIMENTATION AND RESULTS

The main focus throughout this thesis has shown the impact of the quantity of the data on

the performance of deep learning model in image classification and the effect of the data

augmentation when facing the lack of dataset or overfitting problems.

In this chapter we will discuss the development tools used such as anaconda and Jupyter

notebook and the main libraries as Keras and Tensorflow using python as a programming

language then the Kaggle dataset used. The second part contain the implementation and

discussion of result we obtain

3.1 Development Tools

3.1.1 Anaconda [50]

Anaconda is a free and open source distribution of python and R programming language

more than 20 million person use this technology, platform to solve the toughest problem

[www.anaconda.com] specially for scientific computing such as machine learning

application, data science and data processing, Anaconda aims to simplify deployment and

package management, package version are managed by the package management conda

(Figure 54), Anaconda distributions are suitable to Windows, Linux and even MacOS.

Figure 54 Anaconda Navigator

53

 CHAPTER 3 EXPERIMENTATION AND RESULTS

3.1.2 Jupyter Notebook [51]

Jupyter notebook is an open source software and a service for interactive computing

across nearly 40 programming language providing a web-based application suitable for

capturing the whole computation process developing, executing code, documentation and

communicating the results. The jupyter notebook combine two components

A web application which is a browser-based tool for interactive authoring of documents

which combine explanatory text, mathematics, computations and their rich media output.

Notebook documents: a representation of all content visible in the web application,

including inputs and outputs of the computations, explanatory text, mathematics, images,

and rich media representations of objects.

Figure 55 Jupyter Notebook Interface

3.1.3 Python [52]

Python is an interpreted, high-level and general-purpose programming language created

by Guido van Rossum and first released in 1991, its language constructs and object-

oriented approach helps to write logical and clear code and there is no compilation step.

Many machine learning applications written in python, it’s become the most used

language in the field of machine leaning, data analysis and data processing.

https://en.wikipedia.org/wiki/Interpreted_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/Guido_van_Rossum

54

 CHAPTER 3 EXPERIMENTATION AND RESULTS

3.2 Libraries

3.2.1 Keras [53]

Keras is a deep-learning framework for Python that provides a convenient way to define

and train almost any kind of deep-learning model. Keras was initially developed for

researchers, with the aim of enabling fast experimentation. Keras allow the same code to

run on CPU and GPU, it has also a user-friendly API that make deep learning programming

easier, it has built-in support for convolutional networks (for computer vision), recurrent

networks (for sequence processing), and any combination of both. It supports arbitrary

network architectures: multi-input or multi-output models, layer sharing, model sharing,

and so on. This means Keras is appropriate for building essentially any deep-learning

model, from a generative adversarial network to a neural Turing machine.

3.2.2 Tensorflow [54]

Tensoflow was developed by google on the google brain project and it’s become free and

open source in 2015, this software library for dataflow and differentiable

programming across a range of tasks. It is a symbolic math library, and is also used for

machine learning and deep learning applications such as neural networks it is used for

both research and production at Google.

3.2.3 Scikit-image

It’s an open source library for image processing for python programming language [55],

scikit-image library contains algorithm of geometric transformation, segmentation, and

color space manipulation, analysis and filtering and more. Scikit-image was designed to

interoperate with the python numerical and scientific libraries SciPy and NumPy.

3.2.4 Pillow [56]

Python Imaging Library abbreviated as PIL called Pillow in new version in a free open-

source library for python programming language that used for opening manipulating and

saving images, Pillow allow us to applicate many geometric transformations on images

that we need in this thesis to generate more images data from the existing one.

3.2.5 Matplotlib [57]

Matplotlib was originally written by John D. Hunter, since then it has an active

development community, it’s the most used plotting library for the python programmers.

Matplotlib provides an object-oriented API for embedding plots into application using

general-purpose GUI toolkits like QT and TKinter.

3.3 Kaggle Dataset

A subsidiary of Google LLC, is an online community of data scientists and machine

learning practitioners. Kaggle allows users to find and publish data sets, explore and build

models in a web-based data-science environment, work with other data scientists and

machine learning engineers, and enter competitions to solve data science challenges.

