

 DEMOCRATIC AND REPUBLIC OF ALGERIA

MINISTRY OF HIGH EDUCATION AND SCIENTIFIC RESEARCH

University of Ibn Khaldoun – Tiaret

faculty of mathematics and computer science

computer science department

Presented by: Abdeldjallil AIDI

Supervised by: Mr. Karim MEZZOUG – MAA University of Ibn-Khaldoun-Tiaret

Board of Examiners:

Mr. Mohamed BAGHDADI – MAA University of Ibn-Khaldoun-Tiaret.

Mm. Abdia HAMDANI – MAA University of Ibn-Khaldoun-Tiaret.

Academic Year: 2019-2020

Dissertation

Submitted to the Department of computer science as a Partial Fulfillment
of the Requirement for the

Master Degree in computer engineering
Type: academic

 ــ

Theme:

Automatic recognition of noisy

digital images using Deep learning

“The world that we have made as a result of the
level of thinking we have done thus far creates problems
that we cannot solve at the same level as the level we
created them at.”
 Albert Einstein1

” I am enough of the artist to draw freely upon
my imagination. Imagination is more important than
knowledge. Knowledge is limited. Imagination encircles the
world.”
 Albert Einstein2

 ــــــــــــــــــــ ـــ

 1. The Journal of Transpersonal Psychology
Transpersonal Institute, 1969, 1-4, pp 124

 2. The Saturday Evening Post, What Life Means to
Einstein: An Interview by George Sylvester Viereck, 1929
October 26

Acknowledgments:

First and foremost, I would like to thank Mr. Karim MEZZOUG, my supervisor.

Who listened to me, accompanied me, guided me during all these stages, and understood

my expectations, my different outlook on the studies that we have carried out. Thank

you for all these constructive, rigorous discussions Thank you for being patient,

understanding and structured. Thank you for helping me grows academically and

professionally, trusting me and making my visits to the university not only rewarding

but also enjoyable.

To Mr. Mohamed BAGHDADI: Thank you for doing us the honor of chairing this

jury. I also thank you for continuing to fight for the good of your students. Thank you

also for your insightful comments during the various laboratory presentations. You are

an inspiration for future men in engineering. I express my gratitude to you.

My sincere thanks to Mm. Abdia HAMDANI for the honor, you have done to me

agreeing to participate in my thesis jury as an examiner of my work, thank you for the

time you spent reading this thesis, and for the suggestions and judicious remarks you

indicated to me. This dissertation would not have come to fruition without your

kindness and guidance.

Of course, I will not be without mentioning the two important persons in all my

life which are my parents Abdeldkader and Hafidha and all the members of my family,

who have always encouraged me in my projects and offered the means to carry them

out. I also thank them for their hospitality when I needed to isolate myself to write this

manuscript.

Finally, I would like to pay tribute to the colleagues from IBN KHALDOUN

University. To those who have passed very quickly but have changed us a bit, to those

who are there every day, to Ilias Sid Ahmed MAKBOUL, Hakim ADIM, Mohamed

MAHROUZ, Abdelmalek DAHI and more others to always take the time to discuss our

projects and make suggestions. To the people who mean the most to me. They will be

recognized.

Abstract:

In the field of computer vision, image classification is one of the main

problems that hold the lion’s share of research. Since in most real-world

scenarios within image classification applications there is no control over

how the qualities of the images are given. Remarkably, it is crucial to

consider that these images might be damaged by noise intentionally or

unintentionally.

 In this thesis, we try to clarify the effects of noise contained in the

images in any way possible within image classification tasks by analyzing

two different types of noise (S&P, Gaussian) with five different levels on

three CNN models (XceptionNet, GoogleNet, ResNet) using the same

parameters (Dataset, noise, and level of noise), and how denoising methods

can help to alleviate this problem.

 We perform our experiments with the Cifar10 dataset and two

different denoising methods (one for each type of noise), our results show

that noise in images can hinder classification tasks and cause it a problem

(make it harder to separate classes). Although images were denoised, we

were unable to reach the results obtained in the noise-free scenarios.

Keywords: Computer vision, Image Classification, Noise, Denoising, CNN.

Contents

Table of figures
List of tables
Glossary of Acronyms and Abbreviations

General initiation 1
 1 – Problematic 1
 2 – Related works 2
 3 – Plans 2

CH01: Image Processing and Computer Vision 3
 Introduction 3
2-Image processing VS computer vision 4
3-Image processing 5
 3.1 – Digital image 5
 3.2 – image acquisition 5
 3.3 – image enhancement and restoration 6
 3.3.1 – Distinction between image enhancement

 and image restoration 6
 3.3.2 - SPATIAL IMAGE ENHANCEMENT TECHNIQUES 7
 A - Spatial low-pass and high-pass Filtering 7
 B - Averaging and Spatial Low-Pass Filtering 7
 C - Unsharp Masking and Crisping 8
 D - Directional Smoothing 9
 E - Median Filter 9
 3.3.3 - HISTROGRAM-BASED CONTRAST ENHANCEMENT 11
 A - Image Histogram 11
 B - Histogram Equalization (HE) 12
 C – guidance 13
 3.3.4 - FREQUENCY DOMAIN METHODS

 OF IMAGE ENHANCEMENT 13
 3.3.4.1 - Homomorphic Filter 14
 3.3.5 - NOISE MODELING 15
 3.3.5.1 - Types of Noise in an Image

 and Their Characteristics 15
 3.3.6 – image restoration 16
 3.3.6.1 – Noise classification 16
 A - Salt and Pepper noise 16
 B - Gaussian noise 16
 C - Poissonian Noise 17
 D - speckle noise 17
 3.3.6.2 – RESTORATION TECHNIQUES 18
 A - Mean Filter 18
 B - Gaussian filter (smooth filter) 18
 C - Inverse filter 19
 D - Wiener Filter 19
 E - Patch-dictionary based image recovery 20
 F - Non-Local Means filter (NL-Means) 20

 3.4 – multi-resolution processing 21
 3.5 – Image compression 22

4 – Computer vision 23
 4.1 – segmentation, reconstruction, recognition 23
 4.2-Applications of computer vision 25
5 – Conclusion 26

CH02: Image Classification 27
Introduction 27
2 – The motivations for image classification 28
3 – Classification /clustering 29
 3.1 – Clustering 29
 3.2 – Classification 29
 3.2.1 – Binary classification 29
 3.2.2 – Multi-class classification 30
4 – Machine learning for image classification 30
 4.1 – The general process of machine learning Classification and

 its ingredients 31
 4.2 – Some types of Machine learning problems 31
 4.2.1 - Supervised learning 32
 4.2.1.1 – Some supervised learning algorithms 33
 A - K nearest neighbors (KNN) 33
 B - Support Vector Machine (SVM) 33
 C - Decision tree 34
 4.2.2 – Unsupervised learning 34
 4.2.2.1 – Some unsupervised learning algorithms 34
 A- Hierarchical ascending classification 35
 B - K-Means 35
 C - Fuzzy C-means 35
 4.2.3 – Semi-supervised learning 36
 4.2.4 – Reinforcement learning 36

5 – Conclusion 36

CH03: Deep learning 37
Introduction 37
2 – Machine Learning 37
3 –Artificial Neural networks 38
 3.1 – The biological neuron 39
 3.2 – The perceptron model 40
 3.2.1 – Limitations of the perceptron 45
 3.3 – The multi-layered perceptron 45
 3.3.1 – The Activation function 47
 3.3.1.1 – Binary Step Function 48
 3.3.1.2 – Linear Activation Functions 48
 3.3.1.3 – Non-Linear Activation Functions 49
 3.4 – Learning with back propagation 52
 3.4.1 – Gradient descent 52
 3.4.2 – Back propagation method 53

 3.5 – Convergence of learning 55
 3.5.1 – Problem of over-fitting 55
 3.5.2 – Set of validation and cross-validation 56
 3.5.3 – Early-stopping 57
 3.5.4 – Regularization 57
 3.6 – Alternatives to gradient descent 57
 3.6.1 – Stochastic Gradient Descent 57
 3.6.2 – Momentum 58
 3.6.3 – Nesterov momentum 58
 3.6.4 – Second-order methods 59
 3.6.5 – Other optimization techniques 59
4 – Deep Artificial neural networks 59
 4.1 – The interest of deep architectures 60
 4.2 – Convolutional neural networks 61
 4.2.1 – Convolutional layers 62
 4.2.2 – Pooling Operation 63
 4.3 – Recurrent neural networks 64
 4.4 – Advanced techniques to improve learning 64
 4.4.1 – Inception module (GoogleNet) 65
 4.4.2 – Batch normalization 65
 4.4.3 – ResNet 66
 4.5 – Unsupervised neural networks 66
 4.5.1 – Auto-encoders 66
 4.5.2 – Generative antagonist networks 68
5 – Conclusion 70

CH04: Experiments and Desktop Application 71

Introduction 71

1 – Tools and Libraries 71
 2.1 – Python 71

 2.2 – Google Colaboratory 71

 2.3 – Anaconda navigator 72

 2.4 – Jupyter notebook 72

 2.5 – TensorFlow 73

 2.6 – Keras 73

 2.7 – OpenCV 73

 2.8 – PyQt 73

 2.9 – Cifar-10 Dataset 74
3 – Experiments 74
4 – Implementation 76

5 – Results and Discussion 77

6 – Conclusion 81

Bibliographic references 81

List of figures:

Figure N°01: The succession from image processing to computer vision 04

Figure N°02: Image capture. A scene is illuminated by energy from a light source.
Reflected light may fall on the detector and be captured. 06

Figure N°03: median filter example using a 3*3 sampling window 10

Figure N°04: Result of median filtering. 10

Figure N°05: (a) A representation of a narrow image histogram.
 (b) A representation of a widely distributed image histogram. 11

Figure N°06: Histogram equalization results. 13

Figure N°07: Two-dimensional filter response (a) high-pass, (b) low-pass 14

Figure N°08: Homomorphic filtering: (a) input image, (b) result of Homomorphic
filtering 14

Figure N°09: noise classes. 15

Figure N°10: Plot of Probability Distribution Function. Where g = gray value,
 σ = standard deviation and µ = mean. 17

Figure N°11: Mean filter results. 18

Figure N°12: Gaussian filter results. 19

Figure N°13: Computer vision at the intersection of multiple scientific fields. 23

Figure N°14: Some types of Machine Learning problems 32

Figure N°15: Supervised learning 33

Figure N°16: Unsupervised learning 34

Figure N°17: Learning model seen as a black box 38

Figure N°18: Illustration of a biological neuron (up) and its mathematical model
(down). 40

Figure N°19: Graphical representation of a perceptron described in the Email
 Classification Example. 41

Figure N°20: Example of gradient descent on one dimension 43

Figure N°21: Example of logic functions 45

Figure N°22: Example of a representation of an MLP 45

Figure N°23: Neural network representing the EXCLUSIVE OR function with two
 graphical representations 47

Figure N°24: The basic process carried out by a neuron in a neural network 47

Figure N°25: The function of activating binary step 48

Figure N°26: Linear Activation Function 48

Figure N°27: The output of a sigmoid neuron as t varies 49

Figure N°28: The output of a Tanh neuron as t varies 50

Figure N°29: The output of a ReLU neuron as z varies. 51

Figure N°30: Intermediate representation of the entry into layer 1 52

Figure N°31: Three models of classifiers at different learning levels 56

Figure N°32: Loss functions 56

Figure N°33: The difference between classic machine learning (up) and deep
 learning (down) 60

Figure N°34: Example from CNN called AlexNet. 61

Figure N°35: example of a convolution operation using sobel Filter 62

Figure N°36: Example of a pooling operation 63

Figure N°37: RNN layer 64

Figure N°38: Inception module in its simple version 65

Figure N°39: Example of a classic ResBlock with two intermediate layers 66

Figure N°40: Example of an auto-encoder 67

Figure N°41: Example of noise reduction with auto-encoder 67

Figure N°42: Architecture of GAN with generator and discriminator 68

Figure N°43: A mostly complete chart of artificial neural networks 69

Figure N°44: Google Colaboratory 71

Figure N°45: Anaconda navigator 72

Figure N°46: Jupyter notebook 72

Figure N°47: Represent the classes in the dataset, as well as 10 random images
 from each. 74

Figure N°48: XceptionNet saved History. 75

Figure N°49: GoogleNet saved History. 76

Figure N°50: ResNet saved History. 76

Figure N°51: graphical user interface. 77

Figure N°52: Comparison between accuracies of each model for different
 noise levels 78

Figure N°53: Result of NLM filtering 79

Figure N°54: accuracy and loss plots for each model when using Salt&Pepper noise
with 𝑝 = 0.3. 79

Figure N°55: accuracy and loss plots for each model when using Gaussian noise
with 𝜎 = 30. 80

List of tables:

Table N°01: Differences between Classification and Clustering. 30

Table N°02: PSNR and SSIM for each noise level 77

Table N°03: Accuracy of each model when training and testing using the

same dataset version. 78

Glossary of Acronyms and Abbreviations:

✓ PDF – Probability Density Function.

✓ EM – Expectation Maximization.

✓ PCA – principle component analysis.

✓ LBP – local Binary Patterns

✓ HOG – Histograms of Oriented

Gradient

✓ SM – standard median

✓ CT – computed tomography

✓ FBP – filtered back projection

✓ PET – positron emission tomography

✓ IR – iterative reconstruction

✓ AR – Augmented Reality

✓ VR – Virtual Reality

✓ KNN – K nearest neighbors

✓ SVM – Support Vector Machine

✓ AI – Artificial Intelligence

✓ ML – Machine learning

✓ DL – Deep learning

✓ MLP – Multi-layer perceptrons

✓ GD – Gradient Descent

✓ SGD – Stochastic Gradient Descent

✓ GAN – Generative Antagonist

Network

✓ CNN – Convolutional Neural

Network

✓ ANN – Artificial Neural Network

✓ RNN – Recurrent Neural Network

✓ ILSVRC – Large Scale Visual Recognition Challenge

✓ HE – Histogram Equalization

✓ BBHE – Brightness Bi-Histogram Equalization

✓ DSIHE – Dualistic Sub Image Histogram Equalization

✓ MHE – Multi Histogram Equalization

✓ MMBEBHE – Minimum Mean Brightness Error Bi-Histogram Equalization

✓ GHE – Global Transformation Histogram Equalization

✓ LHE – Local Transformation Histogram Equalization.

✓ IDBPHE – Recursive Mean Separate Histogram Equalization

✓ GPU – Graphical processing unite.

https://liris.cnrs.fr/Documents/Liris-5004.pdf
https://liris.cnrs.fr/Documents/Liris-5004.pdf

1

General initiation:

As an indication, note that nearly 90% of the information received by humans is

visual. The production of quality images, as well as their digital (and if possible)

automatic processing, is therefore of considerable importance. Most scientific devices

provide images (microscopes, telescopes, x-rays, Magneto-nuclear resonance ... etc.),

and many fields of application use the image as a source of information and/or

visualization.

In fact, the image is a collection of information which, at first, was presented on a

photographic medium which allowed the delayed processing of the fleeting

phenomenon, a detailed analysis of the recorded phenomena, and of course the

archiving and the illustration. Digital Image processing was born from the idea of the

need to replace the human observer with the machine. The image or signals from the

sensors were then digitized for processing by the computer.

Man, always resorts to classification in his life, is he trying to answer the

problems and questions about the categories of objects? That is to say carrying out the

assignment of objects to their classes (formats, colors, sizes... etc.). Generally,

observation bases characterize a particular domain (animals, fruit, patients, genes... etc.),

where they are grouped into several classes. Automatic Image Classification is a pattern

recognition application that automatically assigns a class to an image using a

classification system.

Deep learning is a learning technique that enables a program, for example, to

recognize the content of an image or to understand spoken language. Deep learning

technology teaches you to represent the world. That is to say how the machine will

represent the word or the image for example. This learning and classification system,

based on digital “artificial neural networks” is a common technique in AI, allowing

machines to learn and recognize objects. He deepens his understanding of the image

with more and more precise concepts.

Our work is a part of the classification of images using deep learning. We aim to

create a certain number of classifiers to images that contains noise and their restored

versions, the results will be compared with each other to see the resilience of CNNs over

distinct type of noise with different levels.

1 – Problematic:

In our humble thesis we try to answer an easy question, which is:

“Does noise in both training and test sets affect the performance of deep learning neural

networks? “

2

2 – Related works
 This is not the first time such experimentation is done to understand the impact

of noisy images in the performance of CNNs within image classification tasks. There are

papers studying the effects of noise in the capability of CNNs to learn [7].

Noise in images can hinder classification tasks; this knowledge is already

discovered with systems that employ ANNs, and in systems that use hand-crafted

features [18]. State of the art deep neural networks performance is affected when

classifying images with lower quality compared with the original training set is showed

by Dodge and Karam in [18], their experiments do not cover the presence of noisy

images in the training set and how the model is doing with it.

While Paranhos da Costa et al in [37] takes in consideration that images in the

training set might be affected by noise in somehow, they created noisy versions and

generated their restored versions, they used hand-crafted features (LBP and HOG) and

SVM classifiers where trained with each version of the training set.

T. Nazare et al in [20], their work is based on [37] they exploited deep neural

networks.

 As all we believe that noise in any way possible, makes classification more

difficult, our experiments is based on [20], however there are two main differences.

First, we exploited state of the art deeper artificial neural network architectures such as

RESNET and XCEPTIONET, second, we train all the architecture using the same dataset

version for better comparison.

 3 – Plans:

 In chapter N°01, we have introduced the basics that serve as a foundation

for understanding different digital image processing techniques. Several classic

processing methods have been proposed in the literature, we have presented some that

we believe are the most common in the process of image processing and analysis.

 In chapter N°02, the classification methods are quite numerous so that

each method has certain advantages over the others for certain characteristics of the

images. In this chapter we present an overview of image classification and several

methods used in it.

 In chapter N°03, Deep learning is one of the methods of machine learning.

In this chapter we will explain what machine learning is and what it can do. We then

present the model of the neural network which is the basis of deep learning. We will

then show the different deep architectures of artificial neural networks and their

usefulness. The purpose of this chapter is to get an overview of the value of deep

learning, but also of its constraints.

 Chapter N°04 is devoted to describe the tools used in our experiments, and

a brief discussion over the results.

CH01: Image Processing and Computer Vision

3

 ـــ

 Introduction:

 Vision, the most important of the five senses human have, thanks to ALLAH for an

eye with more than six million cone cells, each one of them has one of three color-

sensitive proteins known as opsins, these last ones change shape when hit by photons of

light, triggering a cascade that produces electrical signals, which in turn transmit the

messages to the brain for interpretation. Hence, a man can see a whole scene around fully

and clearly. The idea of making this process possible for machines creates the field of

computer vision.

 Image digitization with data compression was performed for the first time in 1920

by British inventors Harry G. Bartholomew and Maynard D. McFarlane with the intention

to send faxes from London to New York. Digital image processing focuses on two major

tasks that are improvement of pictorial information for human interpolation and

processing of image data for storage, transmission and representation for autonomous

machine perceptions [01] to extract useful information with the help of computer vision

algorithms.

 The provenance of Computer vision goes back to an MIT undergraduate summer

project in 19661. It can be defined as a scientific field that extracts information out of

digital images, and through its applications, it can be defined as building algorithms that

can gain high-level understanding from the content of digital images or videos and use it for

other applications. Digital Images are an important type of digital media, and an essential

tool for many scientists. As in astrophysics data from both satellites and distant stars and

galaxies is collected in the form of images, and Medical imaging makes it possible to

gather different kinds of information in the form of images, even from the inside of the

body. By analyzing these images, it is possible to discover tumors and other disorders. For

this to be achieved computer vision rely on image processing advanced techniques such

as image enhancement, restoration and compression.

1 Seymour A Papert. The summer vision project. 1966

CH01: Image Processing and Computer Vision

4

2-Image processing VS computer vision:

 In many contexts the two terms “Computer vision” and “image processing” are

used almost as they pour into the same concept. They both involve practicing some

computations on images. But are they really the same?

 In Image processing, an image is given as input to be "processed", and an output

image is returned after applying the transformations according to the context and the goals

to be achieved. The transformations can be “smoothing”, “sharpening”, “contrasting” and

“stretching”. Unlike Computer vision, it takes an image or a video as input, and the goal is

to gain a high-level understanding about the image and its contents including being able to

infer something about it. Computer vision uses image processing algorithms to solve some

of its tasks.

 The succession from image processing to computer vision can be classified into

three levels low, mid and high-level processes [03] (see Figure N°01). In Low-level process

both inputs and outputs are defined as images, such processes concern the image pre-

processing operations such as contrast enhancement, noise reduction, and image

sharpening. Mid-level processes concern operations such as segmentation, representation

& description, and classification of objects. In the last step, High-level processes are carried

out to make the sense, understanding, and autonomous navigation of individual objects for

vision. Thus, Low-level to Mid-level processes are devoted to image processing while from

Mid-level to High-level processes are devoted to computer vision.

 Figure N°01: The succession from image processing to computer vision.

CH01: Image Processing and Computer Vision

5

3-Image processing:

Modern technology has made it possible to manipulate multidimensional signals

with systems that range from simple digital circuits to advanced parallel computers [03].

The discipline of image processing is a vast one, encompassing signal processing

techniques as well as techniques that are specific to images. Its applications range from

medicine to entertainment, passing by geological processing and remote sensing. An

image can be regarded as a function f (x, y) of two variables x and y as in electrical

engineering and computer science, it is a two-dimensional signal.

3.1 – Digital image:

 In the real world an image can be a photograph, a painting, or even a dream, but in

the world of computers, it is a set of dots called “pixels”. Such image is commonly known

as digital image and formally defined as an array of pixels whose values specify the light

intensity of the flux on the picture element represented by that pixel. As it said before the

digital image is a function of two variables x and y which are responsible for the

distribution (positions2) of the image pixels. Positions and value are positive scalars

whose range depends on the digitization unit characteristics. The value of each pixel

could be between 0 and 2553. Three different kinds of digital images could be illustrated:

• Black and white image,

• Gray value image, and

• Color image.

3.2 – image acquisition:

Before any procedure of image processing can began an image has to be captured

and converted to digital form. This process is named image acquisition; its purpose is to

transform a view of the real world into a digital image. However, a good understanding of

the image formation process is required in quantitative analysis of any images requires.

For an object in the three-dimensional world to become a digital image in the memory of

a computer it must pass through three necessary steps:

• Becoming visible: by interacting with the light or more generally an

electromagnetic radiation an object can be visible. The light collected by a camera

system is determined by the optical properties of the material from which the

object is made as well as by the illumination4 (see Figure N°02).

• Projection: The optical system collects the light rays reflected from the objects

and projects the three-dimensional world onto a two-dimensional image plane.

2 The position of the pixel is specified by the function f (x, y) where x is the width, and y is the height.
3 0 representing the darkest intensity, and 255 the lightest intensity.
4 Position and nature of the light or, more generally, radiation sources.

CH01: Image Processing and Computer Vision

6

• Digitization: The continuous image on the image plane must be converted into

image points on a discrete grid. Furthermore, the intensity at each point must be

represented by a suitable finite number of gray values (Quantization) [04].

Figure N°02: Image capture. A scene is illuminated by energy from a light source.

Reflected light may fall on the detector and be captured.

3.3 – image enhancement and restoration:

 In the internet, in our phones and laptops, Millions of pictures ranging from

biomedical images to the images of natural surroundings, such pictures might contain a

lot of important information in diverse domains of application. The quality of the output

image may be inferior to that of the original input picture when converted from one form

to another by processes like imaging, scanning, or transmitting. Hence, there is a need to

improve the quality of such images, so that the output image is better for human

perception or machine analysis.

