

 REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

 MINISTERE DE L’ENSEIGNEMENT SUPERIEURE ET DE LA RECHERCHE SCIENTIFIQUE

 UNIVERSITE IBN KHALDOUN - TIARET

MEMOIRE

Présenté à :

FACULTÉ MATHEMATIQUES ET INFORMATIQUE

 DÉPARTEMENT D’INFORMATIQUE

Pour l’obtention du diplôme de :

MASTER

Spécialité : [Génie informatique]

Par :

Figuir Djamila

Sur le thème

Soutenu publiquement le 13 / 07 / 2019 à Tiaret devant le jury composé de :

MERATI Medjeded Grade Maitre de conférences Président
BOUDAA Boudjemaa Grade Maitre de conférences Encadreur
KOUADRIA Abderrahmane Grade Maitre-Assistant Examinateur

Développement d’un système de recommandation à base de

connaissances pour le domaine de Tourisme

Acknowledgement

First and foremost, praises and thanks to Allah, the Almighty and Merciful who gave me strength

and patience throughout my research work to complete the research successfully.

I would like to express my deep and sincere gratitude to my "framer" Mr. Boudaa Boudjemaa

for his availability, support, encouragement and the quality of his advice along this work. I

also thank him for the help he has provided and the knowledge he has given me.

A big thank you to my mother and father, for their love, their advices as well as their unconditional

support, both moral and economic, which allowed me to carry out the studies that I wanted and

consequently this memory.

This project could not have been accomplished without the support of the “DATAtourisme” team,

“Stack Overflow” community, and “Google”.

I would like to express my gratitude to my sisters, brothers and friends, who gave me their moral

and intellectual support throughout my journey.

I want to take this opportunity to thank Mr. MERATI Medjeded and Mr. KOUADRIA

Abderrahmane for accepting to judge and to evaluate this work and to participate in the thesis jury.

That they find here the expression of my highest consideration.

Finally, I thank all those who contributed by their advice or encouragement to the completion of

this work.

Figuir Djamila

Table of Content

Table of Contents

Abstract...……………………………………………………………………………………..... i

List of Figures.……………………………………………………………….……………….. ii

List of Tables……………………………………………..………………………….….……. iii

List of Algorithms...………………………………………..………………………….….…. iv

General Introduction ………………………………………………………………………... 1

CHAPTER I: Overview on Recommendation Systems __________________________________

1. Introduction .. 4

2. What Is A Recommender System?... 4

3. Past, Present and Future of Recommender Systems .. 4

3.1. Past ... 4

3.2. Present .. 5

3.3. Future ... 6

4. How Does Recommender System Work? .. 6

4.1. Collecting Phase ... 7

4.2. Profiling Phase ... 8

4.2.1. Comparison of The User Profile Types ... 8

4.3. Recommending Phase .. 9

5. Classification of recommendation systems .. 9

5.1. Classic classification .. 10

5.2. Classification of Rao N. and Talwar. (2008) ... 10

5.3. Classification of Su, X. and Khoshgoftaar, T. (2009) .. 10

6. Basic Models of Recommender Systems ... 10

6.1. Collaborative Filtering Models .. 10

Table of Content

6.1.1. Memory-based methods ... 11

6.1.2. Model-based methods .. 11

6.2. Content-Based Models ... 12

6.2.1. Feature Extraction .. 12

6.3. Knowledge-Based Recommender Systems .. 13

6.4. Hybrid Recommender Systems .. 13

7. Issues and Challenges in RSs ... 14

8. Conclusion ... 14

Chapter II: Knowledge-Based Recommender systems __________________________________

1. Introduction .. 16

2. What is Knowledge? .. 16

2.1. Types of knowledge ... 17

3. What is Knowledge-base? .. 17

3.1. Knowledge-base vs Database ... 17

4. Knowledge representations .. 18

4.1. Forms of Representing Knowledge .. 18

4.1.1. Natural Language as a Knowledge Representation.. 18

4.1.2. Database as a Knowledge Representation .. 18

4.1.3. First Order Logic as a Knowledge Representation .. 19

4.1.4. Ontologies as a knowledge representation ... 19

5. The semantic web and ontologies .. 19

5.1. What is the Semantic Web? ... 20

5.2. What is RDF, RDFs, OWL and SPARQL? ... 20

5.3. Ontologies .. 21

5.3.1. Ontology Components.. 22

Table of Content

5.3.2. Types of ontologies .. 22

6. Knowledge-based recommender systems .. 23

6.1. Case-based recommendation .. 24

6.2. Constraint-based recommendation ... 24

7. Conclusion .. 24

Chapter III: The Proposed Knowledge-Based Recommender System ______________________

1. Introduction .. 26

2. The Ontological Representation of e-Tourism Domain ... 26

2.1. DATAtourisme Ontology ... 26

2.1.1. Basic Concepts ... 27

2.1.2. Main Properties and Relationships ... 28

2.1.3. Interconnection with Other Ontologies .. 30

3. Constraint-Based Recommendation ... 30

3.1. Recommendation Task ... 31

3.2. Preferred Conflicts and Relaxations ... 31

3.3. Computing Preferred Explanations .. 32

3.3.1. Algorithm QUICKXPLAIN ... 34

4. The Proposed Knowledge-Based Recommender System .. 34

4.1. Specification of Our Constraint Satisfaction Problem ... 34

4.2. Architectural Design of the Proposed Recommender System 37

4.2.1. Requirements Specification.. 39

4.2.2. Checking Compatibility ... 39

4.2.3. Recommendation Engine ... 40

4.2.4. Checking Results .. 41

4.2.5. Cloud Firestore data model ... 41

Table of Content

5. Conclusion .. 42

Chapter IV: Realization and Testing __

1. Introduction .. 44

2. Development Environment .. 44

2.1. Flutter ... 44

2.1.1. The Engine Architecture .. 44

2.1.2. Benefits of Flutter... 45

2.2. VScode ... 45

2.3. DATAtourisme API ... 46

2.4. Semantic Database - Blazegraph .. 47

2.5. Composer ... 47

2.6. PHP 7.. 47

2.7. Apache .. 48

2.8. Firebase .. 48

2.8.1. Firebase Authentication.. 48

2.8.2. Realtime Database .. 49

2.8.3. Cloud Firestore ... 49

2.8.4. Firebase Analytics .. 49

2.8.5. Firebase Prediction ... 49

2.9. Leaflet Map .. 49

3. Execution and Results .. 49

3.1. Registration / Authentication ... 50

3.2. User Profile .. 50

3.2.1. Example of User Preferences / Needs .. 51

3.3. Tourism services .. 52

Table of Content

3.4. Execution Scenarios ... 53

3.4.1. Scenario 1 (without conflict) .. 53

3.4.2. Scenario 2 (with conflict) ... 54

4. Advantages and Limits ... 55

4.1. Advantages ... 55

4.2. Limits ... 55

5. Conclusion .. 55

 General Conclusion ………………………………………………………………………....57

Annex ……………………………………………………………………………………………59

References …………………………………………………………………………………….…69

Abstract

i

Abstract

With the rise use of the Internet, recommender systems (RS) are growing progressively and

become more popular in our habitual life by helping people to find relevant items (books, movies,

hotels, etc.). by using user data, item data, user opinions, preferences, meta-data, demographic

information, user behavior or combination of these.

This research work aims to develop a knowledge-based recommender system that recommends

Tourism services (hotel, restaurant, cultural sites, etc.) to tourists. In this purpose, we have used a

constraint-based approach as type of knowledge-based recommender systems, and the

DATAtourisme ontology as a recent rich knowledge about Tourism domain.

The achieved recommender system has proved the capability of recommending complex products

and services such as in tourism domain. In addition, the obtained results confirm advantages of

these kind of recommendation systems mainly the absence of cold-start problem

Keywords: Knowledge-based recommender system, DATAtourisme ontology, constraint-based

approach, explanation, relaxation.

List of Figures

ii

List of Figures

FIGURE I-1 PHASES OF RECOMMENDATION PROCESS ... 7

FIGURE I- 2 BASIC CLASSIFICATION OF RSS ... 9

FIGURE I- 3 COLLABORATIF FILTERING RECOMMENDER SYSTEM 11

FIGURE I- 4 CONTENT-BASED RECOMMENDER SYSTEM .. 12

FIGURE I- 5 KNOWLEDGE-BASED RECOMMENDER SYSTEM.. 13

FIGURE I- 6 HYBRID-BASED RECOMMENDER SYSTEM .. 13

FIGURE II- 1 THE DICK WHITTINGTON MODEL FOR KNOWLEDGE MANAGEMENT 16

FIGURE II- 2 CONCEPT AND RELATIONSHIP OF ONTOLOGY .. 19

FIGURE II- 3 THE LAYERS OF THE SEMANTIC WEB... 20

FIGURE II- 4 EXAMPLE OF RDF ... 20

FIGURE II- 5 FROM REALITY TO ONTOLOGY. ... 21

FIGURE II- 6 TYPES OF ONTOLOGIES .. 22

FIGURE III- 1 BASIC SCHEMA OF DATATOURISME ONTOLOGY 27

FIGURE III- 2 GENERAL SCHEMA OF DATATOURISME ONTOLOGY 28

FIGURE III- 3 INTERCONNECTION BETWEEN DATATOURISME AND STANDARD

ONTOLOGIES .. 30

FIGURE III- 4 ARCHITECTURE OF THE PROPOSED KNOWLEDGE-BASED

RECOMMENDER SYSTEM ... 38

FIGURE III- 6 CLOUD FIRESTORE DATA MODEL .. 42

FIGURE IV- 1 FLUTTER LOGO .. 44

FIGURE IV- 2 DART LOGO... 45

FIGURE IV- 3 VISUAL STUDIO CODE ... 45

FIGURE IV- 4 DATATOURISME LOGO .. 46

FIGURE IV- 5 LIST OF AVAILABLE FIELDS... 46

FIGURE IV- 6 BLAZEGRAPH LOGO ... 47

FIGURE IV- 7 COMPOSER LOGO .. 47

FIGURE IV- 8 PHP LOGO .. 48

FIGURE IV- 9 APACHE LOGO ... 48

FIGURE IV- 10 FIREBASE LOGO... 48

FIGURE IV- 11 LEAFLET MAPS LOGO .. 49

FIGURE IV- 14 AUTHENTICATION PAGE ... 50

FIGURE IV- 13 REGISTRATION PAGE ... 50

FIGURE IV- 12 APPLICATION HOME PAGE ... 50

FIGURE IV- 15 USER PROFILE PAGE ... 50

FIGURE IV- 16 EXAMPLE OF USER PROFILE .. 51

FIGURE IV- 17 THE SELECTED TOURISM SERVICES LIST. ... 52

FIGURE IV- 18 TOURISM SERVICES EXEMPLES .. 52

FIGURE IV- 19 SCENARIO 1 (WITHOUT CONFLICT) .. 53

FIGURE IV- 20 SCENARIO 2 (WITH CONFLICT) .. 54

FIGURE IV- 21 EXAMPLE HOTEL... 54

file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V8.docx%23_Toc13004523
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V8.docx%23_Toc13004524
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V8.docx%23_Toc13004525
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V8.docx%23_Toc13004526
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V8.docx%23_Toc13004527
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V8.docx%23_Toc13004528
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013680
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013681
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013682
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013683
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013684
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013685
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013621
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013622
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013623
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013623
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013624
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013624
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013625
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013556
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013557
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013558
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013559
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013560
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013561
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013562
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013563
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013564
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013565
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013566
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013567
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013568
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013569
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013570
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013571
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013572
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013573
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013574
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013575
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013576

List of Tables

iii

List of Tables

TABLE I- 1 FUTURE RESEARCH DIRECTIONS IN RECOMMENDER SYSTEMS

(TAGHAVI, BENTAHAR, BAKHTIYARI, & HANACHI, 2018) 6

TABLE I- 2 COMPARISON OF THE USER PROFILE TYPES (CUFOGLU, 2014). 8

TABLE II- 1 TYPE OF KNOWLEDGE. ... 17

TABLE II- 2 THE CONCEPTUAL GOALS OF VARIOUS RECOMMENDER SYSTEMS

(AGGARWAL, 2016). .. 23

TABLE III- 1 MAIN PROPERTIES AND RELATIONSHIPS OF THE "DATATOURISME"

ONTOLOGY ... 29

TABLE III- 2 INSTANTIATIONS OF CUSTOMER PROPERTIES ... 35

TABLE III- 3 INSTANTIATIONS OF FILTER CONDITIONS .. 36

TABLE III- 4 SET OF COMPATIBILITIES ... 37

TABLE III- 5 EXAMPLE OF COMPATIBILITY CHECKER .. 40

TABLE III- 6 EXPLANATION (CONFLICT CASE). .. 40

List of Algorithms

iv

List of Algorithms

ALGORITHM III- 1 ALGORITHM DIVIDE-AND-CONQUER FOR EXPLANATIONS

(JUNKER, 2004) ... 33

ALGORITHM III- 2 COMPATIBILITY CHECKER ALGORITHM. 39

ALGORITHM III- 3 RESULTS CHECKER ALGORITHM. ... 41

file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013352
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013352
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013353
file:///H:/jada/universite/PFE_master/C-Memoir/memoir-V12.docx%23_Toc13013354

GENERAL

INTRODUCTION

General introduction

1 | P a g e

General Introduction

Context and Motivation

 Given the increase in the amount of information and the number of users on the Internet, it has

become difficult to find the data; even conventional information retrieval tools do not always

provide relevant results because of the information overload problem.

To tackle this problem, the need is increased for new techniques and tools to help users find what

they are looking for without much efforts and time. The last two decades witnessed the emergence

of new software techniques for many application domains (e-commerce, tourism …). These

techniques are called the Recommender Systems (SR, in short).

A Recommender or recommendation System automatically identifies user preferences through

their interactions with the system based on either the implicit feedback, explicit feedback or both

of them, to suggest recommendations to users.

There are several types of recommender systems, such as, Collaborative Filtering (CF), Content-

Based Filtering (CBF), Knowledge-Based Recommender System (KBRS) and Hybrid approaches

between these types. In the literature, we find a richness of researches works about the first two

type (CF and CBF). However, a little focus about KBRS and few works found in this field. This

scarcity of work is due mainly to difficulties meet the developers in the construction of the

Knowledge base with domain experts, which is the backbone in the software architecture of any

KBRS.

Very recently a new knowledge base about “Tourism domain” has been established by different

experts in the domain. This knowledge base is called “DATAtourisme” and constructed on

ontological models with all know advantages of the ontology formalism (expressivity, share,

semantic richness, extensibility, etc.).

Our present work falls within the of Knowledge-Based Recommender Systems and aims to explicit

how to develop them for community researchers by showing their pros and cons. This trend is

motivated firstly by the scarcity of researches in KBRS field and secondly, by the availability of

DATAtourisme knowledge base.

Problematic and objectives

With the noticed lack of works in the field of KBRS (as we showed previously), the major

problematic of this work is how to build Knowledge-Based Recommender Systems and what will

be their advantages and limits

General introduction

2 | P a g e

In order to contribute in this problematic, we have traced some objectives to be reached in this

research work, namely:

At first, to design and implement a knowledge-based recommender system using the new

DATAtourisme ontology;

Second, to validate the results in recommendations form our KBRS by real case studies;

Finally, to note the gained benefits of using KBRS in business domains (For instance, Tourism)

and the limits of these systems to be tackled in futures works.

