

PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA

MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

 IBN KHALDOUN UNIVERSITY – TIARET

MATHEMATICS AND COMPUTER FACULTY

COMPUTER SCIENCE DEPARTMENT

Theme

For obtaining Master’s degree

Specialty: Software Engineering

 By: LENOUAR Miloud

The jury is composed of:

Mr. TALBI Omar MCB Tiaret University President

Mr. MEGHAZI Hadj MAA Tiaret University Examiner

Mrs. BENATHMANE Lalia MAA Tiaret University Supervisor

The Sparse Matrix and Collaborative

filtering system

Academic year 2019/2020

Acknowledgment

First of all, I would like to thank the good Lord the

Almighty for giving me the courage and the will to carry out this
project.

I want to thank my dear parents who have supported and

encouraged me throughout my life and during my studies.

It is with great pleasure that I keep these few lines as a sign

of gratitude and deep gratitude to all those who, near or far,
have contributed to the completion and crowning of this work.

I would like to thank Madame BENOTMANE Lalia for her

support, her seriousness, her kindness and above all for having
encouraged her to develop this work.

I sincerely thank Mr. OUARED for his advice and assistance

throughout these years. It really deserves my thanks and
gratitude.

I also want to express the honor bestowed on me by the

members of the jury, by agreeing to judge my work.

 I also want to thanks my friends for helping me in this

work

Dedications

To my dear parents

That no dedication can express what I owe them, for their

kindness, affection and support ... Treasures of kindness,

generosity and tenderness, in testimony of my deep love and

 my great gratitude "May God keep you".

To my sisters and my brother

As a testament to my sincere appreciation for their efforts in

 the completion of my studies. I dedicate this modest work to

 them as a testimony of my great love and my infinite gratitude.

To my friends

For their help and moral support during the development of

the work of end of study.

To all my family

To all those whose forgetting the name is hardly that of the

heart ...

« There is no such thing as an" if "or" but "you have to succeed »

LENOUAR Miloud

Table of Contents
General Introduction ... 7

CHAPTER1: Collaborative Filtering .. 8

1.1. Introduction : ... 9

1.2. General Architecture of collaborative filtering[1]: ... 9

1.3. Operation process[1]: ... 10

1.3.1. The formation of communities[1] .. 10

1.3.1.1. Definition ... 10

1.3.1.2. The issues of the formation of communities: ... 11

1.3.2. Producing recommendations .. 12

1.3.2.1. Memory-based Approach to Collaborative Filtering ... 12

1.3.2.1.1. Pearson Correlation: ... 13

1.3.2.1.2. Cosine Similarity: .. 13

1.3.2.1.3. The Jaccard index: .. 13

1.3.2.1.4. Memory-Based Advantages: .. 14

1.3.2.1.5. Memory-Based Limitations: ... 14

1.3.2.2. Model-based Approaches to Collaborative Filtering ... 14

1.3.2.2.1. Collaborative Filtering as a Classification Task: ... 14

1.3.2.2.2. Dimensionality Reduction Techniques: .. 15

1.3.2.2.3. Latent Semantic Analysis (LSA): .. 15

1.3.2.2.4. Probabilistic Latent Semantic Analysis (pLSA): ... 16

1.3.2.2.5. Model-Based Advantage .. 17

1.3.2.2.6. Model-Based Limitations .. 17

1.3.2.3. Item-based Collaborative Filtering ... 17

1.3.2.4. Some Other Approaches .. 18

1.3.2.4.1. Clustering Techniques: ... 18

1.3.2.4.2. Bayesian Networks: .. 18

1.4. Collaborative Filtering Data Characteristics .. 18

1.5. Advantages and disadvantages of collaborative filtering ... 20

1.6. Examples of collaborative filtering systems: ... 20

1.7. Conclusion ... 22

CHAPTER 2: Machine Learning and Sparse Matrix Problem ... 23

2.1. Introduction ... 24

2.2. Sparse Matrix ... 24

2.3. Proposed Solutions for solving this problem ... 25

2.3.1. K- Nearest Neighbors (KNN): ... 30

2.3.2. Matrix Factorization (MF): ... 35

2.4. Conclusion ... 37

CHAPTER 3: Implementation of Solutions ... 38

3.1. Introduction ... 39

3.2. Data Description .. 39

3.3. Metric to evaluate the Algorithms ... 40

3.4. Implementation of KNN Algorithm .. 41

3.5. Implementation of Matrix Factorization Algorithm.. 46

3.6. Conclusion ... 50

General Conclusion ... 51

Bibliography ... 52

List of Figures

Figure 1: the general architecture of a collaborative filtering system 9

Figure 2: The three main processes of collaborative filtering 10

Figure 3: The architecture of the COCoFil platform ... 21

Figure 4: Sparse Matrix preview .. 24

Figure 5: Euclidean distance ... 31

Figure 6: Manhattan distance .. 32

Figure 7: User Based and Item Based Filtering ... 35

Figure 8: the users and movies number .. 39

Figure 9: movies rated by user .. 39

Figure 10: Sparsity of our dataset .. 39

Figure 11: important libraries in python.. 41

Figure 12: Fetching and importing the dataset .. 41

Figure 13: creating simple array with dataset data .. 41

Figure 14: random number between 1 and 100000 ... 42

Figure 15: fill the testset array ... 42

Figure 16: formatting matrix ... 42

Figure 17: FindKNNitem Function ... 43

Figure 18: FindKNNuser Function ... 43

Figure 19: calculate the RMSE (User-Based KNN Approach) 44

Figure 20: User-Based KNN Results ... 44

Figure 21: calculate the RMSE (Item-Based KNN Approach) 45

Figure 22: Item-Based KNN Results .. 45

Figure 23: RMSE for Mixed User-Item Based KNN Approach 45

Figure 24: User-Item Based KNN Results ... 46

Figure 25: Importing libraries and our dataset ... 46

Figure 26: Split dataset into training and test sets ... 47

Figure 27: Matrix Factorization with ALS Model .. 47

Figure 28: Matrix Factorization with ALS Results .. 47

Figure 29: Matrix Factorization with SGD Model ... 48

Figure 30: Matrix Factorization with SGD Results ... 48

Figure 31: RMSE Results in different algorithms ... 49

List of Tables

Table 1: the RMSE Values for each models .. 49

7

General Introduction

At this time, there is a tremendous increase in information available on the Internet

level on many sites and the process of searching for information has become very

expensive, prompting many users and companies, in particular, to resort to processes

that help their customers find this information quickly. This means, recommendation

systems that have become widely used in many places, and this method is divided into

several sections, including recommendation systems that depend on user behavior

such as collaborative filtering, and some of them depend on the type of elements that

were searched such as content-based filtering.

In the first type of these systems, we face many problems, among them the cold start

problem which is when we receive a new user or a new item, and the data dispersion

problem, which is the presence of a small number of data for the user - the element

array.

The problem here is how we can fill these blanks states with correct values, so there

are many solutions available such as KNN, SVM, BN, MF, but we chose two

algorithms: K-Nearest Neighborhood (KNN) and Matrix Factorization (MF) and we

implemented on a dataset and we compare between it.

Our work in this research has been divided as follows:

In the first chapter, we discuss the collaborative filtering system and the most important

problems in it, then in the second chapter we chose one of these problems which is the

subject of our research in this thesis and we defined it and presented the proposed

solutions to solve this problem, and in the last chapter with the help of the machine

learning, we have implemented the two algorithms in order to solve the mentioned

problem, these algorithms are among the most recent technologies currently used in the

recommendation system.

CHAPTER1: Collaborative

Filtering

CHAPTER1: Collaborative Filtering

9

1.1. Introduction :

In its recent sense, collaborative filtering is underlying recommendation systems. It brings

together techniques which aim to make a selection on the elements to be presented to

users (filtering) based on the behavior and expressed tastes of a large number of other

users (collaboration) (Wikipedia).