 The realm of image enhancement covers contrast and edge enhancement, noise

filtering, feature sharpening, and so on. These methods find applications in visual

information display, feature extraction, object recognition, and so on [05] [06]. It mainly

improves the visual appearance of the image or to make the original image more suitable

for human or computer processing [05].

3.3.1 – Distinction between image enhancement

 and image restoration:

Sometimes we receive blurred or noisy images which are degraded by some

degrading mechanism. A blur might be caused by defocused camera5, atmospheric

degradation6, or a relative accelerated motion between the object and the focal plane of

the lens of the camera during the capturing of a scene. In such cases the conventional

enhancement techniques would not be suitable to clarify the object within the image but

the restoration or reconstruction of the original scene might work very well if we can

mathematically model the cause of degradation.

5 The camera is not appropriately focused in the moment the picture was taken.
6 An outdoor scene captured on a foggy winter morning.

CH01: Image Processing and Computer Vision

7

 It is needless to say, the reconstruction or restoration techniques are different

from the enhancement techniques which are employed not necessarily to recover the

original object from the scene but essentially to get a better-quality picture. Image

restoration techniques seek to recover an image that has been degraded by a degradation

phenomenon while the ultimate goal of image enhancement techniques is to improve the

quality of the image.

3.3.2 - SPATIAL IMAGE ENHANCEMENT TECHNIQUES:

The spatial filtering techniques used for noise reduction (or smoothing) are as follows:

• Spatial low-pass, high-pass and Band-Pass filtering

• Unsharp masking and crisping

• Directional smoothing

• Median filtering

A- Spatial low-pass and high-pass Filtering:

 In signal processing theory, Low-pass filtering attenuates the high-frequency

components in the signal and is essentially equivalent to integrating the signal. Such

integration implies summation and averaging the signal. Low-pass filter is also called

blurring or smoothing filter, it is a spatial averaging operation. The simplest low-pass

filter just calculates the average of a pixel and all of its eight immediate neighbors so the

original value of the pixel will be replaced by the resulting value. In particular, this

operation is useful in removing visual noise, which generally appears as sharp bright

points in the image.

 On the other hand, High-pass filtering of an image produces an output image in

which the low spatial frequency components are attenuated; it is mostly used for edge

enhancement to emphasize fine details in the image. Since the sharpness of an image is

related to the content of high-frequency components, high -pass filtering is used to

deblurring, while low -pass filtering leads to blurring.

 Such a filter can easily be implemented by subtracting the low-pass output from its

input. Typically, the low-pass filter would perform a relatively long- term spatial average,

((2𝑞 + 1) × (2𝑞 + 1)) with 𝑞 ∈ 𝑍+ window [08].

B- Averaging and Spatial Low-Pass Filtering:

If the resulting image is a low pass filtered image, which means each pixel is replaced by a

weighted average of its neighborhood pixels, the output image in this case is expressed as:

 𝑔(𝑚, 𝑛) = ∑ ∑ 𝑎(𝑘, 𝑖)𝑓(𝑚 − 𝑘, 𝑛 − 𝑖) (1.1)

−𝑞≤𝑘,𝑖≤𝑞

CH01: Image Processing and Computer Vision

8

Where 𝑓(𝑚, 𝑛) and 𝑔(𝑚, 𝑛) are the input and output images respectively, 𝑊 is a suitably
chosen neighborhood around the pixel at location(𝑚, 𝑛), 𝑓(𝑚 − 𝑘, 𝑛 − 𝑖) ∈ 𝑊 , and
𝑎(𝑚 − 𝑘, 𝑛 − 𝑖) are the filter weights. In general, in spatial averaging filters, all the
weights are assigned equal values. Hence the mathematical representation of the filtering
becomes:

 𝑔(𝑚, 𝑛) =
1

𝑁
∑ ∑ 𝑓(𝑚 − 𝑘, 𝑛 − 𝑖) (1.2)

−𝑞≤𝑘,𝑖≤𝑞

Where 𝑁 is the number of pixels in the neighborhood W.

The spatial averaging operation on an image may be used to smooth the noise. If the

observed image is given as:

 𝑑(𝑚, 𝑛) = 𝑓(𝑚, 𝑛) + 𝜇(𝑚, 𝑛) (1.4)

Then the spatial average yields:

𝑔(𝑚, 𝑛) =
1

𝑁
∑ ∑ 𝑓(𝑚 − 𝑘, 𝑛 − 𝑖) + �̅�(𝑚, 𝑛) (1.5)

−𝑞≤𝑘,𝑖≤𝑞

Where �̅�(𝑚, 𝑛) is the spatial average of the noise component 𝜇(𝑚, 𝑛). If the noise has a

variance 𝜎², then it can be shown that �̅�(𝑚, 𝑛) is zero mean and has variance
𝜎²

𝑁
. This

implies that the image noise power is reduced by a factor equal to the number of pixels

chosen in the neighborhood of the central pixel by performing the spatial averaging

filtering.

 The conventional spatial filtering utilizes an averaging procedure to generate the

smoothened image. The weights used to average are image data invariant. Thus, all

regions of the image which can be brought under an arbitrary neighborhood W are

equally affected. In such a way, spatial filtering by averaging

 (I) Does not take into account the effect of the difference of gray

levels between the central pixel and a neighboring pixel.

 (II) Does not always take into account the diminishing influence of

the pixels that are situated in increasing distance from the central pixel [08].

C- Unsharp Masking and Crisping:

 As we have observed from the above, a sharp image can be obtained

by high-pass filtering a blurred image. Alternatively, subtracting a blurred version of the

image from the original image may also lead to the sharpening of the image [08]. Here

 𝑣(𝑚, 𝑛) = 𝑓(𝑚, 𝑛) + 𝑔(𝑚, 𝑛) (1.6)

Where 𝑔(𝑚, 𝑛) is a low-pass-filtered version of the original image 𝑓(𝑚, 𝑛).

CH01: Image Processing and Computer Vision

9

An Unsharp mask is simply another type of high-pass filter. Such mask is

constructed by Low-pass filtering an image. Usually the mask is scaled before it is

subtracted to make ease control in the amount of sharpening that is applied. Also, the

strength of the low-pass filter used can also be adjusted7. From an alternative viewpoint,

to result in a better high-contrast image a gradient or a high-pass signal may be added to

the original image. The Unsharp masking operation can be represented by:

 𝑣(𝑚, 𝑛) = 𝑓(𝑚, 𝑛) + 𝛾ℎ(𝑚, 𝑛) (1.7)

where 𝛾 > 0 and ℎ(𝑚, 𝑛) is a suitably defined gradient at (𝑚, 𝑛).

 This is also referred to as high emphasis filter where the Low frequency

components are retained while emphasizing the High frequency components of the image.

D- Directional Smoothing:

A blurred image is always the result when using a Low-pass filter and quite often

the crisp edges are blurred by averaging. To minimize this effect, the directional

averaging operation is often used to inhibit the edges from getting blur resulting from the

smoothing operation. Spatial averages 𝑔(𝑚, 𝑛; 𝜃) are calculated in several directions 𝜃 as:

𝑔(𝑚, 𝑛; 𝜃) = −𝑓(𝑚 − 𝑘, 𝑛 − 𝑖) (1.8)

Where 𝑓(𝑚 − 𝑘, 𝑛 − 𝑖) ∈ 𝑊0 , and 𝑊0 is the neighborhood selected in the direction 𝜃.

The key to the implementation of effective directional smoothing is to identify a specific

direction 𝜃∗ for which |𝑓(𝑚, 𝑛) − 𝑔(𝑚, 𝑛; 𝜃∗)| is minimum.

E- Median Filter:

The standard median (SM) filter is a simple nonlinear smoother; It is particularly

effective in reducing impulsive-type noise [21]. In median filtering the input pixel is

replaced by the median of the pixels contained in the neighborhood [22]. Symbolically

this can be represented as: 𝑣(𝑚, 𝑛) =

 𝑚𝑒𝑑𝑖𝑎𝑛{𝑦(𝑚 − 𝑘, 𝑛 − 𝑖) 𝑦(𝑘, 𝑖) ∈ 𝑊,−𝑞 ≤ 𝑘, 𝑖 ≤ 𝑞} (1.9)

Where 𝑊 is suitably chosen neighborhood. The algorithm for median filtering requires

arranging the pixel gray values in the neighborhood in increasing or decreasing order and

picking up the value at the center of the array (see Figure N°03). Generally, the size of the

neighborhood is chosen as odd number so that a well-defined center value exists.

If, however, the size of the neighborhood is even the median is taken as the arithmetic

mean of the two values at the center.

7 A very strongly blurred mask can be used to remove large-scale brightness differences, while a slightly blurred
mask will sharpen fine detail.

CH01: Image Processing and Computer Vision

10

Figure N°03: median filter example using a 3*3 sampling window.

Figure 04: Result of median filtering: (a) original image, (b) salt and pepper noisy image,

 (c) result of median filtering.

Some of the properties of median filter are:

• It is a nonlinear filter.

• It is useful in removing isolated lines or pixels while preserving spatial resolution.

It is found that median filter works well on binary noise but not so well when the

noise is Gaussian.

• Its performance is poor when the number of noise pixels is greater than or equal to

half the number of pixels in the neighborhood.

CH01: Image Processing and Computer Vision

11

3.3.3 - HISTROGRAM-BASED CONTRASTENHANCEMENT:

 Images with low contrast are usually captured in dark or bright environments. In

such images a large number of pixels occupy only a small portion of the available range of

intensities. So, preprocessing of such images becomes necessary to make the images

suitable for other image processing applications. Through histogram modification, the

dynamic range of gray levels can be increased by reassigning each pixel with a new

intensity value. The principle here is to stretch the dynamic range of the pixel values in a

suitable way.

 The information conveyed by an image is related to the probability of occurrence

of gray levels in the form of histogram in the image [05]. By uniformly distributing the

probability of occurrence of gray levels in the image, the perception of the information

content in the image becomes much easier.

A- Image Histogram:

The histogram of an image is a discrete function. It represents the relative

frequency of occurrence of the various gray levels in the image. From a mathematically

point of view, for a digital image with gray level in the range [0, 𝐿 – 1], discrete function of

the histogram is as follow: 𝑝(𝑟𝑘) =
𝑛𝑘

𝑁

Where 𝑟𝑘 is the 𝑘𝑡ℎ gray level and 𝑛𝑘 is the number of pixels in the image with that gray

level. N is the total number of pixels in the image. It may be noted that 𝑘 = 0, 1, . . . , 𝐿 − 1.

An image is poorly visible; the most likely reason is that the image histogram is narrow

(see figure N°05 (a)) which means pixels that represent different objects or different parts

of an object have a very close8 gray level. Similarly, a widely distributed histogram

(see figure N°05 (b)) means that almost all the gray levels are present in the image which

leads to a clearer image.

 Figure N°05: (a) A representation of a narrow image histogram.

 (b) A representation of a widely distributed image histogram.

8 The difference in gray levels present in the image is generally low.

CH01: Image Processing and Computer Vision

12

B- Histogram Equalization (HE):

Histogram equalization [09] is widely used technique for contrast enhancement in

a variety of applications due to its simple function and effectiveness. It focuses on

adjusting the gray scale of the image so that the gray level histogram of the input image is

mapped onto a uniform histogram [01] [10]. The goal of HE is to obtain a uniform

histogram for the output image.

Let the variable 𝑟 represents a random variable which indicates the gray level of an

image. First, assuming that r is continuous and lies within the closed interval [0,1]

with 𝑟 = 0 representing black and 𝑟 = 1 representing white. For any 𝑟 in the specified

interval let us consider a transformation of the form: 𝑠 = 𝑇(𝑟).9

It is assumed that the transformation T satisfies the following criteria:

• 𝑇(𝑟) is a single valued function, monotonically increasing in the interval

• 𝑇(𝑟) lies between 0 and 1

The first condition preserves the order from black to white in the gray scale, and the

second one guarantees that the function is consistent with the allowed range of pixel gray

values. The inverse transform from s to r can be represented by:

 𝑟 = 𝑇−1(𝑠). (1.10)

Let the original and transformed gray levels be characterized by their probability density

functions 𝑝𝑟(𝑟) and 𝑝𝑠(𝑠) respectively. Then from elementary probability theory, if 𝑝𝑟(𝑟)

and 𝑝𝑠(𝑠) are known and if 𝑇−1(𝑠) satisfies the first condition stated above then the

probability density function of the transformed gray level is given by:

𝑝𝑠(𝑠) = [𝑝𝑟(𝑟)
𝑑𝑟
𝑑𝑠
]
𝑟−𝑇−1(𝑠)

 (1.11)

If the transformation is given by:

𝑠 = 𝑇(𝑟) = ∫ Pr(w)dw (1.12)
r

0

Then substituting
𝑑𝑟

𝑑𝑠
= 𝑝𝑟(𝑟) in Eq. 1.11 we obtain 𝑃𝑠(𝑠) = 1 . Thus, it is possible to

obtain a uniformly distributed histogram of an image by the transformation described by

Eq. 1.12.

From the above discussions, it is clear that using a transformation function equal

to the cumulative distribution of T (as given by Eq. 1.12) produces an image whose gray

levels have a uniform density. This implies that such a transformation results in an

9 𝑇(𝑟) Is a transformation that produces a level 𝒔 for every pixel value 𝒓 in the original image.

CH01: Image Processing and Computer Vision

13

increase in the dynamic range of the pixel gray values which produce a pronounced effect

on the appearance of the image.

Figure N°06: Histogram equalization results: (a) original image, (b) histogram of the

original image. (c) Enhanced image. (d) Equalized histogram.

C- guidance:

There are many other HISTROGRAM-BASED CONTRAST ENHANCEMENT

techniques such as BBHE, DSIHE, MHE, MMBEBHE, RMSHE, GHE, LHE and IDBPHE

• BBHE: Brightness Bi-Histogram Equalization [11] [12].

• DSIHE: Dualistic Sub Image Histogram Equalization [13] [14].

• MHE: Multi Histogram Equalization [15].

• MMBEBHE: Minimum Mean Brightness Error Bi-Histogram Equalization [16].

• GHE: Global Transformation Histogram Equalization [17].

• LHE: Local Transformation Histogram Equalization.

• IDBPHE: Recursive Mean Separate Histogram Equalization [19] [14].

3.3.4- FREQUENCY DOMAIN METHODS OF IMA ENHANCEMENT:

 Enhancement in the frequency domain is accomplished by high-pass, low-pass,
and band-pass filtering of the original image. The task of enhancement in frequency
domain implicates computing the Fourier transform of the image 𝑓(𝑥, 𝑦) (i.e. 𝐹(𝑢, 𝑣))
and the filter transfer function 𝐻(𝑢, 𝑣) and taking the inverse Fourier transform of the
product 𝐹(𝑢, 𝑣)𝐻(𝑢, 𝑣) [23]. The variations in gray level in an image represent the
frequency component present in the image. A uniformly homogeneous image with
constant gray value has 0 frequencies, while an image with adjacent black-and-while
image has high spatial frequencies.

 The convolution theorem states that the convolution in spatial domain is
equivalent to multiplication in frequency domain. This implies that

CH01: Image Processing and Computer Vision

14

𝐺(𝑢, 𝑣) = 𝐻(𝑢, 𝑢)𝐹(𝑢, 𝑣) (1.13)

where 𝐺(𝑢, 𝑣), 𝐻(𝑢, 𝑣), and 𝐹(𝑢, 𝑣) are the Fourier transforms of 𝑔(𝑥, 𝑦), ℎ(𝑥, 𝑦), and

𝑓(𝑥, 𝑦) respectively. Taking the inverse Fourier transform of 𝐺(𝑢, 𝑣), we get

𝑔(𝑥, 𝑦) = I−1[𝐻(𝑢. 𝑣)𝐹(𝑢. 𝑣)] (1.14)

It may be observed that by suitable selection of ℎ(𝑧, 𝑦), we get a resultant image 𝑔(𝑧, 𝑦)

which is an enhanced version of the original image 𝑓(𝑧, 𝑦). As- summing 𝑓(𝑥, 𝑦) to be

point source of light, i.e., a unit impulse function whose Fourier transform is unity,

𝐺(𝑢, 𝑣) = 𝐻(𝑢, 𝑣)

Figure N°07: Two-dimensional filter response (a) high-pass, (b) low-pass.

3.3.4.1 - Homomorphic Filter:

 Homomorphic filters are widely used for compensating the effect of non-uniform

illumination in an image. Pixel intensities in an image represent the light reflected from

the corresponding points in the objects. An image 𝑓(𝑧, 𝑦) may be characterized by two

components:

 (1) The amount of source light incident on the scene being viewed.

 (2) The amount of light reflected by the objects in the scene.

These portions of light are called the illumination and reflectance components, and are

denoted 𝑖(𝑥, 𝑦) and 𝑟(𝑥, 𝑦) respectively. The functions 𝑖(𝑥, 𝑦) and 𝑟(𝑥, 𝑦) combine

multiplicatively to give the image function 𝑓(𝑥, 𝑦):

𝑓(𝑥, 𝑦) = 𝑖(𝑥, 𝑦)𝑟(𝑥, 𝑦) [05] where 0 < 𝑖(𝑥, 𝑦) < 𝛼 and 0 < 𝑟(𝑥, 𝑦) < 1

CH01: Image Processing and Computer Vision

15

Figure N°08: Homomorphic filtering: (a) input image, (b) result of Homomorphic

filtering.

3.3.5 - NOISE MODELING:

 During acquisition, coding, transmission, or processing, Noise is always present in

digital images and very difficult to eliminate without the prior knowledge of noise model.

Removal of noise from an image is one of the most important tasks in digital image

processing. The main problem here is to succeed in eliminating as much noise as possible,

while preserving the structures and details of the image. There are several approaches

towards removing noise from an image depending on the nature of the noise, such as

additive or multiplicative type of noise which is primarily inherent to the imaging

procedure.

3.3.5.1 - Types of Noise in an Image and Their Characteristics:

 Similar to other digital signals, digital images are also sometimes inadvertently

corrupted by unwanted signals, called noise. Digital images are often depraved by

different types of noise such as impulse noise during its acquisition and transmission

phase. Such deterioration negatively influences the performance of many image

processing techniques and a preprocessing module to filter the images is often required

[24] [25].

 Here is a description of the four important classes of noise:

Figure N°09: noise classes.

• Additive noise: Sometimes images are degraded by noises generated from

sensors which are mostly thermal whit Gaussian; it is essentially additive and

CH01: Image Processing and Computer Vision

16

signal independent mathematically described 𝑏𝑦 𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) + 𝑛(𝑥, 𝑦) ,

where 𝑔(𝑥, 𝑦) is the result of the original image function f(z, y) corrupted by the

additive Gaussian noise 𝑛(𝑥, 𝑦).

• Multiplicative noise: it causes a convolution of the signal with the noise in the

frequency domain and is therefore harder to remove than additive noise, which is

merely added to the signal in both time and frequency [26]. The graininess noise

from photographic plates and speckle noise from the imaging systems are

multiplicative noise, which may be represented as 𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) ∗ 𝑛(𝑥, 𝑦),

where 𝑛(𝑥, 𝑦) is the multiplicative noise.

• Impulse noise: quite often noises are impulse noise generated from sensors

Impulse noise can be assumed as an additive noise [27], and randomly damages

the pixel, at random positions [28]. Normally, it appears as black and white

speckles on the image [29]. Which can be modeled as 𝑔(𝑥, 𝑦) = (1 − 𝑝)𝑓(𝑥, 𝑦) ∗

𝑝. 𝑖(𝑥, 𝑦) where 𝑖(𝑥, 𝑦) is the impulsive noise and p is a binary parameter that

assumes the values of either 0 or 1.

• Quantization noise: it is essentially a signal dependent noise. This noise is

characterized by the size of signal quantization interval. Such noise produces

image-like artifacts and may produce false contours around the objects. The

quantization noise also removes the image details which are of low-contrast [05].

3.3.6 – image restoration:

 Removal, reduction of degradations, or improvement of the quality of images

acquired by optical, electro-optical or electronic means is one of the most important tasks

in digital image processing. Images may be hindered due to several reasons, e.g.:

• Imperfection of the imaging system

• Imperfection in the transmission channel

• Degradation due to atmospheric condition

• Degradation due to relative motion between the object and

the camera

3.3.6.1 – Noise classification :

A- Salt and Pepper noise:

It is also called impulse noise, random noise or spike noise, S&P noise model, only a

proportion of the entire image pixels are corrupted whereas other pixels are non-noisy. A

standard S&P noise value may be either minimum (0) or maximum (255). The common

intensity value for pepper noise is close to 0 and for salt noise is close to 255.

Furthermore, the unaffected pixels remain unchanged.

𝑛(𝑥, 𝑦) = {
0, 𝑃𝑒𝑝𝑝𝑒𝑟 𝑛𝑜𝑖𝑠𝑒
255, 𝑆𝑎𝑙𝑡 𝑛𝑜𝑖𝑠𝑒

CH01: Image Processing and Computer Vision

17

Where 𝑛(𝑥, 𝑦) the value intensity of the pixel.

B- Gaussian noise:

Named after Carl Friedrich Gauss, it is a statistical noise having a probability

density function (PDF) equal to that of the normal distribution, which is also known as the

Gaussian distribution. In other words, the values that the noise can take are Gaussian

distributed.

 Figure N°10: Plot of Probability Distribution Function. Where g = gray value,

 σ = standard deviation and µ = mean.

The main sources of Gaussian noise in digital images arise during acquisition10,

high temperature, and transmission11. In digital image processing, Gaussian noise can be

reduced using a spatial filter, but when smoothing an image, an unwanted result can

cause the edges of the image to be erased and fine scaled. Conventional spatial filtering

techniques for noise removal include: averaging (convolution filtering), median filtering,

and Gaussian smoothing.

C- Poissonian Noise:

 The appearance of this noise is seen due to the statistical nature of electromagnetic

waves such as x-rays, visible lights and gamma rays. The x-ray and gamma ray sources

emitted number of photons per unit time. These rays are injected in patient’s body from

its source, in medical x rays and gamma rays imaging systems. These sources are having

random fluctuation of photons. Result gathered image has spatial and temporal

randomness. This noise is also called as quantum (photon) noise or shot noise.

D- speckle noise:

 Speckle noise is a common phenomenon in all coherent imaging systems like laser,

acoustic, SAR and medical ultrasound imagery [40]. This noise is multiplicative noise [41],

10 for example, sensor noise caused by poor lighting.
11 The noise may be caused by electronic circuit noise.

CH01: Image Processing and Computer Vision

18

it can exist similar in an image as Gaussian noise. Its probability density function follows

gamma distribution, [38] [39].

𝐹(𝑔) =
𝑔𝜎−1

(𝜎 − 1)! 𝜎𝜎
𝑒
−𝑔
𝜎 [42]

Where 𝒈 is the gray level and 𝝈 is the variance.

3.3.6.2 – RESTORATION TECHNIQUES:
A- Mean Filter:

 The Mean filter is a linear average filter. Here, the filter calculates the average

value of the corrupted image in a predetermined area. Then, the intensity value of the

central pixel is replaced by this average value. The average filter is a simple spatial filter.

It is a sliding window filter that replaces the central value of the window with the average

of all pixel’s values in the kernel or window. The window is usually square, but it can be

any shape.

Figure N°11: Mean filter results (a) original image, (b) image with mean filter of 3*3

window, (c) image with mean filter of 5*5 window, (d) image with mean filter of 7*7

window.