Organization

After this introduction, this document is organized into four chapters as follows:

• The first chapter presents a general overview on recommendation systems from the past

to future passing by the present, and their types such as CF, CBF and KBRS.

• The second chapter is dedicated to explain knowledge-based recommender systems, the

concept of knowledge base using the ontology formalism and the approaches used to build

this type of RSs, namely, Case-based and Constraint-based recommender systems.

• The third chapter details Constraint-base recommender system which will be used to

build the target recommender system, the DATAtourisme ontology and finished by

proposing the architectural design of our KBRS and its functioning process using

explanation and relaxation algorithms.

• The fourth chapter shows the realization of our application (KBRS) where it gives the

development environment, tools and programming languages used in our work, then show

some graphical interfaces of our application. It ends by mentioning some pros and cons of

knowledge-based recommender systems learned from our experience.

 At the end, we conclude this document with an assessment of our contributions, opening the

door to certain perspectives envisaged to fill the limits of KBRS.

CHAPTER I
Overview on Recommendation

Systems

« Who loves practice without theory is like the sailor who boards ship without a

rudder and compass and never knows where he may cast. »

Leonardo da Vinci

CHAPTER I |Overview on Recommendation Systems

4 | P a g e

1. Introduction

 Nowadays, there is a wide trend of users to use recommendations applications in order to

facilitate their different social and professional tasks. This chapter aims to present recommender

systems and underlying concepts. After exposition of the historical aspect, it gives various

classifications of recommender systems found in the literature in which the most important kinds

of these systems are detailed.

2. What Is A Recommender System?

 In the literature, several definitions of a “Recommender system (RS)” have been introduced.

The most popular one is given by (Bo Xiao, 2007):

“RS are software agents that elicit the interests and preferences of individual consumers […] and

make recommendations accordingly. They have the potential to support and improve the quality

of the decisions consumers make while searching for and selecting products online.”

As far as we can tell is that the recommender system is the advisor of users in overwhelming

number of available items to help find which they are likely to prefer using user data, item data,

user opinions, preferences, meta-data, demographic information, user behavior or combination of

these. So, it considerably reduces the user's time to find the most interesting items for him.

In addition, recommender system can also be used to determine the similarity of different products.

If the products are very similar to each other, they could interest the same users.

3. Past, Present and Future of Recommender Systems

 The preludes of the recommendation systems stem from research into the construction of

models representing user choices. in order to facilitate search through the web or e-services, and

deal with the problem of overload and wealth of information.

3.1. Past

• 1979, Grundy (Rich, 1979), a librarian system, is the first recommender engine that

described models of users by using stereotypes based on a short interview, and used these

stereotypes to produce book recommendations. This work represents an interesting first

attempt in the field of recommendation systems. However, its use has remained very

limited.

• 1990, Collaborative filtering (Ekstrand, 2011) appears as a solution to deal with

information overload.

CHAPTER I |Overview on Recommendation Systems

5 | P a g e

• 1992, the appearance of the Tapestry document recommendation system (D. Goldberg,

1992), it was developed by the "Xerox" research center in the United States, their purpose

was to recommend to groups of users’ documents from newsgroups that might be of

interest to them. The approach used was of the nearest neighbors’ type from the user's

history. As well as the creation of GroupLens research laboratory, which works explicitly

on the automatic recommendation problem within the Usenet newsgroups framework.

• 1994, GroupLens (P. Resnick, 1994) uses automatic collaborative filtering to identify items

in Usenet that may be of interest to a particular user.

• 1995-2006, successively appear Ringo (Shardanand & Maes, 1995), a music

recommendation system and Bellcore (Hill, Stead, Rosenstein, & Furnas, 1995) a video

recommendation system. Also, bookseller such as Amazon which is online retailer, and

manufacturer of electronic book readers. In addition, Netflix introduces a personalized

movie recommendation system, which uses Netflix members’ ratings to accurately predict

choices for all Netflix members.

3.2. Present

 With the rise of the social networks and the rapid development of web services, everything has

become today via the Internet and many applications become popular in our lives. People search

for jobs on LinkedIn, look for places to spend holidays on tourism web sites, book a Flight Online,

share fantastic pictures with there friends on Flickr. Artists also upload their paintings to

DeviantArt. On the other hand, people not only rate holidays package or TV series, but also interact

with each other on Facebook, see the latest updates of their favorite idols on Twitter, this brings

the idea of social recommendation.

Moreover, as more and more new applications appear in social media, people are again facing a

huge amount of information that may be interesting to them. Thus, the web service providers will

have to face a similar circumstance faced by those offering traditional recommendation (Wang,

2011).

Recommender systems are growing progressively more popular in both e-commerce and in

research. Several models of recommendations have been established, e.g. knowledge-based and

social methods, demographic and hybrid methods, etc., along with new techniques such as stacking

Algorithms1, Matrix factorization2, Magic Barrier3 and Ranking4, etc. As well as recommendation

system prove to be an application area for data mining and machine learning.

1 Algorithm Stacking: is an ensemble learning method, to the problem of building hybrid recommendation systems.
2 Matrix factorization: is an algorithm work by decomposing the user-item interaction matrix into the product of two lower

dimensionality rectangular matrices.
3 Magic Barrier: represents the lowest error we can expect from any recommendation algorithm.
4 Ranking: is the process of ordering alternatives in relation to others.

https://en.wikipedia.org/wiki/Matrix_(mathematics)

CHAPTER I |Overview on Recommendation Systems

6 | P a g e

All this progress is aimed at upgrading and evolving the quality of the recommendation and to deal

with the problem of information overload.

• 2012 - Today, Netflix becomes the most nominated service, which is available worldwide and

hits 100 million members globally ("About Netflix,").

3.3. Future

 The recommendation systems continue to be largely geared towards improving the accuracy

of output and improvements in all dimensions. Henceforth there will be intense research going on

and these efforts are surely shaping the future of recommender systems, to be more and more

useable and practical in real life scenarios.

The Table I- 1 represents some of future research directions on recommender system features and

recommended techniques.

System features Future research directions Recommended techniques

User data/

preference

modeling

- Managing uncertainties of preference

modeling.

- Storing data in ontology-based

repositories and discovering semantic

similarities and relations.

- Exploring alternate options of ranking and

recommending items to the users by

considering several criteria.

Deep learning

Semantic web

ontologies

Web usage mining

Multi-objective

optimization

System platform

System

architecture

- Utilizing distributed and elastic platforms.

- Studying mobile applications and security

vulnerabilities in decentralized

environments.

Cloud computing

Intelligent agents

Adaptivity - Designing a system to operate within

dynamic environments and autonomously

choose the appropriate recommendation

algorithm.

Autonomous and self-

directed learning

Security and

privacy
- Analyzing the required amount of user

data.

- Exploring the tradeoff relation between

security and privacy to preserve a suitable

balance.

Data mining

Machine learning

System

performance
- Exploring user perception by considering

user’s privacy concerns, experience,

knowledge domain and emotional states.

Data warehouse

Implicit evaluation

techniques

Game theory

Table I- 1 Future research directions in recommender systems (Taghavi, Bentahar, Bakhtiyari, &

Hanachi, 2018)

CHAPTER I |Overview on Recommendation Systems

7 | P a g e

4. How Does Recommender System Work?

 In the previous section, we have defined the recommender system as the user leader to find

items of interest from an overwhelming number of available items. Now we would to clarify this

definition by illustrating how recommender system works.

This is an illustrating scenario: for example, you are looking for a holiday place. You have a profile

on a tourism and vacation website (or mobile application), as well as you have previously rated

several holiday packages for places you’ve visited. Now you are looking for recommendation

based on your preferences or tastes. So, the system should already know your preferences.

Apparently, you seem to like “Archaeological sites and accommodations with forest view”, etc.

Based on this information, the system should recommend something similar.

Typically, to provide recommendations, the process requires a list of information about users to

formulate the user’s profile, which includes items liked or disliked, preferences, tastes, historical

research, and so on. But the system needs to be able to learn from users’ inputs, and retrain

periodically to improve the results.

A recommender engine process through three main phases is summarized in Figure I-1 and

detailed in the following points.

4.1. Collecting Phase

 Data is a very important part of all web-based applications, and not only recommendation

systems. So, the first step to create a recommender engine is to gather the user information. This

collects relevant information of users to generate a user profile or model for the recommendation

tasks including user’s attribute, behaviors or content of the resources the user accesses. The system

needs to know as much as possible from the user in order to provide reasonable recommendation

right from the onset.

Recommender systems rely on different types of input such as the explicit feedback, which

includes explicit input by users regarding their interest in item or implicit feedback by inferring

user preferences indirectly through observing user behavior. Hybrid feedback can also be obtained

over the combination of both explicit and implicit feedback (Isinkaye, Folajimi, & Ojokoh, 2015).

CollectingCollecting ProfilingProfiling RecommendingRecommending

Feedback

 Figure I-1 Phases of Recommendation process

CHAPTER I |Overview on Recommendation Systems

8 | P a g e

4.2. Profiling Phase

 Profiling is an important part of recommendation processes since their models are used in order

to generate customized recommendations.

User profiles can represent the interests or preferences of both an individual user and a group of

users: an individual user profile provides only one user’s interests and information, whereas a

group user profile describes the common interests or goals of a group of users.

4.2.1. Comparison of The User Profile Types

 There are different methods of user profiles depending on the used technique. Each method

has advantages and disadvantages. The Table I- 2 in below shows a comparison between the main

types.

User Profile

Type Description Used Techniques Advantages Disadvantages

Explicit User

Profiles

User manually

creates user

profile

Questionnaires,

Rating

Information

gathered is

usually of high

quality

Requires a lot of

efforts from user

to update the

profile

information

Implicit User

Profiles

System

generates user

pro- file from

usage history

of interactions

between user

and content

Machine learning

algorithms

Minimal user

effort is

required and

easily

updatable by

automatic

methods

Initially requires

a large amount

of interaction

between user

and content

before an

accurate user

profile is created

Hybrid User

Profiles

Combination

of explicit and

implicit user

profiles

Both explicit and

implicit

techniques

To reduce

weak points

and promote

strong points

of each of the

techniques

used

N/A

Table I- 2 Comparison of the User Profile Types (Cufoglu, 2014).

CHAPTER I |Overview on Recommendation Systems

9 | P a g e

4.3. Recommending Phase

 The recommendation process ends by offering a list of that items may interest the user. This

list should directly respond to key findings issued from collection and profiling phases. A

prioritization process is essential to narrowing down finding, and which varies from approach to

another. For example, the nearest item to the current user is more prioritized than the others items.

5. Classification of recommendation systems

 Recommendation systems can be classified in different ways. Sometimes several terms

are used to designate the same method or approach. The objective here is to rely on the best-

known classifications on which we base our study. The Figure I- 2 depicts the basic

classification of RS.

Recommendation

system

content-based

filtering

collaborative

filtering

hybrid

filtering

Recommendation

system

collaborative

filtering

content-based

filtering

demographic

filtering

knowledge-

based filtering

hybrid filtering

0

utility-based

filtering

collaborative

filtering

Recommendation

system

content-based

filtering

K-Nearest

Neighbor

Approach

Model-based

approach

Hybrid

Collaborative

Filtering

The classic classification

The classification of Rao N. and Talwar. (2008)

The Classification of Su, X. and Khoshgoftaar, T.

(2009)

Figure I- 2 Basic Classification of RSs

CHAPTER I |Overview on Recommendation Systems

10 | P a g e

5.1. Classic classification

 This classification of (Adomavicius & Tuzhilin, 2005a) is recognized by three types of

filtering: collaborative filtering (CF), content-based filtering (CBF) and hybrid filtering.

5.2. Classification of Rao N. and Talwar. (2008)

 It is a classification based on the source of information used.

5.3. Classification of Su, X. and Khoshgoftaar, T. (2009)

 (Su & Khoshgoftaar, 2009)classify collaborative filtering into three categories: Su, X. and

Khoshgoftaar, T. (2009)

• Memory-based CF approaches: for K-nearest neighbors.

• Model-based CF approaches: including a variety of techniques such as: Clustering,

Bayesian networks, matrix factorization, decision processes of Markov.

• Hybrid CF: which combines a CF recommendation technique with one or more

other methods.

We present in the following section the Basic Models of Recommendation Systems such as

Collaborative Filtering models, content and knowledge-based models, then Demographic Models,

and finally the hybrid approaches.

6. Basic Models of Recommender Systems

 A recommendation system seeks to associate two entities: users and items. To handle this task

many methods are modeled with different concepts but for the same purpose - supply users with

recommendations according to their preferences.

6.1. Collaborative Filtering Models

 The basic idea of collaborative filtering methods is the use of something humans have been

doing for centuries - sharing opinions with others. Which called -word of mouth- to build an

opinion about a product or service they don’t know (Schafer, Frankowski, Herlocker, & Sen,

2007).

These models use the collaborative power of the ratings provided by multiple users. To translated

into numerical values, can be notes, accounts of purchases made, numbers of visits, etc. in order

to formulate the user profile.

CHAPTER I |Overview on Recommendation Systems

11 | P a g e

 For example, we consider two users named A and B, if A likes the items 1, 2, 3 and B likes

2,3,4, then these users seem to be very similar in their preferences. It is very likely that the ratings

in which only one of them has specified a value, are also similar. Thus, similarities are used to

make inferences about incompletely specified values. So, A should like item 4 and B should like

item 1.

 Most of collaborative filtering models focus on leveraging either inter-item correlations or

inter-user correlations for the prediction process. Some models use both types of correlations. On

the whole a classifier creates two models are referred to as memory-based methods and model-

based methods (Aggarwal, 2016):

6.1.1. Memory-based methods

 Memory-based methods are also referred to as neighborhood based collaborative filtering

algorithms. These neighborhoods can be defined in one of two ways (Aggarwal, 2016):

• User-User Collaborative Filtering: In this case, we have to determine the users who are

similar to the current user, then calculate a prediction value for each candidate item for

the recommendation by analyzing the notes that the neighbors of the current user have

expressed on this item. User-based collaborative filtering was introduced for the first

time in the GroupLens system (P. Resnick, 1994).

• Item-Item Collaborative filtering: With regard to conduct the rating predictions for

target item P by user A, the first step consists in identifying a set S of items that are

most similar to target item P. The ratings in item set S, which are specified by A, are

used to predict whether the user A will like item P. The Similarity functions are

computed between the columns of the ratings matrix to discover similar items.

6.1.2. Model-based methods

 In model-based methods, machine learning and data mining methods are used within the

sphere of predictive models. These models are learned to impute the missing or unobserved values

in the rating matrix. Some examples of such model-based methods include decision trees, Bayesian

methods, rule-based and latent factor models (Aggarwal, 2016).

Figure I- 3 Collaboratif Filtering Recommender System

CHAPTER I |Overview on Recommendation Systems

12 | P a g e

6.2. Content-Based Models

 Content-based models (CBM) attempts to recommend items to the active user similar to those

bought, visited, viewed, rated positively in the past, or is examining in the present. It is based on

the concept that items with similar contents will be rated similarly. The term “content” refers to

the descriptions, attributes, and futures of objects intended for recommendation (J. Bobadilla,

2013).

For example, if a user reads a book A with attributes X, Y and Z, then the CBM will recommend

books that are more similar to contents X, Y and Z. That's why two sets must be made: items

profiles and user profile. The first set must include the full description and features of a specific

item, and the second one must contain all interactions (e.g. feedback) between the user and the

system, such as comments, critiques, ratings, opinions and all information which increase the

accuracy of predictions and recommendations.