Kaggle got its start in 2010 by offering machine learning competitions and now also offers

a public data platform, a cloud-based workbench for data science, and Artificial

Intelligence education.

https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Dataflow_programming
https://en.wikipedia.org/wiki/Differentiable_programming
https://en.wikipedia.org/wiki/Differentiable_programming
https://en.wikipedia.org/wiki/John_D._Hunter
https://en.wikipedia.org/wiki/Google_LLC
https://en.wikipedia.org/wiki/Data_science
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning

55

 CHAPTER 3 EXPERIMENTATION AND RESULTS

The chosen dataset for our study is one of the most available and used dataset for both

beginners and even expert machine learning developers, we are clearly talk about dog and

cat classification, I chose this dataset because it contains only 2 classes and it so easy to

observe and evaluate those 2 class. Kaggle dataset provide us a complete dataset of 25000

labeled images divided on 2 class that mean 12500 image of dogs and 12500 images of

cats for the test data it contains 12500 no labeled images [58]

Figure 56 Sample of Cats and Dogs from Kaggle Dataset

Now we have 2 folders the first one contains cats’ images and the other one contains dogs’

images, as pretreatment is to add all this images to a NumPy Array of size 25000 element

of size (100, 100, 3), 80% of this dataset will be used in training set and 20% used for the

validation set.

After fitting the complete dataset, we extracted 8% of dataset that means 2000 images

and for the validation set we used 600 images.

Third we augment this 8% of data to become 16000 images that mean we applied 8

random augmentation for each image, then we did the same using supervised data

augmentation, supervised means that we define the operation used for the data

augmentation, the operation applied was mirror then 2 rotation (+20, -20) for both

images the original and the flipped one and 2 horizontal shifting

Figure 57 Data Augmentation Applied for Each Image

56

 CHAPTER 3 EXPERIMENTATION AND RESULTS

Figure 58 The Process of Dataset Augmentation

3.4 implementation

For the implementation, ResNet-20 model was used on our different amount of data,

Tensorflow and keras was used as a base for this project. We used the

ImageDataGenerator class from keras library in order to apply the random geometric

transformations on the Kaggle dataset to generate more data (augment our training

dataset from 2000 image to 16000 image), then we did the same thing to the same dataset

of 2000 this time instead of Keras we used Pillow library to apply a supervised data

augmentation (we control the type of augmentation this time instead of applying a

random operations) to generate the same number of samples 16000 divided on two class,

keras library was also used to load ana save training models the record of the history of

the training to be able to draw chart line or confusion matrix using matplotlib library to

compare result and the performance of each model and make prediction.

3.5 Experimentation

After we prepared four different dataset, the first one is the complete Kaggle dataset, the

second one which contain 8% from the first dataset that means 2000 training samples,

the third dataset is the second one augmented randomly from 2000 to 16000 training

samples, and finally the fourth dataset generated by applying a supervised data

augmentation to the second dataset it contain the same number of samples as the previous

one.

We have trained the models into different architecture ResNet-20 and AlexNet, we set the

number of epochs to 50 because of the limited computation resources. The low number

of epochs won’t impact the results we got since the purpose of this study is only to

understand the impact of the data size on the performance of the CNN not to maximize

the performance of the models used.

The models were trained using GPU NVIDIA GeForce 920MX with 4GB RAM with Keras

backend. ResNet-20 took around 10 hours when using the complete dataset, and 6 to 8

hours when using supervised and random data augmentation

DATASET

RANDOM DATA AUGMENTAION SUPERVISED DATA AUGMENTAION

SAVE DATASET

57

 CHAPTER 3 EXPERIMENTATION AND RESULTS

The AlexNet model was faster than the ResNet-20 it takes around 6 to 7 hours to train the

model using the complete Kaggle dataset and around 4 hours to train the augmented

dataset.

We store the weights of the CNN model for every epoch while training and record the

accuracy and loss for each epoch to be able to evaluate and compare the results obtained.

Discussion of the Results

From the experiment that we have conducted the results shown in table 5 was obtained,

we observed that there are some changes in the model accuracy the best accuracy was

obtained in the smallest dataset with 99.95% using ResNet-20 and 100% using AlexNet,

otherwise the validation accuracy does not exceed 75.00% using ResNet-20 and reach

82.6% using AlexNet with the complete dataset , it’s so clear that using the 8% of the

dataset produce an overfitting because of the lack of training data.

Table 5 Comparison of Results for Different Dataset

The training accuracy can reach the highest value on training that refer to the model itself

the model will overfit the data some point when using a limited amount of data as we can

see in the second dataset, on the other hand the validation accuracy is higher when we

use a large amount of data, Data Augmentation may raise the validation accuracy as we

can in the previous table it raise the validation accuracy from 64.83% to 73.17% using

ResNet-20, and from 72% to 75% using AlexNet, even small percentage may make

difference.