The disappearance of fine details and the spreading of the contour as a function of

the size of the kernel are striking in these examples. This is one of the drawbacks of linear

filters. However, a finer choice of the kernel coefficients can make it possible to attenuate

these defects to a certain extent. In fact, the Mean filter does not take into account the

correlations between the pixels of an image; its performance in terms of maintaining

image quality is therefore poor. The smooth filter presented in the following paragraph is

an example of a linear filter whose coefficients, chosen with more care, allow less coarse

processing of the image.

CH01: Image Processing and Computer Vision

19

B- Gaussian filter (smooth filter):

Like the Mean filter, the effect of the smooth filter increases with the size of its

core. The outlines and fine details are however better preserved than with the averaging

device: thus, in the case of smooth 7 * 7, there is no impression of blur on the window

bars, which is annoying with the Mean filter, by using a Gaussian weighting, the smooth

filter takes better account of the correlations between pixels, in particular for a texture

(the gray level correlation function for a texture is often modeled by a Gaussian).

Figure N°12: Gaussian filter results (a) original image, (b) image with Gaussian filter of

3*3 window, (c) image with Gaussian filter of 5*5 window, (d) image with Gaussian filter

of 7*7 window.

The smooth filter is a good example of the performance that can be achieved with a

linear finite impulse response filter. The big advantage of these filters is their ease of

design and implementation, but they cannot be used for too fine work (the deterioration

of the contours which they induce for example, will prevent a fine segmentation of the

images). These limitations have therefore led to the design of non-linear filters such as

median filter.

C- Inverse filter:

 Suppose that ℎ is the blur operator (unknown or given by

calibration of measuring devices) and that we do not take into account the noise. The

blurred image 𝑓 verifies 𝑓 = ℎ ∗ 𝑢 where 𝑢 is the original image (which we want to find).

An equivalent formulation is 𝐹 = 𝐻.𝑈 that means 𝑈 =
𝐹

𝐻
 where 𝐹 denotes the Fourier

transform of 𝑓 [44].

The reverse filter is the simplest of the filters. Under certain conditions, it can give very

good results. It therefore consists of calculating
1

 𝐻
 and applying it to the blurred image.

This is the best filter to deconvolve a noiseless image. However, it is not always possible

to calculate
1

𝐻
 because 𝐻 can cancel out. An alternative is the Van Cittert algorithm12.

12 Van Cittert's algorithm is based on the frequency formulation of a convolution.

CH01: Image Processing and Computer Vision

20

D- Wiener Filter:

 The most important technique for removal of blur in images due to linear motion

or unfocussed optics is the Wiener filter. From a signal processing standpoint, blurring

due to linear motion in a photograph is the result of poor sampling. Each pixel in a digital

representation of the photograph should represent the intensity of a single stationary

point in front of the camera. Unfortunately, if the shutter speed is too slow and the camera

is in motion, a given pixel will be an admixture of intensities from points along the line of

the camera's motion. when the image is blurred by a known low-pass filter, it is possible

to recover the image by inverse filtering.

However, inverse filtering is very sensitive to additive noise. The approach of reducing

one degradation at a time allows us to develop a restoration algorithm for each type of

degradation, and simply combine them. The Wiener filtering executes an optimal tradeoff

between inverse filtering and noise smoothing. It removes the additive noise and inverts

the blurring simultaneously [43].

E- Patch-dictionary based image recovery:

 Varied versions of algorithms have been proposed for dictionary learning such as

KSVD [30]. The idea is to combine the gains of patch methods such as NL-Means, with

efficient learning methods in redundant dictionaries [31]. Dictionary learning was

introduced by B. A. Olshausen and D. J. Field in articles [32] and [33]. The BM3D method

(Block Matching 3D) introduced by Dabov, Foi, Katkovnik, and Egiazarian [34] in 2007,

then extended by the same authors in [35] in 2008 and in the article [36] in 2009, this

method which mixture of various techniques, is based on block processing and gives the

best digital results in the state of the art of image denoising.

F- Non-Local Means filter (NL-Means):

 This method is close to Denoising by dictionary learning. The major difference is

that the image itself in some sort provides the dictionary. NL-Means is a patch method

which is based on the self-similarity of the image. It was introduced by Buades, Coll, and

Morel in 2005 [45]. Kervrann and Boulanger, Awate and Whitaker proposed similar

methods in 2006 [46]. This method is more frequently referred to as NL- Means. The

iterative approach of NL-Means was proposed by Brox and Cremers in 2007 [47], then

detailed by Brox, Kleinschmidt, and Cremers in 2008 [48]. In 2009, Tschumperlé and

Brun tried to link the patch denoising methods and the anisotropic diffusion methods

[49]. Louchet and Moisan studied the association between total variation, Bayesian

models and patch approaches in 2011 [50].

 As shown by Buades et al. in [51], the principle of NL-Means consists in taking

advantage of a redundancy of the long-distance information that can be found in the

images, and then it is a question of finding similar pixels (patches) in the image, and

calculating their weighted average according to their similarity with the pixel witch

CH01: Image Processing and Computer Vision

21

meant to be denoised, The similarity between two pixels 𝑖 and 𝑗 depends on the similarity

of the intensity gray level vectors 𝑣(𝑁𝑖) and 𝑣(𝑁𝑗) , where 𝑁𝑘 denotes a square

neighborhood of fixed size and centered at a pixel 𝑘.

The definition of NL-Means as introduced by Buades et al [51] is

𝑁𝐿[𝑣](𝑖) = ∑  𝑗∈𝑁𝑖 𝑤(𝑖, 𝑗)𝑣(𝑗) (1.15)

Where 𝑁𝑖 is a set of neighboring pixels of 𝑖 the family of weights {𝑤(𝑖, 𝑗)}
𝑗
 depend on the

similarity between the pixels 𝑖 and 𝑗, and satisfy the usual conditions

0 ≤ 𝑤(𝑖, 𝑗) ≤ 1 and ∑  𝑗 𝑤(𝑖, 𝑗) = 1.

𝑤(𝑖, 𝑗) =
1

𝑍(𝑖)
𝑒
−
∥∥𝑣(𝒩𝑖)−𝑣(𝒩𝑖)∥∥2,𝑎

2

ℎ2

𝑍(𝑖) =∑  

𝑗

𝑒
−
∥∥𝑣(𝒩𝑖)−𝑣(𝒩𝑖)∥∥2,𝑎

2

ℎ2

Where 𝑎 > 0 is the standard deviation of the Gaussian kernel, and the parameter ℎ acts as

a degree of filtering. It controlsthe decay of the exponential function and therefore the de-

cay of the weights as a function of the Euclidean distances.

3.4 – multi-resolution processing:

 Wavelets have become an important mathematical tool; they have established

themselves in various fields of application. By their extraordinary aptitude for

approximation and concentration of energy, the implication of the wavelet transform in

the various algorithms imposing in compression of images becomes an essential tool.

Therefore, it has been applied to almost all technical fields including image denoising,

numerical integration, and pattern recognition [56].

 The concept of multi-resolution processing is due to Stephane Mallat [54] and Yves

Meyer [55]. A multi-resolution analysis of 𝐿 2(𝑅) is defined as a sequence of closed subspaces 𝑉𝑗

of 𝐿 2(𝑅), 𝑗 ∈ 𝑍 , with the following properties [54] [55].

− 𝑉𝑗 𝑉𝑗+1.

− 𝑣(𝑥) ∈ 𝑉𝑗 𝑣(2𝑥) ∈ 𝑉𝑗+1.

− 𝑣(𝑥) ∈ 𝑉0 𝑣(𝑥 + 1) ∈ 𝑉0.

− ⋃ 𝑉𝑗

+∞

𝑗=−∞

 Vj is dense in L2(𝐑) and ⋂ Vj = {0}

+∞

j=−∞

CH01: Image Processing and Computer Vision

22

− A scaling function ∈ 𝑉0, with a non-vanishing integral, exists such that the
collection { (𝑥𝑙) | 𝑙 ∈ 𝒁 } is a Riesz basis of 𝑉0.

In a rapidly developing field, scientists are working hard to discover new

technologies, and make it available in papers and several good ones concerning

wavelets are already available, such as [57, 58, 59, 60, 61, 62]. Of these, [60]

involves a brief introduction to multi-resolution processing(analysis), [57] define

wavelets from an approximation theory point of view, [58] review the continuous

and discrete wavelets, [62] focuses on the construction of wavelets, [59] looks at

wavelets from a signal processing point of view and [61] compares wavelets with

Fourier techniques.

3.5 – Image compression:

 In an image, there is usually a relationship between the pixels, hence the existence

of information redundancy. The goal of compression is to minimize or even eliminate this

redundancy, the objective of which is to achieve the best possible fidelity rate for an

available storage or transmission capacity.

There are two types of compression:

• Lossless compression: the reconstruction of the data is identical to the originals
but the compression rate is very low.

➢ No change in the image.

➢ Only changes the way it is encoded on disc.

➢ Display (= decompression) of the image: identical to the original.

• Lossy compression: Removes information less essential to the human eye.
➢ Reduction of the number of data

➢ Higher compression ratio than lossless compression.

 The higher the compression ratio, the greater the level of loss and the more the

image quality is degraded. [63]

There are many ways of encoding, representing and compressing images. There

are a multitude of formats to compensate for the diversity of images, different in size,

number of colors and method of representation (vector and bitmap). Each format is

complementary to the others. Today, with the considerable technological advance,

algorithms allow themselves to perform numerous calculations to compress and

decompress an image. The ratios are getting larger and larger, without significant and real

loss of image quality.

The latest few years show that compression methods (fractal 13and wavelet) are

particularly promising. They show the need to associate computer programming with

13 An enlargement or reduction of a set of identical patterns by transformations: translations, rotations,
symmetries.

CH01: Image Processing and Computer Vision

23

mathematics. The future of compression can only be done through mathematical

algorithms, and advances in mathematical research will surely lead to a breakthrough in

image and file compression.

4 – Computer vision:

Computer vision is located in the heart of the intersection of several scientific

fields (see Figure N°13). Neuroscience can help by first understanding human vision also

we can see computer vision as a subfield of computer science, and for the developing of

computer vision algorithm an algorithm theory or machine learning are essential.

Figure N°13: Computer vision at the intersection of multiple scientific fields.

4.1 – segmentation, reconstruction, recognition:

 In practice, David Marr's paradigm [64] translates into three stages of processing:

segmentation, reconstruction and recognition.

• Image Segmentation: To be able to correctly process the mass of multimedia

data conveyed throughout the day around the world segmentation is necessary.

Image segmentation is the most important operation in an image processing

system because it is located at the intersection between image processing and

analysis. As a result, many researchers have worked on the development of

dedicated methods and algorithms. In addition, it has been an important area of

research for several years. As proof, the number of published works dealing with

this problem is difficult to assess. This is the consequence of several elements: the

diversity of the images, the complexity of the problem, the evolution of computing

machines, and a fairly empirical evaluation of the results, there are many

segmentation methods, which can be grouped into three main classes:

1. The edge approach: we consider that the primitives to be extracted

are the lines of contrasts separating regions of different and

relatively homogeneous gray levels, or else regions of different

texture that can be grouped into three categories: derivative

methods, Analytical methods and deformable methods.

CH01: Image Processing and Computer Vision

24

2. The regions approach: image segmentation by the region approach

consists of dividing the image into regions. Several techniques of this

approach are to be distinguished: Region growth, Segmentation by

classification, Segmentation by division fusion.

3. Cooperative approach: depending on the way in which two region

and edge segmentation processes are made to cooperate, three

different approaches can be distinguished: sequential cooperation,

cooperation by merging results and mutual cooperation.

• Image Reconstruction: CT image reconstruction is a mathematical process that

generates tomographic images from X-ray projection data acquired from many

different angles around the patient. Image reconstruction has fundamental impacts

on the quality of the image and therefore on the radiation dose. For a given

radiation dose, it is desirable to reconstruct images with the lowest possible noise

without sacrificing image precision and spatial resolution. Reconstructions that

improve image quality can result in a reduction in radiation dose because images

of the same quality can be reconstructed at a lower dose. At the origin of the

method of reconstructing an object image from its projections (Tomography) is

Radon's work on the determination of functions from their integrals in certain

directions (1917). In 1956 Bracewell demonstrated the relationship between the

Fourier transform and the Radon transform which gave rise to the 2 or 3D image

reconstruction algorithm by the filtered back projection (FBP) method. It was not

until 1963 that the first applications of medical tomography were carried out using

X-rays. The main results of the time were due to Kuhn for obtaining the first

tomographic images by simple rear projection and Cormack for the application of

Radon's work to X-ray acquisitions. From 1970 the first computed tomography

images were published and the development of the first X-ray scanners began.

Neutrons as well as other radiations and particles were subsequently used as

exploration projectiles for the development of several tomography techniques. The

main techniques, currently used in various fields of industry and science, are:

neutron tomography, electron tomography (electron microscope), nuclear

magnetic resonance tomography and positron emission tomography (PET). Here

we focus on the technique of Transmission Tomography using a neutron beam for

the exploration of matter. Two major categories of reconstruction methods exist,

analytical reconstruction and iterative reconstruction (IR).

• Image recognition: A subcategory of Computer Vision and Artificial Intelligence

represents a set of image detection and analysis methods to enable the automation

of a specific task. It is a technology that is able to identify places, people, objects

and many other types of elements within an image and draw conclusions by

analyzing them. Theoretically, image recognition is based on Deep Learning, which

is a sub-category of Machine Learning, refers to a set of techniques and

technologies for machine learning, based on artificial neural networks (further

informations are available in CHAPTER 03).

CH01: Image Processing and Computer Vision

25

4.2-Applications of computer vision:

 The number of images uploaded in the internet around the world is growing

exponentially, cameras are everywhere there are images in Instagram, Pinterest and

Twitter, videos on YouTube, feeds of security cameras, medical and scientific images, to

understand their content computer vision is essential. Here is a non-exhaustive list of

applications of computer vision:

• Scene recognition: is one of the hallmark tasks of computer vision. For instance, a

photo of landmark can be compared to billions of photos on Google to find the best

matches. We can then identify the best match and deduce the location of the photo.

• Face detection: it has been used for multiple years in cameras to take better

pictures and focus on the faces. Smile detection can allow a camera to take pictures

automatically. Face recognition is more difficult than face detection, but with the

scale of today’s data, companies like Facebook are able to get very good

performance. Finally, we can also use computer vision for biometrics, using unique

iris pattern recognition or fingerprints.

• Mobile visual search: With computer vision, we can do a search on Google using

an image as the query.

• Self-driving cars: Autonomous driving is one of the hottest applications of

computer vision. Companies like Tesla, Google or General Motors compete to be

the first to build a fully autonomous car.

• Automatic checkout: Amazon Go is a new kind of store that has no checkout. With

computer vision, algorithms detect exactly which products you take and they

charge you as you walk out of the store14.

• Augmented Reality: AR is also a very hot field right now, and multiple companies

are competing to provide the best mobile AR platform. Apple released ARKit in

June 2017 and has already impressive applications15.

• Virtual Reality: VR is using similar computer vision techniques as AR. The

algorithm needs to know the position of a user, and the positions of all the objects

around. As the user moves around, everything needs to be updated in a realistic

and smooth way.

• Facial recognition: Moscow is using facial recognition technology to monitor

whether people are complying with quarantine orders. In China, algorithms have

been programmed to recognize people wearing masks, and report anyone with a

fever16. 

14 see their video here (https://www.amazon.com/b?node=16008589011) accessed 05 October 2020
15 check out the different apps (https://www.madewitharkit.com/) accessed 05 October 2020
16 Using facial recognition against covid-19 (https://www.dw.com/en/using-facial-recognition-against-covid-
19/av-53868752) accessed 05 October 2020

https://www.amazon.com/b?node=16008589011
https://www.amazon.com/b?node=16008589011
https://www.madewitharkit.com/
https://www.madewitharkit.com/
https://www.dw.com/en/using-facial-recognition-against-covid-19/av-53868752
https://www.dw.com/en/using-facial-recognition-against-covid-19/av-53868752

CH01: Image Processing and Computer Vision

26

5 – Conclusion:

 We wanted this chapter to be a brief introduction to concepts related to the field of image

processing and computer vision. The different definitions that are developed there are those of

the elementary knowledge of this discipline.

CH02: Image Classification

27

 ـــ

Introduction:

 Information today takes many forms. Textual information is certainly the most

widespread. However, with the growth of the Internet and multimedia tools, textual

information is no longer the only way to convey knowledge. The sound and especially the

image take more and more importance. Don't we say that in some cases an image is worth

a thousand texts? This state of affairs has resulted in an increasingly perceptible need to

develop tools capable of processing the image, indexing it, finding it in a database,

recognizing its shape, etc.

A quick review of the state of the art in artificial VISION shows us, for example, that

the indexing of images is currently the subject of very abundant research in the field of

image processing and computer vision. Several methods are proposed there for

associating with an image a set of descriptors of its content, in order to measure the

resemblance with the descriptors corresponding to a request. By way of example, we can

cite the approaches by query [65], by examples and counter examples [65], by navigation

[66] etc. Some methods combine several approaches such as the example approach with

the navigation approach.

The aim of indexing images is to be able to find an image. A first technique consists

in annotating the images, that is to say associating them with a small text or several key

words on which we will carry out research subsequently. Another way is to search

directly for images from their actual content and no longer from added data. This

objective is broken down into two families of problems of different complexity:

• Be able, following an indexing to find an image starting from a practically identical

image or simply starting from a single fragment.

• Be able to find similar classes, even if the images are very different in terms of the

signal: mountain landscape, etc.

For this matter, a classification method is essential to create similarity classes. To this

end, several classification methods have been proposed to date; they are inspired from

well-known techniques in pattern recognition and computer vision.

CH02: Image Classification

28

2 – The motivations for image classification:

 The goal of image classification is to develop a system capable of automatically

assigning a class to an image. Thus, this system makes it possible to perform an expert

task which can be costly to acquire for a human being due in particular to physical

constraints such as concentration, fatigue or the time required by a large volume of image

data.

 The applications of automatic image classification are numerous and range from

document analysis to medicine and the military [67]. Thus we find applications in the

medical field such as the recognition of cells [68], tumors in mammograms [69]; in

agriculture such as pollen classification [70], recognition of soil type and grains [71] [72],

the classification of herbs [73]; in the document domain such as handwriting recognition

for checks, postal codes [74], cards [75]; in the urban domain such as the recognition of

traffic signs [76], the recognition of pedestrians [77] [78] [79] [80], vehicle detection [81],

building recognition [82] to aid in localization; in the field of biomarkers such as face

recognition [83] [84], fingerprints, irises [85] [86]. The common point of all these

applications is that they require the establishment of a processing chain from the

available images composed of several steps in order to provide a decision as an output.

Each step in the establishment of such a classification system requires the search for

appropriate methods for optimal overall performance; namely the feature extraction

phase and the learning phase. Typically, we have image data from which we need to

extract relevant information translated into digital vectors. This extraction phase allows

us to work in a digital space. It is then a matter of developing, in the learning phase, from

these initial data, a decision function to decide whether a new data belongs to one of the

classes involved.

The feature extraction phase can be preceded by a so-called pre-processing phase.

The purpose of this phase is to clean up the image (as mentioned in the first chapter of

this thesis), that is, to isolate the informative or interesting content in the image [87]. This

operation thus makes it possible to conceal or attenuate any information likely to harm

the description of the relevant content during the feature extraction phase. We thus find

techniques of noise attenuation, edge reinforcement, image improvement techniques such

as contrast enhancement, reduction of the image size by binarization [88], the reduction

of the image to its visual primitives such as skeletonization [89] [90] [91] or even the

extraction of contours using filtering techniques. The reader can refer to a state of the art

of pretreatment techniques in [05] and [87].

CH02: Image Classification

29

3 – Classification /clustering:

 3.1 – Clustering:

 Clustering consists of grouping individuals into classes. Other terms such as

segmentation, vector quantization, digital taxonomy and unsupervised learning are also

used to refer to this same process. The terminology used often depends on the context of

use.

 Indeed, the clustering can feed various and varied applications in the fields of

exploration, data analysis, etc. These applications range from image segmentation and

shape classification to document indexing and other data mining uses.

 3.2 – Classification:

 Classification consists of assigning individuals to pre-existing classes. These classes

can optionally be obtained by clustering. We then say that there is a learning process. It is

a Supervised Learning task where output is having defined labels (discrete value)

 It can be a binary or multi-class classification. In binary classification, the model

predicts 0 or 1; yes, or no, but in case of multi-class classification, the model predicts

more than one class.

3.2.1 – Binary classification:

 A classification problem in which the label space is binary, that is,

𝑌 = {0, 1} is called a binary classification problem. It’s a type of classification task that

predicts one of two mutually exclusive classes. For example, a machine learning model

that classifies emails as "junk" or "legitimate".

 Other examples of binary classification:

• Identify whether a painting was painted by Picasso or not.

• Identify whether or not an image contains a giraffe.

• Identify whether or not a molecule can treat depression.

• Identify if a financial transaction is fraudulent.

CH02: Image Classification

30

3.2.2 – Multi-class classification:

 A classification problem in which the label space is discrete and finite, that is,

𝑌 = {1, 2, . . . , 𝐶} is called a multi-class classification problem. It is the number of classes.

 Here are some examples of multi-class classification problems:

• Identify in which language a text is written.

• Identify which of the 10 Arabic numerals is a handwritten number.

• Identify a facial expression from a predefined list of possibilities (anger,

sadness, joy, etc.).

• Identify what species a plant belongs to.

• Identify the objects present in a photograph.

PARAMENTER CLASSIFICATION CLUSTERING

Type used for supervised learning Used for unsupervised learning

Basic process of classifying the input
instances based on their
corresponding class labels

grouping the instances based on
their similarity without the help of
class labels

Need it has labels so there is need of
training and testing dataset for
verifying the model created

there is no need of training and
testing dataset

Complexity more complex as compared to
clustering

less complex as compared to
classification

Example
Algorithms

Logistic regression,
Naive Bayes classifier,
Support vector machines
etc.

k-means clustering algorithm,
Fuzzy c-means clustering algorithm,
Gaussian (EM) clustering algorithm
etc.

 Table 01: Differences between Classification and Clustering.

4 – Machine learning for image classification:

Machine learning is the “Field of study that gives computers the ability to learn

without being explicitly programmed.” Arthur Samuel (1959)

“A computer program is said to learn from experience E with respect to some class

of tasks T and performance measure P, if its performance at tasks in T, as measured by P,

improves with experience E.” Tom Mitchell (Machine Learning 1997).

Classification involves assigning each pixel in the image a class (label). This

assignment can be made based on regions for which we know the classes of belonging at

first, so we speak of supervised or unsupervised classification.

CH02: Image Classification

31

 This part of the thesis allows you to familiarize yourself with the various notions

related to machine learning, in its supervised and unsupervised forms. All of the concepts

discussed can be further explored by reading [92], whose notations we take here.

4.1 – The general process of machine learning Classification

and its ingredients:

There are four main steps to the currency machine learning process:

1. Choice of data.

2. Calculation of the similarities between the n individuals from the initial

data.

3. Choice of a classification and execution algorithm.

4. Interpretation of the results:

• Evaluation of the quality of the classification,

• Description of the classes obtained.

Machine learning is based on two fundamental pillars:

• On the one hand, the data, which are the examples from which the algorithm will

learn.

• On the other hand, the learning algorithm, which is the procedure that we run on

this data to produce a model. Running a learning algorithm on a data set is called

training.