 These methods are best suited to situations where there is known data on an item (name,

location, description, etc.), but not on the user. Content-based recommenders handle

recommendation as a user-specific classification problem and learn a classifier for the user's likes

and dislikes based on product features (Aggarwal, 2016).

6.2.1. Feature Extraction

 Broadly, feature extraction entails reducing the amount of resources required to describe a

large set of data. The first stage in all content-based models is to extract discriminative features

for representing the items. Discriminative features are those, which are highly predictive of user

interests. Although it is possible to use any kind of representation, such as a multidimensional data

representation, the most common approach is to extract keywords from the underlying data. In

many cases, the items may have multiple fields describing various aspects of the item. The various

fields need to be weighted appropriately in order to facilitate their use in the classification process

(Aggarwal, 2016).

Figure I- 4 Content-Based Recommender System

CHAPTER I |Overview on Recommendation Systems

13 | P a g e

6.3. Knowledge-Based Recommender Systems

 In knowledge-based recommender systems, the ratings are not used for the purpose of

recommendations. Rather, the recommendation process is performed in the context of knowledge

bases, by using similarities between customer requirements and item descriptions, or the use of

constraints specifying user requirements (Aggarwal, 2016).

6.4. Hybrid Recommender Systems

 We have mentioned above that collaborative filtering systems rely on community ratings,

content-based methods rely on textual descriptions and the target user’s own ratings, and

knowledge-based systems rely on interactions with the user in the context of knowledge bases. In

many cases where a wider variety of inputs is available, one has the flexibility of using different

types of recommender systems for the same task. In such cases, many opportunities exist for

hybridization, where the various aspects from different types of systems are combined to achieve

the best of all worlds (Aggarwal, 2016).

Figure I- 5 Knowledge-Based Recommender System

Figure I- 6 Hybrid-Based Recommender System

CHAPTER I |Overview on Recommendation Systems

14 | P a g e

7. Issues and Challenges in RSs

 This section describes the most common issues and challenges that facing RS deployment

• Sparsity: Majority of users do not rate most of items and therefore the ratings matrix

becomes very sparse. Due to this, the data sparsity problem arises that declines the chances

of finding a set of users with similar ratings (Kumar & Sharma, 2016).

• Cold-start: This problem occurs when new users enter the system or new items are added

to the catalogue. In such cases, neither the taste of the new users can be predicted nor can

the new items be rated or purchased by the users leading to less accurate recommendations

(Khusro, Ali, & Ullah, 2016).

• Grey Sheep: This problem occurs in pure CF systems where opinions of a user do not

match with any group and therefore, is unable to get benefit of recommendations(Khusro

et al., 2016).

• Scalability: The rate of growth of nearest-neighbor algorithms shows a linear relation with

number of items and number of users. It becomes difficult for a typical recommender to

process such large-scale data (Khusro et al., 2016).

• Privacy: RSs are bound to gather as much user data as possible and to exploit it to the

fullest. But on the other side, this may create a negative impression on the users’ mind

about their privacy because the system knows too much about them(Balraj Kumar, 2016).

• Robustness of RSs: Another major challenge in RSs is their robustness to attacks.

Robustness is a performance measure of RSs. To gain certain profits, an attacker may

generate some fake user profiles based on some attack models, such as Push/Nuke Attacks

to make some target items more/less popular respectively. Such attacks are collectively

called shilling attacks or profile injection attacks (Kumar & Sharma, 2016).

8. Conclusion

 In this chapter we have discussed the recommender systems as an important kind of software

applications in the last years. We have exposed the past, present and the future of these systems.

Also, a focus is given on the most recommendations methods such as, filtering collaborative,

content-based and knowledge-based. The latter (knowledge-based recommender system) will be

the topic of the next chapter.

CHAPTER II
Knowledge-Based Recommender

Systems

 «Knowledge is knowing that a tomato is a fruit. Wisdom is

knowing not to put it in a fruit salad. »

Brian O’Driscoll

CHAPTER II | Knowledge-Based Recommender Systems

16 | P a g e

1. Introduction

 In this work we aim to propose a knowledge-based recommender system (KBRS) in the field

of Tourism. This chapter introduces KBRS by defining the underlying concepts and notions

allowing building that latter. We will tackle the knowledge notion which is considered as the main

component, the ontology formalism to represent knowledges and the types of this kind of

recommender systems, namely, case-based recommender systems and constraint-based

recommender systems.

2. What is Knowledge?

 Defining the meaning of knowledge requires to determine the distinctive differences between

Data, information, knowledge and wisdom, which they are the major elements of human thinking

and reasoning process. (Bellinger & Castro, 2004) Proposes the following definitions:

• Data: is raw, it simply exists and has no

significance beyond its existence (in and of

itself). It can exist in any form, usable or not. It

does not have meaning of itself.

• Information: is data that has been given

meaning by way of relational connection. This

"meaning" can be useful, but does not have to

be.

• Knowledge: is the appropriate collection of

information, such that its intent is to be useful.

Knowledge is a deterministic process. When

someone "memorizes" information (as less-

aspiring test-bound students often do), then

they have amassed knowledge. This knowledge

has useful meaning to them, but it does not provide for, in and of itself, an integration such as

would infer further knowledge.

• Wisdom: is an extrapolative and non-deterministic, non-probabilistic process. It calls upon all

the previous levels of consciousness. It beckons to give us understanding about which there

has previously been no understanding.

The definition of "knowledge" belongs to the domain of philosophy or epistemology (Bachimont,

2004) clarify that:

“Knowledge is the ability to exert an action to achieve a goal”.

This definition raises the ideal character of knowledge, and the importance of the finality of

knowledge.

Figure II- 1 The Dick Whittington

Model for Knowledge Management

CHAPTER II | Knowledge-Based Recommender Systems

17 | P a g e

2.1. Types of knowledge

 The below table gives different types of Knowledge (Akerkar, 2010):

Knowledge Type Description

Domain knowledge

Domain knowledge is valid knowledge for a specified domain. Specialists and

experts develop their own domain knowledge and use it for problem solving.

Meta knowledge
Meta knowledge can be defined as knowledge about knowledge.

Heuristic knowledge
Heuristic is a specific rule-of-thumb or argument derived from experience.

Explicit knowledge
Explicit knowledge can be easily expressed in words/numbers and shared in

the form of data, scientific formulae, product specifications, manuals, and

universal principles. It is more formal and systematic.

Tacit knowledge
Tacit knowledge is the knowledge stored in subconscious mind of experts and

not easy to document. It is highly personal and hard to formalize, and hence

difficult to represent formally in system. Subjective insights, intuitions,

emotions, mental models, values and actions are examples of tacit knowledge.

Table II- 1 Type of Knowledge.

3. What is Knowledge-base?

 Knowledge-bases support collecting, organizing, retrieving, and sharing knowledge, if we

define knowledge-base as a centralized database for spreading information or data plus their

meaning. Then we must consider the differences between knowledge-base and database.

3.1. Knowledge-base vs Database

 First of all, a database is a collection of information organized in such a way that a computer

program can quickly select desired pieces of data (Beal), it is mostly also limited on just these

functionalities. In contrast to that, a knowledge-base is a collection of knowledge in the form of

subject-problem-solution information that pertains to a specific topic or subject of interest (Beal).

A knowledge-base can use many databases or can enrich it with information from public data

sources. One popular example of a knowledge base is the Microsoft Help & Support Knowledge-

Base, and the data stored inside it provides answers, not just a list of data resources. More

technically, RDFS and OWL provide the most popular data models for knowledge bases, but using

them does not prevent someone to represent knowledge in a wrong way. The test is the "ontological

commitment5" of the classes and properties used.

What is the difference again? Simply the difference is that a knowledge-base stores knowledge,

while a database stores and organizes data.

5See https://en.wikipedia.org/wiki/Ontological_commitment

CHAPTER II | Knowledge-Based Recommender Systems

18 | P a g e

4. Knowledge representations

 The aim of the knowledge representation and reasoning is to express knowledge in a computer

tractable form, moreover to depict or understand the behavior of systems with regard to the

knowledge it has, etc.

The knowledge manipulation goes through three successive steps: Knowledge acquisition,

Knowledge reasoning, and finally the decision or the action.

• Knowledge acquisition: is the process of collecting or absorbing and storing the knowledge.

• Knowledge reasoning: is the use of the knowledge representation in order to derive or, deduce

new knowledges.

• Decision/action: is the process of making choices and decide what to do next.

4.1. Forms of Representing Knowledge

 In this section we will look at the possibility of using Natural Language, Databases, and First

Order Logic as knowledge representations (John A. Bullinaria, 2005).

4.1.1. Natural Language as a Knowledge Representation

 Natural language is so far the most comprehensive tool for humans to encode and reason

with knowledge (how many text books are not written in natural language?). Therefore, it could

be viewed as the best knowledge representation formalism available. so why not use that to

represent knowledge in the knowledge-base systems? we quote here some disadvantages of natural

language:

• Both the syntax and semantics are very complex and not fully understood.

• There is little uniformity in the structure of sentences.

• It is usually ambiguous.

4.1.2. Database as a Knowledge Representation

 We have already defined database as a collection of information organized in this way a

computer program can quickly select desired pieces of data. Databases are clearly very powerful,

but they are rather limited. The important issues are:

• Only simple aspects of the problem domain can be accommodated.

• We can represent entities, and relationships between entities, but not much more.

• Basically, the only reasoning possible is simple lookup, and we usually need more

sophisticated processing than that.

CHAPTER II | Knowledge-Based Recommender Systems

19 | P a g e

4.1.3. First Order Logic as a Knowledge Representation

 First-order logic6 is symbolized reasoning in which each sentence, or statement, is broken

down into a subject and a predicate. The predicate modifies or defines the properties of the subject.

A sentence in first-order logic is written in the form P(x), where P is the predicate, and x is the

subject, represented as a variable. We can also manipulate the logic representations to generate

new knowledge, e.g.:

First-order logic as a knowledge representation is very expressive, and has unambiguous syntax

and semantics. Except that there is no generally efficient procedure for processing knowledge.

4.1.4. Ontologies as a knowledge representation

 Ontology is the formal way to represent knowledge. It facilitates the management of

unstructured information and helps to detect ambiguities, inconsistencies and contradictions while

building representation of a large and complex domain.

Using an Ontology, the knowledge is represented as a set of concepts within a domain and

relationships between pairs of concepts.

In the next section we introduce the semantic web, and the ontologies as well as the relationship

between them.

5. The semantic Web and Ontologies

 The increase in information on the web has led to the appearance of diverse portals, thus the

semantic web allows machines to understand semantics, the meaning of information on the Web,

so the latter can perform many tasks instead of humans, for example finding, sharing, and

combining information.

6 See https://whatis.techtarget.com/definition/first-order-logic

Squar
e

Circle

Shape

SubClassOf

Concept

SubClassOf
Relationship

¬man (Djamila)

¬man(x) ⇒ woman(x)

 woman (Djamila)

Figure II- 2 Concept and Relationship of Ontology

CHAPTER II | Knowledge-Based Recommender Systems

20 | P a g e

5.1. What is the Semantic Web?

 In 1999, Tim Berners-Lee published the

book "Weaving the Web" in which he

designed a portrait of the Web and the paths

for its future. whereat the term semantic web

appeared. in the same year he enunciated his

famous quote (Berners-Lee, 1999):

“I have a dream for the Web in which

computers become capable of analyzing all

the data on the Web - the content, links, and

transactions between people and computers.

A « Semantic Web », which should make this

possible, has yet to emerge, but when it does,

the day-to-day mechanisms of trade,

bureaucracy and our daily lives will be

handled by machines talking to machines.”

Berners-Lee7 suggested the Semantic Web layers illustrated in Figure II- 3, which is discussed in

depth for instance in (Patel-Schneider & Fensel, 2002) and (Patel-Schneider & Siméon, 2002).

The lower levels define the common syntax. Uniform resource identifiers (URIs) identify

resources in the web, while Unicode is a standard for symbols exchange. The Extensible Markup

Language (XML) is for transfer and store data, and XML Schema represent the grammars for valid

XML documents. The upper levels introduce formal representations of High-level (RDF and

OWL). The following point highlight their descriptions.

5.2. What is RDF, RDFs, OWL and SPARQL?

• RDF: The Resource Description Framework (RDF) is a model for describing resources in

the World Wide Web with a triplet (subject, predicate, object), so that the subject related

to an object via a predicate.

• RDFs: RDF Schema8 is a semantic extension of RDF, which describe the basic concepts

and abstract syntax of RDF (classes and properties). The RDF Schema class and property

is similar to the type systems of object-oriented programming languages such as Java.

7 See http://www.w3.org/DesignIssues/Semantic.html.
8 See https://www.w3.org/TR/rdf-schema/

London Tim
https://www.w3.org/People/

Berners-lee/

BirthPlace

https://Schema.org/birthPlace

http://dbpedia.org/resource/

London

(RIF/SPARQL)

Figure II- 3 The layers of the Semantic Web

Figure II- 4 Example of RDF

CHAPTER II | Knowledge-Based Recommender Systems

21 | P a g e

• OWL: Web Ontology Language (OWL)9 is a Semantic Web language aims to represent

rich and complex knowledge about things, groups of things, and relations between things.

It is more expressive than RDF since it intended to formulate, exchange and reason with

knowledge about a domain of interest. Some fundamental notions should first be explained

to understand how knowledge is represented in OWL. These basic notions are in the

following points:

• Axioms: the basic statements that an OWL ontology expresses.

• Entities: elements used to refer to real-world objects.

• Expressions: combinations of entities to form complex descriptions from basic

ones

• SPARQL: (simple protocol and RDF query language) is a query language for accessing

and manipulating data stored in RDF structures. There are some similarities with SQL

because it shares several keywords such as SELECT, WHERE, etc. A simple example of

a SPARQL query:

 In the context of the Semantic Web, ontologies play a particularly fundamental role. it helps

computers to process the web content on a semantic level.

5.3. Ontologies

 Ontologies are computational artefacts has appeared in computer science, particularly in

artificial intelligence. In its original meaning in philosophy, the term "ontology" refers to the study

of being or existence and the organization of reality (Guarino, 1995) on this paper. Guarino and

Giaretta (Guarino, 1995) proposed to consider the ontology as:

“a logical theory that gives an explicit and partial account of a conceptualization.”

The meaning of conceptualization in this definition below (R.Gruber, 1993):

“A conceptualization is an abstract, simplified view of the world that we wish to represent for

some purpose.”

So far, we have known the meaning of ontology in philosophy. the above definitions can be

summarized in the following figure:

9 See https://www.w3.org/TR/owl-primer/

SELECT DISTINCT? film_URI WHERE {

? film_URI rdf: type <http://dbpedia.org/ontology/Film>.

} LIMIT 10

 Reality

Conceptualization Ontology

Figure II- 5 From Reality to Ontology.

CHAPTER II | Knowledge-Based Recommender Systems

22 | P a g e

The notion ontology, has been defined from many viewpoints. In 1998, Studer et al (Studer,

Benjamins, & Fensel, 1998) introduced a global definition that captures several features of an

ontology:

“An ontology is a formal, explicit specification of a shared conceptualization.”

• Ontologies are formal because they are designed to be processed by the computers.

• Ontologies are explicit, their concepts and relations are explicitly defined.