Information gathering plays a crucial role in the process, it can be:

- Explicit: The user assigns notes to the product or indicates his appreciation

(like).

 Advantages: no ambiguities about the tastes and interests of the user.

 Disadvantages: reporting bias, often exaggeration.

- Implicit: Behavior-based collection (purchases, clicks, page duration).

 Advantages: objectivity.

 Disadvantages: large volume, no indication of the appreciation

1.2. General Architecture of collaborative filtering[1]:

The general architecture of a collaborative filtering system revolves around two central

entities: the user communities, and the list of evaluations of documents by the community

that is used to issue recommendations, Figure 1 shows each user. Belonged to a

specific community, for a document D to be sent to user A in community B, D must

accumulate a certain level of approval from members of B.

Figure 1: the general architecture of a collaborative filtering system

CHAPTER1: Collaborative Filtering

10

1.3. Operation process[1]:

There are three main processes in a collaborative filtering system which are [2]:

 The formation of communities: Performed by the system each time

profiles are updated or a new user arrives (the model generation phase).

 Production of recommendations: Executed by the system when new

information arrives (reformation of communities, recommendation phase

etc.).

 Recommendation review: Performed by user, upon receipt of

a recommendation.

We can see this process in the Figure 2 bellow:

Figure 2: The three main processes of collaborative filtering

1.3.1. The formation of communities[1]

1.3.1.1. Definition
The notion of community in a collaborative filtering system is defined as the

grouping of users according to the history of their evaluations, so that the system

calculates recommendations [1].

The formation of communities is the core of a collaborative filtering system, helps

in the production of recommendations, consists in grouping the users who have

common properties, for this several approaches are used, which can be classified

into two categories according to the type of the preferences of the user.

CHAPTER1: Collaborative Filtering

11

1.3.1.2. The issues of the formation of communities:
The community formation phase is the basis of the collaborative filtering process

to influence the quality of recommendations sent to users, each time this process

is triggered due to a new user who requests to join the system or the profiles of a

user are changed, three problematic aspects are often to be addressed:

 Perception of communities for users: This situation can lead to

dissensions such as:

 A user does not agree with the recommendations sent over time by

the system.

 A user wants to choose a community himself.

 A user wants to change the community chosen by the system.

 Single-criteria formation of communities:

It is the problem of the single-criteria formation of communities by the

history of evaluations in traditional collaborative filtering systems, which

limits the enrichment and diversification of recommendations for users.

 Positioning of users in communities:

The positioning of users in the communities depends fundamentally on

the quality of the values given for each user on each criterion. The lack of

value for one or more criteria leads to a difficulty in positioning users in

communities, and in choosing the right community. The two major problems

that can arise:

Cold Start Problem:

Cold start is the phenomenon that occurs early in the use of the system, in

critical situations where the system lacks data to perform good quality personalized

filtering [3], it is thus unable to recommend documents to users until they have

enough information about their preferences and areas of interest.

 Sparse Matrix:

In collaborative filtering, only the objects to recommend are described by the

ratings provided by the users. But in reality, it is impossible to force users to

rate recommendations, as we can have a user with few rated resources generally,

in which case we cannot get them if the user is in a better community or not.

CHAPTER1: Collaborative Filtering

12

Since this is the subject of our thesis. In the next section of the thesis, we will detail

this problem and address the solutions that exist to solve this problem.

1.3.2. Producing recommendations

We can define this process as a Boolean function with two parameters, document,

and user. a "d" document will be recommended to the user "u" who is integrated

into the "G" community if this document is appreciated by the "G" community, users

closest to "u" gave a favorable value judgment. This process is generally triggered

for two reasons: upon arrival of a "new item" document or a new user is integrated

into a "new user" community.

For the production of recommendations to an active user "u", the system predicts

the interest of each document evaluated by the community members of "u", when

it exceeds a certain threshold, the system recommends the document to the active

user. Prediction computational techniques can be classified into three broad

categories: “Memory-based algorithms”, “Model-based algorithms”.

1.3.2.1. Memory-based Approach to Collaborative
Filtering

A straightforward algorithmic approach to collaborative filtering involves finding k

nearest neighbors (i.e. the most similar users) of the active user and averaging their

ratings of the item in question. Even more, we can calculate the weighted average of

the ratings – weights being similarity, correlation or distance factors (later on in the

text, the term “similarity” is used to denote any of the three measures) between a

neighbor user and the active user like J. S. Breese, D. Heckerman, and C. Kadie do

[4] . We can look at a user as being a feature vector. In this aspect, items that are being

rated are features and ratings given by the user to these items are feature values. The

following formula can be applied to predict user u’s rating of item i:

𝑝𝑢,𝑖 = 𝑣𝑢

−
+ 𝜅 ∑  𝑗∈𝑈sers 𝑤(𝑢, 𝑗)(𝑣𝑗,𝑖 − 𝑣𝑗

−
) (1)

Equation 1 was introduced by P. Resnick, N. Iaocvou, M. Suchak, P. Bergstrom, and

J. Riedl [5]. where w(u1, u2) is the weight which is higher for more similar, less distant

or more correlated users (feature vectors), 𝑣𝑢

−
 is the mean rating given by user 𝑢, and

𝑣𝑗

−
 is the mean rating given by user 𝑗 𝑣𝑗,𝑖 is the rating of item 𝑖 given by user 𝑗, and

CHAPTER1: Collaborative Filtering

13

𝜅 is merely a normalization factor that depends on our choice of weighting.If no ratings

of item 𝑖 are available, the prediction is equal to the average rating given by user 𝑢.

This is an evident improvement to the equation that simply calculates the weighted

average.

Weight Computation: The weights can be defined in many different ways. Some

of the possibilities are summarized in the following paragraphs.

1.3.2.1.1. Pearson Correlation:

The weights can be defined in terms of the Pearson correlation coefficient [5].

Pearson correlation is primarily used in statistics to evaluate the degree of linear

relationship between two random variables. It ranges from −1 (a perfect negative

relationship) to +1 (a perfect positive relationship), with 0 stating that there is no

relationship whatsoever. The formula is as follows:

𝑤(𝑢1, 𝑢2) =
∑  𝑗∈Items (𝑣𝑢1,𝑗−𝑣𝑢1

−
)(𝑣𝑢2,𝑗−𝑣𝑢2

−
)

√∑  𝑗∈Items (𝑣𝑢1,𝑗−𝑣𝑢1

−
)

2
∑  𝑗∈Items (𝑣𝑢2,𝑗−𝑣𝑢2

−
)

2
 (2)

where 𝑣𝑢𝑥

−
 is the average rating of user X over all the items she rated, and 𝑗 ∈

Items is the set of items rated by both 𝑢1 and 𝑢2.

1.3.2.1.2. Cosine Similarity:

The similarity measure can be defined as the cosine of the angle between two

feature vectors [6]. This technique is primarily used in information retrieval for

calculating similarity between two documents, where documents are usually

represented as vectors of word frequencies. In this context, the weights can be

defined as:

𝑤(𝑢1, 𝑢2) = ∑  𝑖∈Items

𝑣𝑢1,𝑖 𝑣𝑢2,𝑖

√∑  𝑘∈𝐼1 𝑣𝑢1,𝑘
2 √∑  𝑘∈𝐼2 𝑣𝑢2,𝑘

2
 (3)

1.3.2.1.3. The Jaccard index:

The Jaccard index, in turn, is defined as the size of the intersection divided by the

size of the union of two profiles, regardless of the rating associated to items,

making this metric computationally efficient [6].