These two pillars are equally important. On the one hand, no training algorithm will

be able to create a good model from data that is not relevant, it is the concept of garbage

in; garbage out which states that a training algorithm to which data is supplied poor

quality will not be able to do anything with them other than poor quality predictions. On

the other hand, a model learned with an unsuitable algorithm on relevant data will not be

of good quality.

4.2 – Some types of Machine learning problems:

Machine learning is quite a large field, and in this section, we list the broadest

classes of problems it is interested in.

 Learning algorithms can be categorized according to the type of learning they

employ, if the classes are predetermined and the examples labeled then we speak of

supervised learning. When the system or the operator only has examples, but not labels,

and the number of classes and their nature have not been predetermined, we speak of

unsupervised learning. furthermore, there is also in between, when the examples are half

labeled it’s called Semi-supervised learning

CH02: Image Classification

32

The idea of designing agents capable of learning like children rather than

attempting to directly reproduce the intelligence of an adult could be realized through the

Reinforcement learning.

Figure 14: Some types of Machine Learning problems17.

4.2.1 - Supervised learning:

 Supervised learning is perhaps the easiest type of machine learning

problem to grasp: its purpose is to learn how to make predictions, from a list of labeled

examples, i.e. accompanied by the value to predict (see Figure N°15). The labels serve as

a "teacher" and oversee the learning of the algorithm.

 We call supervised learning the branch of machine learning which is interested in

problems that can be formalized as follows: given 𝑛 observations {𝑥𝑖} 𝑖 = 1, . . . , 𝑛

described in a space 𝑋, and their labels {𝑦𝑖 } 𝑖 = 1, . . . , 𝑛 described in a space 𝑌, we

suppose that the labels can be obtained from the observations thanks to a fixed and

unknown function 𝜑: 𝑋 → 𝑌 ∶ 𝑦𝑖 = 𝜑 (𝑥𝑖) + 𝜖𝑖 , where 𝜖𝑖 is a random noise. It is then

a question of using the data to determine a function 𝑓: 𝑋 → 𝑌 such that, for any

pair (𝑥, 𝜑 (𝑥)) ∈ 𝑋 × 𝑌 , 𝑓 (𝑥) ≈ 𝜑 (𝑥).

17 This Picture was taken from (https://medium.com/ml-research-lab/machine-learning-algorithm-overview-
5816a2e6303) accessed 05 October 2020.

https://medium.com/ml-research-lab/machine-learning-algorithm-overview-5816a2e6303
https://medium.com/ml-research-lab/machine-learning-algorithm-overview-5816a2e6303

CH02: Image Classification

33

There are generally three types of problems to which supervised learning is applied:

supervised classification, regression, and time series. These three types of problems are

differentiated according to the type of labels provided by the oracle. In the framework of

this thesis, we will only be interested in classification.

Figure N°1518: Supervised learning.

4.2.1.1 – Some supervised learning algorithms:

Most supervised learning algorithms attempt to find a model (a mathematical

function) that explains the relationship between input data and output classes. These sets

of examples are therefore used by the algorithm. We can therefore cite supervised pixel

classification algorithms such as Decision Tree [93] [94], The K nearest neighbors (KNN)

[156] or Support vector machine (SVM) [159].

A- K nearest neighbors (KNN):

It's a very simple and straightforward approach. It does not require learning but

simply the storage of learning data. Its principle is as follows. Data of unknown class is

compared to all stored data. For the new data, we choose the majority class from among

its K closest neighbors (it can therefore be heavy for large databases) in the sense of a

chosen distance.

B- Support Vector Machine (SVM):

Support vector machine (SVM) is one of the most popular methods in the family of

supervised approaches, and of kernel-based, classification methods. It was developed by

Vapnik in 1995, and remains to this day one of the most popular algorithms. Used,

especially for pattern recognition

18 This picture was taken from (https://www.edureka.co/blog/introduction-to-machine-learning/). Accessed 05
October 2020

https://www.edureka.co/blog/introduction-to-machine-learning/

CH02: Image Classification

34

C- Decision tree:

A decision tree is a decision support tool representing a set of choices in the graphic

form of a tree. The various possible decisions are located at the ends of the branches (the

“leaves” of the tree), and are reached according to decisions made at each stage. The

decision tree is a tool used in various fields such as security, data mining, medicine, etc. It

has the advantage of being readable and quick to execute. It is also a representation that

can be calculated automatically by supervised learning algorithms.

4.2.2 – Unsupervised learning:

If only unlabeled examples are available, and if the classes and their number are

unknown, it is called unsupervised learning, or clustering. In this case, the learning comes

down to targeting the homogeneous groups of examples existing in the data, that is to say

to identifying groups, and that the most different examples are separated into different

groups, the notion of similarity being most often reduced to a function of distance

between pairs of examples.

Figure 16: 19Unsupervised learning

4.2.2.1 – Some unsupervised learning algorithms:

We can therefore cite unsupervised pixel classification algorithms such as

Fuzzy C-Means proposed by Joe Dunn in 1974, k-means and ascending hierarchical

classification.

19 This picture was taken from (https://www.edureka.co/blog/introduction-to-machine-learning/).
Accessed 10 October 2020

https://www.edureka.co/blog/introduction-to-machine-learning/

CH02: Image Classification

35

A- Hierarchical ascending classification:

This involves iteratively grouping the individuals together, starting from the bottom

(the two closest) and gradually building a tree, or dendrogram, finally grouping all the

individuals into a single class, at the root. This supposes knowing how to calculate, at each

stage or grouping, the distance between an individual and a group as well as that between

two groups. This therefore requires for the user of this method, to make an additional

choice: how to define the distance between two groups knowing that of all the pairs of

individuals between these two groups.

The ascending hierarchical classification is an iterative classification method whose

principle is simple.

• We start by calculating the dissimilarity between the N objects.

• Then the two objects are grouped together, the grouping of which minimizes a

given aggregation criterion, thus creating a class comprising these two objects.

• The dissimilarity between this class and the N-2 other objects is then calculated

using the aggregation criterion. Then the two objects or object classes are grouped

together, the grouping of which minimizes the aggregation criterion.

We continue in this way until all the objects are grouped together.

B- K-Means:

The k-means algorithm developed by McQueen in 1967 [95], one of the simplest

unsupervised learning algorithms, called the mobile center algorithm [96] [97], he

attributes each point in a cluster whose center (centroid20) is closest. The center is the

average of all points in the cluster; its coordinates are the arithmetic mean for each

dimension separately from all points in the cluster, hence each cluster is represented by

its center of gravity.

C- Fuzzy C-means:

 (FCM) is an unsupervised fuzzy classification algorithm. Coming from the C-means

algorithm, it introduces the notion of fuzzy set in the definition of classes: each point in

the set of data belongs to each cluster with a certain degree, and all the clusters are

characterized by their center of gravity. Like other unsupervised classification algorithms,

it uses a criterion of minimizing intra-class distances and maximizing inter-class

distances, but giving a certain degree of belonging to each class for each pixel. This

algorithm requires prior knowledge of the number of clusters and generates the classes

by an iterative process while minimizing an objective function. Thus, it makes it possible

to obtain a fuzzy partition of the image by giving each pixel a degree of belonging

(between 0 and 1) to a given class. The cluster with which a pixel is associated is the one

with the highest degree of membership.

20 Is a point (either imaginary or real) at the center of a cluster.

CH02: Image Classification

36

4.2.3 – Semi-supervised learning:

 As you might expect, semi-supervised learning involves learning labels from a

partially labeled dataset. The first advantage of this approach is that it avoids having to

label all of the training examples, which is relevant when it is easy to accumulate data but

their labeling requires a certain amount of human labor. Take image classification, for

example: it's easy to get a database of hundreds of thousands of images, but having the

label we're interested in for each one can be very labor intensive. Additionally, labels

given by humans are likely to reproduce human biases, which a fully supervised

algorithm will in turn reproduce. Sometimes semi-supervised learning avoids this pitfall.

4.2.4 – Reinforcement learning:

 In reinforcement learning, the learning system can interact with its environment

and perform actions. In return for these actions, he gets a reward, which can be positive if

the action was a good choice, or negative if it wasn't. The reward can sometimes come

after a long series of actions; this is the case, for example, for a system that learns to play

go or chess. Thus, learning in this case consists in defining a policy, that is to say a strategy

to systematically obtain the best possible reward.

The main applications of reinforcement learning are in games (chess, go, etc.) and

robotics. This subject goes well beyond the scope of this thesis.

5 – Conclusion:

We have seen a generality on the designs of the classification methods and a

superficial overview on the principles of the first great approach which infers from a

sample of classified examples a procedure (decision function) for classifying the new

unlabeled examples. Discrimination (or supervised methods) can be based on notions of

proximity (closest neighbors) or even on research in hypothesis spaces (decision trees,

artificial neural networks).

We saw that clustering allows objects (individuals or variables) to be grouped into

a limited number of groups or classes (clusters). Classification consists of grouping the

pixels of the image with fairly similar characteristics, into subsets of classes.

This list of possible learning tasks is not exhaustive. Likewise, it is possible to find

cases of so-called semi-supervised learning, in which the data information is not complete

[100] [101]. In the chapter that follows we will see the learning model of deep neural

networks. This is used for many different tasks these days, whether supervised or not.

CH03: Deep learning

37

 ـــ

Introduction:

 Before we get to what Deep learning (DL) is, we need to introduce two main

concepts: the first is the AI (artificial intelligence), and the second is the concept of ML

(machine learning).

Artificial Intelligence (AI) is a large field, where we try to make machines mimic

human behavior with the aim of making them so powerful to perform many types of tasks

such as problem solving, knowledge representation, voice recognition, and many others.

The basic idea is to put knowledge into the machine. Thanks to these two areas, there are

sophisticated systems capable of changing their behavior without the need to make

changes to their code, but only to their training data. So, with this wave of advanced

machine learning techniques taking AI a step forward, where does DL fit in or what does

DL bring in there.

Nowadays, DL is the center of attention since its realization is much more

important than any other machine learning algorithm in such complex tasks, for example,

we mark the following:

• Image processing and object recognition in [98] which show us progress

in using deep convolutional networks for object recognition, and the

adoption of deep learning by the computer vision community.

• Speech recognition and signal processing in [99] which present the

results obtained in phonetic classification for automatic speech recognition

as the first industrial application of deep learning.

2 – Machine Learning:

 Machine learning is driven by completing tasks that are difficult to define

exhaustively or by simple rules in traditional programs. For example, developing an AI

algorithm to play the game of Go while respecting the rules of the game is relatively

simple to program because the set of rules can easily be defined (Each player plays a

single pawn in turn, he does not can only place his pawn on a valid square, etc.). However,

optimally playing the AI machine in order to achieve victory is impossible to define

simply. This is because the game of Go does not have a known optimal strategy, which

makes it difficult to create a series of rules for the machine to follow in order to win. In

addition, the number of possible states of the game as well as the possibilities in each

state is so large that it is impossible to describe everything in a typical program for an AI.

CH03: Deep learning

38

Let's take another example with computer assisted vision. Recognizing the face of a

human being in an image may seem like a simple task to us because we can do it without

thinking. But when we combine the wide variety of possible faces with all of the layouts of

those faces in an image, it's impossible to simply describe these by the value of each pixel

in the image. In both of these situations, machine learning can train statistical models so

that they find on their own the knowledge necessary to accomplish these tasks using

examples in our data.

A formal definition of machine learning has been proposed by T. Mitchell: “A

computer program is said to learn from experience E with respect to some class of tasks T

and performance measure P, if its performance at tasks in T, as measured by P, improves

with experience E ". We will call this computer program capable of learning (statistical

model or learning model). Let us first see this model as a black box, able to take as input

data from the outside (for example, images from a camera, network traffic from a router,

etc.) and return an output (for example, AI decision making, description of an image, etc.).

This model has parameters 𝜃 which make it possible to influence its output depending of

the input (see Figure N°17).

As explained in Michell’s definition, learning requires experience 𝐸. This typically

consists of a 𝐷𝑡𝑟𝑎𝑖𝑛 learning Dataset that the model analyzes during the learning process.

This learning of a task 𝑇 is done using a cost function 𝐽. This cost function is calculated on

a 𝐷𝑣𝑎𝑙𝑖𝑑 dataset, separate from 𝐷𝑡𝑟𝑎𝑖𝑛 in order to measure the performance of the learned

model; it is the performance measure 𝑃. During training, the model must therefore be

able to modify its parameters 𝜃 using the 𝐷𝑡𝑟𝑎𝑖𝑛 training dataset to improve its

performance measured by 𝑃 . The fact that the performance is measured on a

𝐷𝑣𝑎𝑙𝑖𝑑 dataset separate from 𝐷𝑡𝑟𝑎𝑖𝑛 implies a capacity for generalization of the model,

which means an ability to respond to cases that he did not see during his experience 𝐸.

The goal of the model is to make its parameters 𝜃 tend towards an optimal 𝜃∗ which

minimizes 𝐽 on 𝐷𝑣𝑎𝑙𝑖𝑑 (the measure 𝑃).

Figure N°17: Learning model seen as a black box.

3 –Artificial Neural networks:

Artificial Neural networks are a machine learning models capable of representing a

relationship between data from a 𝑋 space and an output space 𝑌. They are used in many

fields, such as computer-assisted vision [102] [103] [104], natural language processing

[105], audio analysis [106] [107], but also to develop AI machines capable of playing in

games [83] or used as a personal assistant (such as Amazon Alexa, Apple Siri, Microsoft

Cortana or the Google Assistant).

CH03: Deep learning

39

The basic unit of calculation is the neuron. This takes several signals as input and

interprets them to send a new signal to other neurons or to the output of the neural

network, i.e. the output of the model. There are lots of architectures for building ANNs

(see Section 4 of this chapter).

Before we get to introduce artificial neural networks, we will go through several

biological concepts about neurons, then, start by presenting a model made up of a single

neuron, called the perceptron model. This will allow us to highlight the basic mechanisms

of any artificial neural network.

3.1 – The biological neuron:

The human brain is the best model of the machine, an incredibly fast all-rounder

and above all endowed with an incomparable capacity for self-organization. Its behavior

is much more mysterious than the behavior of its basic cells. It is made up of a large

number of basic biological units (1,000 to 10,000 synapses per neuron). Nerve cells called

"neurons" are the building blocks of the central nervous system. They are made up of

three essential parts: the cell body, the dendrites and the axon [139].

A. The cell body: It contains the nucleus of the neuron and performs the

biochemical transformations necessary for the synthesis of enzymes and

other molecules that ensure the life of neurons. Its shape is pyramidal or

spherical in most cases; it often depends on its position in the brain. This

cell body is a few microns in diameter [140].

B. The dendrites: Each neuron has a hair of dendrites. These are thin

tubular extensions, a few tenths of microns in diameter and a few tens of

microns in length. They are the main receptors of the neuron which are

used to pick up the signals which reach it [140].

C. The axon: The axon, which is strictly speaking the nerve fiber, serves as

a means of transport for the signals emitted by the neuron. It differs from

dendrites by its shape and the properties of its outer membrane. Indeed,

it is generally longer than the dendrites, and branches out at its end,

where it communicates with other neurons, while the ramifications of

the dendrites occur rather near the cell body.

To form the nervous system, neurons are connected to each other in

complex spatial distributions. Transmission between two neurons is not

direct. In fact, there is an intercellular space of a few tens of Angstroms21

(10-9 m) between the axon of one neuron and the dendrites of another

neuron. The junction between two neurons is called the synapse [139]

[140].

21 A unit of length equal to one hundred-millionth of a centimeter, 10−10 meter, used mainly to express
wavelengths and inter-atomic distances.

CH03: Deep learning

40

Figure N°1822: Illustration of a biological neuron (up) and its mathematical model (down).

3.2 – The perceptron model:

In its simplest version, the perceptron is a neural network made up of only one

neuron, which takes 𝑛 binary data as input. Each of its inputs 𝑖 is weighted by a weight

noted 𝑤𝑖. The neuron can take the states "1" or "0" (respectively active or non-active)

depending on its weighted inputs and a bias noted 𝛽 ∈ ℝ. This state represents the output of

the model. It is therefore possible to represent the perceptron as a parametric function

𝑓𝜃: {0, 1}
𝑛 → {0, 1} with 𝜃 the set of its parameters, i.e. the bias 𝛽 and the weights

(𝑤1, . . . , 𝑤𝑛). The output of a perceptron for an input vector 𝑥 ∈ {0, 1} 𝑛 is calculated such

that:

𝑓(𝒙,𝒘) = 𝐻(𝑧(𝒙,𝒘) + 𝛽),

With 𝐻(𝑡) the Heaviside function defined for all 𝑡 ∈ ℝ 𝑎𝑠 𝐻 (𝑡) = I{𝑡> 0} and 𝑧 (𝒙,𝒘)the

weighted sum of the inputs:

𝑧(𝒙,𝐰) =∑  

𝑛

𝑗=1

𝑤𝑗𝑥𝑗 .

Intuitively, the weights 𝑤1, . . . , 𝑤𝑛 represent the importance given to each entry for

perceptron activation. As a reminder, 𝐼𝐴 is the indicator function which is equal to 1 if

condition A is verified and 0 if not. The 𝛽 bias can be seen as adding a threshold to the

difficulty of activating the perceptron. Indeed, if the weighted sum 𝑧 (𝑥,𝒘) exceeds −𝛽 (the

opposite of bias), the perceptron activates otherwise it remains inactive.

22 This picture was taken from (https://www.ee.co.za/article/application-of-machine-learning-algorithms-in-
boiler-plant-root-cause-analysis.html)accessed 05 October 2020

https://www.ee.co.za/article/application-of-machine-learning-algorithms-in-boiler-plant-root-cause-analysis.html
https://www.ee.co.za/article/application-of-machine-learning-algorithms-in-boiler-plant-root-cause-analysis.html

CH03: Deep learning

41

To simplify the notations, we will include the bias 𝛽 in the weight vector by adding an input

constant 𝑥0 = 1 (the bias therefore becomes 𝑤0). We obtain the parametric function

𝑓𝜃: {0, 1}
𝑛 + 1 × ℝ𝑛 + 1 → {0, 1} such that

𝑓(𝒙,𝐰) = 𝐻(𝑧(𝒙,𝐰)) = 𝐻(∑  

𝑛

𝑗=0

𝑤𝑗𝑥𝑗) (3.1)

 Example of e-mail classification Consider a perceptron modeled by the function 𝑓 which

aims to classify the e-mails received with labels "Important" or "Not important". The 𝑥𝑗

entries are the characteristics of received e-mails, such as "Sent by a contact", "Contains an

attachment", "Is an automatic reply". Email is tagged as "Important" when the neuron is

active and "Not important" when the neuron remains inactive.

 Let us fix the weights associated with 𝑤1 = 2,𝑤2 = 1,𝑤3 = −1 and the bias at

𝛽 = −0, 5 (or 𝑤0 = −0.5), as described in Figure N°19. In this example, we can see that an

email is tagged as important if it is sent by a contact or contains an attachment, but it is not

an automatic reply.

 Figure 19: Graphical representation of a perceptron described in the Email

 Classification Example23.

Now suppose we have no knowledge of what makes mail important and what not. More

precisely, we do not know the weights 𝑤𝑗 associated with each entry 𝑥𝑗 . However, we do

have access to a dataset of e-mails, hand-labeled by users with the labels "Important" and

"Not important" as well as the characteristics associated with each (for example, "sent by a

contact ", " contains an attachment ", ...). It is then possible to extract knowledge concerning

the description of an important email from these examples by looking for the weights

associated with each connection that best correspond to this dataset. This research phase

will correspond to the learning of the perceptron. Once this process is completed on this

dataset, the perceptron should be able to generalize this classification on new incoming

mails.

23 The squares represent the entrance to the perceptron and the circle represents the neuron. The weights are
written on the connections between the inputs and the neuron.

CH03: Deep learning

42

Learning requires a function differentiable at any point to calculate the output of the

perceptron. Instead of using Heaviside's function as an activation function, we will introduce

the sigmoid function (see section 3.3.1).

The training of the parameters w is done by minimizing a 𝐽train cost function on the

𝐷𝑡𝑟𝑎𝑖𝑛training dataset. This function represents errors made by the model (with its current

settings) on the classification of emails in our training dataset. In our example, we'll define

the cost function as:

𝐽train(𝐖) =
1

𝐾
∑  

𝐾

𝑘=1

𝐿(𝒙(𝑘), 𝒚(𝑘), 𝐰)

With 𝑥(𝑘) and 𝑦(𝑘)which are respectively the characteristics and the label of the 𝑘𝑡ℎ example

of the learning dataset. 𝐿 corresponds to the function used to calculate the error on an

example of the dataset. In our case we choose as function:

𝐿(𝒙(𝑘), 𝒚(𝑘), 𝐰) =
1

2
(𝑓(𝒙(𝑘), 𝐰) − 𝒚(𝑘))

2

The 𝐽train cost function therefore represents the root mean square error between the output

given by the perceptron and the expected value on the entire learning dataset. The goal of

training is to find the vector of parameters 𝐰∗ which minimizes 𝐽train. We start by initializing

the value of the parameters 𝐰 by the null vector:

𝐰0 = (0,… ,0)
⊤

With 𝐰0 denoting the state of 𝐰 at time 0 which means at the start of learning. The vector of

parameters is iteratively modified using the following rule:

𝐰𝑡+1 = 𝐰𝑡 − 𝛼∇𝐽𝑡𝑟𝑎𝑖𝑛(𝐰𝑡)

𝐰𝑡 Represents the state of 𝐰 at iteration 𝑡, 𝛼 ∈ (0, 1] is a coefficient called learning rate, and

∇𝐽𝑡𝑟𝑎𝑖𝑛(𝐰𝑡) is the gradient of the cost function for state 𝐰𝑡, defined by:

∇𝐽𝑡𝑟𝑎𝑖𝑛(𝐰𝑡) = (
∂𝐽𝑡𝑟𝑎𝑖𝑛(𝐰𝑡)

∂𝑤1
, … ,

∂𝐽𝑡𝑟𝑎𝑖𝑛(𝐰𝑡)

∂𝑤𝑛
)

⊤

This method is a first-order minimization algorithm called gradient descent. The vector of

parameters 𝐰 moves opposite the gradient of the loss function in order to find a local

minimum (see Figure N°20).

CH03: Deep learning

43

 Figure 20: Example of gradient descent on one dimension

The 𝛼 hyper-parameter is used to modulate the displacement step in the parameter space.