• Ontologies relate to a specific domain of interest.

• Ontologies are shared (or shareable) between users who have already agreed on ontological

commitments.

• Ontologies are conceptualizations, they describe the real world in abstract models

composed of concepts.

5.3.1. Ontology Components

 Technically, the main components of an ontology break down into two essential design

(Bullinger-Hoffmann, 2008): First constructs represent classes (subclasses), attributes and

relations between objects. Second, rules and axioms to describe general facts and conditions.

According to (Bullinger-Hoffmann, 2008) we illustrate these elements in the subsequent points.

• Classes: (concepts) are an abstract definition of objects which are similar to identical

in their structure and behavior.

• Objects: are a concrete individual of a class.

• Attributes: are the properties of objects that constitute the object’s structure.

• Relations: represent an association or interaction between two or more classes and

consequently associations between the instances of these classes.

• Axioms and Inference Rules: axioms are used to describe the ontological assertions

that will be considered true. Inference rules allow to deduce new information that is not

explicitly stored.

5.3.2. Types of ontologies

 Influenced by the publication of (Guarino, 1997), ontologies can be divided into four types,

summarized in the Figure II-6.

Top-level ontology

Domain ontology Task ontology

Application ontology

Figure II- 6 Types of Ontologies

CHAPTER II | Knowledge-Based Recommender Systems

23 | P a g e

• Top-level ontologies: aim to describe very abstract and general concepts, such as space,

time, matter, objects, events, actions, etc., that must be consensual for a large

community of users.

• Domain ontologies: provide knowledge within a specific domain, and a commonly

agreed understanding of a domain.

• Task ontologies: visualizes the systematized vocabulary and types of knowledge

required for the task.

• Application ontologies: tailored for a specific application, its concepts are related to a

particular domain and task, it can not be reused.

6. Knowledge-based recommender systems

 In general, traditional recommendation methods rely on previous users’ interactions such as

ratings. The more users interact with the recommender engine, the more accurate the

recommendations will be. For example, in the content-based approach, the user will be

recommended items similar to the ones she preferred in the past, while for the collaborative

filtering the user will be recommended items that people with similar tastes and preferences liked

in the past (Adomavicius & Tuzhilin, 2005b). Thus, in some cases, the recommendation process

often suffers from a lack of product evaluation due to the greater complexity of the product domain.

for this situation, it is better to give the user access to control the recommendation process through

direct requirement specification. In other cases, the ratings may be time-sensitive. Since they

evolve with changing product availability and corresponding user requirements.

Knowledge-based recommender systems does not use users’ evaluations, but will instead rely on

similarities between customer requirements and item descriptions (case-based) or through the use

of constraints specifying user requirements (constraint-based). What makes this type of system

special as it allows users to explicitly specify what they want.

Approach Conceptual Goal Input

Collaborative Give me recommendations based on a

collaborative approach that leverages the ratings

and actions of my peers/myself.

User ratings +

Community ratings

Content-based Give me recommendations based on the content

(attributes) I have favored in my past ratings and

actions.

User ratings +

Item attributes

Knowledge-

based

Give me recommendations based on my explicit

specification of the kind of content (attributes) I

want.

User specification +

Item attributes +

Domain knowledge

Table II- 2 The conceptual goals of various recommender systems (Aggarwal, 2016).

CHAPTER II | Knowledge-Based Recommender Systems

24 | P a g e

There are different interaction forms between user and the knowledge-based recommender, which

can be used either in isolation, or in combination, (Aggarwal, 2016) defined them as follows:

• Conversational systems: In this case, the user preferences are determined in the context of

a feedback loop. The main reason for this is that the item domain is complex, and the user

preferences can be determined only in the context of an iterative conversational system.

• Search-based systems: In search-based systems, user preferences are elicited by using a

preset sequence of questions such as the following: “Do you prefer a house in a suburban

area or within the city?”

• Navigation-based recommendation: In navigation-based recommendation, the user

specifies a number of change requests to the item being currently recommended. Through

an iterative set of change requests, it is possible to arrive at a desirable item. An example

of a change request specified by the user, when a specific house is being recommended is

as follows: “I would like a similar house about 5 miles west of the currently recommended

house.”

6.1. Case-based recommendation

 In case-based recommendation, specific cases are explicitly determined by the user as targets.

Similarity metrics are defined on the item attributes to retrieve examples similar to these targets,

which are iteratively modified through the process of critiquing. Critiques can be simple,

compound, or dynamic (Aggarwal, 2016).

6.2. Constraint-based recommendation

 Constraint-based recommendation enable users to set hard requirements or constraints on the

item attributes, these constraints and item attributes are matched with domain-specific rules to

provide recommendations. In addition, users can add or relax constraints depending on the size of

the output (Aggarwal, 2016).

7. Conclusion

 In this chapter, we have presented the main elements which enter into the construction of

knowledge-based recommender systems (KBRS) such as knowledge, ontologies and briefly the

both kinds of KBRS.

The next chapter will detail one of them, namely, the constraint-based recommender systems, and

describe our recommendation approach in the context of knowledge-based recommender systems.

CHAPTER III
The Proposed Knowledge-Based

Recommender System

 « The best way to escape from a problem is to solve it. »

Alan Saporta

https://www.quotes.net/authors/Alan+Saporta

CHAPTER III |The Proposed Knowledge-Based Recommender System

26 | P a g e

1. Introduction

 The literature witnessed a rarity of Knowledge-based recommender systems (KBRS) which

still difficult to build. This chapter aims to propose a software architecture for this kind of

recommendation systems, in which the main components are detailed. Our KBRS uses

constraint-based approach working on DATAtourisme ontology. Also, principal algorithms for

explanation and relaxation are presented in this chapter.

2. The Ontological Representation of e-Tourism Domain

 Today, tourism has become one of the main income sources for a country, that's why it is

the most important and growing sector in the world.

Generally, when a tourist wants to plan a trip, she/he will need to use internet as a rich source

of information to search and select Point of Interests (POIs). This is the core problem in the

sphere of tourism: overwhelming number of different POIs. Therefore, we need to incorporate

recommender systems in E-tourism platforms to help find the most interesting items for him,

based on his preferences or requirements. For example, the income level of the tourist, because

he tends to lose money by making the wrong choices.

Currently, there are many E-tourism applications for instance TripAdvisor, Kayak, Touropia,

and so on. In the wake of the rapid technological development of mobile devices such as

smartphones, tourism has reached a new higher level, according to the use of the functional

content of these modern devices.

Among the mobile features: webcam, GPS, Dynamic maps, and others which make the tourism

applications more and more intelligent by providing recommendations based on the user

location and/or time-sensitive recommendations as examples. Moreover, they may provide

additional information about the place where the user is located and the objects in view

(Augmented Reality), through the use of a webcam, GPS interface, machine vision algorithms

and information about current locations.

In this context, the large diversity of tourism vocabulary has led to design the

"DATAtourisme"10 ontology that has been chosen in order to develop our Tourism knowledge-

based recommender system.

2.1. DATAtourisme Ontology

 Nowadays, Ontologies have a major role in knowledge representation and modeling. By

using ontologies, we can benefit from several advantages, namely (McGuinness):

• To share common understanding of the structure of information among people or

software agents.

• To enable reuse of domain knowledge, and to make domain assumptions explicit.

• To separate domain knowledge from the operational knowledge

10 See http://www.datatourisme.fr/

http://www.datatourisme.fr/

CHAPTER III |The Proposed Knowledge-Based Recommender System

27 | P a g e

 DATAtourisme11 is a national system supported by the DGE (the Directorate-General for

Enterprises) with the Tourism and Territories network in France, and the winner of the Future

Investment Program (PIA) in 2015.

It aims to gather within a national platform the tourist information produced by the Tourist

Offices, Departmental Agencies and Regional Tourism Committees, in order to disseminate

them in open-data and so facilitate the creation of innovative tourist services by start-ups,

digital agencies, media and other public or private actors.

In January 2017, the DATAtourisme project reached a new milestone with the publication of

version 1.0 of its ontology. Then, they released version 2.0 on January 15, 2019.

2.1.1. Basic Concepts

 The central concept of ontology is the concept: PointOfInterest. It is defined as any

tourist element that deserves to be described and valued. A POI (Point of Interest) is a tourist

item that is managed by an Agent and that can be consumed via products and services. This is

the minimum class to instantiate for a product to be managed in the DATAtourisme information

system.

As POI examples in this ontology, we find: Restaurant, Hotel, Practice, Heritage Object, and

Event.

A POI is broken down into 4 different subtypes ("Ontologie DATAtourisme

v2.0_Documentation," 2019), as shown in the Figure III- 1.

11 See: http://www.datatourisme.fr/

Figure III- 1 Basic Schema of DATAtourisme Ontology

http://www.datatourisme.fr/

CHAPTER III |The Proposed Knowledge-Based Recommender System

28 | P a g e

• Product

: Product: a tourist object that can be consumed (e.g. a hotel room, a practice activity,

a guided tour, ...).

• Touristic itinerary

: Tour: an itinerary is a POI which proposes a route composed of stages forming a path.

• Entertainment and event
: EntertainentAndEvent: events, festivals, exhibition, or any other event having a

beginning and an end.

• Place of interest
: PlaceOfInterest: a place with a tourist interest (for example, a natural site, a cultural

site, a village, a restaurant ...).

2.1.2. Main Properties and Relationships

 In general, POI aggregates several information ("Ontologie DATAtourisme

v2.0_Documentation," 2019) (such as: location, features, themes, etc.). Figure III- 2 displays

the main properties and relationships.

Figure III- 2 General schema of DATAtourisme Ontology

CHAPTER III |The Proposed Knowledge-Based Recommender System

29 | P a g e

The Table III- 1 describes main properties and relationships of DATAtourisme ontology

depicted in previous figure.

Information

Semantic

relationship Description

The localization [:isLocatedAt] Where is the POI located and

what schedules are applied.

Contacts [:hasContact] Who to contact for what needs.

The owner [:isOwnedBy] A POI can belong to an Agent (a

person or an organization) via

this relationship.

The consumption [:offers] Price and period to consume the

product. Note that consumption

is only possible through an

instance of :Offer. Depending on

their type, not all POIs can

directly reference tariffs (POIs

not merchants).

The audience [:hasAudience] The target audience for the POI.

Multimedia [:hasRepresentation] Documents that are

representations of the POI.

The equipment’s [:hasFeature] What equipment is available and

according to which cardinalities.

Classifications and labels [:hasReview] Which rankings and labels

evaluate the product and with

how much score.

The themes [:hasTheme] Which themes are associated

with the POI.

Suggests [:suggests] Allows you to link a POI with

another complementary POI that

may appeal to the consumer. Ex:

A ski resort with a ski hire.

Table III- 1 Main properties and relationships of the "DATAtourisme" ontology

CHAPTER III |The Proposed Knowledge-Based Recommender System

30 | P a g e

2.1.3. Interconnection with Other Ontologies

 The ontology DATAtourisme is modeled in such a way that it is interconnected with

standard or authoritative ontologies in their field of competence, such as DublinCore, SKOS,

EBUCore, etc. So that they do not reinvent twice a concept, a property or a relationship that

already exists ("Ontologie DATAtourisme v2.0_Documentation," 2019).

3. Constraint-Based Recommendation

 As cited in Chapter II, the constraint-based approach can be used to build knowledge-based

recommender systems. It attempts to make recommendations for domains where items are

more complex and many customers do not know all the technical features in detail.

This approach captures the requirements of the current user in order to derive new solutions.

Moreover, it proposes repairs in situations where no solution could be found, and supports

explanations as why a system has recommended a specific solution.

Knowledge-base of a constraint-based recommender system is built on three types of

knowledge; knowledge about the users, knowledge about the items and knowledge about the

matching between the items and user’s need.

Deeply, the major ingredients of a constraint satisfaction problem can be defined through two

sets of variables (VC, VPROD), a set of finite domains for these variables (D) and three

different sets of constraints (CCOMP, CF, CPROD). These variables and constraints are

discussed in depth for instance in (Felfernig & Burke, 2008), (Felfernig, Friedrich, Jannach, &

Zanker, 2015) and (Jannach, Zanker, & Fuchs, 2009). In conformity with these three references

we give the following definitions:

• Customer Properties: VC describes all possible requirements which can be specified by

customers.

• Product Properties: VPROD is a set of variables describing item features or properties.

• Products: CPROD represents one constraint in disjunctive normal form that defines

elementary restrictions on the possible instantiations of variables in VPROD.

Figure III- 3 Interconnection between DATAtourisme and standard ontologies

CHAPTER III |The Proposed Knowledge-Based Recommender System

31 | P a g e

• Filter Conditions: CF define the relationship between potential customer requirements

and the given product assortment VPROD.

• Compatibility Constraints: CCOMP are (in)compatibility constraints restricting the set of

possible requirements.

3.1. Recommendation Task

 Felfernig and Burke declared that the task of deriving recommendations for a customer is

denoted as recommendation task. Given a set of customer requirements, we can calculate a

recommendation (result) (Felfernig & Burke, 2008).

The recommendation task can be defined as a constraint satisfaction problem (VC, VPROD, CR

∪ CF ∪ CCOMP∪ CPROD) where CR ∈ VC is a set of customer requirements (Felfernig et al.,

2015).

A solution to a given recommendation task (VC, VPROD, CR ∪ CF ∪ CCOMP∪ CPROD) is a

complete assignment to the variables of (VC, VPROD) such that this assignment is matched with

the constraints in (CR ∪ CF ∪ CCOMP ∪ CPROD) (Felfernig & Burke, 2008).

3.2. Preferred Conflicts and Relaxations

 When the customer requirements (CR) include a conflict, or no items might match the

customer requirements, we have to support the customer in getting out of these situations.

Constraint-based approach is interested in repair actions which indicate interesting and minimal

changes to the requirements (CR) to restore consistency. Thence, the calculation of a

recommendation becomes possible (Felfernig et al., 2015).

We define now preferred relaxation and preferred conflict as explained by (Junker, 2004):

• Definition 1: a subset R of C is a relaxation of a problem P ∶= (𝛽, C) iff 𝛽 ∪ R has a

solution.

Where 𝛽 is a background containing the constraints that cannot be relaxed such as (CF, CCOMP,

CPROD); C is a set of customer constraints (CR). Note that only customer requirements or

constraints can be relaxed.

 A relaxation exists iff 𝛽 is consistent. Over-constrained problems can have an exponential

number of relaxations. A customer typically prefers to keep the important constraints and to

relax less important ones. That means that the customer is at least able to compare the

importance of some constraints. Therefore, Junker (Junker, 2004) assumes a strict partial order

between the constraints of C, denoted by ≺. We write c1 ≺ c2 iff (the selection of) constraint c1

is preferred to (the selection of) c2.

• Definition 2: A subset ∁ of C is a conflict of a problem P∶=(𝛽, C) iff 𝛽 ∪ C has no

solution.

S.t. CR ∪ CF ∪ CCOMP ∪ CPROD ∪ VC ∪ VPROD is inconsistent, iff ∃ a conflict ∁ : ∁ = {c1, c2, …,

cn} ⊆ CR.

CHAPTER III |The Proposed Knowledge-Based Recommender System

32 | P a g e

There are two kinds of conflicts in a given constraint system:

• Conflict 1 involves only very important constraints.

• Conflict 2 involves less important constraints.