The model performance of the model can be further understood by looking at the per class

recognition accuracy of the CNN table 6 shows the results obtained by testing our models

on 1000 images divided on two class

Data set

Complete

dataset

8% of the

dataset

Random data

augmentation

Supervised

data

augmentation

ResNet-20

Accuracy 96.62% 99.95% 96.53% 97.32%

Validation

accuracy

75.00% 64.83% 70.67% 73.17%

AlexNet

Accuracy 98.11% 100% 97.72% 98.84%

Validation

accuracy

82.60% 72% 75% 74.83%

58

 CHAPTER 3 EXPERIMENTATION AND RESULTS

Table 6 Per Class Accuracy of ResNet-20 and AlexNet

The highest accuracy changed from a dataset to another, the class cat in ResNet-20 highest

accuracy 78% was obtained using the Supervised Data Augmentation, the class dog

highest accuracy reaches 74.6% using the complete dataset. Meanwhile using AlexNet

gives different results 90.20% for cat class using the complete dataset as a highest

accuracy and 88% as the highest accuracy for the second class obtained when using the

Random Data Augmentation.

The table 7 and Table 8 shows the graph obtained using ResNet-20 and AlexNet

respectively we can clearly see that the model has the same behaviors all the training loss

is going down while the test loss still going up and that’s an indicator of overfitting.

Data set

Complete

dataset

8% of the

dataset

Random data

augmentation

Supervised

data

augmentation

ResNet-20

Cat 73.00% 67.80% 65.20% 78.00%

Dog 74.60% 62.20% 74.00% 63.60%

AlexNet

Cat 90.20% 75.40% 62.80% 82.80%

Dog 77.00% 76.00% 88.00% 72.40%

59

 CHAPTER 3 EXPERIMENTATION AND RESULTS

 accuracy Loss Validation accuracy Validation Loss
C

o
m

p
le

te
 d

a
ta

se
t

8
%

 o
f

th
e

d
a
ta

se
t

R
a
n

d
o
m

 D
A

S
u

p
er

v
is

ed
 D

A

T
a

b
le

 7
 R

es
N

et
-2

0
 R

es
u

lt
s

60

 CHAPTER 3 EXPERIMENTATION AND RESULTS

 accuracy Loss Validation accuracy Validation Loss

C
o
m

p
le

te
 d

a
ta

se
t

8
%

 o
f

th
e

d
a
ta

se
t

R
a

n
d

o
m

 D
A

S
u

p
er

v
is

e
d

 D
A

T
a

b
le

 8
 A

le
xN

et
 R

es
u

lt
s

0

61

 CHAPTER 3 EXPERIMENTATION AND RESULTS

Comparing the Results Using ResNet-20

Looking at the plot obtained using ResNet-20 on different dataset, we can see that the

model training loss have the same behavior (Figure 59), the model trained on the

complete dataset and the augmented one are less overfit (Figure 60) (Figure 61)

comparing to the plot when we use only 8% of the dataset, random data augmentation

and supervised data augmentation shows a good concurrence, the supervised data

augmentation almost reach the same value as the curve when using the complete dataset.

Figure 59 ResNet-20 Training Loss

Figure 60 ResNet-20 Validation Accuracy

62

 CHAPTER 3 EXPERIMENTATION AND RESULTS

Figure 61 ResNet-20 Validation Loss

Comparing the Results Using AlexNet

The model trained on the complete dataset is less overfit then the other models followed

by the other models using Keras random data augmentation and the supervised data

augmentation, the model trained on the 8% of Kaggle dataset show the highest overfit as

we can see in Figure 63 and Figure 64 meanwhile the training loss reach the minimum

value cause the model overfit the data.

Figure 62 AlexNet Training Loss

63

 CHAPTER 3 EXPERIMENTATION AND RESULTS

Figure 63 AlexNet Validation Accuracy

Figure 64 AlexNet Validation Loss

64

 CONCLUSION

CONCLUSION

Using the complete dataset and a part of it has shown a major change in accuracy. the

complete dataset overrides the partial one with 11.83% using ResNet-20 and with 10.8%

using AlexNet. The large difference of the amount of data leads to a big accuracy gap

between the 2 datasets, meanwhile data augmentation based on image manipulation

shows that it is a good way to deal with the lack of data problem, using Random data

augmentation on the partial dataset increase the validation accuracy by 5.84% using

ResNet-20 and 3% using AlexNet. Supervised data augmentation is also showing a great

improvement by increasing the validation accuracy by 8.34% using ResNet-20 and 2.83%

using AlexNet. The results prove that There is a positive relation between the amount of

data and the accuracy of the model “More training data means more accuracy”.