The larger 𝛼, the greater the modifications made to the vector 𝐰 during an iteration. We will

see in Section 3.6 that this parameter is important to guarantee good convergence of

learning on an interesting local minimum. The calculation of the gradient ∇𝐽𝑡𝑟𝑎𝑖𝑛(𝐰𝑡)

requires calculating for each weight 𝑤𝑗 its partial derivative ∂𝐽𝑡𝑟𝑎𝑖𝑛 ∂𝑤𝑗⁄ :

∂𝐽𝑡𝑟𝑎𝑖𝑛
∂𝑤𝑗

=
∂

∂𝑤𝑗
(
1

𝐾
∑  

𝐾

𝑘=1

𝐿(𝒙(𝑘), 𝒚(𝑘), 𝐰))

=
1

𝐾
∑  

𝐾

𝑘=1

∂𝐿(𝒙(𝑘), 𝒚(𝑘), 𝐰)

∂𝑤𝑗

This partial derivative is the average of the partial derivatives of the error function 𝐿 on

each example in the training dataset. Using the composite function derivation theorem twice

on the error function 𝐿, we can develop it in these three terms:

∂𝐿(𝒙(𝑘), 𝒚(𝑘), 𝐰)

∂𝑤𝑗
=
∂𝐿

∂𝑓

∂𝑓

∂𝑧

∂𝑧

∂𝑤𝑗
 (3.2)

With:

𝐿 ≡
1

2
(𝑓 − 𝑦)2 , 𝑓 ≡

1

1 + 𝑒−𝑧
 , 𝑎𝑛𝑑 𝑧 =∑  

𝑛

𝑖=0

𝑤𝑖𝑥𝑖
(𝑘)

The first term represents how much the error made for example 𝑘 depends on the output of

the perceptron. This derivative can be calculated as being:

∂𝐿

∂𝑓
=
∂

∂𝑓
(
1

2
(𝑓 − 𝒚(𝑘))

2
)

= 𝑓 − 𝒚(𝑘)
 (3.3)

CH03: Deep learning

44

The second term is the derivative of the activation function, that is, the sigmoid function:

∂𝑓

∂𝑧
=
∂

∂𝑧
(

1

1 + 𝑒−𝑧
)

=
𝑒−𝑧

(1 + 𝑒−𝑧)2

 (3.4)

The last term represents the partial derivative of the sum of the weighted inputs 𝑤𝑗:

∂𝑧

∂𝑤𝑗
=

∂

∂𝑤𝑗
(∑  

𝑛

𝑖=0

𝑤𝑖𝑥𝑖
(𝑘)
)

The weighted input 𝑤𝑖𝑥𝑖 is the only non-constant term of this sum as a function of 𝑤𝑗 . We

therefore obtain:

∂𝑧

∂𝑤𝑗
= 𝑥𝑗

(𝑘)
 (3.5)

From relations (3.3), (3.4) and (3.5), we obtain:

∂𝐿

∂𝑤𝑗
= (𝑓 − 𝑦(𝑘))

𝑒−𝑧

(1 + 𝑒−𝑧)2
𝑥𝑗
(𝑘)
 (3.6)

The partial derivative
∂𝐿

∂𝑤𝑗
 can be rewritten as:

∂𝐿

∂𝑤𝑗
= 𝛿(𝑘)𝑥𝑗

(𝑘)
 (3.7)

With the term 𝛿(𝑘) = (𝑓 − 𝑦(𝑘))𝑒−𝑧/(1 + 𝑒−𝑧)2which does not depend on 𝑗. In terms of

computation, it is possible to compute 𝛿(𝑘) only once for all the inputs 𝑗 for each example 𝑘.

The final partial derivative is:

∂𝐽

∂𝑤𝑗
=
1

𝐾
∑  

𝐾

𝑘=1

𝛿(𝑘)𝑥𝑗
(𝑘)

Performing an iteration of the gradient descent requires calculating the error made by the

perceptron on each example in the training dataset. This error then makes it possible to

calculate the partial derivative for each input and therefore to have the gradient of the vector

of parameters. The gradient descent algorithm can therefore update the parameters and

start a new iteration. The gradient descent continues to iterate until a sufficiently interesting

parameter vector is obtained, described by a stop criterion. We will see in section 3.5 how

this stopping criterion can be defined.

CH03: Deep learning

45

Figure N°21: Example of logic functions: the output of the OR functions and the AND

functions are linearly separable while the outputs of the EXCLUSIVE OR function cannot be

linearly separated. The perceptron therefore cannot represent this function. When 𝑥1 = 0,

the output of the perceptron must increase if 𝑥2 increases, and if 𝑥1 = 1 the output of the

perceptron must decrease if 𝑥2increases. The first requires that 𝑤2 > 0 while the second

requires 𝑤2 < 0.

3.2.1 – Limitations of the perceptron:

The perceptron is a so-called linear classifier, which means it classifies data from a

linear combination of its inputs. It is therefore unable to classify data into non-linearly

separable classes (non-separable with a hyper-plane in data space). For example, it is not

possible to represent the EXCLUSIVE OR function with a perceptron (see Figure N°21).

3.3 – The multi-layered perceptron:

Multi-layer perceptrons, also called MLP, are more general neural networks than the

perceptron. They are made up of a multitude of interconnected neurons organized in

successive layers. An MLP can be represented by an acyclic graph in which each node

represents a neuron. The oriented arcs represent the relationships between each neuron: an

arc from node 𝑖 to node 𝑗 means that neuron 𝑗 takes the activation value of neuron 𝑖 as input.

Figure N°22 shows a graphical representation of an MLP with 3 layers having 3, 4, 2

neurons respectively.

 Figure N°22: Example of a representation of an MLP

CH03: Deep learning

46

As shown in Figure N°22, each neuron in the first layer takes as input, the input of the MLP.

Each subsequent layer receives as input the activation values of the previous layer (that is,

the vector containing the values of each neuron in the previous layer). The output of the MLP

is made up of the activation value of each neuron in the last layer, called the output layer.

The activation vector of layer 𝑙, composed of 𝑠 neurons can be calculated according to the

input vector 𝐞 ∈ ℝ𝑝 (MLP inputs or the activation vector of the previous layer), as follows:

𝐚(𝑙) = 𝑓(𝑙)(𝐞,𝑊(𝑙), 𝛽(𝑙)) = 𝜙(𝑙)(𝑊(𝑙)𝐞 + 𝛽(𝑙))

With 𝑊 = (𝐰1,, … ,𝐰𝑠.)
⊤
∈ ℝ𝑠×𝑝 and 𝛽(𝑙) = (𝛽1, … , 𝛽𝑠)

⊤ ∈ ℝ𝑠 with respectively 𝐰𝑖the vector

of the weights of the neuron 𝑖 and 𝛽𝑖 its bias. The function 𝜙(𝑙) is an activation function

applied individually to each neuron of layer 𝑙. In an MLP, all neurons in the same layer have

the same activation function 𝜙(𝑙).

The MLP is represented by a function 𝑓 which takes as input data 𝒙 ∈ ℝ𝑛and a set of

parameters 𝜃 = {𝑊(𝑙), 𝛽(𝑙) ∣ 𝑙 ∈ {1, … , 𝐿}}, corresponding to the set of matrices 𝑊(𝑙) and

vectors 𝛽(𝑙) for all layers 𝑙 = 1, . . . , 𝐿, and gives as output �̂� ∈ ℝ𝑚. As described in the

equation of a perceptron (see Eq 3.1), it is possible to include the vector 𝛽(𝑙)in the matrix

𝑊(𝑙) by adding a constant input for each layer (which adds a column to each matrix 𝑊(𝑙).

The function 𝑓 is a composition of functions 𝑓(𝑙) associated with each layer 𝑙 of the network.

For example, with a three-layer MLP, we have:

�̂� = 𝑓(𝒙, 𝜃) = 𝑓(3)(𝑓(2)(𝑓(1)(𝒙,𝑊(1)),𝑊(2)),𝑊(3))

An MLP with a number of layers greater than or equal to 2 is a universal approximator of

functions, which means it is able to represent all kinds of functions if its parameters are

correctly adjusted (under certain conditions on the activation function of the hidden layers

[108]). To illustrate this, we take the example of the EXCLUSIVE OR function with two inputs.

Consider an MLP with two inputs and two layers, made up of 2 and 1 neurons. The

parameters of the MLP are:

𝑊(1) = [
0 1 1
−1 1 1

]

𝑊(2) = [0 1 −2]

We use rectified linear units (called ReLU) used regularly in modern ANNs such as in [98]

[104]. This type of neuron uses the activation function φ (z) = max {0, z} (see section 3.3.1).

The entire MLP is shown graphically in Figure N°23.

CH03: Deep learning

47

Figure N°23: Neural network representing the EXCLUSIVE OR function with two graphical

representations. On the left, each neuron is represented by a circle. The weights are

represented on the connections between neurons. Likewise, the biases represented by the

connection between a constant (squares) and each neuron. To the right, in this graphic style,

each layer is represented by a rectangle. Parameter matrices can be indicated on the

connections between layers. The advantage of this second representation is that it is more

compact than the first.

The middle layers of this MLP transform the representation space of the input data as shown

in Figure N°30. This new representation space makes it possible to linearly separate the

outputs of the targeted function (the EXCLUSIVE OR function in this example). Intermediate

layers can be seen as representations of higher-level inputs.

3.3.1 – The Activation function:

Activation functions are functions used in ANNs to computes the weighted sum of

input and biases, of which is used to decide if a neuron can be fired or not. It manipulates the

presented data through some gradient processing usually gradient descent and afterwards

produces an output for the neural network, which contains the parameters in the data. These

AFs are often referred to as a transfer function in some literature.

Figure N°24: The basic process carried out by a neuron in a neural network.

CH03: Deep learning

48

There are three general types of activation functions:

3.3.1.1 – Binary Step Function:

 A binary step function is a threshold-based activation function. If the input value is

above or below a certain threshold, the neuron is activated and sends exactly the same signal

to the next layer (back to our email example we used the Heaviside Step function).

 Figure N°25: The function of activating binary step.

The problem with a step function is that it does not allow multi-value outputs—for example,

it cannot support classifying the inputs into one of several categories.

3.3.1.2 – Linear Activation Function:

 A linear transform is basically the identity function 𝑓 (𝑥) = 𝑐𝑥 , It takes the inputs,

multiplied by the weights for each neuron, and creates an output signal proportional to the

input. In one sense, a linear function is better than a step function because it allows multiple

outputs, not just yes and no.

Figure N°26: Linear Activation Function.

CH03: Deep learning

49

3.3.1.3 – Non-Linear Activation Functions:

Modern neural network models use non-linear activation functions. They allow the

model to create complex mappings between the network’s inputs and outputs, which are

essential for learning and modeling complex data, such as images, video, audio, and data sets

which are non-linear or have high dimensionality. Almost any process imaginable can be

represented as a functional computation in a neural network, provided that the activation

function is non-linear.

Here 4 Common Nonlinear Activation Functions:

Sigmoid / Logistic: The Sigmoid AF is sometimes referred to as the logistic function or

squashing function in some literature [109]. The Sigmoid function research results have

produced three variants of the sigmoid AF, which are used in DL applications. The Sigmoid is

a non-linear AF used mostly in feed-forward neural networks. It is a bounded differentiable

real function, defined for real input values, with positive derivatives everywhere and some

degree of smoothness [110]. The Sigmoid function is given by the relationship

𝑠(𝑡) =
1

1 + 𝑒−𝑡

 Figure N°27: The output of a sigmoid neuron as t varies

This one has an "S" shape close to the function of Heaviside. The advantage of the sigmoid

function, however, is that it is derivable at all points (unlike the Heaviside function). So going

back to our emails example the function defined by the perceptron with the sigmoid function

is therefore the following:

𝑓(𝒙,𝐰) =
1

1 + 𝑒−𝑧(𝒙,𝐰)

The output of the perceptron is now set to] 0, 1 [. It can be interpreted as the probability that

the neuron will activate depending on the input.

CH03: Deep learning

50

Hyperbolic Tangent Function (Tanh): The hyperbolic tangent function is another type of

AF used in DL and it has some variants used in DL applications. The hyperbolic tangent

function known as Tanh function, is a smoother [150] zero-cantered function whose range

lies between -1 to 1, thus the output of the Tanh function is given by

𝑡𝑎𝑛ℎ(𝑡) = (
𝑒𝑡 − 𝑒−𝑡

𝑒𝑡 + 𝑒−𝑡
)

The tanh function became the preferred function compared to the sigmoid function in that it

gives better training performance for multi-layer neural networks. However, the tanh

function could not solve the vanishing gradient problem suffered by the sigmoid functions as

well. The main advantage provided by the function is that it produces zero centered output

thereby aiding the back-propagation process.

 Figure N°28: The output of a Tanh neuron as t varies

Rectified Linear Unit (ReLU) Function: The rectified linear unit (ReLU) activation function

was proposed by Nair and Hinton 2010, and ever since, has been the most widely used

activation function for deep learning applications with state-of-the-art results to date [152].

The ReLU is a faster learning AF [150], which has proved to be the most successful and

widely used function [151]. It offers the better performance and generalization in deep

learning compared to the Sigmoid and tanh activation functions [153]. The ReLU represents

a nearly linear function and therefore preserves the properties of linear models that made

them easy to optimize, with gradient-descent methods [92]. The ReLU activation function

performs a threshold operation to each input element where values less than zero are set to

zero thus the ReLU is given by

φ (z) = 𝑚𝑎𝑥(0, z) = {
z𝑖, if z𝑖 ≥ 0

0, if z𝑖 < 0

CH03: Deep learning

51

 Figure N°29: The output of a ReLU neuron as z varies.

Softmax Function: The Softmax function is another type of activation function used in

neural computing. It is used to compute probability distribution from a vector of real

numbers. The Softmax function produces an output which is a range of values between 0 and

1, with the sum of the probabilities been equal to 1. The Softmax function [5] is computed

using the relationship

𝑓(𝑥𝑖) =
exp (𝑥𝑖)

∑ exp (𝑥𝑗)
k
j=1

Where 𝑥 The input vector to the Softmax function, made up of (𝑥0, . . . 𝑥𝑘), 𝑘 is the number of

classes in the multi-class classifier, and the term on the bottom of the formula ∑ exp (𝑥𝑗)
k
j=1

is the normalization term. It ensures that all the output values of the function will sum to 1

and each be in the range (0, 1), thus constituting a valid probability distribution.

Likewise, there are more activation functions such as [154]:

• Hard Sigmoid Function.

• Sigmoid-Weighted Linear Units (SiLU).

• Derivative of Sigmoid-Weighted Linear Units (dSiLU).

• Hard Hyperbolic Function.

• Leaky ReLU (LReLU).

• Parametric Rectified Linear Units (PReLU).

• Randomized Leaky ReLU (RReLU).

• S-shaped ReLU (SReLU).

• Exponential Linear Units (ELUs).

• Scaled Exponential Linear Units (SELU).

• The Exponential Linear Squashing (ELiSH).

• Softplus Function.

• Softsig.

CH03: Deep learning

52

3.4 – Learning with back propagation:

Now that we have defined the MLP model, we will see that it allows us to approximate

a function 𝑔:ℝ𝑛 → ℝ𝑚 with a set of parameters 𝜃. A manual adjustment of the parameters 𝜃

in order to find 𝜃∗, such that 𝑓(𝒙, 𝜃∗) ≈ 𝑔(𝒙).

Figure N°30: Intermediate representation of the entry into layer 1. In this representation,

the classes are linearly separable unlike the original representation of the data shown in

Figure N°21. This is why the 2-layer MLP is able to represent the EXCLUSIVE OR function

(unlike the perceptron).

For all 𝑥 expert knowledge of the function 𝑔. In addition, the size of 𝜃 is of the order

of 𝑂 (𝑛2), with n the number of neurons in the MLP. This represents up to a few million

values in modern MLPs. It is therefore necessary to use an automatic optimization method to

get closer to 𝜃∗.

3.4.1 – Gradient descent:

 MLP is a model suitable for supervised learning. We will see in Section 4.5 how

neural networks can perform unsupervised tasks. In this section, we will show how to teach

an MLP a regression task, using the gradient descent (GD) and back-propagation method. Let

be an MLP which must approximate an unknown function 𝑔:ℝ𝑛 → ℝ𝑚 and 𝑓 the function

defined by this MLP. To evaluate the ability of 𝑓(. , 𝜃) to approximate the target function 𝑔,

we introduce the following cost function:

𝐽∗(𝜃) = 𝐸[𝐿(𝒙, 𝒚, 𝜃)] = ∫ 𝐿(𝒙, 𝒚, 𝜃)𝑝(𝑥, 𝑦)𝐝𝒙𝐝𝒚

With 𝐿 the errors function of the example (𝑥, 𝑦). A commonly used error function, which we

will take in this example, is the least square function, defined as follows:

𝐿(𝒙, 𝒚, 𝜃) =
1

2
∑  

𝑚

𝑖=1

(𝑓(𝑥𝑖 , 𝜃) − 𝑦𝑖)
2

CH03: Deep learning

53

The training consists in minimizing the cost function 𝐽∗, which is, minimizing the error

expectation of 𝑓 given 𝜃. To do this, we use the empirical cost function on a 𝐷train training set

composed of the doublet(𝑥(𝑘), 𝑦(𝑘)), such that 𝑔(𝑥(𝑘)) = 𝑦(𝑘). The empirical cost function is

defined as the mean error of the MLP for the examples in the learning dataset:

𝐽(𝜃) =
1

|𝐷train|
∑  

(𝒙(𝑘),𝒚(𝑘))∈𝐷train

𝐿(𝒙(𝑘), 𝒚(𝑘), 𝜃)

The goal is to find 𝜃∗ which minimizes the empirical cost function. This minimization is done

by the method called gradient descent, which we saw in the perceptron learning algorithm

(see Section 3.2). The following update rule is applied to each iteration for each of the

𝑊(𝑙)matrices:

𝑊𝑡+1
(𝑙)
= 𝑊𝑡

(𝑙)
+ 𝛼Δ𝑊𝑡

(𝑙)

 With: Δ𝑊𝑡
(𝑙)
=

[

∂𝐿(𝜃)

∂𝑤11
(𝑙) ⋯

∂𝐿(𝜃)

∂𝑤1𝑝
(𝑙)

⋮ ⋮ ⋮
∂𝐿(𝜃)

∂𝑤𝑠1
(𝑙) ⋯

∂𝐿(𝜃)

∂𝑤𝑠𝑝
(𝑙)
]

3.4.2 – Back propagation method:

As with the perceptron, the partial derivative of the cost function can be calculated as the

average of the partial derivative of the error function on each example of 𝐷train.

∂𝐽

∂𝑤𝑖𝑗
(𝑙)
=

∂

∂𝑤𝑖𝑗
(𝑙)
(

1

|𝐷train|
∑  

(𝒙(𝑘),𝒚(𝑘))∈𝐷train

𝐿(𝒙(𝑘), 𝒚(𝑘), 𝜃))

=
1

𝐾
∑  

(𝒙(𝑘),𝒚(𝑘))∈𝐷train

∂𝐿(𝒙(𝑘), 𝒚(𝑘), 𝜃)

∂𝑤𝑖𝑗
(𝑙)

The back propagation process is used to calculate the partial derivative ∂𝐿(𝑘)/ ∂𝑤𝑖𝑗
(𝑙)

 for all

𝑤𝑖𝑗
(𝑙)

 given an input 𝒙(𝑘) and the associated label 𝒚(𝑘). The back-propagation is calculated in 2

stages:

• Forward propagation: the activation value 𝐚(𝑙) is calculated for each layer 𝑙, from

the first hidden layer to the output layer, based on the input 𝒙(𝑘) of the MLP.

• Back propagation: the error term for each neuron is calculated from the output

layer to the first layer, comparing the output �̂�(𝑘) of the MLP (i.e., the activation 𝐚(𝑑)

of the output layer for input 𝒙(𝑘) with the expected output 𝒚(𝑘)).

CH03: Deep learning

54

The error term is calculated as follows:

𝛿𝑗
(𝑙)
=

∂𝐿

∂𝑎𝑗
(𝑙)

∂𝑎𝑗
(𝑙)

∂𝑧𝑗
(𝑙)
=

{

 (𝑎𝑗

(𝑙)
− 𝑦𝑗)𝜙𝑗

(𝑙)′
(𝑧𝑗

(𝑙)
) if 𝑙 is an output layer,

(∑  

𝑝=1

𝛿𝑝
(𝑙+1)

𝑤𝑗𝑝
(𝑙)
)𝜙𝑗

(𝑙)′
(𝑧𝑗

(𝑙)
) if 𝑙 is a hidden layer

 With:

𝐿 ≡
1

2
∑  

𝑚

𝑜=1

(𝑎𝑜
(𝑑) − 𝑦𝑜)

2

, 𝑎𝑗
(𝑙) ≡ 𝜙𝑗(𝑧𝑗

(𝑙)) , 𝑎𝑛𝑑 𝑧𝑗
(𝑙)
≡∑  

𝑢

𝑝=0

𝑤𝑝𝑗𝑎𝑝
(𝑙−1)

Given the activation 𝑎𝑖
(𝑙−1)

 of the 𝑖𝑡ℎ neuron of layer 𝑙 − 1 and the error term 𝛿𝑖
(𝑙)

 of the 𝑗𝑡ℎ

neuron of layer 𝑙, it is possible to calculate the partial derivative ∂𝐿(𝑘)/ ∂𝑤𝑖𝑗
(𝑙)

:

∂𝐿(𝒙(𝑘), 𝒚(𝑘), 𝜃)

∂𝑤𝑖𝑗
(𝑙)

= 𝛿𝑗
(𝑙)
𝑎𝑖
(𝑙−1)

Proof: The proof is comparable to the description of the gradient descent of the

perceptron. We use the compound function derivative theorem twice to get:

∂𝐿(𝒙(𝑘), 𝒚(𝑘), 𝜃)

∂𝑤𝑖𝑗
(𝑙)

=
∂𝐿

𝑎𝑗
(𝑙)

∂𝑎𝑗
(𝑙)

∂𝑧𝑗
(𝑙)

∂𝑧𝑗
(𝑙)

∂𝑤𝑖𝑗
(𝑙)

The last term represents the partial derivative of the sum of the weighted inputs 𝑤𝑖𝑗:

∂𝑧

∂𝑤𝑖𝑗
=

∂

∂𝑤𝑖𝑗
(∑  

𝑢

𝑝=1

𝑤𝑝𝑗𝑎𝑝
(𝑙−1)

)

The weighted input 𝑤𝑝𝑗𝑎𝑝
(𝑙)

 is the only term of the non-constant sum as a function of 𝑤𝑖𝑗. We

therefore obtain:

∂𝑧

∂𝑤𝑖𝑗
= 𝑎𝑖

(𝑙−1) (3.8)

Let 𝛿𝑗
(𝑙)
=

∂𝐿

∂𝑎
𝑗
(𝑙)

∂𝑎𝑗
(𝑙)

∂𝑧
𝑗
(𝑙). If 𝑗 is a neuron of the last layer, that is, 𝑙 = 𝑑

𝛿𝑗
(𝑙)
=

∂

∂𝑎
𝑗
(𝑙) (

1

2
∑  𝑚
𝑝=0 (𝑎𝑝

(𝑙)
− 𝑦𝑜

(𝑘)
)
2
)

∂

∂𝑧
𝑗
(𝑙) (𝜙𝑗

(𝑙)
(𝑧𝑗

(𝑙)
))

= (𝑎𝑗
(𝑙)
− 𝑦𝑗)𝜙

′(𝑧(𝑙))

 (3.9)

CH03: Deep learning

55

Otherwise, 𝑗 belongs to a hidden layer (i.e.,1 ≤ 𝑙 < 𝑑), and we can expand 𝛿𝑗
(𝑙)

:

𝛿𝑗
(𝑙)
=∑  

𝑡=1

∂𝐿

∂𝑎𝑡
(𝑙+1)

∂𝑎𝑡
(𝑙+1)

∂𝑎𝑗
(𝑙)

𝜙′(𝑧(𝑙))

=∑  

𝑡=1

∂𝐿

∂𝑎𝑡
(𝑙+1)

∂𝑎𝑡
(𝑙+1)

∂𝑧𝑡
(𝑙)

∂𝑧𝑡
(𝑙+1)

∂𝑎𝑗
(𝑙)

𝜙′(𝑧(𝑙))

The term (
∂𝐿

∂𝑎𝑡
(𝑙+1)

∂𝑎𝑡
(𝑙+1)

∂𝑧𝑡
(𝑙)) is the error term 𝛿𝑡

(𝑙−1)
 for the neuron 𝑡 of the layer 𝑙 + 1. So, we

have:

𝛿𝑗
(𝑙)
= ∑  𝑡=1 𝛿𝑡

(𝑙+1)
𝑤𝑗𝑡𝜙

′(𝑧(𝑙)) (3.10)

From Eq: 3.8, 3.9 and 3.10, we have:

∂𝐿(𝒙(𝑘), 𝒚(𝑘), 𝜃)

∂𝑤𝑖𝑗
(𝑙)

= 𝛿𝑗
(𝑙)
𝑎𝑖
(𝑙−1)

With: 𝛿𝑗
(𝑙)
= {

(𝑎𝑗
(𝑙)
− 𝑦𝑗)𝜙

′(𝑧(𝑙)) si 𝑙 = 𝑑

∑  𝑡=1 𝛿𝑡
(𝑙+1)

𝑤𝑗𝑡𝜙
′(𝑧(𝑙)) sinon.