CHAPTER1: Collaborative Filtering

14

Jaccard (𝐴, 𝑁) =
|𝑟𝑢1

∩𝑟𝑢2
|

|𝑟𝑢1
∪𝑟𝑢2

|
 (4)

1.3.2.1.4. Memory-Based Advantages:

 Easy implementation

 New data can be added easily and incrementally

 Need not consider the content of items being recommended

 Scales well with correlated items

1.3.2.1.5. Memory-Based Limitations:

 Are dependent on human ratings

 Cold start problem for new user and new item

 Sparsity problem of rating matrix

 Limited scalability for large datasets

1.3.2.2. Model-based Approaches to Collaborative
Filtering

In contrast to a memory-based method, a model-based method first builds a model

out of the user-item matrix. The model enables faster and more accurate

recommendations. In the following paragraphs we present two different

approaches to model-based collaborative filtering. In the first one, we perceive

collaborative filtering as a classification task. We employ a supervised learning

algorithm (we'll explain it in detail in Chapter 3) to build a model. In the second

one, we are concerned with reducing the dimensionality of the initial user-item

matrix and thus build a model that is a lower-dimensional representation of the

initial user-item database.

1.3.2.2.1. Collaborative Filtering as a Classification Task:

The collaborative filtering task can also be interpreted as a classification task,

classes being different rating values [6]. Virtually any supervised learning

algorithm can be applied to perform classification (i.e. prediction). For each user

we train a separate

classifier. A training set consists of feature vectors representing items the user

already rated, labels being ratings from the user. Clearly the problem occurs if our

training algorithm cannot handle the missing values in the sparse feature vectors. It

is suggested by [3] to represent each user by several instances (optimally, one

CHAPTER1: Collaborative Filtering

15

instance for each possible rating value). On a 1–5 rating scale, user A would be

represented with 5 instances, namely A-rates-1, A-rates-2... A-rates-5. The

instance A-rates-3, for example, would hold ones (“1”) for each item that user A

rated 3 and zeros (“0”) for all other items. This way, we fill in the missing values.

We can now use such binary feature vectors for training. To predict a rating, we

need to classify the item into one of the classes representing rating values. If we

wanted to predict ratings on a continuous scale, we would have to use a regression

approach instead of classification.

1.3.2.2.2. Dimensionality Reduction Techniques:

We are initially dealing with a huge user-item matrix. Since there can be millions

of users and millions of items, the need to reduce the dimensionality of the matrix

emerges. The reduction can be carried out by selecting only relevant users

(instance selection) and/or by selecting only relevant items (feature selection).

Other forms of dimensionality reduction can also be employed. It is shown by

some researchers that feature selection, instance selection and other

dimensionality reduction techniques not only counter the scalability problem but

also result in more accurate recommendations [6, 7, 8]. Furthermore, the sparsity

of the data is consequentially decreased.

When reducing the dimensionality, the first possibility that comes to mind is

removing the users that did not rate enough items to participate in collaborative

filtering. From the remaining users, we can randomly choose n users to limit our

search for the neighborhood of the active user. This method is usually referred to

as random sampling. Also, rarely rated items can be removed for better

performance. Still, these relatively simple approaches are usually not sufficient for

achieving high scalability and maintaining the recommendation accuracy

1.3.2.2.3. Latent Semantic Analysis (LSA):

A more sophisticated dimensionality reduction approach is called Latent Semantic

Analysis (LSA) [8]. It is based on Singular Value Decomposition (SVD) of the user-item

matrix. By using linear algebra, we can decompose a matrix into a triplet, namely 𝑴 =

𝑼𝚺𝑽𝑇 the diagonal matrix 𝚺 holds the singular values of 𝑴 If we set all but K largest

singular values to zero and thus obtain 𝚺′, we can approximate 𝑴 as 𝑴′ = 𝑼𝚺′𝑽𝑇 By

doing so, we transform our initial high-dimensional matrix into a K-dimensional (low

dimensional) space. The neighborhood of the active user can now be determined by

CHAPTER1: Collaborative Filtering

16

transforming the user vector into the low-dimensional space of the approximated matrix

and finding k nearest points representing other users. Searching through a low-

dimensional space clearly demands less time. Furthermore, dimensionality reduction

reduces sparsity and captures transitive relationships among users. This results in

higher accuracy.

1.3.2.2.4. Probabilistic Latent Semantic Analysis (pLSA):

On the basis of LSA, Probabilistic Latent Semantic Analysis (pLSA) was developed by

T. Hofmann [11]. pLSA has its roots in information retrieval but can also be employed

for collaborative filtering [12]. In a statistical model, an event like “person u ‘clicked on’

item i” is presented as an observation pair (u, i) (note that in such case we are dealing

with implicit ratings). User u and item i “occur” paired with a certain probability: P(u, i).

We are in fact interested in the conditional probability of item i occurring given user u:

P (i|u). This conditional form is more suitable for collaborative filtering since we are

interested in the active user’s interests.

The main idea of an aspect model (such as pLSA) is to introduce a latent variable z,

with a state for every possible occurrence of (u, i). User and item are rendered

independent, conditioned on z: 𝑃(𝑢 ∣ 𝑖) = 𝑃(𝑧) 𝑃(𝑢 ∣ 𝑧) 𝑃(𝑖 ∣ 𝑧). 𝑃(𝑖 ∣

𝑢) Can be written in the following form:

𝑃(𝑖 ∣ 𝑢) = ∑  𝑧 𝑃(𝑖 ∣ 𝑧)𝑃(𝑧 ∣ 𝑢) (4)

In (4), the probabilities 𝑃(𝑖 ∣ 𝑧) and 𝑃(𝑧 ∣ 𝑢) can be determined by the

Expectation Minimization (EM) algorithm using various mixture models. To support

explicit ratings, we extend pLSA by incorporating ratings to our observation pairs and

thus observing triplets of the form(𝑢, 𝑖, 𝑟), where r represents a rating value.

Note that we limit the number of different states of z so that it is much smaller than the

number of (u, i) pairs. Let us denote the number of users with Nu, the number of items

with Ni, and the number of different states of z with 𝑁𝑧, where 𝑁𝑧 << 𝑁𝑢, 𝑁𝑖 . We can

describe the probabilities P(𝑖|𝑢) with 𝑆1 = 𝑁𝑖 × 𝑁𝑢 independent parameters. On

the other hand, we can summarize the probabilities P(𝑖|𝑧) and P(𝑧|𝑢) with [11]:

CHAPTER1: Collaborative Filtering

17

𝑆2 = 𝑁𝑖 × 𝑁𝑧 + 𝑁𝑢 × 𝑁𝑧.

The dimensionality reduction is evident from the fact that 𝑆2 < 𝑆1 (if Nz is small

enough). Such latent class models tend to combine items into groups of similar items,

and users into groups of similar users. In contrast to clustering techniques (see Sect.

1.2.4.2), pLSA allows partial memberships in clusters (clusters being different states

of z).

The relation of this method to LSA and SVD can be explained by representing

the probabilities 𝑃(𝑖 ∣ 𝑢) in the form of a matrix 𝑴𝒑 which can be

decomposed into three matrices, namely 𝑴𝒑 = 𝑼𝒑𝚺𝒑𝑽𝒑
𝑇

 Described in the

section (1.2.2.3).

1.3.2.2.5. Model-Based Advantage

 Better addresses the sparsity and scalability problem

 Improve prediction performance

1.3.2.2.6. Model-Based Limitations

 Expensive model building

 Trade-off between the prediction performance and scalability

 Loss of information in dimensionality reduction technique (SVD)

1.3.2.3. Item-based Collaborative Filtering
All collaborative filtering approaches that we have discussed so far, are user-

centric in the way that they concentrate on determining the user’s neighborhood.

Some researchers also considered item-based collaborative filtering such as B.

Sarwar, G. Karypis, J. Konstan, and J. Reidl [12]. The main idea is to compute

item-item similarities (according to the users’ ratings) offline and make use of them

in the online phase.

To predict user u’s rating of item i, the online algorithm computes a weighted sum

of the user u’s ratings over k items that are most similar to item i. The main

question in this approach is how to evaluate item-item similarities to compute a

weighted sum of the ratings. Item-item similarities can be computed by using the

techniques for computing user-user similarities, described in Sect. 1.3.1.2 the

winning technique, according to [12], is the so called adjusted cosine similarity

CHAPTER1: Collaborative Filtering

18

measure. This is a variant of cosine similarity which incorporates the fact that

different users may have different rating scales. The similarity measures are then

used as weights for calculating a weighted sum of k nearest items.