Data augmentation showed that it’s a good alternative to handle with the lack of data and

overfitting problems in deep learning. Even small percentage in accuracy may make the
difference.

Using data augmentation with a supervised way may increase the model’s accuracy more

than using a random operation, that open the door to another research including what are
the transformation that may increase the accuracy more … etc.

So, we may see in the future models that training on small dataset and reach the maximum

accuracy using different data augmentation techniques.

 BIBLIOGRAPHY

Bibliography

[1] A. Fawzi, H. Samulowitz, D. Turaga, and P. Frossard, “Adaptive data augmentation for

image classification,” in 2016 IEEE International Conference on Image Processing (ICIP),

Phoenix, AZ, USA, Sep. 2016, pp. 3688–3692, doi: 10.1109/ICIP.2016.7533048.

[2] J. Arun Pandian, G. Geetharamani, and B. Annette, “Data Augmentation on Plant Leaf

Disease Image Dataset Using Image Manipulation and Deep Learning Techniques,” in 2019

IEEE 9th International Conference on Advanced Computing (IACC), Tiruchirappalli, India,

Dec. 2019, pp. 199–204, doi: 10.1109/IACC48062.2019.8971580.

[3] F. Chollet, “Deep learning with Python”. Shelter Island, NY: Manning Publications Co,2018.

[4] H. Chen, “Machine Learning for Information Retrieval: Neural Networks, Symbolic

Learning, and Genetic Algorithms” University of Arizona, Management Information

Department.

[5] "Memo" Functions and Machine Learning by DONALD MICHIE Experimental Programming

Unit, Department of Machine Intelligence and Percep–tion, University of Edinburgh

(Reprinted from Nature, Vol. 218, No. 5136, pp. 19-22, April 6, 1968).

[6] M. Arif Wani, F. Ahmed Baht, S. Afzal, A. Iqbal Khan “Advances in Deep Learning” ISSN

2197-6503, Studies in Big Data 2020.

[7] Z. Li, B. Ko, H. Choi “Pseudo-Labeling Using Gaussian Process for Semi-supervised Deep

Learning”, “[IEEE 2010 IEEE 10th International Conference on Data Mining (ICDM) -

Sydney, Australia” 2010 page 767-772.

[8] Robotics and Automation Laboratory (RAL), UNIVERSITY OF TORONTO Department of

Mechanical and Industrial Engineering https://ral.mie.utoronto.ca/research/ai-

domains-of-interest-for-intelligent-robotics/.

[9] I.Goodfellow, Y.Brngio and A.Courville the MIT Press, Cambridge,England 2006

Massachusette Institute of Technology.

[10] R. Seigneuric and I. Bichindaritz “Decoding artificial intelligence and machine learning

concepts for cancer research application” “Decoding artificial intelligence and machine

learning concepts for cancer research application”.

[11] Y. Bo-Suk, H. Tian, Y. Zhong-Jun “Fault Diagnosis System of Induction Motors Using Feature

Extraction, Feature Selection and Classification Algorithm” page 734.

[12] Geoffrey E. Hinton (auth.), J. W. de Bakker, A. J. Nijman, P. C. Treleaven “PARLE Parallel

Architectures and Languages Europe”: Volume I: “Parallel Architectures Eindhoven”, The

Netherlands, June 15–19, 1987.

[13] N. Buduma, ntals of deep learning: designing next-generation machine intelligence

algorithms. Sebastopol, CA: O’Reilly Media, 2017.

[14] F. Bre, Juan M. Gimeneza, Victor D. Fachinotti “Prediction of wind pressure coefficients on

building surfaces using Artificial Neural Networks”

[15] S. Pattanayak “Pro Deep Learning with TensorFlow” ’A Mathematical Approach to

Advanced Artificial Intelligence in Python’ 2017.

https://ral.mie.utoronto.ca/research/ai-domains-of-interest-for-intelligent-robotics/
https://ral.mie.utoronto.ca/research/ai-domains-of-interest-for-intelligent-robotics/
http://library.lol/main/9ECC68848821CE186DB24A053E42390E
http://library.lol/main/9ECC68848821CE186DB24A053E42390E
http://library.lol/main/9ECC68848821CE186DB24A053E42390E

 BIBLIOGRAPHY

[16] V. Singh Bawa, V. Kumar “Linearized sigmoidal activation: A novel activation function with

tractable non-linear characteristics to boost representation capability” Expert System

with Applications (ESWA) 2018 journal homepage: www.elsevier.com/locate/eswa.