3.5 – Convergence of learning:

 Gradient descent learning optimizes neural network parameters with respect to the

empirical error function 𝐽train. Due to the model of neural networks, this function is

generally non-convex. That is, it contains several local minimums. In practice, it is not

necessary to reach an overall minimum on the 𝐽train error function because this generally

leads to a case of over-learning, as we will see in the next paragraph. The learning rate α is

an important parameter to take into account. Too small, the learning is slow and the risk of

falling into an uninteresting local minimum is high, and too large, the search for the

parameters is likely to diverge [111] [112]. We will see in Section 3.6 methods for

automatically adapting the learning rate during gradient descent.

3.5.1 – Problem of over-fitting:
 A classic problem in machine learning is the over-fitting (over-learning) of the

training set. This problem occurs when the learned model begins to adapt to the particular

cases of the dataset to the detriment of the general case. This scenario is repeated in

Figure N°31. This phenomenon stems from an insufficiently large learning dataset

compared to the complexity of the learning model. Since ANNs are very complex models

with a particularly large number of parameters, their training requires special attention to

this phenomenon of over-training, in particular in the case where the training dataset is

relatively small.

CH03: Deep learning

56

Figure N°3124: Three models of classifiers at different learning levels: a) under-learning

classifier, b) well-learned classifier, and c) over-learning classifier. The purple and orange

dots are the data for the two different classes.

3.5.2 – Set of validation and cross-validation:
 In machine learning models, such as ANNs, the phenomenon of over-learning can be
detected by the use of a data set not used during training, called a validation set
(approximately between 10% and 50% of the learning set). During training, the loss function
is calculated on the validation set on a regular basis as a simple observation (it is not used
for the calculation of the gradient). Over-learning is observed when the loss function begins
to move up on the validation set as it continues to decline on the learning set (see Figure 30)
This breaking point marks the model's specialization on learning data at the expense of the
model's generalizability (i.e., the ability to process new data).

Figure N°32: Loss function calculated on the 𝐷𝑡𝑟𝑎𝑖𝑛training set (curve in blue) and on the

validation set 𝐷𝑣𝑎𝑙𝑖𝑑 (curve in orange) according to the model complexity. When the loss

function on 𝐷𝑣𝑎𝑙𝑖𝑑begins to rise while on 𝐷𝑡𝑟𝑎𝑖𝑛continues to descend, the model enters an

over-fitting phase.

24 This picture was taken from https://datascience.foundation/sciencewhitepaper accessed 09 October 2020

https://datascience.foundation/sciencewhitepaper

CH03: Deep learning

57

3.5.3 – Early-stopping:

 The simplest method to avoid over-learning is to stop the gradient descent when the

loss function calculated on the validation set starts to increase (starts going up) and the loss

function calculated on the training set continues to increase (keeps going down). Methods

have been proposed to automatically detect this breaking point during training [113].

3.5.4 – Regularization:

 Since over-fitting is due to the learning of a model that is too complex compared to

the initial problem, techniques to avoid it consist in penalizing this complexity of the model.

For neural networks, this consists in penalizing excessively large connection weights by

adding a regularization term to the cost function 𝐽 to be minimized. This term penalizes the

weights of too strong connections. Another regularization solution, called Dropout25, has

been proposed specifically for neural networks [114]. It consists in "disconnecting" neurons

taken at random, at each iteration, on a temporary basis. These neurons therefore do not

participate in the output of the neural network during an iteration of learning. The other

neurons must therefore compensate for this absence. This has the effect of making the

neural network more robust against noise and thus avoiding over-fitting.

Learning the other neurons must therefore compensate for this absence. This has the effect

of making the neural network more robust against noise and thus avoiding over-fitting.

3.6 – Alternatives to gradient descent:

3.6.1 – Stochastic Gradient Descent:

Gradient descent is a very popular optimization algorithm, but there are many

variations that are used to train neural networks. An existing variant is the stochastic

version of gradient descent which we will call stochastic gradient descent. Let 𝐽 be the cost

function to be minimized as a function of a vector of parameters 𝐰 such that:

𝐽(𝐰) =
1

𝑚
∑  

𝑚

𝑖=1

𝐿𝑖(𝐰)

With 𝐿𝑖is the 𝑖𝑡ℎ observation made on the learning set (typically the error made by the
𝑖𝑡ℎdata in the learning set). Instead of calculating the gradient of 𝐽(𝐰) over the set of
observations 𝐿𝑖to modify the parameters 𝐖, this gradient is approximated by calculating it
on a single observation 𝐿𝑖 . At each iteration, the parameters 𝐖 are modified as follows:

𝐖𝑡+1 = 𝐖𝑡 − 𝛼∇𝐿𝑖(𝐖𝑡)

This method requires calculating the gradient just for a single entry of the training set,

greatly reducing the cost per iteration. It is particularly useful when the dataset is not fully

accessible or too large to be stored.

25 Dropout refers to ignoring units (i.e. neurons) during the training phase of certain set of neurons which is
chosen at random.

CH03: Deep learning

58

 In addition, the stochastic gradient descent allows, through shorter iterations, to

approach the optimal solution of 𝐰 more quickly. However, this approximation of the

gradient on a single observation implies doing a larger number of iterations with a smaller

learning rate. A

good compromise is to take, not a single observation, but a batch (that is, between a few tens

or hundreds of observations) of a size 𝑏. The gradient is then better approximated, which

makes it possible to use a more reasonable learning rate to quickly converge.

3.6.2 – Momentum:

It is still possible to accelerate the gradient descent by the momentum method [158].

The name of this method comes from the field of physics, where momentum represents

inertia 26in the movement of an object. The idea is to keep the inertia also in the gradient

search by keeping track of the last modifications to calculate the displacement of the

parameters of the function. This method is generally associated with gradient descent with

small batches. The update rule is then the following:

𝐰𝑡+1 = 𝐰𝑡 − 𝛼Δ𝐰𝑡

With:

Δ𝐰𝑡 = 𝛾Δ𝐰𝑡−1 +
1

𝑏
∑  

𝑖∈𝑋𝑡

∇𝐿𝑖(𝐰𝑡)

With 𝑋𝑡 the data batch used in iteration 𝑡, and 𝛾 ∈]0,1]. The closer 𝛾 is to 1, the more

momentum the search in parameter space has.

3.6.3 – Nesterov momentum:

A variant of the momentum method is called the Nesterov momentum method
proposed in the work of Sutskever et al. [157] to improve the learning of neural networks.
Instead of calculating the gradient for �̃�𝑡 at iteration 𝑡, the authors propose to calculate the
latter at point we 𝑡, which corresponds to the current parameters 𝜃𝑡 plus the momentum,
that is to say such that:

�̃�𝑡 = 𝐰𝑡 + 𝛾Δ𝐰𝑡−1

The modification to iteration 𝑡 is therefore equal to:

Δ𝐰𝑡 = 𝛽Δ𝐰𝑡−1 +
1

𝑏
∑  

𝑖∈𝑋𝑡

∇𝐿𝑖(�̃�𝑡)

26 A tendency to do nothing or to remain unchanged.

CH03: Deep learning

59

3.6.4 – Second-order methods:

 Gradient descent is a so-called first-order method, which means it optimizes the

parameters of a function using its first derivative. There are other optimization methods

such as Newton's method which uses the second derivative of the function to be minimized

in order to find an extremum27.

The calculation of the Hessian 28or its approximation requires calculating the matrix of the

partial derivatives seconds which corresponds to a matrix of size 𝑛 × 𝑛 at each iteration

(with n the number of parameters of the neural network). In the case of modern neural

networks, we recall that n can be of the order of 106 see 107. These techniques are efficient

but require approximating the Hessian by different methods in order to be able to operate

on classical neural networks. Currently, they are rarely used in neural network training

because other methods have been shown to be equally effective.

3.6.5 – Other optimization techniques:

 In order to accelerate the gradient descent, many other methods have been proposed

for neural networks such as AdaGrad [116], Adadelta [118], RMSProp29, or Adam [117]. One

of the most widely used is the Adam optimization method [117]. This method is based on

gradient descent with small batches and uses the same principles as AdaDelta. The idea is to

adapt the learning rate from an estimate of the first and second moment of the gradient

(unlike the momentum method which only uses the first moment). The estimation of the

first and second moment, however, requires maintaining and updating two additional

variables for each parameter of the neural network. This type of method has the advantage

of being relatively robust and makes it possible to automatically adapt the learning rate

during learning for each weight.

4 – Deep Artificial neural networks:

In Section 2.2 we saw how it was possible to learn models such as neural networks to

perform certain tasks. However, neural networks have for a very long time been limited in

their architectures, especially with regard to their depth, which means the number of layers

that they can learn. This limitation collapsed in the years 2010-2012 with the arrival of much

larger datasets (such as [119]) accompanied by larger computing and storage capacities.

This advance has also been made possible by different neural network architectures, which

are easier to learn and better suited to certain types of data.

27 The maximum or minimum value of a function.
28 The elements of the Hessian matrix consist of the second derivatives of the error measure with respect to the
weights and thresholds in the network [138].
29 This method proposed by G. Hilton has not been published but a description is available on the page:
http://www.cs.toronto.edu/tijmen/csc321/slides /lecture_slides_lec6.pdf Accessed 10 October 2020

http://www.cs.toronto.edu/tijmen/csc321/slides%20/lecture_slides_lec6.pdf

CH03: Deep learning

60

4.1 – The interest of deep architectures:

 In classical learning algorithms, characteristics must be extracted from the raw data

in order to perform the learning task. The goal is to have a higher-level representation of the

data. For example, in the field of image analysis, a first step consists in calculating the points

of interest (such as SIFT [120]) and grouping them into bags of words to train a classical

learning model such as a decision tree, an SVM [115], a forest of random trees or even a

neural network.

Extracting features from raw data requires good knowledge of this data and the learning

task, as well as engineering work to adapt the extraction methods. This operation is

relatively expensive to set up, depends on the context and a bad extraction of the

characteristics leads to very poor performance in terms of learning. The idea of deep

architectures is to integrate this feature extraction, normally done "by hand", through a

learning process in the first layers of the neural network (see Figure N°33).

In Section 3.3, we saw that intermediate layers makes it possible to transform the

representation of the input data into a higher-level representation. During the learning

phase, each layer of an MLP learns a representation of its input that should be of interest to

subsequent layers. The information in each of these layers will get higher and higher.

The term deep therefore refers to the number of layers of deep neural networks between the

input and the output layer. A network with only one hidden layer is called a shallow

network, and conversely, a network with more than 2 hidden layers is called deep.

Nowadays, it is possible to find networks with a hundred, or even a thousand layers for the

deepest [104] [103].

Figure N°3330: The difference between classic machine learning (up) and deep learning

(down)

30 This picture was taken from(https://thenewstack.io/demystifying-deep-learning-and-artificial-intelligence/)
accessed 10 October 2020

https://thenewstack.io/demystifying-deep-learning-and-artificial-intelligence/

CH03: Deep learning

61

4.2 – Convolutional neural networks:

 Convolutional neural networks (CNNs) were introduced by Lecun et al. [121]. The

particularity of CNNs is the use of the convolution operation in the first intermediate layers

of the neural network. Originally, this operation was used as a filter in the field of image or

sound in order to highlight patterns or reduce a type of noise.

In CNNs, the model itself learns the filters of the different convolutions in order to highlight

the patterns of the input data that are used in subsequent layers. A classic CNN is generally

made up of four types of layers:

• The convolutional layers, which contain several convolution operations

applied to the same input,

• The layers of pooling operations,

• The activation layers,

• The fully connected layers.

Figure N°3431: Example from CNN called AlexNet [63]. In this representation, neurons are

organized according to the dimensions of width, height and depth. Unlike fully connected

layers, convolutional layers keep information spatially coherent. Each dimension size is

shown in the figure. As input, the neural network takes an image of 227 × 227 pixels with 3

color channels.

31 This picture was taken from (https://neurohive.io/en/popular-networks/alexnet-imagenet-classification-with-
deep-convolutional-neural-networks/) accessed 10 October 2020

https://neurohive.io/en/popular-networks/alexnet-imagenet-classification-with-deep-convolutional-neural-networks/
https://neurohive.io/en/popular-networks/alexnet-imagenet-classification-with-deep-convolutional-neural-networks/

CH03: Deep learning

62

4.2.1 – Convolutional layers:

 Originally, the convolution operation is used on temporal (sound) or spatial (images)

data as a linear filter. In this section, we will take the example of a 2D convolution operation,

used on data such as images 𝑋 = (𝑥𝑖,𝑗,𝑧)1≤𝑖≤ℎ,1≤𝑗≤𝑙,1≤𝑧≤𝑐 (with ℎ × 𝑙, the dimensions of the

image and 𝑐 the number of channels). This operation is defined by a kernel 𝐴 =

(𝑎𝑖,𝑗,𝑧,𝑘)1≤𝑖≤𝑚,1≤𝑗≤𝑛,1≤𝑧≤𝑐,1≤𝑘≤𝑓 where 𝑚 × 𝑛 is the width and the height filter and 𝑓 is the

number of filters, as well as a bias 𝛽 ∈ ℝ𝑓 .

The output of the convolution operation 𝑌 ∈ ℝℎ×𝑙×𝑓is calculated as:

𝑦𝑖,𝑗,𝑘 = ∑  

𝑚

𝑖′=0

∑  

𝑛

𝑗′=0

∑ 

𝑐

𝑧=0

𝑥𝑖+𝑖′,𝑗+𝑗′,𝑧𝑎𝑖′,𝑗′,𝑧,𝑘 + 𝛽𝑘

In order to simplify the formula, we have not taken into account the handling of the "edges"

of the input image in the convolution operation. Convolutions are also applicable on one-

dimensional (like sound [107]) or three-dimensional (like video or 3D scanner) data.

Figure N°35: example of a convolution operation using sobel 32 Filter

32 The Sobel filter is an operator used in image processing for edge detection. This is one of the simplest
operators which, however, gives correct results.

CH03: Deep learning

63

4.2.2 – Pooling Operation:

Convolutional layers can be followed by a pooling operation. It aims to reduce the

dimension of the layers of neurons by grouping together the information present on neurons

close to each other. The principle is to move a sliding window over the neurons and apply a

pooling operation to it. There are different types of pooling operations such as maximum or

average function. An example of a pooling operation is shown in Figure N°36.

The fully connected layers and the activation layers are identical to MLPs (respectively the

classic neural layers and the activation function applied to an entire layer). Fully connected

layers are usually placed at the end of CNNs (just before the output layer). They make it

possible to correlate all the patterns detected by the convolutional layers in the previous

layers. Activation layers are usually placed after each convolutional layer and each fully

connected layer. Activation layers and pooling layers are not neural layers because they

contain no connections to learn (which means no trainable parameters).

Unlike MLP, the number of parameters to learn in CNNs is generally lower, but the number

of operations remains higher. This is because the filters, generally small in size, are shared

by neurons of one or more dimensions of the output layer. CNNs are mainly used in the field

of imaging, where they overtake other learning methods [98] [104]. They are also used in

the field of sound [107] or video. Variants also exist for the analysis of arbitrary graphs

[122].

Figure N°36: Example of a pooling operation with the maximum pooling (right) and average

pooling (left). The sliding window is 2 × 2 in size and moves 2 by 2 along the y axis and 2 by

2 along the x axis.

CH03: Deep learning

64

4.3 – Recurrent neural networks:

 While CNNs are primarily used to bring out spatially close relationships (such as

relationships between close pixels in an image), Recurrent Neural Networks (RNNs) were

developed to keep temporal context for each input event. They have been particularly used

for the analysis of time series, audio data, or text where context is important in order to

analyze each new entry. The idea is to keep information over time inside the layers of

neurons to give context to the data being analyzed. The output of the RNN at time 𝑡 will

depend not only on the input at time 𝑡 but also on the state of the RNN calculated at time 𝑡 −

 1.

In its simplest version, a layer of an RNN can be described as a fully connected layer 𝑙 which

takes as input the previous layer 𝑙 − 1 at time 𝑡 concatenated at the output of itself (which

means the layer 𝑙) at time 𝑡 − 1. Figure 35 shows an RNN layer.

 Figure N°37: RNN layer.

4.4 – Advanced techniques to improve learning:

 The latest neural networks, especially in the field of imaging, have an extremely large

number of layers (up to a hundred layers for some network [103, 104]). This has the effect of

considerably reducing the gradient calculated in the lower layers of the network. To answer

this problem, many solutions have been proposed in recent years.

CH03: Deep learning

65

4.4.1 – Inception module (GoogleNet):

 Proposed in 2014 by C. Szegedy et al. [104], the neural network called GoogleNet won

the ILSVRC 33(Image Classification Challenge on the ImageNet Dataset) challenge that same

year by proposing multiple improvements to the CNN architecture. Most notable is the use of

branched modules called an Inception module.

The basic idea is to multiply filters with different sizes. In Figure N°38 (a), the module

contains 4 branches, 3 layers of convolutions with filters of size 5 × 5, 3 × 3 and 1 × 1, and a

pooling operation with windows of size 3 × 3. The 1 × 1 convolution operations consist in

relating only the different channels on the same position of the image. In order to reduce the

amount of computation and the number of parameters to learn, the authors propose to add

inexpensive 1 × 1 convolutions to reduce the number of channels before the 3 × 3 and 5 × 5

convolution operations. This version of the Inception modulus with dimension reduction is

shown in Figure N°38 (b).

Figure N°38: Inception module in its simple version (a) and with dimension reduction (b).

In this graphic representation, the Conv 3x3 block represents a convolution layer with filters

of size 3 by 3. Max-pooling represents a pooling operation with the maximum function.

4.4.2 – Batch normalization:

 The batch normalization technique was proposed in 2015 by S. Ioffe et al. [123]. The

goal is to get around the problem of learning successions of layers dependent on each other.

When a layer 𝑙 is modified during training, the intermediate representation of the input data

of the 𝑙 + 1 layer is found to be modified and therefore it must re-learn its parameters

according to this new representation. One solution to reduce the disturbances due to this

change of intermediate representation at the input of a layer consists in normalizing the

activation of each neuron of a layer following the activation of this one over a whole batch.

Once neuron activation is normalized, it is "denormalized" using two variables 𝜇𝑖 , 𝛽𝑖for each

neuron, which the network must additionally learn.

This denormalization is necessary to keep the representation capacity of the neural network.

This method has the effect of making learning more stable with respect to the initialization

of the deep neural network and the chosen learning rate (the latter may therefore be

higher). Batch normalization is now used in much of state-of-the-art neural networks.

33 A competition to evaluate algorithms for object detection and image classification at the ImageNet dataset.

CH03: Deep learning

66

4.4.3 – ResNet:

 To reduce the disappearance of the gradient over a large number of layers 𝐾.

Kaiming He and al. [103] propose to modify the output of certain blocks of layers of the

neural network to obtain:

𝐲 = 𝑓(𝐱) + 𝐱

With 𝐱, the input to the block, 𝑓(𝐱) the useful function, (which means the one used to

complete the task). The idea of including the identity in the output function makes it possible

not to lose information on the input data, over the layers of the neural network. This

modification is made using a type of block called Residual block (used in neural networks

called Residual Neural Network) depicted in Figure 39. The idea is therefore to bypass the

learning operation by adding the input to the output of the block (usually followed by an

activation function). The authors have shown that they are able to train artificial neural

networks with up to 1,202 hidden layers using this method.

Figure N°39: Example of a classic ResBlock with two intermediate layers.

The function 𝑓(𝑥) is represented by the two layers of neurons above.

4.5 – Unsupervised neural networks:

We saw at the beginning of the chapter that when no label there is available in the

𝐷train learning dataset, it is not possible to use the so-called supervised learning methods

seen so far. In this section, we will look at neural network architectures suitable for

unsupervised learning.

4.5.1 – Auto-encoders:

Auto-encoders are artificial neural networks separated into two parts: an encoder

and a decoder (see Figure N°40). The goal is to learn how to reduce the number of

dimensions in an interesting way by encoding. The encoder is a neural network that

transforms the input data 𝑥 ∈ ℝ𝑛 into a new space ℝ𝑚 with 𝑛 > 𝑚. Conversely, the decoder

transforms the data 𝑥 from the ℝ𝑚space back to the ℝ𝑛space.

CH03: Deep learning

67

The learning of these two neural networks is done simultaneously. The goal is to

minimize the decoder "reconstruction" error on the data encoded by the encoder:

𝐽 = ∥∥𝑥 − 𝑓𝜃(𝑔𝜃(𝑥))∥∥
2

With𝑔𝜃(𝑥), the parametric function representing the encoder with its parameters 𝜃

and 𝑓𝜃(𝑥) the parametric function representing the decoder with its parameters 𝜃.

Since the encoding (i.e. the intermediate representation on ℝ𝑛) is a smaller space, in terms

of dimension, than the input space, the neural network (encoder and decoder) must learn to

compress using better input information in order to restore it during decoding with the least

possible loss.

Figure N°40: Example of an auto-encoder. The "Encoder" and "Decoder" blocks both

represent artificial neural networks.

The idea of the auto-encoder is a bit similar to a PCA (principle component analysis):

one seeks to understand the discriminating characteristics of the data by simply propagating

the values from the input to the output, but with an internal layer of dimension smaller than

the input (while the output is the same size as the input). Once the model has been trained, it

can possibly be used to detect anomalies in a set of data. For example, because it tries to

keep only the main information, it eliminates "noise" in data.

Below is an example with image recognition:

 Figure N°41: Example of noise reduction with auto-encoder.

CH03: Deep learning

68

4.5.2 – Generative antagonist networks:

Generative antagonist networks (called GANs) were introduced by I. Goodfellow

[124]. The principle of antagonistic artificial networks is the minimization of multiple

functions with antagonistic objectives. They have been used to make counterexamples in

order to deceive classical artificial neural networks [125], or to automatically find

encryption techniques [126]. In the case of generative antagonistic networks, the idea is to

train a neural network to generate realistic examples that could belong to the learning

dataset. This neural network is decomposed into two different models: a generator and a

discriminator (see Figure N°42). The generator takes as input a vector of random variables

and associates it with an output in the 𝑋 data space. The discriminator is a binary classifier

that takes data from the learning dataset and data from the generator output as input. Its

goal is to learn to differentiate between these two types of data. The purpose of the

generator is to trick the discriminator when it generates data. During training, the

distribution of this output data gradually approaches the distribution of the data in the

learning dataset.

 Figure N°42: Architecture of GAN with generator and discriminator.

This type of neural network has become very popular in research. Many

improvements have been proposed such as [128] [127] [129] [130]. All these different

variants are also used in many applications [131] [132] [133].

The mere purpose of generating new data has limited relevance in the use of GANs.

Existing variations in which additional information is given to the generator in order to

produce data. For example, in the work of A. Odena et al. [134], the authors propose to add

the data class at the input of the generator. This allows the generator to generate a particular

type of data, in addition to improving its learning. With a fairly similar principle, it is possible

to generate an image from a text [135]. This is encoded and given to the input of the

generator as well as inside the discriminator. GANs can also be used to increase the

resolution of an image using that image as input [137]. Likewise, some GANs can be used to

change the style of an image to that of an artist [136].