1.3.2.4. Some Other Approaches
Let us briefly summarize some other techniques. Interested reader should consider

the appropriate additional reading.

1.3.2.4.1. Clustering Techniques:

Bayesian and non-Bayesian clustering techniques can be used to build clusters (or

neighborhoods) of similar users [4, 6, 12]. The active user is a member of a certain

cluster. To predict his/her rating of item i, we compute the average rating for item i

within the cluster that the user belongs to. Some such methods allow partial

membership of the user in more than one cluster. In such case, the predicted rating

is summed over several clusters, weighted by the user’s participation degree.

Clustering techniques can also be used as instance selection techniques

(instances being users) that are used to reduce the candidate set for the k-Nearest

Neighbors algorithm.

1.3.2.4.2. Bayesian Networks:

Bayesian networks with a decision tree at each node have also been applied to

collaborative filtering [13]. Nodes correspond to items, and states of each node

correspond to possible rating values. Conditional probabilities at each node are

represented as decision trees in which nodes again are items, edges represent

preferences, and leaves represent the possible states (i.e. rating values). Bayesian

networks are built offline over several hours or even days. This approach is not

suitable in systems that need to update rapidly and frequently.

1.4. Collaborative Filtering Data Characteristics

As already mentioned, the data in the user-item interaction database can be

collected either explicitly (explicit ratings) or implicitly (implicit preferences). In the

first case, the user’s participation is required. The user is asked to explicitly submit

his/her rating for the given item. In contrast to this, implicit preferences are inferred

from the user’s actions in the context of an item (that is why the term “user-item

interaction” is used instead of the word “rating” when referring to users’ preferences

in the following sections). Data can be collected implicitly either on the client side

CHAPTER1: Collaborative Filtering

19

or on the server side. In the first case, the user is bound to use modified client-side

software that logs his/her actions. Since we do not want to enforce modified client-

side software, this possibility is usually omitted. In the second case, the logging is

done by a server. In the context of the Web, implicit preferences can be

determined from access logs that are automatically maintained by Web servers.

Collected data is first preprocessed and arranged into a user-item matrix. Rows

represent users and columns represent items. Each matrix element is in general a

set of actions that a specific user took in the context of a specific item. In most

cases a matrix element is a single number representing either an explicit rating or

a rating that was inferred from the user’s actions.

Since a user usually does not access every item in the repository, the vector (i.e.

the matrix row) representing the user is missing some/many values. To emphasize

this, we use the terms “sparse vector” and “sparse matrix”.

The fact that we are dealing with a sparse matrix can result in the most concerning

problem of collaborative filtering – the so called sparsity problem. In order to be

able to compare two sparse vectors, similarity measures require some values to

overlap. What is more, the lower the amount of overlapping values, the lower the

reliability of these measures. If we are dealing with a high level of sparsity, we are

unable to form reliable neighborhoods. Furthermore, in highly sparse data there

might be many unrated (unseen) items and many inactive users. Those

items/users, unfortunate l y, cannot participate in the collaborative filtering process

[14].

Sparsity is not the only reason for the inaccuracy of recommendations provided

by collaborative filtering. If we are dealing with implicit preferences, the ratings are

usually inferred from the user-item interactions, as already mentioned earlier in the

text.

Mapping implicit preferences into explicit ratings is a non-trivial task and can result

in false mappings. The latter is even truer for server-side collected data in the

context of the Web since Web logs contain very limited information. To determine

how much time a user was reading a document, we need to compute the difference

in time- stamps of two consecutive requests from that user. This, however, does

not tell us whether the user was actually reading the document or he/she, for

CHAPTER1: Collaborative Filtering

20

example, went out to lunch, leaving the browser opened. What is more, the user

may be accessing cached information (either from a local cache or from an

intermediate proxy server cache) and it is not possible to detect these events on

the server side [14].

1.5. Advantages and disadvantages of collaborative

filtering

Collaborative filtering methods have several advantages, the most important of

which are:

 Surprise effect (finding something other than what you were looking for).

 Domain knowledge not required.

 Possibility of indexing all kinds of items.

 Elimination of the problem of over-specialization.

 The quality of the suggestions improves over time.

However, the use of collaborative filtering techniques can lead to several problems:

 Cold start (a new user who has not noted any item cannot receive a

recommendation since the system does not know his tastes).

Sparse Matrix: when the user-item matrix contains a few items which have a

rating value (the subject of our thesis we will discuss it later).

 Parsimony (sparsity, the number of candidate items for recommendation

is often huge and users only rate a small subset of the items available).

 The gray sheep problem will not have many neighboring users, so it will be

difficult to make relevant recommendations for such users.

1.6. Examples of collaborative filtering systems:

A few years later, with the rise of the Internet and Web applications, there was a

craze for recommendation systems and especially collaborative ones that

developed in different application areas. We can cite some:

 Amazon

Amazon.com uses the “item-to-item collaborative filtering” algorithm [15]. This

system starts with the calculation of the degree of similarity between offline

articles, thus constructing a table of article similarities. This step is extremely

CHAPTER1: Collaborative Filtering

21

demanding in terms of computation time. Then, if the user is interested in a specific

product, the system recommends products similar to this one based on the item

similarity matrix.

 COCOFil

The COCoFil platform [16] (Community-Oriented Collaborative Filtering) comprises three

modules: Collaborative filtering, Configuration, and Contact management. The "contact

management" module ensures identification in the COCoFil platform, that is to say, it

allows users on the one hand to enter their personal information, and on the other hand

for the system to identify the person. the user when accessing it. Thanks to this module,

the user can also organize their address book and exchange recommendations with

other users as part of active collaborative filtering.

Figure 3: The architecture of the COCoFil platform

 GroupLens

GroupLens [17], is an experimental system from the University of Minnesota, it is

one of the most famous and strong in this field. It is similar in spirit to Tapestry:

readers are asked to rate the articles they read. The system then finds correlations

between different users and identifies groups of users with similar interests. Then,

it uses these estimates to predict the interest users will have in each article.

CHAPTER1: Collaborative Filtering

22

 Tapestry

The concept of collaborative filtering was started with the Tapestry project at Xerox

Parc. Managing e-mails is his primary motivation. Tapestry is based on a

"commented recommendation" based on quality ratings or document appreciation

made by users. In this way, the documents are filtered according to these

annotations [16].

 Netflix Prize

The Netflix Prize was an open competition for the best collaborative filtering

algorithm to predict user ratings for films, based on previous ratings without any

other information about the users or films, i.e. without the users or the films being

identified except by numbers assigned for the contest.

The competition was held by Netflix, an online DVD-rental and video streaming service,

and was open to anyone who is neither connected with Netflix (current and former

employees, agents, close relatives of Netflix employees, etc.).

1.7. Conclusion

In this Chapter we see the collaborative filtering technique and there types and

discussing each type of it and see some examples of this technique.

CHAPTER 2: Machine

Learning and Sparse

Matrix Problem

CHAPTER2: Machine Learning and Sparse Matrix
Problem

24

2.1. Introduction

As we mentioned earlier, the problem with a sparse matrix is that there are few

cells that contain values, which makes the process of calculating the similarity

between users or items very difficult.

In this section, we will talk about the solutions to this problem and in the next

section, we will program these solutions with the help of machine learning.

2.2. Sparse Matrix

When providing recommendations to the user, we can find out how satisfied the

user is with the recommendations by evaluating them, but he is not obligated to do

so. And this last thing is the main reason for the emergence of this problem

With a huge number of users and things, the process of calculating the similarity

value between users to make recommendations becomes very difficult and almost

impossible.