The user will have to resolve the first conflict, and thus, he/she will have to relax at least one

important constraint. Concerning the second conflict, a less important constraint can be relaxed

and the user will consider such a modification as very easy to do.

The definition of preferred relaxations and preferred conflicts can be made constructive, thus

providing the basis for the explanation and relaxation algorithms. Consider a totally ordered

problem P ∶= (𝛽, C, ≺) s.t. 𝛽 is consistent, but not 𝛽 ∪ C. We enumerate the elements of C in

increasing order c1, . . ., cn. We construct the preferred relaxation of P by R0 ∶= ∅ and

Ri−1 ∪ {ci} if 𝛽 ∪ Ri−1 ∪ {ci} has a solution

Ri−1 otherwise

The preferred conflict of P is constructed in the reverse order. Let ∁n : = C and

∁i+1 − {ci} if 𝛽 ∪ ∁i+1 − {ci} has no solution

∁i+1 otherwise

Adding a constraint to a relaxation thus corresponds to the retraction of a constraint from a

conflict. As a consequence of this duality, algorithms for computing relaxations can be

reformulated for computing conflicts and vice versa.

3.3. Computing Preferred Explanations

 Explaining recommendations is an important aspect of any RS, it focuses on providing

clarifications that justify the recommendations the user has received. Its secret is to maintain a

higher degree of user confidence in the results generated by the system.

There are many types of explanations (Bobadilla, Ortega, Hernando, & Gutiérrez, 2013), such

as human style explanations. For example, we recommend movie i because it was liked by the

users who rated movies j, k, m, ... very positively (j, k, m, ... are movies rated well by the active

user). Item style explanations. For example, we recommend the vacation destination i because

you liked the vacation destinations g, c, r, ... (g, c, r, ... are vacation destinations similar to i and

rated well by the active user).

In constraint-based approach, we use the sets of constraints CCOMP and CPROD to provide

explanations of inconsistent requirements, and to justify the recommended repairs. In

conformity with (Felfernig & Burke, 2008), CCOMP helps to ensure consistency of customer

requirements and to decrease costs related to correction processes. On the other hand, CPROD

used to enumerate the offered set of products. Thus, the customers will learn about specific

properties of the item domain and insert consistent inputs (CR).

CHAPTER III |The Proposed Knowledge-Based Recommender System

33 | P a g e

(Junker, 2004) proposed a basic algorithm which chooses (arbitrarily) one order ≺ between the

constraints of C, thus fixing the resulting conflict or relaxation. It then inspects one constraint

after the other and determines whether it belongs to the preferred conflict or relaxation of ≺. It

thus applies a consistency checker isConsistent(C) to a sequence of subproblems.

This basic algorithm is predicated on the following main propositions (Junker, 2004).

• Proposition 1: Let P∶=(𝛽, C, ≺). If 𝛽 is inconsistent then the empty set is the only

preferred conflict of P and P has no relaxation. If 𝛽 ∪ C is consistent then C is the only

preferred relaxation of P and P has no conflict.

If C is not empty, then the algorithm follows the constructive definition of a preferred

relaxation. In each step, it chooses a ≺- minimal element α and removes it from C. If 𝛽

∪ R ∪{α} is consistent, α is added to R. A preferred relaxation can be computed by

iterating these steps.

 When the first inconsistency is obtained, we have detected the best element αk+1 which

should be taken out from the preferred relaxation. According to (Junker, 2004), αk+1 is the worst

element of the preferred conflict. Hence, the preferred conflict is a subset of Rk ∪{αk+1} and

Cn−k is equal to {αk+1}.

• Proposition 2: Suppose C1 and C2 are disjoint and that no constraint of C2 is preferred

to a constraint of C1:

1. If ∆1 is a preferred relaxation of (𝛽, C1, ≺) and ∆2 is a preferred relaxation of (𝛽 ∪

∆1, C2, ≺), then ∆1 ∪ ∆2 is a preferred relaxation of (𝛽, C1 ∪ C2, ≺).

2. If ∆2 is a preferred conflict of (𝛽 ∪ C1, C2, ≺) and ∆1 is a preferred conflict of (𝛽 ∪

∆2, C1, ≺), then ∆1 ∪ ∆2 is a preferred conflict of (𝛽, C1 ∪ C2, ≺).

Consequently, we divide an inconsistent problem (C) until we obtain subproblems of the form

P’∶= (𝛽, {α}, ≺), where all except one constraint are in the background. We then know that 𝛽

∪ {α} is inconsistent.

Algorithm III- 1 Algorithm Divide-and-Conquer for Explanations

(Junker, 2004)

CHAPTER III |The Proposed Knowledge-Based Recommender System

34 | P a g e

Algorithm QUICKXPLAIN (cf. Algorithm II- 1) exploits propositions 1 and 2. It is

parameterized by a split-function that selects the subproblems for a chosen order ≺ (see line

6).

3.3.1. Algorithm QUICKXPLAIN

 Initially, algorithm QUICKXPLAIN (Divide-and-Conquer12 for Explanations) checks

whether the background 𝛽 is inconsistent. If C is empty, then it returns an empty set as the only

preferred conflict. A sub-procedure QUICKXPLAIN’ is only called if C is a non-empty

conflict and if a part of the background, namely 𝛽 − ∆ has a solution.

 QUICKXPLAIN spends most of its time in the consistency checks, which will search for a

solution to prove the consistency of a set X of constraints. We can diminish the number of

consistency checks if we remove whole blocks of constraints. We thus divide C into subsets

C1 and C2. If the remaining problem C1 is inconsistent, then we can ignore all constraints in C2.

4. The Proposed Knowledge-Based Recommender System

 In the previous sections, we have introduced the e-Tourism domain, the modern

functionalities of mobile devices and how they elevated this domain, thereafter we have given

the full descriptions of both DATAtourisme ontology which is the representation of tourism

knowledge, and the constraint-based approach as a type of knowledge-based recommendation.

Now, we coordinate these sections to bring the working application of the proposed

knowledge-based recommender system for e-Tourism, by explaining how we instantiate each

ingredient of constraint-based approach, the designed modules, and how they communicate

with each other.

4.1. Specification of Our Constraint Satisfaction Problem

 In this section, we specify our constraint satisfaction problem in accordance with

DATAtourisme ontology, and the representation of the chosen approach (cf. 3. Constraint-

Based Recommendation).

Formally, a constraint satisfaction problem is defined as a triple V, D, C, where:

✓ V is a set of variables, includes VC, VPROD.

✓ D is a set of the respective domains of values, ‘DATAtourisme ontology’.

✓ C is a set of constraints, includes CPROD, CF, CCOMP.

• Customer Properties VC

 VC describes possible requirements of customers; requirements are instantiations of

customer properties. In our system, we have defined an instance of this set as highlighted in

Table III- 2.

12 Divide-and-Conquer: is a well-known Algorithm works by recursively breaking down a problem into two or more sub-

problems of the same or related type.

CHAPTER III |The Proposed Knowledge-Based Recommender System

35 | P a g e

Properties Description

1. Type Ex : Hotel, Restaurant, Archeological site, festival, Tour,

Transport, etc.

2. Theme Ex: Fitness Trail, Art Gallery, Cycling Tour De France, Sea

Food, French Gastronomy Day, etc.

3. Means of Payment Ex: Check, Cash, Blue Card, Eurocard Mastercard, etc.

4. Equipment Ex: Game room, Kids Club, Wifi, Sauna, Park, Garden, Coffee

Maker, etc.

5. Architectural Style Ex : Antique, Roman, Classical, Modern, Xith Century, Xivth

Century, etc.

6. Types of Kitchen Ex : Traditional Cuisine, Halal Cuisine, European Cuisine,

Asian Cuisine, Crepery, etc.

7. Takeaway A restaurant or shop selling cooked food to be eaten elsewhere.

8. Geographic Environment Ex: By the Sea, Close to Shops, In the Forest, etc.

9. Classification Ex: Luxury, medium, economical.

10. Tour Type Ex: Loop Itinerary, Open Jaw Itinerary, Round Trip.

11. Hike Path Distance To express distance of Hiking. Ex: Small, Medium or Long

Path Distance.

12. Global Path duration Duration of tour (minutes).

13. Max Price A number value to express maximal price of an item.

14. Location Address and the position of an item.

15. Reduce Mobility Access Accessible to people with reduced mobility, ex: handicap.

16. Available Language Ex: English, French, German, Arabic, etc.

Table III- 2 Instantiations of Customer Properties

CHAPTER III |The Proposed Knowledge-Based Recommender System

36 | P a g e

• Product Properties VPROD

 VPROD respects main properties of items specified by the DATAtourisme ontology, such as

title, description, futures, location, review value, contacts, start date and end date for events

and festivals, etc.

• Products CPROD

 CPROD represents the possible instantiations of variables in VPROD. DATAtourisme team

provide thesauri13 containing all the possible instantiations of items properties in the ontology

DATAtourisme, thus we have decided to use them as a specification of our CPROD.

• Filter Conditions CF

 CF defines the relationship between customer requirements CR and products CPROD. The

table below shows how we define this set.

Identifier Constraint

1. The price of an item has to be lower (equal) then (to) the maxprice imposed

by the customer.

2. Small Path Distance Is limited between 5 and 10.

Medium Path Distance Is limited between 11 and 25.

Long Path Distance Is bigger than 25.

3. luxury Classification express 5 or 4 Review Value.

Medium Classification express 3 or 2 Review Value.

Economical Classification express 2 or 1 Review Value.

Table III- 3 Instantiations of Filter Conditions

• Compatibility Constraints CCOMP

 (In) Compatibility constraints can be used to model difficult constraints and to enhance

solving efficiency. CCOMP can be modeled as shown in Table III- 4.

13 Thesaurus : is a form of controlled vocabulary that seeks to dictate semantic manifestations of metadata in the indexing

of content objects. See https://framagit.org/datatourisme/ontology/tree/master/thesaurus.

https://en.wikipedia.org/wiki/Controlled_vocabulary
https://en.wikipedia.org/wiki/Metadata
https://framagit.org/datatourisme/ontology/tree/master/thesaurus

CHAPTER III |The Proposed Knowledge-Based Recommender System

37 | P a g e

Properties Compatible-with

1. Accommodation Equipment, Geographic Environment, Means of Payment,

Reduce Mobility Access, Classification, Kitchen Types.

2. Food establishment Theme, Equipment, Geographic Environment, Means of

Payment, Reduce Mobility Access, Classification, Kitchen

Types, Takeaway.

3. Cultural site Theme, Equipment, Geographic Environment, Means of

Payment, Reduce Mobility Access, Classification, Architectural

Style.

4. Natural heritage Theme, Equipment, Geographic Environment, Means of

Payment, Reduce Mobility Access.

5. Festival and event Theme, Equipment, Geographic Environment, Means of

Payment, Reduce Mobility Access, Classification.

6. Tour Geographic Environment, Means of Payment, Reduce Mobility

Access, Tour Type, Hike Path Distance, Global Path duration.

7. Small Path Distance Path duration between 2 and 4 minutes.

8. Medium Path Distance Path duration between 5 and 7 minutes.

9. Long Path Distance Path duration between 8 and 45 minutes.

10. Transport Means of Payment, Reduce Mobility Access.

Table III- 4 Set of Compatibilities

4.2. Architectural Design of the Proposed Recommender System

 The system design satisfies the requirements of the proposed constraint-based

recommender system. It includes controller components such as compatibility checker and

results checker to ensure consistency of customer requirements, as well as it proposes repairs

by using QUICKXPLAIN algorithm presented in the last subsection.

The system design will also capture the major functional building modules needed to

understand the functioning process of our Tourism recommender system. Our knowledge-base

which includes in particular the DATAtourisme ontology as knowledge about items and the

several sets of constraints and variables as discussed previously.

CHAPTER III |The Proposed Knowledge-Based Recommender System

38 | P a g e

The architectural design of the proposed system is illustrated in Figure III- 4. We describe its

modules and its functioning process in the next subsections.

Send

Cloud Firestore Database

Knowledge-Base

False

True

2. Checking Compatibility

Explanation

[Conflict case]

3. Recommendation

Engine

✓ Explanation [Empty case]

✓ Proposed Relaxations

✓ Partial Recommendations

Empty

✓ Top-K Recommendations

✓ Explanation [Not Empty case]

Not Empty
4. Checking Results

Modify

1. Customer Requirements

Specification

Modif

y

Customer Location

Rate Save End
Send /

Receive

Figure III- 4 Architecture of the Proposed Knowledge-based Recommender System

CHAPTER III |The Proposed Knowledge-Based Recommender System

39 | P a g e

4.2.1. Requirements Specification

 At this initial stage, customers will select their requirements (CR) such as Types,

Themes, Means of Payment, etc. As well as they may add or modify them through an iterative

set of change requests, these requirements will be saved in the Cloud Firestore Database

(Firebase) which uses real-time processing to handle requests changes. We explain this concept

at the end of this chapter.

4.2.2. Checking Compatibility

 After the specification of customer requirements, the test of compatibility will start to

check whether the specific requirements are compatible or not, by using the same concept of

QUICKXPLAIN algorithm.

Compatibility checker is a procedure parametrized with three variables are: M which depicts

the Type or category (Ex: Hotel, Restaurant, Festival, etc.) selected by the current customer,

CR which represent the customer requirements list, ≺ which is the order between constraints

in CR. we have specified that the first added constraint (by the current user) is more important

then the second added, and this second constraint is more important then the third one, and so

on.

M is considered as a very important constraint for which we don’t have to propose a repair.

Therefore, we select set of properties from CCOMP that are compatible with M, in order to

reduce the number of compatibility checks. Then we initialize B (background knowledge)

with this set. These actions sequence

Algorithm III- 2 Compatibility Checker Algorithm.

CHAPTER III |The Proposed Knowledge-Based Recommender System

40 | P a g e

• Explanation (Conflict Case)

 Table III- 5 Example of Compatibility Checker, where M: “Horse Tour”, CR= {Tour

Type: “Loop itinerary”, Means of Payment: “Cash”, Hike Path Distance: “Medium”, Global

Path duration: “10”}. And the order ≺: {Tour Type, Means of Payment, Global Path duration,

Hike Path Distance}.

We consider that r1: Tour Type, r2: “Means of Payment”, r3: “Global Path duration”, r4: “Hike

Path Distance”.

The constraint that causes the conflict case is “Hike Path Distance”; thus, the system gives the

following explanation to the customer, and allows the customer to choose the right repair.

Constraint Compatible-with

Long Path Distance Path duration between 8 and 45 minutes.

Medium Path Distance Path duration between 5 and 7 minutes.

Table III- 6 Explanation (Conflict case).

4.2.3. Recommendation Engine

 When customer requirements become consistent, the recommendation engine will

execute the recommendation task (cf. 3.1. Recommendation Task). Finding items that match

with the current requirements.

In addition, our engine will sort the list of recommendation according to the current user's

location. The nearest item will be at the top of recommendation list.

Step B ∆ C C1 C2 Return

1 Set of property

compatibility

with Tour (cf.

Table III- 4).

B {r1, r2, r3,

r4}

{r1, r2} {r3, r4} {r4}

2 B ∪ {r1, r2} {r1, r2} {r3, r4} {r3} {r4} {r4} ∪ ∅

3 B ∪ {r3} {r3} {r4} / / {r4}

4 B ∪ {r4} {r4} {r3} / / ∅

Table III- 5 Example of Compatibility Checker

CHAPTER III |The Proposed Knowledge-Based Recommender System

41 | P a g e

4.2.4. Checking Results

 Result Checker is a procedure Not much different than compatibility checker. Just that

the Result Checker will look for the constraint that caused the empty result case, and

accordingly we propose a relaxation and give a partial recommendation which respects only

the consistent requirements.