CH03: Deep learning

69

Figure N°4334: A mostly complete chart of artificial neural networks.

34 This picture was taken from https://www.asimovinstitute.org/neural-network-zoo/ accessed 09 October 2020

https://www.asimovinstitute.org/neural-network-zoo/

CH03: Deep learning

70

5 – Conclusion:

In this chapter we saw an overview of the state of the art of deep learning. It is

particularly rich and the number of applications has been increasing steadily over the past

few years. Artificial Neural networks can be learned in a supervised or unsupervised

manner. Learning is done by gradient descent (or a variant of this method) on a large as

possible dataset.

CH04: Experiments and Desktop Application

71

 ـــ

Introduction:

After we presented, the general concepts of Image Processing and Computer Vision

Especially Image Classification and the techniques of Deep Learning, this chapter is devoted

to present the tools and libraries used in our experiments and a humble discussion about the

results.

2 – Tools and Libraries:

2.1 – Python:

Python is an easy to learn, powerful programming language. It has efficient high-level

data structures and a simple but effective approach to object-oriented programming.

Python’s elegant syntax and dynamic typing, together with its interpreted nature, make it an

ideal language for scripting and rapid application development in many areas on most

platforms [141].

2.2 – Google Colaboratory:

Colaboratory, or “Colab” for short, is a product from Google Research. Colab allows

anybody to write and execute arbitrary python code through the browser, and is especially

well suited to machine learning, data analysis and education. More technically, Colab is a

hosted Jupyter notebook service that requires no setup to use, while providing free access to

computing resources including GPUs [142].

 Figure N°44: Google Colaboratory

CH04: Experiments and Desktop Application

72

2.3 – Anaconda navigator:
Anaconda Navigator is a desktop graphical user interface (GUI) included in

Anaconda® distribution that allows you to launch applications and easily manage conda

packages, environments, and channels without using command-line commands. Navigator

can search for packages on Anaconda Cloud or in a local Anaconda Repository. It is available

for Windows, macOS, and Linux [143].

Figure N°45: Anaconda navigator

2.4 – Jupyter notebook:

The Jupyter Notebook is an open-source web application that allows you to create

and share documents that contain live code, equations, visualizations and narrative text.

Uses include: data cleaning and transformation, numerical simulation, statistical modeling,

data visualization, machine learning, and much more [144].

Figure N°46: Jupyter notebook

CH04: Experiments and Desktop Application

73

2.5 – TensorFlow:

TensorFlow is an end-to-end open source platform for machine learning. It has a
comprehensive, flexible ecosystem of tools, libraries and community resources that lets
researchers push the state-of-the-art in ML and developers easily build and deploy ML
powered applications [145].

2.6 – Keras:

Keras is a deep learning API written in Python, running on top of the machine

learning platform TensorFlow. It was developed with a focus on enabling fast

experimentation. Being able to go from idea to result as fast as possible is key to doing good

research [146].

2.7 – OpenCV:

OpenCV (Open Source Computer Vision Library) is an open source computer vision

and machine learning software library. OpenCV was built to provide a common

infrastructure for computer vision applications and to accelerate the use of machine

perception in the commercial products. Being a BSD-licensed product, OpenCV makes it easy

for businesses to utilize and modify the code.

 The library has more than 2500 optimized algorithms, which includes a

comprehensive set of both classic and state-of-the-art computer vision and machine learning

algorithms. These algorithms can be used to detect and recognize faces, identify objects,

classify human actions in videos, track camera movements, track moving objects, extract 3D

models of objects, produce 3D point clouds from stereo cameras, stitch images together to

produce a high resolution image of an entire scene, find similar images from an image

database, remove red eyes from images taken using flash, follow eye movements, recognize

scenery and establish markers to overlay it with augmented reality, etc. OpenCV has more

than 47 thousand people of user community and estimated number of downloads exceeding

18 million. The library is used extensively in companies, research groups and by

governmental bodies [147].

2.8 – PyQt:

PyQt is the contraction of two words: on the one hand, Python (the programming

language used) reputed to be very easy to learn; on the other, Qt, an extremely complete

framework (mainly for graphical interfaces), but written in C ++. PyQt serves as a connecting

layer between these two worlds and brings Qt to the Python environment.

 Qt is a multiplatform library, recognized above all for its features to help design

graphical interfaces. However, Qt can do much more: this library comes with modules for

access to SQL databases, a full reusable web browser, a help system, multimedia features.

For some time now, it has offered new, more integrated and higher-level features, such as

access to mapping and location tools, wireless communication (NFC, Bluetooth), graphics,

and data visualization…etc. Also, its environment is very rich, with many other extension

libraries available [148].

CH04: Experiments and Desktop Application

74

2.9 – Cifar-10 Dataset [149]:

The CIFAR-10 dataset consists of 60000 32x32 Colour images in 10 classes, with 6000

images per class. There are 50000 training images and 10000 test images.

The dataset is divided into five training batches and one test batch, each with 10000 images.

The test batch contains exactly 1000 randomly-selected images from each class. The training

batches contain the remaining images in random order, but some training batches may

contain more images from one class than another. Between them, the training batches

contain exactly 5000 images from each class. The classes are completely mutually exclusive.

There is no overlap between automobiles and trucks. "Automobile" includes sedans, SUVs,

things of that sort. "Truck" includes only big trucks. Neither includes pickup trucks.

 Figure N°47: Represent the classes in the dataset, as well as 10 random images from each.

3 – Experiments:

The main focus throughout this thesis has been to show if noisy images in any way

has impact over the performance of deep learning model in image classification. So as a first

step to our experimental study we created noisy and restored versions of the original

publicly-available dataset selected for our experiment (Cifar-10). For that to be realized

three copies of our dataset were degraded by a Gaussian noise with standard deviation

𝜎 = [10, 30, 50], and another three were hampered by Salt & Pepper noise with the amount

𝑝 = [0.1, 0.3, 0.5], then filtering methods are applied to restore the versions affected by

noise, as a result we have 13 dataset version (original, six noisy datasets and six restored

versions).

CH04: Experiments and Desktop Application

75

 The dataset versions affected by Gaussian noise were restored using NLM (Non Local

Means) algorithm [03]. To perform the NLM denoising method we used a 7 × 7 patch, an

11 × 11 window, and for the parameter ℎ, it was set equal to standard deviation of the

Gaussian noise used to hinder the version being restored. Going to the Salt & Pepper noise,

all restored versions were generated using a 3 × 3 Median Filter.

 The second step is to learn a classifier for each dataset version creating 13 classifier

by each one of the three selected architectures for our study. The architectures were

implemented using Keras library.

 As a third step to our study, we analyze the differences between learned models. To

do that we will begin our scrutiny by comparing classification accuracies in two steps:

1. Inter-models: the goal of it is to visualize which architecture is better resilient when

the noise appear in both training and test set with the same level of noise, and see

how much harder classifying these datasets gets.

2. Intra-models: here we compare the obtained accuracies with the same model using

three datasets (noise-free, noisy, denoised) the goal is to see how the image quality

affect the models, and how much the denoising methods are helping in the cases that

of noisy images.

Our models were all trained using data augmentation with Keras module. All the models

were trained using Google Colab platform with a single 12GB NVIDIA Tesla K80 GPU that

can be used up to 12 hours continuously. XceptionNet took around 50 seconds per Epoch to

train each model with data augmentation (see Figure N°48), GoogleNet took 47 seconds per

Epoch to train each model with data augmentation(see Figure N°49), and for the ResNet; it

took 47 seconds per Epoch to train each model with data augmentation(see Figure N°50).

We store the weights of the CNN model and record the accuracy and loss for every epoch to

be able to evaluate and compare the results for each model.

 Additionally, we have created a desktop application that allows you to recognize

images or test models even train them.

Figure N°48: XceptionNet saved History.

CH04: Experiments and Desktop Application

76

Figure N°49: GoogleNet saved History.

Figure N°50: ResNet saved History.

4 – Implementation:

Our model architectures are based on [155] they were adjusted to recognize tiny

images; we created two methods to add noise and filter it using OpenCV, and some relevant

functionalities to save models and their related plots. Also, a graphical user interface was

implemented using PyQt (see Figure N°51).

CH04: Experiments and Desktop Application

77

Figure N°51: graphical user interface.

5 – Results and Discussion:

 To evidently visualize the impact of noise and filtering methods in the image quality,

the structural similarity index measure (SSIM) and the Peak signal to noise ratio (PSNR)

values are shown in Table N° 2. Smaller values in both the PSNR and SSIM indicate less

similarity between the images of the original dataset version and the version compared to.

By comparing the results while training and testing our chosen models with the same

dataset (same noise and level) we can see how much harder separating between classes gets

for these models and how the denoising methods are helping override this hurdle.

 SSIM PSNR
noisy filtered noisy filtered

C
if

a
r-

1
0

 D
a

ta
 s

e
t

S
a

lt
 a

n
d

P

e
p

p
e

r

P = 0.1 0.76 0.97 15.26 25.39

P = 0.2 0.60 0.95 12.46 23.47

P = 0.3 0.48 0.93 10.90 21.19

P = 0.4 0.41 0.88 9.85 18.92

P = 0.5 0.34 0.82 9.08 16.87

G
a

u
ss

ia
n

 = 10 0.87 0.87 16.92 17.17

 = 20 0.73 0.77 14.22 15.50

 = 30 0.58 0.67 12.45 15.29

 = 40 0.44 0.54 11.20 14.62

 = 50 0.31 0.45 10.28 13.77

Table N°02: PSNR and SSIM for each noise level

In general, the presence of noise in the dataset, even when restored using denoising

methods, makes the classification task hard. To better understand this, Table N°03 and

Figure N°52 present the accuracies of the models trained with datasets affected by noise

and the restored versions also.

CH04: Experiments and Desktop Application

78

 XceptionNet GoogleNet ResNet
noisy filtered noisy filtered noisy filtered

C
if

a
r-

1
0

 D
a

ta
 s

e
t

original 85.89 84.96 77.46
S

a
lt

 a
n

d

P
e

p
p

e
r

P = 0.1 77.12 81.15 77.98 80.12 66.07 73.04

P = 0.2 74.47 78.50 72.11 77.84 62.89 72.38

P = 0.3 66.26 76.14 67.59 75.61 58.22 69.38

P = 0.4 62.77 72.88 62.48 74.80 51.43 67.33

P = 0.5 57.02 74.43 57.06 73.30 49.04 64.94

G
a

u
ss

ia
n

 = 10 76.76 69.92 73.70 68.02 68.11 63.29

 = 20 75.24 70.45 73.82 71.42 68.21 63.61

 = 30 60.37 62.54 66.58 58.97 62.31 56.98

 = 40 52.33 55.69 51.44 44.99 47.32 52.15

 = 50 27.97 51.54 25.60 51.28 23.19 46.83

Table N°03: Accuracy of each model when training and testing using the same dataset

 version.

Figure N°52: Comparison between accuracies of each model for different noise levels

In this comparison, the networks trained with the original dataset is used as a baseline

scenario, given that these networks have no previous knowledge of any type of noise, while

the others have already seen noisy images in some level. Therefore, networks trained with

noisy images have an advantage when dealing with noise in future data even when it occurs

at a different level. For the XceptionNet, the model trained on the original data obtained an

average accuracy of 85.89%, which is the best overall result. On the GoogleNet, the best

average result of 84.96% was obtained by the model trained with original data. Lastly, with

the ResNet, the model trained on the original dataset obtained an overall 77.46% accuracy.

After adding noise, the accuracy of the models will go down and of course the more noise the

less accuracy we get after training.

CH04: Experiments and Desktop Application

79

As we can see the most of accuracies resulted when using NLM are smaller than accuracies

using Gaussian noise, this might be due to the fact that such methods generate blur when

denoising images, removing relevant details as shown in Figure N°53.

Figure N°53: Result of NLM filtering: (a) original image, (b) Gaussian noisy image,

 (c) result of NLM filtering.

Due to the big number of loss and accuracies plots we chose to show just two samples (the

middle level of every type of noise) see Figures N°51,52.

Figure N°54: accuracy and loss plots for each model when using Salt&Pepper noise

 with 𝑝 = 0.3.

CH04: Experiments and Desktop Application

80

 Figure N°55: accuracy and loss plots for each model when using Gaussian noise

 with 𝜎 = 30.

CH04: Experiments and Desktop Application

81

6 – Conclusion:

 Training deep convolutional neural networks with datasets after adding noise to their

images at a known level has shown how hard classifying these images gets, our study

covered two types of noise with five levels for each type, likewise you can test other types of

noise with different models. Our results show that classification is being hardened using

datasets affected by noise in both training and test sets.

Regarding the denoising algorithms, datasets restored using Median filtering where able to

improve the accuracies compared to datasets with Salt&Pepper noise as well the quality of

images, while in the other part datasets versions that where hindered with Gaussian noise

gave better results than their restored counterparts using NLM filter. Hence, better results

might be achieved using other filtering methods with different parameter choice.

As future work, we aim to use bigger datasets like Cifar-100, even bigger like Image-net and

other developed models that might be more resilient to noise.

CH04: Experiments and Desktop Application

82

Bibliographic references:

[1] - R. C. Gonzalez and R. E. Woods, Digital image processing, 3rd ed. Upper Saddle River, N.J: Prentice Hall, 2008.

[2] - E. R. Davies, Computer vision: theory, algorithms, practicalities, Fifth edition. London, United Kingdom ;
 Cambridge, MA, United States: Elsevier/Academic Press, 2018.
[3] - D. E. Dudgeon and R. M. Mersereau, Multidimensional digital signal processing. Englewood Cliffs, NJ: Prentice-Hall, 1984.

[4] - B. Jähne, Digital image processing: concepts, algorithms, and scientific applications, 3rd ed. Berlin ;
 New York: Springer-Verlag, 1995.
[5] - R. C. Gonzalez and R. E. Woods, Digital image processing, 2nd ed. Upper Saddle River, N.J: Prentice Hall, 2002.

[6] - W. K. Pratt, Digital image processing: PIKS Scientific inside, 4th ed., Newly updated and rev. Ed. Hoboken,
 N.J: Wiley-Interscience, 2007.
[7] - A. J. Bekker and J. Goldberger, “Training deep neural-networks based on unreliable labels,” in 2016 IEEE International Conference
 on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, Mar. 2016, pp. 2682–2686,
 doi: 10.1109/ICASSP.2016.7472164.
[8] - T. Acharya and A. K. Ray, Image Processing: Principles and Applications. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005.

[9]- P. NATTAPONG , “Improvement of Histogram Equalization for Minimum Mean Brightness Error,” in Proceedings of the 2007
 WSEAS Int, Gold Coast, Australia, Jan. 2007, pp. 135–140.
[10] - A. Rosenfeld and A. C. Kak, Digital picture processing, 2nd ed. New York: Academic Press, 1982.

[11] - N. Sengee, A. Sengee, and H.-K. Choi, “Image contrast enhancement using bi-histogram equalization with neighborhood
 metrics,” IEEE Trans. Consumer Electron., vol. 56, no. 4, pp. 2727–2734, Nov. 2010,
 doi: 10.1109/TCE.2010.5681162.
[12] - K. Vinay and B. Himani , “ Performance Evaluation of Contrast Enhancement Techniques for Digital Images,”
 IJCST, vol. 2, no. 1, Mar. 2011.
[13] - Yu Wang, Qian Chen, and Baeomin Zhang, “Image enhancement based on equal area dualistic sub-image histogram
 equalization method,” IEEE Trans. Consumer Electron., vol. 45, no. 1, pp. 68–75, Feb. 1999,
 doi: 10.1109/30.754419.
[14] - Tae Keun Kim, Joon Ki Paik, and Bong Soon Kang, “Contrast enhancement system using spatially adaptive histogram
 equalization with temporal filtering,” IEEE Trans. Consumer Electron., vol. 44, no. 1, pp. 82–87, Feb. 1998,
 doi: 10.1109/30.663733.
[15] - D. Menotti, L. Najman, J. Facon, and A. A. Araujo, “Multi-Histogram Equalization Methods for Contrast Enhancement and
 Brightness Preserving,” IEEE Trans. Consumer Electron., vol. 53, no. 3, pp. 1186–1194, Aug. 2007,
 doi: 10.1109/TCE.2007.4341603.
[16] - V. Buzuloiu, “Adaptive-neighborhood histogram equalization of color images,” J. Electron. Imaging, vol. 10, no. 2, p. 445,
 Apr. 2001, doi: 10.1117/1.1353200.
[17] - N R.Mokhtar et al., “Image Enhancement Techniques Using Local, Global, Bright, Dark and Partial Contrast Stretching For Acute
 Leukemia Images,” in Proceedings of the World Congress on Engineering 2009 , London, U.K., Jul. 2009, vol. 1.
[18] - S. Dodge and L. Karam, “Understanding how image quality affects deep neural networks,” in 2016 Eighth International
 Conference on Quality of Multimedia Experience (QoMEX), Lisbon, Portugal, Jun. 2016, pp. 1–6,
 doi: 10.1109/QoMEX.2016.7498955.
[19] - Soong-Der Chen and Abd. R. Ramli, “Contrast enhancement using recursive mean-separate histogram equalization for scalable
 brightness preservation,” IEEE Trans. Consumer Electron., vol. 49, no. 4, pp. 1301–1309, Nov. 2003,
 doi: 10.1109/TCE.2003.1261233.
[20] - T. S. Nazaré, G. B. P. da Costa, W. A. Contato, and M. Ponti, “Deep Convolutional Neural Networks and Noisy Images,” in Progress in
 Pattern Recognition, Image Analysis, Computer Vision, and Applications, Cham, 2018, pp. 416–424,
 doi: 10.1007/978-3-319-75193-1_50.
[21] - T. S. Huang, Ed., Two-dimensional digital signal processing II: transforms and median filters. Berlin ;
 New York: Springer-Verlag, 1981.
[22] - T. Huang, G. Yang, and G. Tang, “A fast two-dimensional median filtering algorithm,” IEEE Trans. Acoust., Speech, Signal Process.,
 vol. 27, no. 1, pp. 13–18, Feb. 1979, doi: 10.1109/TASSP.1979.1163188.
[23] - T. Lindeberg and A. Almansa, “Fingerprint enhancement by shape adaptation of scale-space operators with automatic scale
 selection,” IEEE Trans. on Image Process., vol. 9, no. 12, pp. 2027–2042, Dec. 2000, doi: 10.1109/83.887971.
[24] - M. T. Yildirim, A. Basturk, and M. E. Yuksel, “Impulse Noise Removal From Digital Images by a Detail-Preserving Filter Based on
 Type-2 Fuzzy Logic,” IEEE Trans. Fuzzy Syst., vol. 16, no. 4, pp. 920–928, Aug. 2008,
 doi: 10.1109/TFUZZ.2008.924358.
[25] - T. Mélange, M. Nachtegael, and E. E. Kerre, “Fuzzy Random Impulse Noise Removal From Color Image Sequences,”
 IEEE Trans. on Image Process., vol. 20, no. 4, pp. 959–970, Apr. 2011, doi: 10.1109/TIP.2010.2077305.
[26] - B. Boashash, Time-frequency signal analysis and processing: a comprehensive reference, 2. edition.
 London: Academic Press Inc, 2015.
[27] - E. Abreu, M. Lightstone, S. K. Mitra, and K. Arakawa, “A new efficient approach for the removal of impulse noise from highly
 corrupted images,” IEEE Trans. on Image Process., vol. 5, no. 6, pp. 1012–1025, Jun. 1996, doi: 10.1109/83.503916.
[28] - Haidi Ibrahim, “An efficient implementation of switching median filter with boundary discriminative noise detection for image
 corrupted by impulse noise,” Sci. Res. Essays, vol. 6, no. 26, Nov. 2011, doi: 10.5897/SRE11.856.
[29] - Nicholas Sia Pik Kong and Haidi Ibrahim, “The effect of shape and weight towards the performance of Simple Adaptive Median
 filter in reducing impulse noise level from digital images,” in 2nd International Conference on Education Technology and
 Computer, Shanghai, China, Jun. 2010, vol. 5, pp. 118–121, doi: 10.1109/ICETC.2010.5530039.
[30] - M. Aharon, M. Elad, and A. Bruckstein, “$rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse
 Representation,” IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4311–4322, Nov. 2006, doi: 10.1109/TSP.2006.881199.

CH04: Experiments and Desktop Application

83

[31] - Joseph Salmon, “Agrégation d’estimateurs et méthodes à patch pour le débruitage d’images numériques,”
 Phd, Diderot-Paris VII, Paris, 2010.
[32] - B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive field properties by learning a sparse code for natural
 images,” Nature, vol. 381, no. 6583, pp. 607–609, Jun. 1996, doi: 10.1038/381607a0.
[33] - B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis set: A strategy employed by V1?,” Vision Research,
 vol. 37, no. 23, pp. 3311–3325, Dec. 1997, doi: 10.1016/S0042-6989(97)00169-7.
[34] - K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering,”
 IEEE Trans. on Image Process., vol. 16, no. 8, pp. 2080–2095, Aug. 2007, doi: 10.1109/TIP.2007.901238.
[35] - Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, Vladimir Katkovnik, and Karen Egiazarian, “A nonlocal and shape-
 adaptive transform-domain collaborative filtering,” presented at the Workshop on Local and Non-Local Approx,
 Tampere, Finland, 2008.
[36] - Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian, “Bm3d image denoising with shape-adaptive
 principal component analysis,” Inria, Apr. 2009.
[37] - G. B. P. da Costa, W. A. Contato, T. S. Nazare, J. E. S. B. Neto, and M. Ponti, “An empirical study on the effects of different types of noise
 in image classification tasks,” arXiv:1609.02781 [cs], Sep. 2016, Accessed: Sep. 27, 2020.
 [Online]. Available: http://arxiv.org/abs/1609.02781.
[38] - F. Benzarti and H. Amiri, “Speckle Noise Reduction in Medical Ultrasound Images,” arXiv:1305.1344 [cs], May 2013,

[39] - Salivahanan S, Vallavaraj A, and Gnanapriya C, Digital signal processing. NewDelhi: Tata McgrawHill Education, 2001.

[40] - L. Gagnon and A. Jouan, “Speckle filtering of SAR images: a comparative study between complex-wavelet-based and standard
 filters,” San Diego, CA, Oct. 1997, pp. 80–91, doi: 10.1117/12.279681.
[41] - Sarita Veera Dangeti, “Denoising techniques - a comparison,” LSU Master’s These, Louisiana State University and Agricultural
 and Mechanical Colleg, 2003.
[42] - A. K. Boyat and B. K. Joshi, “A Review Paper: Noise Models in Digital Image Processing,” arXiv:1505.03489 [cs],
 May 2015.
[43] - More Manisha and Shivale Nitin, “Linear Filtering Based Image Restoration with Image De-Blurring Toolkit,” IJSR, vol. 5, no. 7,
 Jul. 2016.
[44] - M. Bergounioux, Introduction au traitement mathématique des images - méthodes déterministes. Heidelberg: Springer, 2015.