And in this case, the user-item matrix will appear as shown in the Figure 4 [10] below:

Figure 4: Sparse Matrix preview

CHAPTER2: Machine Learning and Sparse Matrix
Problem

25

2.3. Proposed Solutions for solving this problem

After a long research in this field, we found many algorithms that work to solve this

problem and to program these solutions such as SVM, KNN, MF, BN, we choose

KNN and MF and with the help of Machine Learning we implement it on the dataset

and compare between it.

For this we will go into the definition of machine learning and show its characteristics

 Machine learning Definition

The ability to learn from past experiences and to adapt is an essential

characteristic of higher life forms. It is essential for humans in the early stages of

life to learn such basic things as recognizing a voice, a familiar face, learning to

understand what is said, to walk and to speak [11].

Machine learning is an attempt to understand and reproduce this learning ability in

artificial systems. It is a question, very schematically, of designing algorithms

capable, from a large number of examples (the data corresponding to “past

experience”), of assimilating its nature in order to be able to apply what they thus

learned about future cases [12].

 Concepts and Sources of Machine Learning

Human learning is made up of several processes that are difficult to describe

precisely. The learning abilities in humans have given them an evolutionary

advantage which is decisive for their development [13].

By "ability to learn" is meant a set of skills such as:

 Obtaining the ability to speak by observing others.

 Obtaining the ability to read, write, and perform arithmetic and logic

operations with the help of a tutor.

 Obtaining motor and sports skills by exercising.

Machine learning of a machine always concerns a set of concrete tasks T. To

determine the performance of the machine, a performance measure is used P.

The machine may have in advance a set of experience E or she will enrich this

set later.

CHAPTER2: Machine Learning and Sparse Matrix
Problem

26

So, machine learning for the machine is that with the set of tasks T that the machine

has to perform, it uses the set of experiences E such that its performance on T is

improved.

 Application areas of machine learning:

Machine learning is applicable to a large number of human activities and is

particularly suited to the problem of automated decision making. This will be, for

example:

 To establish a medical diagnosis from the clinical description of a patient.

 To respond to a client's request for a bank loan based on his personal

situation.

 To trigger an alert process based on signals received by sensors.

 Pattern recognition.

 Recognition of speech and written text.

 Control a process and diagnose failures.

Types of learning

 Supervised learning

If the classes are predetermined and the examples are known, the system learns

to classify according to a classification model; we then speak of supervised

learning (or discriminant analysis).

An expert (or oracle) must first correctly label examples. The learner can then find

or approximate the function which makes it possible to assign the right “label” to

these examples. Sometimes it is preferable to associate a piece of data not with

a single class, but with a probability of belonging to each of the predetermined

classes (this is called probabilistic supervised learning). Typical examples are

linear discriminant analysis or SVMs. Another example: based on common points

detected with the symptoms of other known patients (the “examples”), the system

can categorize new patients on the basis of their medical analyzes as estimated

risk (probability) of developing a particular disease.

 Unsupervised learning

When the system or the operator has only examples, but not labels and the number

of classes and their nature has not been predetermined, we speak of

unsupervised learning (or clustering). No expert is available or required. The

CHAPTER2: Machine Learning and Sparse Matrix
Problem

27

algorithm must discover by itself the more or less hidden structure of the data.

The system must here in the description space (the sum of the data) target the data

according to their available attributes, to classify them in homogeneous groups of

examples. The similarity is generally calculated according to the function of the

distance between pairs of examples. It is then up to the operator to associate or

deduce meaning for each group. Various math tools and software can help him.

We also speak of regression data analysis. If the approach is probabilistic (that is

to say that each example instead of being classified in a single class is associated

with the probabilities of belonging to each of the classes), we then speak of "soft

clustering" (as opposed to “Hard clustering”) [13].

Example: An epidemiologist could, for example, in a fairly large group of victims

of liver cancer try to bring out explanatory hypotheses, the computer could

differentiate

different groups, which we could then associate for example with their

geographical origin, genetic, alcoholism, or exposure to heavy metal or toxin

such as aflatoxin.

 Semi-supervised learning

Carried out in a probabilistic or non-probabilistic manner, it aims to show the

underlying distribution of “examples” in their description space. It is implemented

when data (or “labels”) is missing ... The model must use unlabeled examples that

can nevertheless provide information.

Example: In medicine, it can be an aid in the diagnosis or in the choice of the

least expensive means of diagnostic tests.

 Partially supervised learning (probabilistic or not)

When data labeling is partial. This is the case when a model states that data does

not belong to a class A, but perhaps to a class B or C (A, B, and C is 3 diseases for

example mentioned in the context of a differential diagnosis).

 Reinforcement learning

The algorithm learns behavior from an observation. The action of the algorithm on

the environment produces a return value that guides the algorithm.

CHAPTER2: Machine Learning and Sparse Matrix
Problem

28

 The Algorithms used

- Support vector machines

- Boosting

- Matrix Factorization

- Neural networks for supervised or unsupervised learning

- The k nearest neighbors method for supervised learning

- Decision trees

- Statistical methods such as the Gaussian mixture model

- Logistic regression

- Linear discriminant analysis

These methods are often combined to obtain various learning variants. The use of

this or that algorithm strongly depends on the task to be solved (classification,

estimation of values, etc.).

- Relevance and efficiency factors

The quality of learning and analysis depends on the upstream need and a priori

competence of the operator to prepare the analysis. It also depends on the

complexity of the model (specific or generalist) and its adaptation to the subject to

be treated. Finally, the quality of the work will also depend on the mode (of visual

highlighting) of the results for the end-user (a relevant result could be hidden in an

overly complex diagram, or poorly highlighted by an inappropriate graphic

representation). Before that, the quality of the work will depend on initial

constraining factors, related to the database [14]:

1. Number of examples: the fewer there are, the more difficult the analysis,

but the more there are, the greater the need for computer memory and the

longer the analysis.

2. Number and quality of attributes: describing these examples (The

distance between two numerical "examples" (price, size, weight, light

intensity, noise intensity, etc.) is easy to establish, that between two

categorical attributes (color, utility, is more delicate).

3. Percentage of completed and missing data.

CHAPTER2: Machine Learning and Sparse Matrix
Problem

29

4. “Noise”: The number and "location" of doubtful values (errors) or naturally

not in conformity with the general distribution model of the "examples" on

their distribution space

- Some classification methods

 K nearest neighbors

Better known in English as K-nearest neighbor (K-NN). This method differs from

traditional learning methods because no model is inferred from the examples. The

data remains as-is: it is simply stored in memory [14].

To predict the class of a new case, the algorithm looks for the K closest neighbors

of this new case and predicts (if it is necessary to choose) the most frequent

response of these K closest neighbors [14].

 Decision trees

Decision trees are the most popular of the learning methods. The known

algorithms are ID3 (Quinlan 1986) and C4.5 (Quinlan 1993). Like any supervised

learning method, decision trees use examples [14].

If we have to classify examples into categories, we must construct a decision tree

by category. To determine to which category a new example belongs, we use the

decision tree of each category to which we submit the new example to be

classified.

Each tree responds Yes or No (it makes a decision). Concretely, each node of a

decision tree contains a test (an IF ... THEN) and the leaves have the values Yes

or No. Each test looks at the value of an attribute of each example. Indeed, it is

assumed that an example is a set of attributes/values.

But this method has a drawback when the examples are limited: in fact, only 2/3

of the initial examples are used to build the tree, since 1/3 is reserved to validate

it later. Many other methods have been proposed.

 Naive or Bayes decisions

Named after Bayes' theorem, these methods are called "Naïve" or "Simple"

because they assume the independence of the variables. The idea is to use

CHAPTER2: Machine Learning and Sparse Matrix
Problem

30

probability conditions observed in the data. We calculate the probability of each

class among the examples.

A variant of the Naive Bayes is the Bayesian networks: in this model, we no

longer assume that the variables are all independent, and we allow some to be

linked.

This considerably increases the calculations and the results do not increase

significantly.