[17] W. Ballard “Hands-On Deep Learning for Images with TensorFlow” July 2018.

[18] J. Patterson, A. Gibson “Deep Learning A Practitioner Approach”, O’Reilly 2017.

[19] Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. “Learning representations

by backpropagating errors.” Cognitive Modeling 5.3 (1988).

[20] Handwritten Digit Recognition with a Back-Propagation Network, Y LeCun, and others,

1989, published at Neural Information Processing Systems (NIPS) conference.

[21] S. Raschka, V. Marjalili, “Python Machine Learning with python, scikit-learn, and

TensorFlow”,2nd edition, UK 2017.

[22] I. Gogul, V.S ethiesh Kumar, (2017)’Flower Species Recognition System using

Convolutional Neural Network and Transfer Learning’, 4TH International Conference on

Signal Processing, Communication and Networking (ICSCN-2017), March 16-18, Chennai,

INDIA.

[23] M. A. Wani, “Advances in deep learning”. Singapore: Springer, 2020

[24] Michael Nielsen “Neural Networks and Deep Learning” The original online book can be

found at http://neuralnetworksanddeeplearning.com.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition”, arXiv

e-prints, p. arXiv:1512.03385, 2015.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep

convolutional neural networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90, May 2017, doi:

10.1145/3065386.

[27] Shi, S. Zhou, X. Liu, Q. Zhang, M. Lu, and T. Wang, “Stacked deep polynomial network-based

representation learning for tumor classification with small ultrasound image dataset,”

Neurocomputing, vol. 194, pp. 87–94, 2016.

[28] M. Farid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger and H. Greenspan, Member,

IEEE “GAN-Based Synthetic Medical Image Augmentation for increased CNN Performance

in Liver Lesion Classification” arXiv: 1803.01229v1 [cs.CV] 3 Mars 2018.

[29] A. Mikolajczyk and M. Grochowski, “Data augmentation for improving deep learning in

image classification problem,” in 2018 International Interdisciplinary PhD Workshop

(IIPhDW), Swinoujście, May 2018, pp. 117–122, doi: 10.1109/IIPHDW.2018.8388338.

[30] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting Unreasonable Effectiveness of

Data in Deep Learning Era,” in 2017 IEEE International Conference on Computer Vision

(ICCV), Venice, Oct. 2017, pp. 843–852, doi: 10.1109/ICCV.2017.97.

[31] M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional Networks,” in

Proc. of European Conference on Computer Vision (ECCV2014), 2014, pp. 818–833.

http://www.elsevier.com/locate/eswa

 BIBLIOGRAPHY

[32] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,” Technical

report, University of Toronto, pp. 1–60, 2009.

[33] D. Giardino, M. Matta, F. Silvestri, S. Spanò, and V. Trobiani, “FPGA Implementation of

Hand-written Number Recognition Based on CNN,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 9,

no. 1, p. 167, Feb. 2019, doi: 10.18517/ijaseit.9.1.6948.

[34] P. Pawara, E. Okafor, L. Schomaker, and M. Wiering, “Data Augmentation for Plant

Classification,” in Advanced Concepts for Intelligent Vision Systems, vol. 10617, J. Blanc-

Talon, R. Penne, W. Philips, D. Popescu, and P. Scheunders, Eds. Cham: Springer

International Publishing, 2017, pp. 615–626.

[35] R. Takahashi, T. Matsubara, and K. Uehara, “RICAP: Random Image Cropping and Patching

Data Augmentation for Deep CNNs,” p. 13.

[36] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random Erasing Data Augmentation,”

ArXiv170804896 Cs, Nov. 2017, Accessed: Sep. 21, 2020. [Online]. Available:

http://arxiv.org/abs/1708.04896.

[37] H. M Amine "Deep Learning for Image Classification in Different Color Space", Master

Thesis University Ibn Khaldoun Computer Science Department July 2019.

[38] W. Burger and M. J. Burge, Principles of Digital Image Processing: Advanced Methods.

London: Springer London, 2013.

[39] M. A. Garduno-Ramon, J. I. Sanchez-Gomez, L. A. Morales Hernandez, J. P. Benitez-Rangel,

R. A. Osornio-Rios “Methodology for automatic detection of trees and shrubs in aerial

pictures from UAS “17 August 2016 p. 6.