[45] - A. Buades, B. Coll, and J. M. Morel, “A Review of Image Denoising Algorithms, with a New One,” Multiscale Model. Simul.,
 vol. 4, no. 2, pp. 490–530, Jan. 2005, doi: 10.1137/040616024.
[46] - C. Kervrann and J. Boulanger, “Optimal Spatial Adaptation for Patch-Based Image Denoising,” IEEE Trans. on Image Process.,
 vol. 15, no. 10, pp. 2866–2878, Oct. 2006, doi: 10.1109/TIP.2006.877529.
[47] - Thomas Brox and Daniel Cremers, Eds., “Iterated nonlocal means for texture restoration.,” in International Conference on Scale
 Space and Variational Methods in Computer Vision, Berlin ; New York, 2007, pp. 13–24.
[48] - T. Brox, O. Kleinschmidt, and D. Cremers, “Efficient Nonlocal Means for Denoising of Textural Patterns,” IEEE Trans. on Image
 Process., vol. 17, no. 7, pp. 1083–1092, Jul. 2008, doi: 10.1109/TIP.2008.924281.
[49] - D. Tschumperle and L. Brun, “Non-local image smoothing by applying anisotropic diffusion PDE’s in the space of patches,”
 in 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, Nov. 2009, pp. 2957–2960,
 doi: 10.1109/ICIP.2009.5413453.
[50] - C. Louchet and L. Moisan, “Total Variation as a Local Filter,” SIAM J. Imaging Sci., vol. 4, no. 2, pp. 651–694, Jan. 2011,
 doi: 10.1137/100785855.
[51] - A. Buades, B. Coll, and J.-M. Morel, “A Non-Local Algorithm for Image Denoising,” in 2005 IEEE Computer Society Conference on
 Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 2005, vol. 2, pp. 60–65,
 doi: 10.1109/CVPR.2005.38.
[52] - J. P. Serra, Image analysis and mathematical morphology. London ; New York: Academic Press, 1982.
[53] - J. Serra, “Morphological optics,” Journal of Microscopy, vol. 145, no. 1, pp. 1–22, Jan. 1987,
 doi: 10.1111/j.1365-2818.1987.tb01312.x.
[54] - S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Machine
 Intell., vol. 11, no. 7, pp. 674–693, Jul. 1989, doi: 10.1109/34.192463.
[55] - Y. Meyer, Ondelettes et opérateurs Volume 1et 2: Ondelettes ,Opérateurs de Calderon-Zygmund. 1997.

[56] - M. Misiti, Y. Misiti, G. Oppenheim, and J.-M. Poggi, Eds., Wavelets and their Applications. London, UK: ISTE, 2007.

[57] - R. A. DeVore and B. J. Lucier, Wavelets,in Acta numerica 1. Cambridge: Cambridge University Press, 1991.

[58] - C. E. Heil and D. F. Walnut, “Continuous and Discrete Wavelet Transforms,” SIAM Rev., vol. 31, no. 4, pp. 628–666, Dec. 1989,
 doi: 10.1137/1031129.
[59] - O. Rioul and M. Vetterli, “Wavelets and signal processing,” IEEE Signal Process. Mag., vol. 8, no. 4, pp. 14–38, Oct. 1991,
 doi: 10.1109/79.91217.
[60] - G. Strang, “Wavelets and Dilation Equations: A Brief Introduction,” SIAM Rev., vol. 31, no. 4, pp. 614–627, Dec. 1989,
 doi: 10.1137/1031128.
[61] - G. Strang, “Wavelet transforms versus Fourier transforms,” Bull. Amer. Math. Soc., vol. 28, no. 2, pp. 288–306, Apr. 1993,
 doi: 10.1090/S0273-0979-1993-00390-2.
[62] - R. S. Strichartz, “How To Make Wavelets,” The American Mathematical Monthly, vol. 100, no. 6, pp. 539–556, Jun. 1993,
 doi: 10.1080/00029890.1993.11990449.
[63] - T.-W. Lin, “Compressed quadtree representations for storing similar images,” Image and Vision Computing, vol. 15, no. 11,
 pp. 833–843, Nov. 1997, doi: 10.1016/S0262-8856(97)00031-0.
[64] - D. Marr, Vision: a computational investigation into the human representation and processing of visual information.
 Cambridge, Mass: MIT Press, 2010.
[65] - J. Martinez and S. Guillaume, “Colour image retrieval fitted to «classical» querying,” in Image Analysis and Processing,
 vol. 1311, A. Del Bimbo, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 14–21.

CH04: Experiments and Desktop Application

84

[66] - J. Martinez and E. Loisant, “Browsing image databases with Galois’ lattices,” in Proceedings of the 2002 ACM symposium on
 Applied computing - SAC ’02, Madrid, Spain, 2002, p. 791, doi: 10.1145/508791.508944.
[67] - R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification, 2nd ed. New York: Wiley, 2001.

[68] - Keysers Daniel, Dahmen Jörg, and Ney Hermann, Invariant Classification of Red Blood Cells: A Comparison of Different
 Approaches. Bildverarbeitung für die Medizin, 2001.
[69] - Zaïane Osmar, Antonie Luiza, and Coman, Alexandru, “Mammography Classification By an Association Rule-based Classifier,”
 in Proceedings of the Third International Workshop on Multimedia Data Mining, MDM/KDD’2002, July 23rd, 2002,
 Edmonton, University of Alberta, Canada, 2002, pp. 62–69.
[70] - M. Rodriguez-Damian, E. Cernadas, A. Formella and R. Sa-Otero, “Pollen classification using brightness-based and shape-based
 descriptors,” Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., Cambridge, 2004,
 pp. 212-215 Vol.2, doi: 10.1109/ICPR.2004.1334098. .
[71] - T. Maenpaa, M. Pietikainen, and J. Viertola, “Separating color and pattern information for color texture discrimination,”
 in Object recognition supported by user interaction for service robots, Quebec City, Que., Canada, 2002, vol. 1, pp. 668–671,
 doi: 10.1109/ICPR.2002.1044840.
[72] - T. Mäenpää, J. Viertola, and M. Pietikäinen, “Optimising Colour and Texture Features for Real-time Visual Inspection,”
 Patt. Analy. App., vol. 6, no. 3, pp. 169–175, Dec. 2003, doi: 10.1007/s10044-002-0179-1.
[73] - K. H. G., . Mohd. M. M., . A. H., and . S. R., “Scale Invariant Feature Transform Technique for Weed Classification in Oil Palm
 Plantation,” J. of Applied Sciences, vol. 8, no. 7, pp. 1179–1187, Jul. 2008, doi: 10.3923/jas.2008.1179.1187.
[74] - Y. LeCun et al., “Backpropagation Applied to Handwritten Zip Code Recognition,” Neural Computation, vol. 1, no. 4,
 pp. 541–551, Dec. 1989, doi: 10.1162/neco.1989.1.4.541.
[75] - Ø. Due Trier, A. K. Jain, and T. Taxt, “Feature extraction methods for character recognition-A survey,” Pattern Recognition,
 vol. 29, no. 4, pp. 641–662, Apr. 1996, doi: 10.1016/0031-3203(95)00118-2.
[76] - Y. B. Lauziere, D. Gingras, and F. P. Ferrie, “A model-based road sign identification system,” in Proceedings of the 2001 IEEE
 Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, Kauai, HI, USA, 2001, vol. 1,
 p. I-1163-I–1170, doi: 10.1109/CVPR.2001.990662.
[77] - Suard Frédéric., “Méthodes à noyaux pour la détection de piétons. ,” Phd, LITIS - INSA of Rouen, France, 2006.

[78] - F. Suard, V. Guigue, A. Rakotomamonjy, and A. Benshrair, “Pedestrian detection using stereo-vision and graph kernels,” in IEEE
 Proceedings. Intelligent Vehicles Symposium, 2005., Jun. 2005, pp. 267–272, doi: 10.1109/IVS.2005.1505113.
[79] - F. Suard, A. Rakotomamonjy, A. Bensrhair, and A. Broggi, “Pedestrian Detection using Infrared images and Histograms of
 Oriented Gradients,” in 2006 IEEE Intelligent Vehicles Symposium, Jun. 2006, pp. 206–212, doi: 10.1109/IVS.2006.1689629.
[80] - C. Hilario, J. M. Collado, J. M. Armingol, and A. de la Escalera, “Pedestrian Detection for Intelligent Vehicles Based on Active
 Contour Models and Stereo Vision,” in Computer Aided Systems Theory – EUROCAST 2005, Berlin, Heidelberg, 2005,
 pp. 537–542, doi: 10.1007/11556985_70.
[81] - P. Negri, X. Clady, S. M. Hanif, and L. Prevost, “A Cascade of Boosted Generative and Discriminative Classifiers for Vehicle
 Detection,” EURASIP J. Adv. Signal Process., vol. 2008, no. 1, p. 782432, Dec. 2008, doi: 10.1155/2008/782432.
[82] - H. Shao, T. Svoboda, and L. Gool, “ZuBuD Zurich Buildings Database for Image Based Recognition,” 2003.

[83] - P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” in Proceedings of the 2001 IEEE
 Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, Dec. 2001, vol. 1, p. I–I,
 doi: 10.1109/CVPR.2001.990517.
[84] - P. Viola and M. J. Jones, “Robust Real-Time Face Detection,” International Journal of Computer Vision, vol. 57, no. 2, pp. 137–154,
 May 2004, doi: 10.1023/B:VISI.0000013087.49260.fb.
[85] - A. Rad, R. Safabakhsh, N. Qaragozlou, and M. Zaheri, “Fast iris and pupil localization and eyhelid removal using gradient vector
 pairs and certainty factors,” in The Irish Machine Vision and Image Processing Conf, 2004, pp. 82–91.
[86] - G. Guo and M. J. Jones, “Iris Extraction Based on Intensity Gradient and Texture Difference,” in 2008 IEEE Workshop on
 Applications of Computer Vision, Jan. 2008, pp. 1–6, doi: 10.1109/WACV.2008.4544018.
[87] - P. Bolon et al., Analyse d’images : Filtrage et segmentation. MASSON, 1995.

[88] - N. Otsu, “A Threshold Selection Method from Gray-Level Histograms,” IEEE Trans. Syst., Man, Cybern., vol. 9, no. 1, pp. 62–66,
 Jan. 1979, doi: 10.1109/TSMC.1979.4310076.
[89] - G. S. di Baja and E. Thiel, “Skeletonization algorithm running on path-based distance maps,” Image and Vision Computing,
 vol. 14, no. 1, pp. 47–57, Feb. 1996, doi: 10.1016/0262-8856(95)01039-4.
[90] - A. L. Blum and P. Langley, “Selection of relevant features and examples in machine learning,” Artificial Intelligence, vol. 97,
 no. 1–2, pp. 245–271, Dec. 1997, doi: 10.1016/S0004-3702(97)00063-5.
[91] - L. Lam, S.-W. Lee, and C. Y. Suen, “Thinning methodologies-a comprehensive survey,” IEEE Transactions on Pattern Analysis and
 Machine Intelligence, vol. 14, no. 9, pp. 869–885, Sep. 1992, doi: 10.1109/34.161346.
[92] - Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep learning., vol. 1. Cambridge: The MIT Press, 2016.

[93] - A. D. Gordon, L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, “Classification and Regression Trees.,” Biometrics, vol. 40,
 no. 3, p. 874, Sep. 1984, doi: 10.2307/2530946.
[94] - G. V. Kass, “An Exploratory Technique for Investigating Large Quantities of Categorical Data,” Applied Statistics, vol. 29, no. 2,
 p. 119, 1980, doi: 10.2307/2986296.
[95] - J. MacQueen, “Some methods for classification and analysis of multivariate observations,” presented at the Proceedings of the
 Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, 1967.
[96] - J. P. Benzécri, L’analyse des données: leçons sur l’analyse factorielle et la reconnaissance des formes et travaux du Laboratoire de
 statistique de l’Université de Paris VI. Dunod, 1973.
[97] - G. Celeux, E. Diday, and G. Govaert, “Classification automatique de donnees environnement statistique et informatique,”

undefined, 1989.
[98] - A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” Commun. ACM,
 vol. 60, no. 6, pp. 84–90, May 2017, doi: 10.1145/3065386.
[99] - G. Hinton et al., “Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research
 Groups,” IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82–97, Nov. 2012, doi: 10.1109/MSP.2012.2205597.

CH04: Experiments and Desktop Application

85

[100] - D. P. Kingma, D. J. Rezende, S. Mohamed, and M. Welling, “Semi-Supervised Learning with Deep Generative Models,”
 arXiv:1406.5298 [cs, stat], Oct. 2014.
[101] - Olivier Chapelle, Jason Weston, and Bernhard Schölkopf. 2002. Cluster kernels for semi-supervised learning. In Proceedings of the
 15th International Conference on Neural Information Processing Systems (NIPS’02).
 MIT Press, Cambridge, MA, USA, 601–608. .
[102] - O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep Face Recognition,” in Procedings of the British Machine Vision Conference
 2015, Swansea, 2015, p. 41.1-41.12, doi: 10.5244/C.29.41.
[103] - K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” arXiv:1512.03385 [cs], Dec. 2015,

[104] - C. Szegedy et al., “Going deeper with convolutions,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition
 (CVPR), Boston, MA, USA, Jun. 2015, pp. 1–9, doi: 10.1109/CVPR.2015.7298594.
[105] - R. Collobert and J. Weston, “A unified architecture for natural language processing: deep neural networks with multitask
 learning,” in Proceedings of the 25th international conference on Machine learning - ICML ’08, Helsinki, Finland, 2008,
 pp. 160–167, doi: 10.1145/1390156.1390177.
[106] - A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang, “Phoneme recognition using time-delay neural networks,”
 IEEE Trans. Acoust., Speech, Signal Processing, vol. 37, no. 3, pp. 328–339, Mar. 1989,
 doi: 10.1109/29.21701.
[107] - D. Amodei et al., “Deep Speech 2: End-to-End Speech Recognition in English and Mandarin,” arXiv:1512.02595 [cs],
 Dec. 2015.
[108] - K. Hornik, “Approximation capabilities of multilayer feedforward networks,” Neural Networks, vol. 4, no. 2, pp. 251–257,
 1991, doi: 10.1016/0893-6080(91)90009-T.
[109] - J. Turian, J. Bergstra, and Y. Bengio, “Quadratic features and deep architectures for chunking,” in Proceedings of Human
 Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational
 Linguistics, Companion Volume: Short Papers on - NAACL ’09, Boulder, Colorado, 2009, p. 245,
 doi: 10.3115/1620853.1620921.
[110] - J. Han and C. Moraga, “The influence of the sigmoid function parameters on the speed of backpropagation learning,” in From
 Natural to Artificial Neural Computation, Berlin, Heidelberg, 1995, pp. 195–201, doi: 10.1007/3-540-59497-3_175.
[111] - Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient BackProp,” in Neural Networks: Tricks of the Trade, G. B. Orr and K.-R
 . Müller, Eds. Berlin, Heidelberg: Springer, 1998, pp. 9–50.
[112] - T. Schaul, S. Zhang, and Y. LeCun, “No More Pesky Learning Rates,” arXiv:1206.1106 [cs, stat], Feb. 2013,

[113] - L. Prechelt, “Automatic early stopping using cross validation: quantifying the criteria,” Neural Networks, vol. 11, no. 4,
 pp. 761–767, Jun. 1998, doi: 10.1016/S0893-6080(98)00010-0.
[114] - N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
 from overfitting.” JMLR.org, Jan. 01, 2014.
[115] - B. Schölkopf, A. J. Smola, F. Bach, and M. D. of the M. P. I. for B. C. in T. G. P. B. Scholkopf, Learning with Kernels: Support Vector
 Machines, Regularization, Optimization, and Beyond. MIT Press, 2002.
[116] - Duchi John, Hazan Elad, and Singer Yoram, “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization ”
 Machine Learning Research, vol. 12, pp. 2121–2159, 2011.
[117] - D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” arXiv:1412.6980 [cs], Jan. 2017,

[118] - M. D. Zeiler, “ADADELTA: An Adaptive Learning Rate Method,” arXiv:1212.5701 [cs], Dec. 2012,

[119] - O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,” Int J Comput Vis, vol. 115, no. 3, pp. 211–252,
 Dec. 2015, doi: 10.1007/s11263-015-0816-y.
[120] - D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of the Seventh IEEE International
 Conference on Computer Vision, Sep. 1999, vol. 2, pp. 1150–1157 vol.2, doi: 10.1109/ICCV.1999.790410.
[121] - Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the
 IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998, doi: 10.1109/5.726791.
[122] - M. Niepert, M. Ahmed, and K. Kutzkov, “Learning Convolutional Neural Networks for Graphs,” in Proceedings of the 33rd
 International Conference on International Conference on Machine Learning, NY, USA , Jun. 2016, vol. 48.
[123] - S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift,”
 in Proceedings of the 32Nd International Conference on International Conference on Machine Learning , Lille, France ,
 Mar. 2015, vol. 37.
[124] - I. J. Goodfellow et al., “Generative Adversarial Networks,” arXiv:1406.2661 [cs, stat], Jun. 2014,

[125] - N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami, “The Limitations of Deep Learning in Adversarial
 Settings,” in 2016 IEEE European Symposium on Security and Privacy (EuroS P), Mar. 2016, pp. 372–387,
 doi: 10.1109/EuroSP.2016.36.
[126] - M. Abadi and D. G. Andersen, “Learning to Protect Communications with Adversarial Neural Cryptography,”
 arXiv:1610.06918 [cs], Oct. 2016,
[127] - Martin Arjovsky , S. CHINTALA, and Léon Bottou, “Towards Principled Methods for Training Generative Adversarial
 Networks,” arXiv:1701.04862 [cs, stat], Jan. 2017
[128] - M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein Generative Adversarial Networks,” in International Conference on
 Machine Learning, Jul. 2017, pp. 214–223, Accessed: Sep. 17, 2020.
 [Online]. Available: http://proceedings.mlr.press/v70/arjovsky17a.html.
[129] - T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Improved Techniques for Training GANs,”
 arXiv:1606.03498 [cs], Jun. 2016
[130] - M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “GANs Trained by a Two Time-Scale Update Rule
 Converge to a Local Nash Equilibrium,” in Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg,
 S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc., 2017, pp. 6626–6637.
[131] - L. Ma, X. Jia, Q. Sun, B. Schiele, T. Tuytelaars, and L. Van Gool, “Pose Guided Person Image Generation,”
 arXiv:1705.09368 [cs], Jan. 2018,

CH04: Experiments and Desktop Application

86

[132] - Y. Jin, J. Zhang, M. Li, Y. Tian, H. Zhu, and Z. Fang, “Towards the Automatic Anime Characters Creation with Generative
 Adversarial Networks,” arXiv:1708.05509 [cs], Aug. 2017,
[133] - C. Vondrick, H. Pirsiavash, and A. Torralba, “Generating videos with scene dynamics,” in Proceedings of the 30th International
 Conference on Neural Information Processing Systems, Barcelona, Spain, Dec. 2016, pp. 613–621,
 Accessed: Sep. 17, 2020. [Online].
[134] - A. Odena, C. Olah, and J. Shlens, “Conditional Image Synthesis with Auxiliary Classifier GANs,” in International Conference on
 Machine Learning, Jul. 2017, pp. 2642–2651,
[135] - S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee, “Generative adversarial text to image synthesis,” in Proceedings
 of the 33rd International Conference on International Conference on Machine Learning - Volume 48, New York, NY, USA,
 Jun. 2016, pp. 1060–1069, Accessed: Sep. 17, 2020. [Online].
[136] - J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial
 Networks,” in 2017 IEEE International Conference on Computer Vision (ICCV), Oct. 2017, pp. 2242–2251,
 doi: 10.1109/ICCV.2017.244.
[137] - C. Ledig et al., “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network,”
 in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul. 2017, pp. 105–114,
 doi: 10.1109/CVPR.2017.19.
[138] - C. Bishop, “Exact Calculation of the Hessian Matrix for the Multilayer Perceptron,” Neural Computation, vol. 4, no. 4,
 pp. 494–501, Jul. 1992, doi: 10.1162/neco.1992.4.4.494.
[139] - K. Gurney, An introduction to neural networks. London: UCL Press, 1997.

[140] - I. B. Levitan and L. K. Kaczmarek, The neuron: cell and molecular biology, Fourth edition. Oxford ;
 New York: Oxford University Press, 2015.
[141] - “The Python Tutorial — Python 3.8.6rc1 documentation.” https://docs.python.org/3/tutorial/ (accessed Sep. 24, 2020).

[142] - “Colaboratory – Google.” https://research.google.com/colaboratory/faq.html#resource-limits (accessed Sep. 24, 2020).

[143] - “Anaconda Navigator — Anaconda documentation.” https://docs.anaconda.com/anaconda/navigator/
 (accessed Sep. 24, 2020).
[144] - “Project Jupyter.” https://www.jupyter.org (accessed Sep. 24, 2020).

[145] - “TensorFlow,” TensorFlow. https://www.tensorflow.org/ (accessed Sep. 24, 2020).

[146] - K. Team, “Keras documentation: About Keras.” https://keras.io/about/ (accessed Sep. 24, 2020).

[147] - “OpenCV.” https://opencv.org/about/ (accessed Sep. 24, 2020).

[148] - P. Denis and T. Cuvelier, Créer des applications graphiques en Python avec PyQt5. 2017.

[149] - “CIFAR-10 and CIFAR-100 datasets.” https://www.cs.toronto.edu/~kriz/cifar.html (accessed Sep. 24, 2020).

[150] - Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May 2015,
 doi:10.1038/nature14539.
[151] - P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for Activation Functions,” arXiv:1710.05941 [cs], Oct. 2017, Accessed: Sep.
 27, 2020. [Online]. Available: http://arxiv.org/abs/1710.05941 .
[152] - V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in Proceedings of the 27th
 International Conference on International Conference on Machine Learning, Haifa, Israel, Jun. 2010, pp. 807–814,
 Accessed: Sep. 26, 2020. [Online].
[153] - G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improving deep neural networks for LVCSR using rectified linear units and dropout,”
 in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, May 2013, pp. 8609–8613,
 doi: 10.1109/ICASSP.2013.6639346.
[154] - C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation Functions: Comparison of trends in Practice and Research
 for Deep Learning,” arXiv:1811.03378 [cs], Nov. 2018, Accessed: Sep. 27, 2020.
 [Online]. Available: http://arxiv.org/abs/1811.03378 .
[155] - “Machine-Learning-Tokyo/DL-workshop-series,” GitHub. https://github.com/Machine-Learning-Tokyo/DL-workshop-series
 (accessed Oct. 01, 2020).
[156] - P. Cunningham and S. J. Delany, “k-Nearest Neighbour Classifiers: 2nd Edition (with Python examples),” arXiv:2004.04523 [cs, stat],

 Apr. 2020, Accessed: Oct. 05, 2020. [Online]. Available: http://arxiv.org/abs/2004.04523 .

[157] - I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of initialization and momentum in deep learning,”

 in International Conference on Machine Learning, May 2013, pp. 1139–1147, Accessed: Oct. 09, 2020.

 [Online]. Available: http://proceedings.mlr.press/v28/sutskever13.html .

[158] - D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature, vol. 323,

 no. 6088, pp. 533–536, Oct. 1986, doi: 10.1038/323533a0.

[159] - Vapnik, Vladimir N. The Nature of Statistical Learning Theory. Springer New York, 1995. DOI.org (Crossref),

 doi:10.1007/978-1-4757-2440-0.

https://docs.python.org/3/tutorial/
https://docs.anaconda.com/anaconda/navigator/
https://www.jupyter.org/
https://www.tensorflow.org/
https://keras.io/about/
https://opencv.org/about/
https://www.cs.toronto.edu/~kriz/cifar.html
http://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1811.03378
https://github.com/Machine-Learning-Tokyo/DL-workshop-series
http://arxiv.org/abs/2004.04523
http://proceedings.mlr.press/v28/sutskever13.html