 Support Vector Machines (or SVM)

This technique initiated by Vapnik attempts to linearly separate the positive examples

from the negative examples in the set of examples. Each example must be represented

by a vector of dimension n.

The method then searches for the hyperplane that separates the positive examples

from the negative examples, ensuring that the margin between the closest positive

and negative is maximum.

Intuitively, this guarantees a good level of generalization because new examples

may not be too similar to those used to find the hyperplane but still be located

frankly on one side or the other of the border.

As the state-of-the-art collaborative filtering recommender systems are based

on two main approaches: K-Nearest Neighborhood (KNN) approach and latent

factor models such as Matrix Factorization [15] we will choose these two

algorithms to implement it.

2.3.1. K- Nearest Neighbors (KNN):

What is KNN? :

K-nearest neighbors (KNN) algorithm is a type of supervised ML algorithm which

can be used for both classification as well as regression predictive problems.

However, it is mainly used for classification predictive problems in industry. The

following two properties would define KNN well:

- Lazy learning algorithm: KNN is a lazy learning algorithm because it

does not have a specialized training phase and uses all the data for training

while classification.

CHAPTER2: Machine Learning and Sparse Matrix
Problem

31

- Non-parametric learning algorithm: KNN is also a non-parametric

learning algorithm because it doesn’t assume anything about the underlying

data.

Moreover KNN is:

- A powerful classification algorithm used in pattern recognition [15].

- K nearest neighbors stores all available cases and classifies new cases based

on a similarity measure (distance function).

- One of the top data mining algorithms used today.

- A non-parametric lazy learning algorithm (An Instance-based Learning method).

Classification Approach:

The Classification approach in the K-Nearest Neighbors (KNN) work as below:

 An object (a new instance) is classified by a majority vote for its neighbor

classes.

 The object is assigned to the most common class amongst its K nearest

neighbors. (measured by a distant function) [14]

Distance measure for KNN Algorithms:

 Euclidean Distance

Usually this algorithm uses Euclidean distance which is calculated in the following way

[10]:

Euclidean √∑  

𝑛

𝑖=1

(𝑥𝑖 − 𝑦𝑖)2

Figure 5: Euclidean distance

CHAPTER2: Machine Learning and Sparse Matrix
Problem

32

But there are other values that can be used to calculate the distance between users

and they are [10]:

Manhattan Distance:

Manhattan ∑  

𝑛

𝑖=1

|𝑥𝑖 − 𝑦𝑖|

We use Manhattan distance, also known as city block distance Figure 6, or taxicab

geometry if we need to calculate the distance between two data points in a grid-like

path.[10]

Figure 6: Manhattan distance

Minkowski Distance:

 Minkowski (∑  

𝑛

𝑖=1

(|𝑥𝑖 − 𝑦𝑖|)𝑞)

1/𝑞

Minkowski distance is a generalized distance metric. We can manipulate the

above formula by substituting ‘p’ to calculate the distance between two data

points in different ways. Thus, Minkowski Distance is also known as Lp norm

distance [10].

Some common values of ‘p’ are:

 p = 1, Manhattan Distance

 p = 2, Euclidean Distance

 p = infinity Chebyshev Distance

K-nearest neighbors (KNN) algorithm uses ‘feature similarity’ to predict the values of

new data points which further means that the new data point will be assigned a value

CHAPTER2: Machine Learning and Sparse Matrix
Problem

33

based on how closely it matches the points in the training set. We can understand its

working with the help of following steps:

Step1: For implementing any algorithm, we need dataset. So during the first step of

KNN, we must load the training as well as test data.

Step2: Next, we need to choose the value of K i.e. the nearest data points. K can be

any integer.

Step3: For each point in the test data do the following:

- Calculate the distance between test data and each row of training data with the

help of any of the method shown above: Euclidean, Manhattan or Minkowski

distance. The most commonly used method to calculate distance is Euclidean

sim (𝑢, 𝑢′) = √∑  

𝑖

(𝑟𝑢,𝑖 − 𝑟𝑢′,𝑖)
2

Where 𝑟𝑢,𝑖 and 𝑟𝑢′,𝑖 are ratings of user 𝑢 and user 𝑢′ to movie 𝑖. And we choose top

k most similar neighbors of each user under the above defined similarity function.

These values are arbitrary but important because very different results result from their

choices. Note also that, if the learning time is nonexistent since the data is stored as-

is, the classification of a new case is on the other hand costly since it is necessary to

compare this case with all the examples already classified.

We use the weighted means to predict the ratings. The prediction formula is as follows:

𝑃𝑢,𝑚 =
∑  𝑗∈𝑁𝑢

𝐾(𝑚) sim (𝑚, 𝑗)𝑅𝑗,𝑢

∑  𝑗∈𝑁𝑢
𝐾(𝑚) |sim (𝑚, 𝑗)|

where 𝑁𝑖
𝐾 (m) = { 𝑗 : 𝑗 belongs to the 𝐾 most similar user to user 𝑚 and user 𝑢 has

rated 𝑗 }, and 𝑅𝑗,𝑢 are the existent ratings (of user 𝑢 on movie 𝑗) and 𝑃𝑢,𝑚 is the

prediction.

Step4: End.

CHAPTER2: Machine Learning and Sparse Matrix
Problem

34

- Pros and Cons of KNN

Pros:

o It is very simple algorithm to understand and interpret.

o It is very useful for nonlinear data because there is no assumption about

data in this algorithm.

o It is a versatile algorithm as we can use it for classification as well as

regression.

o It has relatively high accuracy but there are much better supervised

learning models than KNN.

Cons:

o It is computationally a bit expensive algorithm because it stores all the

training data.

o High memory storage required as compared to other supervised

learning algorithms.

o Prediction is slow in case of big N.

o It is very sensitive to the scale of data as well as irrelevant features.

The neighborhood-based methods can be divided into two different types, user-

based and item-based collaborative filtering. This division is essentially just

different ways of computing the neighborhood. In the user-based collaborative

filtering methods only the users is used for computing the neighborhood and in

item-based collaborative filtering only the items are used. For example, as the

Figure below show in the user-based methods if user X and user Z have items

in common that they like they are assumed to have similar taste in items that

they do not have in common. On the other hand, in the item-based methods if

user X like book A and book B and C are very similar to book A then user X is

assumed to also like book B and C. When they are used differs on the context,

but as an example, many e-commerce web-sites use item-based methods, while

streaming sites for films and tv-series use both.

CHAPTER2: Machine Learning and Sparse Matrix
Problem

35

Figure 7: User Based and Item Based Filtering

2.3.2. Matrix Factorization (MF):

- Overview

Matrix factorization models (MF) became popular because of their scalability

and their predictive performance [16] and was widely used in the Netflix

competition solutions [17]. A probabilistic foundation for these models was then

given by [18].

The general idea of matrix factorization in recommender systems is to create a

low- rank matrix approximation of the rating matrix. The idea of low-rank matrix

approximation was first proposed by Eckart and Young [19] and has been used in

information retrieval since.

- Working of Matrix Factorization(MF)

Given a user 𝑢 and a movie 𝑖, we predict the rating that the user will give to the movie

as follows:

𝑟𝑢,𝑖 = 𝜇 + 𝑏𝑢 + 𝑏𝑖 + 𝛾𝑢 ⋅ 𝛾𝑖

CHAPTER2: Machine Learning and Sparse Matrix
Problem

36

Where 𝜇 is the global bias, and 𝑏𝑢 (𝑏𝑖) is the user (item) bias. 𝛾𝑢 And 𝛾𝑖 are latent

factors for user 𝑢 and movie 𝑖 respectively, which will be learned during the training

process. 𝛾𝑢 and 𝛾𝑖 are K dimensional vectors [20] .