[40] S. Ioniță and D. Ţurcanu-Caruțiu, “Intelligent Image Processing and Optical Means for

Archeological Artifacts Examination,” in Advanced Methods and New Materials for Cultural

Heritage Preservation, D. Turcanu-Carutiu and R.-M. Ion, Eds. IntechOpen, 2019.

[41] R. Pan, W. Gao, and J. Liu, “Skew Rectification for Yarn-dyed Fabric via FFT in HSL Color

Space,” in 2009 WRI World Congress on Software Engineering, Xiamen, China, 2009, pp.

481–485, doi: 10.1109/WCSE.2009.149.

[42] L. Ming, Y. Jie, S. Zhong-yi “Support vector regression based color image restoration in YUV

color space“, “Journal of Shanghai Jiao tong University (Science)”, Chinese Electronic

Periodical Services, 2010 page 31—35.

[43] M. S. Devi and A. Mandowara, “Extended performance comparison of pixel window size for

colorization of grayscale images using YUV color space,” in 2012 Nirma University

International Conference on Engineering (NUiCONE), Ahmedabad, Gujarat, India, Dec. 2012,

pp. 1–5, doi: 10.1109/NUICONE.2012.6493197.

[44] X. Xiang, Y. Peng, X. Xiang, and L. Zhang, “A method of optical flow computation based on

LUV color space,” in 2009 International Conference on Test and Measurement, Hong Kong,

Hong Kong, Dec. 2009, pp. 378–381, doi: 10.1109/ICTM.2009.5413027.

[45] Ian J. Goodfellow, J. Pouget-Abadiey, M. Mirza, B. Xu, D. Warde-Farley, S. Ozairz, A. Courville,

Y. Bengio “Generative Adversarial Nets” 2014

[46] F. Henrique, C. Aranha “Data Augmentation Using GANs” Proceedings of Machine Learning

Research XXX:1-16, 2019

http://arxiv.org/abs/1708.04896
https://libgen.is/scimag/journals/15244

 BIBLIOGRAPHY

[47] T. Karras, S. Laine, and T. Aila, “A Style-Based Generator Architecture for Generative

Adversarial Networks,” IEEE Xplore p. 10.

[48] L. A. Gatys, A. S. Ecker, and M. Bethge, “A Neural Algorithm of Artistic Style,”

ArXiv150806576 Cs Q-Bio, Sep. 2015, Accessed: Sep. 22, 2020. [Online]. Available:

http://arxiv.org/abs/1508.06576.

[49] J. Lemley, S. Bazrafkan, and P. Corcoran, “Smart Augmentation - Learning an Optimal Data

Augmentation Strategy,” IEEE Access, vol. 5, pp. 5858–5869, 2017, doi:

10.1109/ACCESS.2017.2696121.

[50] https://docs.anaconda.com/ "Anaconda Documentation". Retrieved 14 September 2020.

[51] https://jupyter-notebook.readthedocs.io/en/stable/notebook.html “Jupyter Notebook

Documentation”. Retrieved 14 September 2020.

[52] https://www.python.org/doc/essays/blurb/ “What is Python? Executive Summary”.

Retrieved 14 September 2020

[53] https://keras.io/ Keras. Retrieved 14 September 2020.

[54] https://www.tensorflow.org/ Tensorflow. Retrieved 15 September 2020.

[55] S. van der Walt, JL Schönberger, J Nunez-Iglesias, F. Boulogne; J.D. Warner, N. Yager, E.

Gouillart, T. Yu, the scikit-image contributors (2014). "scikit-image: image processing in

Python” arXiv:1407.6245.

[56] https://pillow.readthedocs.io/en/stable/# Pillow. Retrieved 15 September 2020.

[57] S. Tosi, Matplotlib for python developers: build remarkable publication quality plots the

easy way. Birmingham: Packt Publ, 2009.

[58] dataset used link: https://www.kaggle.com/c/dogs-vs-cats/data Retrieved 18

September 202.

http://arxiv.org/abs/1508.06576
https://docs.anaconda.com/
https://docs.anaconda.com/
https://jupyter-notebook.readthedocs.io/en/stable/notebook.html
https://www.python.org/doc/essays/blurb/
https://keras.io/
https://www.tensorflow.org/
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1407.6245
https://pillow.readthedocs.io/en/stable/
https://www.kaggle.com/c/dogs-vs-cats/data