4.2.5. Cloud Firestore data model

 Cloud14 Firestore is Firebase’s newest flagship database for mobile and web apps. It is

a successor to the Realtime Database with a new and more intuitive data model. Cloud Firestore

is richer, faster, and more scalable than the Realtime Database ("Realtime Database vs. Cloud

Firestore," 2018; Sharma, 2018).

Firestore is NoSQL data model (supports any data structure), we store data in documents that

contain fields mapping to values. These documents are stored in collections, which are

containers for our documents. Documents support all possible data types, from simple strings

and numbers, to complex, nested objects.

Additionally, querying in Cloud Firestore is expressive, efficient, and flexible. we can sort,

filter our queries to paginate our results. Moreover, adding real-time listeners to our app notify

us with a data snapshot whenever the data our client apps are listening to changes, retrieving

only the new changes.

Our data model encompasses different collections and documents which are fully illustrated in

Figure III- 6.

14 See https://fr.wikipedia.org/wiki/Cloud_computing

Algorithm III- 3 Results Checker Algorithm.

CHAPTER III |The Proposed Knowledge-Based Recommender System

42 | P a g e

5. Conclusion

 This chapter has introduced our knowledge-based recommender system (more precisely,

constraint-based recommender system) by designing an architecture and its functioning

process. To achieve the recommendation task, this recommender system uses several

algorithms for explanation, relaxation and recommendation. The realization of this system will

be established in the following chapter.

Collections

Customer

Attributs
- Name (String)

- Sexe (Int)

- Role (String)

Preference

Attributs
- Accommodation (Array)

- Cultural site (Array)

- Festival and event (Array)

- Food establishment (Array)

- Natural heritage (Array)

- Tour (Array)

- Transport (Array)

Ratings

Attributs
- Id user (String)

- Id item (String)

- Review value (Int)

compatibility

Attributs
- Comatible-with (Array)

Filter

Conditions

Attributs
- Constraint (Array)

Favorite

Attributs
- Id user (String)

- Id item (String)

Figure III- 5 Cloud Firestore Data Model

CHAPTER IV
Realization and Testing

 « talk is cheap. show me the code. »

Linus Torvalds

CHAPTER IV | Realization and Testing

44 | P a g e

1. Introduction

 This chapter aims to implement the proposed architecture of our Constraint-Based

Recommender System (cf. Chapter III) for showing the obtained results and testing the

proposed recommendations in several execution scenarios.

The application execution will be discussed after presenting the tools and technologies that are

used in this implementation. Finally, a summary of advantages and limits of our application

will be listed at the end of this chapter.

2. Development Environment

 In order to realize the different functional building components of the proposed

architectural design of our constraint-based recommender system (cf. Chapter III), we have

used a set of new tools and technologies, namely:

2.1. Flutter

 Flutter15 is Google’s open-source user interface (UI) toolkit for building high-performance,

natively-compiled applications for mobile, web, desktop, and even embedded devices from a

single codebase.

• 2015, The first version of Flutter was unveiled at the 2015 Dart developer summit. It

was known as codename "Sky" and ran on the Android operating system("Google's

Dart language on Android aims for Java-free, 120 FPS apps," 2015).

• December 4th, 2018, Flutter 1.0 was released at the Flutter Live event, denoting the

first "stable" version of the Framework .

• February 26th, 2019, publication of Flutter 1.2 stable version,.

• May 7th, 2019, At Google I/O 2019 developer conference, Google launched version 1.5

of Flutter, its open source mobile UI framework that helps developers build native

interfaces for Android and iOS. But that’s no longer true: The mobile framework is now

a multi-platform UI framework, supporting the web, desktop, mobile, and even

embedded devices. Flutter’s mission has expanded to building “the best framework for

developing beautiful experiences for any screen.”("Flutter SDK releases,").

2.1.1. The Engine Architecture

 The main components of Flutter include: Dart platform, Flutter engine, Foundation

library, and Design-specific widgets, ("Flutter SDK releases,")summarizes the description of

each components as follows.

15 See: https://flutter.dev

Figure IV- 1 Flutter Logo

https://en.wikipedia.org/wiki/Open-source_software
https://flutter.dev/docs
https://flutter.dev/web
https://flutter.dev/desktop
https://en.wikipedia.org/wiki/Dart_(programming_language)
https://en.wikipedia.org/wiki/Android_(operating_system)
https://venturebeat.com/tag/google-i-o-2019/
https://flutter.io/
https://en.wikipedia.org/wiki/Dart_(programming_language)

CHAPTER IV | Realization and Testing

45 | P a g e

• Dart platform: Flutter apps are written in the Dart16 language and make use of many

of the language's more advanced features. A notable feature of the Dart platform is

its support for "hot reload" where modifications to source files can be injected into

a running application.

• Flutter engine: Flutter's engine, written primarily in C++, provides low-level

rendering support using Google's Skia graphics library. It is a portable runtime for

hosting Flutter applications. The Flutter Engine implements Flutter's core libraries,

including animation and graphics, file and network I/O, accessibility support,

plugin architecture, and a Dart runtime and compile toolchain.

• Foundation library: The Foundation library, written in Dart, provides basic classes

and functions which are used to construct applications using Flutter.

• Design-specific widgets: The Flutter framework contains two sets of widgets which

conform to specific design languages. Material Design widgets implement Google's

design language of the same name, and Cupertino widgets imitate Apple's iOS

design.

2.1.2. Benefits of Flutter

 The major benefits of flutter are:

• High productivity: Develop a single codebase for cross-platform, this can certainly

save you time and resources. This means, do more with less code, and with a

modern, expressive language and a declarative approach.

• Highly-customized, beautiful user experiences: Benefit from a wealthy set of

Material Design and Cupertino widgets built using Flutter’s own framework.

Moreover, Realize custom, beautiful, brand-driven designs.

2.2. VScode

 Visual Studio Code is a source-code editor, developed by Microsoft for Windows, Linux

and macOS, so we can hit the ground running, no matter the platform. It includes support

for debugging, syntax highlighting, intelligent code completion, embedded Git control

and GitHub.

16See https://en.wikipedia.org/wiki/Dart_(programming_language)

Figure IV- 2 Dart Logo

Figure IV- 3 Visual Studio Code

https://en.wikipedia.org/wiki/Dart_(programming_language)
https://en.wikipedia.org/wiki/Dart_(programming_language)
https://en.wikipedia.org/wiki/Syntax_highlighting
https://en.wikipedia.org/wiki/Intelligent_code_completion
https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/GitHub

CHAPTER IV | Realization and Testing

46 | P a g e

In the Stack Overflow 2019 Developer Survey, Visual Studio Code was ranked the most

popular developer environment tool, with 50.7% of 87,317 respondents claiming to use it. It

supports major programming language such as web programming language (PHP, JavaScript,

etc.) and mobile programing language (Dart, java, etc.).

2.3. DATAtourisme API

 The "DATAtourisme" system is enriched with new tools in order to help users to exploit

the tourist data made available in Open Data. The Datatourism API17 is a PHP library that

allows the user to easily query a semantic database containing tourist data from the

DATAtourisme platform. It relies on a GraphQL query language whose data schema is based

on the ontology DATAtourisme.

With regard to implement the API, the user must:

• Recover DATAtourisme data in semantic format on the diffuser platform.

• Load semantic data into a semantic database (triplestore) with a SPARQL access point.

• Use the DATAtourisme API to submit GraphQL queries to the database and retrieve

the results.

This API translates our GraphQL queries into a SPARQL query, in the API response of the

executed query we will find (in addition to the results) the SPARQL query that was used. The

Figure IV- 5 shows the list of available fields includes this SPARQL query, for more

information see the documentation18 of DATAtourisme API.

17 See https://datatourisme.frama.io/api/#/start/getting_started
18 See https://datatourisme.frama.io/api/#/api/fields

{

 poi {

 total # <= total number of results

 results {

 # ... <= Fields and subfields of a POI

 }

 query # <= SPARQL query generated and executed by the API

 }

}

Figure IV- 4 DATAtourisme Logo

Figure IV- 5 List of Available Fields

CHAPTER IV | Realization and Testing

47 | P a g e

2.4. Semantic Database - Blazegraph

 Blazegraph is an open-source semantic database management system. It provides a

SPARQL access point that allows the API to query its contents to respond to GraphQL queries.

Blazegraph is a product developed by Systap since 2006, formerly known as Bigdata.

Regarding the launch of the Blazegraph server is done simply by the command “java -jar

blazegraph.jar”, the Blazegraph server is then launched, its administration interface is

accessible from the address “http: // localhost: 9999/”.

2.5. Composer

 Composer19 is a tool for dependency management in PHP. It allows us to declare the

libraries our project depends on and it will manage (install/update) them. Composer requires

PHP 5.3.2+ to run, and it works equally well on Windows, Linux and macOS (multi-platform).

Composer offers several parameters such as :

• install: install all libraries from composer.json. it's the command to use to download

all php repository dependencies.

• update: update all libraries from composer.json, according to the allowed versions

mentioned into it.

• require: add the library in parameter to the file composer.json, and install it

• remove: uninstall a library and remove it from composer.json.

2.6. PHP 7

 PHP20 (an acronym for: Hypertext Preprocessor) is a scripting language that’s generally

used in server-side web development. It was created by Rasmus Lerdorf in 1994.

19 See https://getcomposer.org/
20 See https://www.php.net/

Figure IV- 6 Blazegraph Logo

Figure IV- 7 Composer Logo

http://www.blazegraph.com/
https://en.wikipedia.org/wiki/Rasmus_Lerdorf

CHAPTER IV | Realization and Testing

48 | P a g e

PHP code may be executed with a command line interface (CLI), and it is usually processed

by a PHP interpreter implemented as a module in a web server or as a Common Gateway

Interface (CGI) executable. PHP 7 is the latest stable release.

2.7. Apache

 Apache HTTP Server21 is free and open-source cross-platform web server software. It was

launched in 1995 and it has been the most popular web server on the Internet since April 1996.

The goal of this project is to provide a secure, efficient and extensible server that provides

HTTP services in sync with the current HTTP standards.

2.8. Firebase

 Firebase22 is a Backend-as-a-Service (BaaS) application development platform developed

by Firebase, Inc. in 2011, then acquired by Google in 2014(PROTALINSKI, 2019). It offers

hosted backend services such as a real-time database, authentication, cloud storage, machine

learning, remote configuration, and hosting for your static files.

 In October 2018, the Firebase platform has 18 products, which are used by 1.5 million

apps("Flutter (software)," 2019). In the following sub-sections, we provide a brief description

of some firebase products.

2.8.1. Firebase Authentication

 Firebase Authentication is a service that can authenticate users using only client-side

code. It supports social login providers Facebook, Twitter, GitHub and Google.

21 See https://httpd.apache.org/
22 See https://firebase.google.com/

Figure IV- 8 PHP Logo

Figure IV- 9 Apache Logo

Figure IV- 10 Firebase Logo

https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Free_and_open-source
https://en.wikipedia.org/wiki/Cross-platform
https://en.wikipedia.org/wiki/Web_server
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Social_login

CHAPTER IV | Realization and Testing

49 | P a g e

2.8.2. Realtime Database

 The Firebase Realtime Database is a cloud-hosted database. Data is stored as JSON and

synchronized in real-time to every connected client.

2.8.3. Cloud Firestore

 Cloud Firestore is a cloud-hosted, NoSQL database that your iOS, Android, and web

apps can access directly via native SDKs. Cloud Firestore is also available in native Node.js,

Java, Python, and Go SDKs, in addition to REST and RPC APIs.

2.8.4. Firebase Analytics

 Google Analytics for Firebase helps you understand how people use your iOS or

Android app. The SDK automatically captures a number of events and user properties and also

allows you to define your own custom events to measure the things that uniquely matter to your

business.

2.8.5. Firebase Prediction

 Firebase Predictions applies machine learning to your analytics data to create dynamic

user segments based on the predicted behavior of users in your app. By default, Predictions

provides two types of predictions:

• churn, which helps you identify users likely to stop using your app.

• spend, which helps you find users who are likely to spend money in your app. You can

also create your own predictions based on custom conversion Analytics events that you

collect in your app.

2.9. Leaflet Map

 Leaflet is the leading open-source JavaScript library for mobile-friendly interactive maps,

it has all the mapping features most developers ever need. Leaflet is designed with simplicity,

performance and usability in mind. It works efficiently across all major desktop and mobile

platforms, can be extended with lots of plugins, it has a readable source code that is a joy to

contribute to("Technical Overview,").

3. Execution and Results

 In this section, we show the execution process of our application by testing the obtained

results in two different scenarios (without and with conflicts in user’s requirements).

Figure IV- 11 Leaflet maps Logo

https://en.wikipedia.org/wiki/Firebase#Firebase_Realtime_Database
https://firebase.google.com/docs/cloud-messaging/

CHAPTER IV | Realization and Testing

50 | P a g e

3.1. Registration / Authentication

 Application Home Page Figure IV- 12 is the first page of our application (FRANCE

Advisor); it allows users to visualize the registration and authentication pages (Figure IV- 13

and Figure IV 14 , respectively).

3.2. User Profile

 The user profile Figure IV- 15 allows the users to specify their preferences and needs,

it contains all possible requirements for a Tourist such as Accommodation, Food establishment,

Cultural site, etc.

Figure IV- 14 Application

Home Page
Figure IV- 13 Registration

Page

Figure IV- 12 Authentication

Page

Figure IV- 15 User Profile Page

CHAPTER IV | Realization and Testing

51 | P a g e

3.2.1. Example of User Preferences / Needs

 Figure IV- 16 displays a representations sequence to express the different

preferences/needs. For instance, the user “Djamila”, has as preferences: Hotel, Fluvial or sea

tour, Museum, etc.

These steps are intended to explicitly define user preferences / needs, and narrow down

available Tourism services. Figure IV- 17 visualizes selected services by the current user.

Figure IV- 16 Example of User Profile

CHAPTER IV | Realization and Testing

52 | P a g e

3.3. Tourism services

 Each tourism service contains Guidance which show how many items are in the current

service, how many items are matched with the specific filters, and help the user to select the

best filters choices. Figure IV- 18 depicts some examples of Tourism services with default

results.

Figure IV- 17 The selected Tourism services List.

Figure IV- 18 Tourism Services Exemples

CHAPTER IV | Realization and Testing

53 | P a g e

3.4. Execution Scenarios

 In order to present the execution capabilities of our application (Constraint-based

recommender system), we have processed for two use's scenarios. The first scenario concerns

the execution of the user's request without conflict in its requirements. In contrast, the second

one deals with the appearance of conflicts into user’s requirements and how these can be

explained (cf. Chapter III).

3.4.1. Scenario 1 (without conflict)

 Figure IV- 19 depicts example scenario without conflict case. A list of recommended

items which respects all user constraint (Equipped with, Geographic environment, means of

payment, and Mobility access). We usually choose the top 20 items.

Figure IV- 19 Scenario 1 (Without conflict)

CHAPTER IV | Realization and Testing

54 | P a g e

3.4.2. Scenario 2 (with conflict)

 Figure IV- 20 shows an example of user’s requirements that containing a conflict

(Theme incompatible with Accommodation).