The error function L is defined as follows [20]:

𝐿 = ∑  

𝑢,𝑖

(𝑟𝑢,𝑖 − (𝜇 + 𝑏𝑢 + 𝑏𝑖 + 𝛾𝑢 ⋅ 𝛾𝑖))
2

+ 𝜆𝑢𝑏 ∑  

𝑢

∥∥𝑏𝑢∥∥
2

+ 𝜆𝑖𝑏 ∑  

𝑖

∥∥𝑏𝑖∥∥
2 + 𝜆𝑢𝛾 ∑  

𝑢

∥∥𝛾𝑢∥∥2 + 𝜆𝑖𝛾 ∑  

𝑖

∥∥𝛾𝑖∥∥2

Where𝜆𝑢𝑏,𝜆𝑖𝑏,𝜆𝑢𝛾,𝜆𝑖𝛾 are used to control the trade-off between accuracy and

Complexity during training, and Σ𝑢𝑏𝑢
2, Σ𝑖𝑏𝑖

2, Σ𝑢𝑌𝑢
2, Σ𝑖𝛾𝑖

2
 penalize model

Complexity and reduces over-fitting.

We have the following expressions for the gradient of the error function:

∂𝐿

∂𝑏𝑢
= 2 (𝑟𝑢,𝑖 − (𝜇 + 𝑏𝑢 + 𝑏𝑖 + 𝛾𝑢 ⋅ 𝛾𝑖)) (−1) + 2𝜆𝑢𝑏𝑏𝑢

∂𝐿

∂𝑏𝑢
= 2(error𝑢,𝑖)(−1) + 2𝜆𝑢𝑏𝑏𝑢

∂𝐿

∂𝑏𝑢
= −error𝑢,𝑖 + 𝜆𝑢𝑏𝑏𝑢

∂𝐿

∂𝑏𝑖
= −error𝑢,𝑖 + 𝜆𝑖𝑏𝑏𝑖

∂𝐿

∂𝛾𝑢
= −error𝑢,𝑖 𝛾𝑖 + 𝜆𝑢𝛾𝛾𝑢

∂𝐿

∂𝛾𝑖
= −error𝑢,𝑖 𝛾𝑢 + 𝜆𝑖𝛾𝛾𝑖

There are two approaches to solving the above optimization problem to find all of our

features: stochastic gradient descent (SGD) and alternating least squares (ALS) [20].

CHAPTER2: Machine Learning and Sparse Matrix
Problem

37

We use both SGD and ALS to update these parameters end up being:

𝑏𝑢 ← 𝑏𝑢 + 𝜂(error𝑢,𝑖 − 𝜆𝑢𝑏𝑏𝑢)

𝑏𝑖 ← 𝑏𝑖 + 𝜂(error𝑢,𝑖 − 𝜆𝑢𝑖𝑏𝑖)

𝛾𝑢 ← 𝛾𝑢 + 𝜂(error𝑢,𝑖𝛾𝑖 − 𝜆𝑢𝑏𝛾𝑢)

𝛾𝑖 ← 𝛾𝑖 + 𝜂(error𝑢,𝑖𝛾𝑢 − 𝜆𝑢𝑏𝛾𝑖)

Matrix factorization assumes that:

- Each user can be described by k attributes or features. For example, feature 1

might be a number that says how much each user likes sci-fi movies.

- Each item (movie) can be described by an analogous set of k attributes or

features. Feature 1 for the movie might be a number that says how close the

movie is to pure sci-f

If we multiply each feature of the user by the corresponding feature of the movie

and add everything together, this will be a good approximation for the rating the

user would give that movie.

2.4. Conclusion

In this section, we learned about each of the KNN and MF algorithms and how

they work and how we can predict the messing value by them.

CHAPTER 3:

Implementation of

Solutions

CHAPTER3: Implementation of Solutions

39

3.1. Introduction

The goal of this assignment is to predict the rating given a user and a movie,

using two different methods Shown above: K-Nearest Neighbors and Matrix

Factorization method on the Movie Lens.

3.2. Data Description

The initial data set i.e. u.data, obtained from the Movie Lens, a movie recommendation

service, has 100,000 ratings (1-5) from 943 users on 1682 movies as shown below:

Figure 8: the users and movies number

Feature Names were added to the Dataset. Dataset was loaded using python pandas

and was transformed into a rating matrix represented as a NumPy array of size users

x movies (943 x 1682). We found that users have rated at least 20 movies Figure 9

which result in a reasonable sparsity of 6.3% Figure 10. This means that 1,00,000

ratings account for only 6.3% of the total possible ratings.

Figure 9: movies rated by user

Figure 10: Sparsity of our dataset

CHAPTER3: Implementation of Solutions

40

3.3. Metric to evaluate the Algorithms

Each sampled sparse dataset will be split in two sets, a training set and a testing set.

The models are estimated on the training set and evaluated on the testing set For the

testing set, predictions will be made with the models. Based on these predictions, we

will measure the accuracy of the model. Several accuracy metrics have been used for

measuring performance of recommender systems. Which are: RMSE, MAE, and

Precision, Recall, F1-measure, Coverage, ROC curve, and AUC.

One of the most often used metrics is Root Mean Square Error (RMSE). It measures

how close predicted ratings for recommended items, computed using a training subset

of a dataset, and are to the actual ratings of items in the remaining testing subset of

the same dataset, The Netflix prize used RMSE. It is defined as below for each user

A:

𝑅𝑀𝑆𝐸 = √
1

|�̂�|
∑  

(𝑢,𝑖)∈�̃�

(𝑟𝑢𝑖 − �̂�𝑢𝑖)2

Where |�̂�| is the number of ratings in the test set and (u, i) is the user-item pairs in

this test set [21].

A related metric is Mean Absolute Error (MAE). It is similar to RMSE, except that it

does not square differences between predicted and actual ratings, thus penalizing less

harshly large prediction error, e.g. predicting a rating of 5 while the actual one is 1.

MAE of user A is defined as follows:

𝑀𝐴𝐸(𝐴) =
∑  𝑛

𝑖=1 |𝑝𝑟𝑒𝑑𝐴,𝑖 − 𝑟𝐴,𝑖|

𝑛

CHAPTER3: Implementation of Solutions

41

3.4. Implementation of KNN Algorithm

- First, we will be importing the important libraries that we work with

Figure 11: important libraries in python

- We import our dataset

Figure 12: Fetching and importing the dataset

- We put a data in a simple array by using the append function

Figure 13: creating simple array with dataset data

CHAPTER3: Implementation of Solutions

42

- We create an array with a 10000 random number between 1 and 1000000

Figure 14: random number between 1 and 100000

- Fill the testset array with the data corresponding to the random id in testid array

Figure 15: fill the testset array

- Formatting the matrix from the data

Figure 16: formatting matrix

CHAPTER3: Implementation of Solutions

43

- Next we will define a two functions which are :

FindKNNitem :

Figure 17: FindKNNitem Function

FindKNNuser

Figure 18: FindKNNuser Function

CHAPTER3: Implementation of Solutions

44

- Here with the help of the deepcopy and the FindKNNuser function we calculate

the RMSE for User-based KNN Approach

Figure 19: calculate the RMSE (User-Based KNN Approach)

A deep copy makes a new and separate copy of an entire object or list with its own

unique memory address. What this means is that any changes you make in the new

copy of the object/list won't reflect in the original one. This process happens by first

creating a new list or object, followed by recursively copying the elements from the

original one to the new one[22].