• Details on recommended items

 We give here (Figure IV- 21) an example of hotel which is one of the results finding through

the previous requirements (or constraints).

Figure IV- 20 Scenario 2 (With conflict)

Figure IV- 21 Example Hotel

CHAPTER IV | Realization and Testing

55 | P a g e

4. Advantages and Limits

 Our experience has enhanced the major advantages of Knowledge-based recommender

systems (KBRS) found in the literature (such as, No Cold-start issue). However, we can note

some limits of the current application (FRANCE Advisor) in order to be tackled in the near

future.

4.1. Advantages

• KBRS (precisely, Constraint-Based Recommender System) do not suffer from either

the “cold start problem” with a new user (cf. Chapter 1), or “rump-up problem” with a

new item.

• They, do not face a user privacy issue that is usually caused by the user information

collection phase.

• Explicit dynamic user profile (real-time preferences).

• In case of a conflict within user’s requirements, the provided explanations may have

many advantages, mainly, enhancing users trust to the recommender system (reliability)

by helping them to make coherent constraints.

• Provide suggestions that allows users to know the offering relevant items, and define

what they want.

• Last but not least, our recommendation system is multiplatform application with can be

executed either on a mobile (android/IOS), web, or desktop platforms

4.2. Limits

• Our proposed sets of constraints are not sufficient to represent all knowledge about the

matching between the items and user’s needs. Generally, they are made by domain

experts.

• In its current version, our application does not sort results by the nearest items to the

current user's location, or by the values of their ratings.

5. Conclusion

 In this chapter, we have presented the realization of our recommendation system in order

to show its feasibility on the DATAtourisme ontology as a recent knowledge-base. For a

reproducible implementation, we have mentioned the different tools and technologies used in

this application. The execution has been displayed according two different scenarios showing

all possibilities of user’s requirements cases.

The chapter has been concluded by giving some advantages of our application and its limits

for eventual research perspectives.

44 | P a g e

GENERAL

CONCLUSION

General Conclusion

57 | P a g e

General Conclusion

Summary and contributions

 Our graduation project was to design and build a knowledge-based recommender system

for the Tourism domain, by using the “DATAtourisme” ontology as a new and rich knowledge-

base in this domain. Our recommender system can work on mobile, web and desktop platforms.

Thanks to the gained benefits by using the Google project “Flutter”.

To carry out this work, we had to go through several phases. At first, we did research

on the field of study, this research focused on generalities of recommender systems and

the basic designed models for them, such as Collaboratif filtering and Content-based

models. Then we did a research on the field of knowledge-based recommender systems,

we explained what is knowledge, knowledge-based, and we clarified the main forms to

represent knowledge. Moreover, we gave a brief explanation of the two types of

knowledge-based recommender systems.

Concerning the design phase, we gave a full description of DATAtourisme ontology,

and constraint-based recommendation as an adopted approach. This phase ended by

highlighting our architectural design for the proposed recommender system with

appropriate descriptions for its modules inclosing several formal algorithms.

In implementation phase, we presented our development environment by indicating

various tools and technologies which are used, such as Flutter, API DATAtourisme,

firebase, etc. then we proved the execution process of our application by depicting the

obtained results while presenting some screenshots (interfaces) according to several

uses scenarios. Finally, we cited some advantages and limits of this research work.

As far as we can tell is that the Knowledge-based recommender systems requires a big efforts

in term of system design, they use a lot of techniques (not simple as in content-based or

collaborative-based filtering). In addition, Knowledge-based recommender systems help users

to explore and understand the domain knowledge. In this kind of recommender system, users

are an integral part of recommendation process knowledge, by developing their information

needs during their frequent interactions with the recommender system.

This project was a good opportunity to discover and deepen our knowledge domain,

recommender systems, and to push our skills by using further new technologies.

Future work

 Nevertheless, any large-scale project requires considerable effort and continuous

improvement. For our case, some points remain to be explored, among them we can indicate:

• First, evaluation of the proposed recommender system using standard metrics (such as

recall, precision and F-measure).

General Conclusion

58 | P a g e

• Construction of an ontological representation of the user’s profile in order to achieve

the matching between the ontologies of items (tourism services) and user’s needs.

• Finally, we aim to perform some non-functional requirements of this software

application (like as performance and maintainability).

Annex

59 | P a g e

Annex

Our Dart Classes to read the ontology DATAtourisme (Json files):

• Model_results.dart

class Tourism {

 Data data;

 Tourism({this.data});

 factory Tourism.fromJson(Map<String, dynamic> parsedJson) {

 var mydata = Data.fromJson(parsedJson['data']);

 return Tourism(data: mydata);

 }

}

//data

class Data {

 Poi poi;

 Data({

 this.poi,

 });

 factory Data.fromJson(Map<String, dynamic> parsedJson) {

 var mypoi = Poi.fromJson(parsedJson['poi']);

 return Data(poi: mypoi);

 }

}

//poi

class Poi {

 List<Results> results;

 int total;

 Poi({this.results, this.total});

 factory Poi.fromJson(Map<String, dynamic> parsedJson) {

 var list = parsedJson['results'] as List;

 List<Results> resultsList = list.map((i) => Results.fromJson(i)).toList();

 var totalFromJson = parsedJson['total'];

 int totalList = totalFromJson;

 return Poi(results: resultsList, total: totalList);

 }

}

Annex

60 | P a g e

//results

class Results {

 List<String> rdfslabel;

 List<HasDescription> hasDescription;

 List<HasArchitecturalStyle> hasArchiStyle;

 List<ProvidesCuisineOfType> providesCuisineOfType;

 List<HasTheme> hasTheme;

 List<Hascontact>hascontact;

 List<IsLocatedAt> isLocatedAt;

 List<HasReview> hasReview;

 List<Offers> offers;

 List<IsEquippedWith> isEquippedWith;

 Results(

 {this.rdfslabel,

 this.hasDescription,

 this.hasArchiStyle,

 this.providesCuisineOfType,

 this.hasTheme,

 this.hascontact,

 this.isLocatedAt,

 this.hasReview,

 this.offers,

 this.isEquippedWith});

 factory Results.fromJson(Map<String, dynamic> parsedJson) {

 var rdfslabelFromJson = parsedJson['rdfs_label'];

 List<String> rdfslabelList = rdfslabelFromJson.cast<String>();

 var description = parsedJson['hasDescription'] as List;

 List<HasDescription> descriptionList;

 if (parsedJson['hasDescription'] != null) {

 descriptionList =

 description.map((i) => HasDescription.fromJson(i)).toList();

 }

 var archiStyle = parsedJson['hasArchitecturalStyle'] as List;

 List<HasArchitecturalStyle> archiStyleList;

 if (parsedJson['hasArchitecturalStyle'] != null) {

 archiStyleList =

 archiStyle.map((i) => HasArchitecturalStyle.fromJson(i)).toList();

 }

 var pcuisineOfType = parsedJson['providesCuisineOfType'] as List;

 List<ProvidesCuisineOfType> pcuisineOfTypeList;

 if (parsedJson['providesCuisineOfType'] != null) {

 pcuisineOfTypeList =

Annex

61 | P a g e

 pcuisineOfType.map((i) =>

ProvidesCuisineOfType.fromJson(i)).toList();

 }

 var theme = parsedJson['hasTheme'] as List;

 List<HasTheme> themeList;

 if (parsedJson['hasTheme'] != null) {

 themeList =

 theme.map((i) => HasTheme.fromJson(i)).toList();

 }

 var contact = parsedJson['hasContact'] as List;

 List<Hascontact> contactList;

 if (parsedJson['hasContact'] != null) {

 contactList = contact.map((i) => Hascontact.fromJson(i)).toList();

 }

 var isLocatedAt = parsedJson['isLocatedAt'] as List;

 List<IsLocatedAt> isLocatedAtList = [];

 isLocatedAtList = isLocatedAt.map((i) =>

IsLocatedAt.fromJson(i)).toList();

 var hasReview = parsedJson['hasReview'] as List;

 List<HasReview> hasReviewList = [];

 hasReviewList = hasReview.map((i) => HasReview.fromJson(i)).toList();

 var offers = parsedJson['offers'] as List;

 List<Offers> offersList = [];

 offersList = offers.map((i) => Offers.fromJson(i)).toList();

 var isEquippedWith = parsedJson['isEquippedWith'] as List;

 List<IsEquippedWith> isEquippedWithList =

 isEquippedWith.map((i) => IsEquippedWith.fromJson(i)).toList();

 return new Results(

 rdfslabel: rdfslabelList,

 hasDescription: descriptionList,

 hasArchiStyle: archiStyleList,

 providesCuisineOfType: pcuisineOfTypeList,

 hasTheme: themeList,

 hascontact: contactList,

 isLocatedAt: isLocatedAtList,

 hasReview: hasReviewList,

 offers: offersList,

 isEquippedWith: isEquippedWithList);

 }

}

Annex

62 | P a g e

//description

class HasDescription {

 List<String> shortDescription;

 HasDescription({

 this.shortDescription,

 });

 factory HasDescription.fromJson(Map<String, dynamic> parsedJson) {

 var shortDescriptionFromJson;

 List<String> shortDescriptionlList;

 if (parsedJson != null) {

 shortDescriptionFromJson = parsedJson['shortDescription'];

 shortDescriptionlList = shortDescriptionFromJson.cast<String>();

 }

 return new HasDescription(

 shortDescription: shortDescriptionlList,

);

 }

}

//archi style

class HasArchitecturalStyle {

 List<String> rdfslabelArchiStyle;

 HasArchitecturalStyle({

 this.rdfslabelArchiStyle,

 });

 factory HasArchitecturalStyle.fromJson(Map<String, dynamic> parsedJson) {

 var rdfslabelArchiStyleFromJson;

 List<String> rdfslabelArchiStyleList;

 if (parsedJson['rdfs_label'] != null) {

 rdfslabelArchiStyleFromJson = parsedJson['rdfs_label'];

 rdfslabelArchiStyleList = rdfslabelArchiStyleFromJson.cast<String>();

 }

 return new HasArchitecturalStyle(

 rdfslabelArchiStyle: rdfslabelArchiStyleList,

);

 }

}

//cuisine type

class ProvidesCuisineOfType {

 List<String> rdfslabelCuisineOfType;

Annex

63 | P a g e

 ProvidesCuisineOfType({

 this.rdfslabelCuisineOfType,

 });

 factory ProvidesCuisineOfType.fromJson(Map<String, dynamic> parsedJson) {

 var rdfslabelCuisineOfTypeFromJson;

 List<String> rdfslabelCuisineOfTypeList;

 if (parsedJson['rdfs_label'] != null) {

 rdfslabelCuisineOfTypeFromJson = parsedJson['rdfs_label'];

 rdfslabelCuisineOfTypeList =

rdfslabelCuisineOfTypeFromJson.cast<String>();

 }

 return new ProvidesCuisineOfType(

 rdfslabelCuisineOfType: rdfslabelCuisineOfTypeList,

);

 }

}

//hastheme

class HasTheme {

 List<String> rdfslabeltheme;

 HasTheme({

 this.rdfslabeltheme,

 });

 factory HasTheme.fromJson(Map<String, dynamic> parsedJson) {

 var rdfslabelthemeFromJson;

 List<String> rdfslabelthemeList;

 if (parsedJson != null) {

 rdfslabelthemeFromJson = parsedJson['rdfs_label'];

 rdfslabelthemeList = rdfslabelthemeFromJson.cast<String>();

 }

 return new HasTheme(

 rdfslabeltheme: rdfslabelthemeList,

);

 }

}

//hascontact

class Hascontact {

 List<String> foafhomepage;

 List<String> schematelephone;

 List<String> schemaemail;

 Hascontact({

Annex

64 | P a g e

 this.foafhomepage,

 this.schematelephone,

 this.schemaemail,

 });

 factory Hascontact.fromJson(Map<String, dynamic> parsedJson) {

 var foafhomepageFromJson;

 List<String> foafhomepageList;

 if (parsedJson['foaf_homepage'] != null) {

 foafhomepageFromJson = parsedJson['foaf_homepage'];

 foafhomepageList = foafhomepageFromJson.cast<String>();

 }

 var schematelephoneFromJson;

 List<String> schematelephoneList;

 if (parsedJson['schema_telephone'] != null) {

 schematelephoneFromJson = parsedJson['schema_telephone'];

 schematelephoneList = schematelephoneFromJson.cast<String>();

 }

 var schemaemailFromJson;

 List<String> schemaemailList;

 if (parsedJson['schema_email'] != null) {

 schemaemailFromJson = parsedJson['schema_email'];

 schemaemailList = schemaemailFromJson.cast<String>();

 }

 return new Hascontact(

 foafhomepage: foafhomepageList,

 schematelephone:schematelephoneList ,

 schemaemail: schemaemailList,

);

 }

}

//isLocatedAt

class IsLocatedAt {

 List<SchemaAddress> schemaAddress;

 List<Schemageo> schemageo;

 IsLocatedAt({this.schemaAddress, this.schemageo});

 factory IsLocatedAt.fromJson(Map<String, dynamic> parsedJson) {

 var isLocatedAt = parsedJson['schema_address'] as List;

 List<SchemaAddress> schemaAddressList =

Annex

65 | P a g e

 isLocatedAt.map((i) => SchemaAddress.fromJson(i)).toList();

 var isLocatedAt2 = parsedJson['schema_geo'] as List;

 List<Schemageo> schemageoList =

 isLocatedAt2.map((i) => Schemageo.fromJson(i)).toList();

 return new IsLocatedAt(

 schemaAddress: schemaAddressList, schemageo: schemageoList);

 }

}

//Schema_address

class SchemaAddress {

 List<String> schemaAddressLocality;

 SchemaAddress({

 this.schemaAddressLocality,

 });

 factory SchemaAddress.fromJson(Map<String, dynamic> parsedJson) {

 var schemaAddressLocalityFromJson = parsedJson['schema_addressLocality'];

 List<String> schemaAddressLocalitylList =

 schemaAddressLocalityFromJson.cast<String>();

 return new SchemaAddress(

 schemaAddressLocality: schemaAddressLocalitylList,

);

 }

}

class Schemageo {

 List<double> schemalatitude;

 List<double> schemalongitude;

 Schemageo({

 this.schemalatitude,

 this.schemalongitude,

 });

 factory Schemageo.fromJson(Map<String, dynamic> parsedJson) {

 var schemalatitudeFromJson = parsedJson['schema_latitude'];

 List<double> schemalatitudeList = schemalatitudeFromJson.cast<double>();

 var schemalongitudeFromJson = parsedJson['schema_longitude'];

 List<double> schemalongitudeList = schemalongitudeFromJson.cast<double>();

 return new Schemageo(

 schemalatitude: schemalatitudeList,

 schemalongitude: schemalongitudeList,

);

Annex

66 | P a g e

 }

}

//HasReview

class HasReview {

 List<HasReviewValue> hasReviewValue;

 HasReview({

 this.hasReviewValue,

 });

 factory HasReview.fromJson(Map<String, dynamic> parsedJson) {

 var hasReviewValue = parsedJson['hasReviewValue'] as List;

 List<HasReviewValue> hasReviewValueList =

 hasReviewValue.map((i) => HasReviewValue.fromJson(i)).toList();

 return new HasReview(hasReviewValue: hasReviewValueList);

 }

}

//HasReviewValue

class HasReviewValue {

 List<String> rdfslabelreview;