The result of this code is below:

Figure 20: User-Based KNN Results

RMSE (UBK) = 5.65

CHAPTER3: Implementation of Solutions

45

- Next we calculate the RMSE for Item-Based KNN Approach by the

FindKNNitem function

Figure 21: calculate the RMSE (Item-Based KNN Approach)

The result of this code is below:

Figure 22: Item-Based KNN Results

RMSE (IBK) = 6.19

After that we try to mix the two approach together and calculate the RMSE for the User-

Item-Based KNN Approach

Figure 23: RMSE for Mixed User-Item Based KNN Approach

CHAPTER3: Implementation of Solutions

46

The result of this code is below:

Figure 24: User-Item Based KNN Results

RMSE (UIBK) = 6.09

3.5. Implementation of Matrix Factorization Algorithm

- Like we do in the KNN first we import libraries and our dataset

Figure 25: Importing libraries and our dataset

CHAPTER3: Implementation of Solutions

47

- Next we split our data into training and test data

Figure 26: Split dataset into training and test sets

And after defining many function like sgd() and als() we can calculate the RMSE for

the Matrix Factorization with Alternating Least Squares (ALS)

Figure 27: Matrix Factorization with ALS Model

The result of this code is below:

Figure 28: Matrix Factorization with ALS Results

RMSE (MF-ALS) = 3.75

CHAPTER3: Implementation of Solutions

48

- Calculate the RMSE for the Matrix Factorization with the Stochastic Gradient

Descent SGD

Figure 29: Matrix Factorization with SGD Model

The result of this code is below:

Figure 30: Matrix Factorization with SGD Results

RMSE (MF-SGD) = 1.00

 Model Comparison

As we mentioned above that we compare between the different algorithms by

comparing the values of the Root Mean Square Error which whenever it is close to 0,

it indicates the effectiveness of the algorithm.

So we put all the values of the Results (RMSE) of such algorithm in Table 1 and we

compare between them:

CHAPTER3: Implementation of Solutions

49

Model RMSE-Test Set

User-based KNN 5.65

Item-based KNN 6.19

Mixed User-Item Based KNN 6.09

Latent Factor Model (ALS) 3.75

Latent Factor Model (SGD) 1.00

Table 1: the RMSE Values for each models

- By the use of the matplotlib.pyplot library we can see the Results below :

Figure 31: RMSE Results in different algorithms

The results in the above table and Figure 34 indicate that the latent factor model with

the SGD optimization method performs best among the five variations because it gives

us a very small value close to 0 in comparison with other Algorithms. Based on the

results, we conclude that the latent factor model with SGD tends to perform better than

the neighborhood approaches on the movie rating prediction tasks, provided there is

enough data for each user and for each movie.

CHAPTER3: Implementation of Solutions

50

3.6. Conclusion

In this chapter we implement the two algorithm which are: KNN and MF with the help

of machine learning concept and we calculate the RMSE of each Algorithm and

compare between it and we find that the RMSE (KNN) > RMSE (MF) which inform us

that the Algorithm of MF is very good the KNN Algorithm in the prediction of messing

value.

51

General Conclusion

In this thesis, we addressed to the sparse matrix problem in collaborative filtering. This

problem happens when the matrix contains a few known data and there are many

algorithms try to solve this problem, we choose two Different algorithms witch are the

state-of-the-art in the collaborative filtering witch are: KNN and MF for predicting the

messing values in the User-item Matrix to give recommendation to the end-user and

according to the RMSE value we see that the MF with SGD is the best algorithm to

predict missing value.

In our next work we will try to develop an algorithm where the RMSE value is less than

1 when we applicate it to the dataset.

52

Bibliography

[1] BENATHMANE,L.,DAHMANI,Y.,KHAROUBI,S.,Optimisation sementique d’un

systeme de fitrage collaborative 2013 Universite Ibn Khaldoune MAGISTER
[2] [An, 2006] :T.An . COCoFil2 : « Un nouveau système de filtrage collaboratif

basé sur le modèle des espaces de communautés » ,2006 .

[3] Jannach, D., Zanker, M., Felfernig, A., and Friedrich, G. (2010).

Recommender systems: an introduction. Cambridge University Press.

[4] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive

algorithms for collaborative filtering. In Proceedings of the 14th Conference on

Uncertainty in Artificial Intelligence, 1998.

[5] P. Resnick, N. Iaocvou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: An

open architecture for collaborative filtering for netnews. In Proceedings of ACM 1994

Conference on Computer Supported Cooperative Work, pages 175–186, 1994.

[6] S. Deerwester, S. T. Dumais, and R. Harshman. Indexing by latent semantic

analysis. Journal of the Society for Information Science, 41(6):391–407, 1990.

[7] T. Hofmann. Probabilistic latent semantic analysis. In Proceedings of the 15th

Conference on Uncertainty in Artificial Intelligence, 1999.

[8] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-based collaborative

filtering recommendation algorithms. In Proceedings of the 10th International

Conference on World Wide Web, 2001.

[9] Aggarwal, C. C. (2016). Recommender systems. Springer.

[10] P. Melville, R. J. Mooney, and R. Nagarajan. Content-boosted collaborative

filtering for improved recommendations. In Proceedings of the 18th National

Conference on Artificial Intelligence, 2002.

[11] V. Vapnik, “The Nature of Statistical Learning Theory”. Springer Verlag, New

York, USA, 1995.

[12] Koren, Y. (2010b). Factor in the neighbors: Scalable and accurate

collaborative filtering. ACM Transactions on Knowledge Discovery from Data (TKDD),

4(1):1.

[13] Mnih, A. and Salakhutdinov, R. R. (2008). Probabilistic matrix factorization. In

Advances in neural information processing systems, pages 1257–1264.

[14] Eckart, C. and Young, G. (1936). The approximation of one matrix by another

of lower rank. Psychometrika, 1(3):211–218.

[15] T. Hofmann. Latent semantic models for collaborative filtering. ACM

Transactions on Information Systems, 22(1):89–115, 2004.

[16] Latent Factor Models for Web Recommender Systems.

53

[17] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for

recommender systems. Computer, August 2009

[18] C. Zeng, C.-X. Xing, and L.-Z. Zhou. Similarity measure and instance selection

for collaborative filtering. In Proceedings of the 12th International World Wide Web

Conference, 2003.

[19] J. Callut, «Implémentation efficace des Support vector Machines pour la

classification » Mémoire présenté en vue de l‟obtention du grade de Maître en

informatique. Université libre de Bruxelles . département informatique, 2003

[20] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for

recommender systems. Computer, August 2009

[21] K. Yu, X. Xu, M. Ester, and H.-P. Kriegel. Selecting relevant instances for

efficient and accurate collaborative filtering. In Proceedings of the 10th International

Conference on Information and Knowledge Management, 2001.

[22] P.Vincent, « Modèles à noyaux à structure locale », Thèse de Phd en

informatique , Université de Montréal,2003

[23] A. Cornuéjols, L. Miclet, Y.Kodratoff, « Apprentissage Artificiel, Concepts et

algorithmes » ISBN 2-212-11020-0 , 2002.

[24] M. Rosenstein and C. Lochbaum. What is actually taking place on web sites:

Ecommerce lessons from web server logs. In Proceedings of ACM 2000 Conference

on Electronic Commerce, 2000.

[25] G.Linden, S.Brent, J.York.«Amazon.com recommendations:Item-to-item

collaborative filtering», IEEE internet computing, vol. 7, n°1, p. 76-80, 2003.

[26] N.Denos ,C.Berrut ,L. Gallardo-Lopez ,A. Nguyen . « COCoFil : Une

plateforme de filtrage collaboratif orientée vers la communauté », Actes de la 1ère

Conférence en Recherche d’Information et Applications (CORIA’04), Toulouse,

France, p. 9-26 ,2004.

[27] Resnick, P., Iacovou, N., Sushak, M., Bergstrom, P., and Riedl, J. GroupLens:
An open architecture for collaborative filtering of netnews. In Proceedings of the 1994
Computer Supported Cooperative Work Conference. (1994) ACM, New York.

[28] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman,

R. (1990). Indexing by latent semantic analysis. Journal of the American society for

information science, 41(6):391.

[29] Jannach, D., Zanker, M., Felfernig, A., and Friedrich, G. (2010).

Recommender systems: an introduction. Cambridge University Press.

[30] D. M. Chickering, D. Heckerman, and C. Meek. A bayesian approach to learning

bayesian networks with local structure. In Proceedings of the 13th Conference on

Uncertainty in Artificial Intelligence, 1997.