 HasReviewValue({

 this.rdfslabelreview,

 });

 factory HasReviewValue.fromJson(Map<String, dynamic> parsedJson) {

 var rdfslabelreviewFromJson = parsedJson['rdfs_label'];

 List<String> rdfslabelreviewList = rdfslabelreviewFromJson.cast<String>();

 return new HasReviewValue(

 rdfslabelreview: rdfslabelreviewList,

);

 }

}

//offers

class Offers {

 List<SchemaacceptedPaymentMethod> schemaacceptedPaymentMethod;

 Offers({

 this.schemaacceptedPaymentMethod,

 });

 factory Offers.fromJson(Map<String, dynamic> parsedJson) {

 var schemaacceptedPaymentMethod =

 parsedJson['schema_acceptedPaymentMethod'] as List;

Annex

67 | P a g e

 List<SchemaacceptedPaymentMethod> schemaacceptedPaymentMethodList =

 schemaacceptedPaymentMethod

 .map((i) => SchemaacceptedPaymentMethod.fromJson(i))

 .toList();

 return new Offers(

 schemaacceptedPaymentMethod: schemaacceptedPaymentMethodList);

 }

}

//SchemaacceptedPaymentMethod

class SchemaacceptedPaymentMethod {

 List<String> rdfslabelPayment;

 SchemaacceptedPaymentMethod({

 this.rdfslabelPayment,

 });

 factory SchemaacceptedPaymentMethod.fromJson(

 Map<String, dynamic> parsedJson) {

 var rdfslabelPaymentFromJson = parsedJson['rdfs_label'];

 List<String> rdfslabelPaymentList =

rdfslabelPaymentFromJson.cast<String>();

 return new SchemaacceptedPaymentMethod(

 rdfslabelPayment: rdfslabelPaymentList,

);

 }

}

//is equipped

class IsEquippedWith {

 List<String> rdfslabelEquipped;

 IsEquippedWith({

 this.rdfslabelEquipped,

 });

 factory IsEquippedWith.fromJson(Map<String, dynamic> parsedJson) {

 var rdfslabelEquippedFromJson = parsedJson['rdfs_label'];

 List<String> rdfslabelEquippedList =

 rdfslabelEquippedFromJson.cast<String>();

 return new IsEquippedWith(

 rdfslabelEquipped: rdfslabelEquippedList,

);

 }

}

class Mydata {

Annex

68 | P a g e

 String rdfslabel;

 String shortDescription;

 List<String> cuisineType;

 String archiStyle;

 List<String> rdfslabeltheme;

 String foafhomepage;

 String schematelephone;

 String schemaemail;

 String schemaAddressLocality;

 String rdfslabelreview;

 List<String> rdfslabelPayment;

 List<String> rdfslabelEquipped;

 double schemalatitude;

 double schemalongitude;

 int total;

 Mydata(

 this.total,

 this.rdfslabel,

 this.shortDescription,

 this.cuisineType,

 this.archiStyle,

 this.rdfslabeltheme,

 this.foafhomepage,

 this.schematelephone,

 this.schemaemail,

 this.schemaAddressLocality,

 this.rdfslabelreview,

 this.rdfslabelPayment,

 this.rdfslabelEquipped,

 this.schemalatitude,

 this.schemalongitude);

}

References

69 | P a g e

References

About Netflix. Netflix. Retrieved from https://media.netflix.com/fr/about-netflix

Adomavicius, G., & Tuzhilin, A. (2005a). Toward the Next Generation of Recommender

Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Trans. on Knowl. and

Data Eng., 17(6), 734-749. doi:10.1109/tkde.2005.99

Aggarwal, C. C. (2016). Recommender Systems. New York: Springer.

Akerkar, P. S. S. a. R. (2010). Chapter 1 Knowledge-Based Systems for Development.

Bachimont, B. (2004). Arts et sciences du numérique: Ingénierie des connaissances et critique de

la raison computationnelle. Mémoire de HDR.

Balraj Kumar, N. S. (2016). Approaches, Issues and Challenges in Recommender Systems: A

Systematic Review. Indian Journal of Science and Technology, 2-12.

Beal, V. database. Retrieved from https://www.webopedia.com/TERM/D/database.html.

Beal, V. knowledge base. Retrieved from

https://www.webopedia.com/TERM/K/knowledge_base.html

Bellinger, G., & Castro, D. (2004). Data, information, knowledge, and wisdom Online.

Berners-Lee, T. (1999). Lee. Retrieved from https://history-

computer.com/Internet/Maturing/Lee.html

Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems survey.

Knowledge-Based Systems, 46, 109-132. doi:10.1016/j.knosys.2013.03.012

Bullinger-Hoffmann, A. (2008). Innovation and ontologies: Structuring the early stages of

innovation management.

D. Goldberg, D. N., B. M. Oki, and D. Terry. (1992). Using collaborative filtering to weave an

information tapestry. Commun. ACM, 35, 12. doi:10.1145/138859.138867

Ekstrand, M. D. (2011). Collaborative Filtering Recommender Systems. Foundations and

Trends® in Human–Computer Interaction, 4(2), 81-173. doi:10.1561/1100000009

Felfernig, A., & Burke, R. (2008). Constraint-based recommender systems: Technologies and

research issues. ACM International Conference Proceeding Series, 3.

doi:10.1145/1409540.1409544

https://media.netflix.com/fr/about-netflix
https://www.webopedia.com/TERM/D/database.html
https://www.webopedia.com/TERM/K/knowledge_base.html
https://history-computer.com/Internet/Maturing/Lee.html
https://history-computer.com/Internet/Maturing/Lee.html

References

70 | P a g e

Felfernig, A., Friedrich, G., Jannach, D., & Zanker, M. (2015). In Francesco Ricci, Lior Rokach,

& Bracha Shapira (Eds.), Recommender Systems Handbook (Second Edition ed.). New York

Heidelberg Dordrecht London: Springer.

Flutter (software). (2019, June 19). wikipedia. Retrieved from

https://en.wikipedia.org/wiki/Flutter_(software)

Guarino, N. (1995). Ontologies and knowledge bases: towards a terminological clarification. 25-

32.

Guarino, N. (1997). Semantic matching: Formal ontological distinctions for information

organization, extraction, and integration, Berlin, Heidelberg.

Hill, W., Stead, L., Rosenstein, M., & Furnas, G. (1995). Recommending and evaluating choices

in a virtual community of use. Paper presented at the Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, Denver, Colorado, USA.

Isinkaye, F., Folajimi, Y., & Ojokoh, B. (2015). Recommendation systems: Principles, methods

and evaluation. Egyptian Informatics Journal, 16. doi:10.1016/j.eij.2015.06.005

J. Bobadilla, F. O., A. Hernando, A. Gutiérrez. (2013). Recommender systems survey.

Knowledge-Based Systems, 109-132.

Jannach, D., Zanker, M., & Fuchs, M. (2009). Constraint-Based Recommendation in Tourism: A

Multiperspective Case Study. Information Technology & Tourism, 11(2), 139-155.

doi:10.3727/109830509789994784

John A. Bullinaria. (2005). IAI : Knowledge Representation.

Junker, U. (2004). QUICKXPLAIN: Preferred explanations and relaxations for over-constrained

problems. Aaai, 167-172.

Khusro, S., Ali, Z., & Ullah, I. (2016). Recommender Systems: Issues, Challenges, and Research

Opportunities. 1179-1189. doi:10.1007/978-981-10-0557-2_112

Kumar, B., & Sharma, N. (2016). Approaches, Issues and Challenges in Recommender Systems:

A Systematic Review. Indian Journal of Science and Technology, 9.

doi:10.17485/ijst/2015/v8i1/94892

McGuinness, N. F. N. a. D. L. Ontology Development 101: A Guide to Creating Your First

Ontology. Retrieved from

https://protege.stanford.edu/publications/ontology_development/ontology101-noy-

mcguinness.html

Ontologie DATAtourisme v2.0_Documentation. (2019). Retrieved from

https://framagit.org/datatourisme/ontology/blob/master/Documentation/Ontologie%20DATAtour

isme%20v2.0_Documentation.pdf

https://en.wikipedia.org/wiki/Flutter_(software
https://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
https://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
https://framagit.org/datatourisme/ontology/blob/master/Documentation/Ontologie%20DATAtourisme%20v2.0_Documentation.pdf
https://framagit.org/datatourisme/ontology/blob/master/Documentation/Ontologie%20DATAtourisme%20v2.0_Documentation.pdf

References

71 | P a g e

P. Resnick, N. I., M. Suchak, P. Bergstrom, and J. Riedl. (1994). GroupLens: an open

architecture for collaborative filtering of netnews Proceedings of the 1994 ACM Conference on

Computer Supported Cooperative Work (pp. 12). Chapel Hill, North Carolina, USA: ACM.

Patel-Schneider, P. F., & Fensel, D. (2002). Layering the Semantic Web: Problems and

Directions, Berlin, Heidelberg.

Patel-Schneider, P. F., & Siméon, J. (2002). Building the Semantic Web on XML, Berlin,

Heidelberg.

PROTALINSKI, E. (Producer). (2019, May 07). Google expands Flutter mobile app SDK to the

web, desktop, and embedded devices. venturebeat. Retrieved from

https://venturebeat.com/2019/05/07/google-expands-flutter-mobile-app-sdk-to-the-web-desktop-

and-embedded-devices

R.Gruber, T. (1993). A translation approach to portable ontology specifications. Knowledge

Acquisition, 5(2), 199 - 220. doi:https://doi.org/10.1006/knac.1993.1008

Realtime Database vs. Cloud Firestore. (2018). Retrieved from

https://medium.com/datadriveninvestor/realtime-database-vs-cloud-firestore-which-database-is-

suitable-for-your-mobile-app-87e11b56f50f

Rich, E. (1979). User Modeling via Stereotypes. COGNITIVE SCIENCE, 3, 329-354.

Schafer, J. B., Frankowski, D., Herlocker, J., & Sen, S. (2007). Collaborative filtering

recommender systems. In B. Peter, K. Alfred, & N. Wolfgang (Eds.), The adaptive web (pp. 291-

324): Springer-Verlag.

Shardanand, U., & Maes, P. (1995). Social information filtering: algorithms for automating

“word of mouth&rdquo. Paper presented at the Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, Denver, Colorado, USA.

Sharma, A. (Producer). (2018, September 29). Realtime Database vs. Cloud Firestore. medium.

Retrieved from https://medium.com/datadriveninvestor/realtime-database-vs-cloud-firestore-

which-database-is-suitable-for-your-mobile-app-87e11b56f50f

Studer, R., Benjamins, V. R., & Fensel, D. (1998). Knowledge engineering: principles and

methods. Data Knowl Eng 25(1-2):161-197. Data & Knowledge Engineering, 25, 161-197.

doi:10.1016/S0169-023X(97)00056-6

Su, X., & Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. Adv. in

Artif. Intell., 2009, 2-2. doi:10.1155/2009/421425

Technical Overview. flutter.dev. Retrieved from https://flutter.dev/docs/resources/technical-

overview

Wang, X. (2011). Recommendation in Social Media: Utilizing Relationships among Users to

Enhance Personalized Recommendation. (Thesis Submitted in Partial Fulfillment of the

https://venturebeat.com/2019/05/07/google-expands-flutter-mobile-app-sdk-to-the-web-desktop-and-embedded-devices
https://venturebeat.com/2019/05/07/google-expands-flutter-mobile-app-sdk-to-the-web-desktop-and-embedded-devices
https://doi.org/10.1006/knac.1993.1008
https://medium.com/datadriveninvestor/realtime-database-vs-cloud-firestore-which-database-is-suitable-for-your-mobile-app-87e11b56f50f
https://medium.com/datadriveninvestor/realtime-database-vs-cloud-firestore-which-database-is-suitable-for-your-mobile-app-87e11b56f50f
https://medium.com/datadriveninvestor/realtime-database-vs-cloud-firestore-which-database-is-suitable-for-your-mobile-app-87e11b56f50f
https://medium.com/datadriveninvestor/realtime-database-vs-cloud-firestore-which-database-is-suitable-for-your-mobile-app-87e11b56f50f
https://flutter.dev/docs/resources/technical-overview
https://flutter.dev/docs/resources/technical-overview

References

72 | P a g e

Requirements for the Degree of Doctor of Philosophy), Zhejiang University. Retrieved from

http://summit.sfu.ca/system/files/iritems1/17566/etd10207_XWang.pdf

(n.d.). Retrieved June 2019, from code.visualstudio: https://code.visualstudio.com/

Amadeo, R. (Ed.). (2015, May 1). Google's Dart language on Android aims for Java-free, 120

FPS apps. Retrieved June 2019, from Ars Technica:

https://arstechnica.com/gadgets/2015/05/googles-dart-language-on-android-aims-for-java-free-

120-fps-apps

Cloud Firestore. (n.d.). Retrieved June 2019, from Firebase:

https://firebase.google.com/docs/firestore/

Command-line interface / Commands - Composer. (n.d.). Retrieved June 2019, from Composer:

https://getcomposer.org/doc/03-cli.md

Developer Survey Results 2019. (n.d.). Retrieved from StackOverflow Insights:

https://insights.stackoverflow.com/survey/2019?utm_source=Iterable&utm_medium=email&utm

campaign=dev-survey-2019#technology--most-popular-development-environments

Developer Survey Results 2019. (2019, April 10). Retrieved from stackoverflow Insights.

Firebase Authentication. (n.d.). Retrieved June 2019, from Firebase:

https://firebase.google.com/docs/auth/

Firebase Predictions. (n.d.). Retrieved June 2019, from Firebase:

https://firebase.google.com/docs/predictions/

Firebase Realtime Database. (n.d.). Retrieved June 2019, from Firebase:

https://firebase.google.com/docs/database/

Flutter (software). (2019, June 19). Retrieved June 2019, from wikipedia:

https://en.wikipedia.org/wiki/Flutter_(software)

Flutter SDK releases. (n.d.). Retrieved June 2019, from flutter.dev:

https://flutter.dev/docs/development/tools/sdk/releases

Google Analytics for Firebase. (n.d.). Retrieved June 2019, from Firebase:

https://firebase.google.com/docs/analytics/

history of php. (n.d.). Retrieved june 2019, from php.net:

https://php.net/manual/en/history.php.php

http://summit.sfu.ca/system/files/iritems1/17566/etd10207_XWang.pdf

References

73 | P a g e

Ma, F. (2018, October 29). What’s new at Firebase Summit 2018. Retrieved from The Firebase

Blog: https://firebase.googleblog.com/2018/10/whats-new-at-firebase-summit-2018.html

Products. (n.d.). Retrieved from Firebase: https://firebase.google.com/products/

PROTALINSKI, E. (2019, May 07). Google expands Flutter mobile app SDK to the web,

desktop, and embedded devices. Retrieved June 07, 2019, from venturebeat:

https://venturebeat.com/2019/05/07/google-expands-flutter-mobile-app-sdk-to-the-web-desktop-

and-embedded-devices

Tamplin, J. (2014, October 21). Firebase is Joining Google! Retrieved June 2019, from The

Firebase Blog: https://firebase.googleblog.com/2014/10/firebase-is-joining-google.html

Technical Overview. (n.d.). Retrieved from flutter.dev:

https://flutter.dev/docs/resources/technical-overview

Welcome! - The Apache HTTP Server Project. (n.d.). Retrieved June 2019, from httpd.apache:

https://httpd.apache.org/

