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Abstract 

i 

Abstract 
 

With the rise use of the Internet, recommender systems (RS) are growing progressively and 

become more popular in our habitual life by helping people to find relevant items (books, movies, 

hotels, etc.). by using user data, item data, user opinions, preferences, meta-data, demographic 

information, user behavior or combination of these. 

 

This research work aims to develop a knowledge-based recommender system that recommends 

Tourism services (hotel, restaurant, cultural sites, etc.) to tourists. In this purpose, we have used a 

constraint-based approach as type of knowledge-based recommender systems, and the 

DATAtourisme ontology as a recent rich knowledge about Tourism domain. 

 

The achieved recommender system has proved the capability of recommending complex products 

and services such as in tourism domain. In addition, the obtained results confirm advantages of 

these kind of recommendation systems mainly the absence of cold-start problem 

 

 

 

Keywords: Knowledge-based recommender system, DATAtourisme ontology, constraint-based 

approach, explanation, relaxation. 
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General Introduction 

Context and Motivation 

      Given the increase in the amount of information and the number of users on the Internet, it has 

become difficult to find the data; even conventional information retrieval tools do not always 

provide relevant results because of the information overload problem.  

To tackle this problem, the need is increased for new techniques and tools to help users find what 

they are looking for without much efforts and time. The last two decades witnessed the emergence 

of new software techniques for many application domains (e-commerce, tourism …). These 

techniques are called the Recommender Systems (SR, in short). 

A Recommender or recommendation System automatically identifies user preferences through 

their interactions with the system based on either the implicit feedback, explicit feedback or both 

of them, to suggest recommendations to users.  

There are several types of recommender systems, such as, Collaborative Filtering (CF), Content-

Based Filtering (CBF), Knowledge-Based Recommender System (KBRS) and Hybrid approaches 

between these types. In the literature, we find a richness of researches works about the first two 

type (CF and CBF). However, a little focus about KBRS and few works found in this field. This 

scarcity of work is due mainly to difficulties meet the developers in the construction of the 

Knowledge base with domain experts, which is the backbone in the software architecture of any 

KBRS. 

Very recently a new knowledge base about “Tourism domain” has been established by different 

experts in the domain. This knowledge base is called “DATAtourisme” and constructed on 

ontological models with all know advantages of the ontology formalism (expressivity, share, 

semantic richness, extensibility, etc.).    

Our present work falls within the of Knowledge-Based Recommender Systems and aims to explicit 

how to develop them for community researchers by showing their pros and cons.  This trend is 

motivated firstly by the scarcity of researches in KBRS field and secondly, by the availability of 

DATAtourisme knowledge base.  

Problematic and objectives 

With the noticed lack of works in the field of KBRS (as we showed previously), the major 

problematic of this work is how to build Knowledge-Based Recommender Systems and what will 

be their advantages and limits
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In order to contribute in this problematic, we have traced some objectives to be reached in this 

research work, namely: 

At first, to design and implement a knowledge-based recommender system using the new 

DATAtourisme ontology;  

Second, to validate the results in recommendations form our KBRS by real case studies; 

Finally, to note the gained benefits of using KBRS in business domains (For instance, Tourism) 

and the limits of these systems to be tackled in futures works. 

Organization 

After this introduction, this document is organized into four chapters as follows: 

• The first chapter presents a general overview on recommendation systems from the past 

to future passing by the present, and their types such as CF, CBF and KBRS. 

• The second chapter is dedicated to explain knowledge-based recommender systems, the 

concept of knowledge base using the ontology formalism and the approaches used to build 

this type of RSs, namely, Case-based and Constraint-based recommender systems. 

• The third chapter details Constraint-base recommender system which will be used to 

build the target recommender system, the DATAtourisme ontology and finished by 

proposing the architectural design of our KBRS and its functioning process using 

explanation and relaxation algorithms. 

• The fourth chapter shows the realization of our application (KBRS) where it gives the 

development environment, tools and programming languages used in our work, then show 

some graphical interfaces of our application. It ends by mentioning some pros and cons of 

knowledge-based recommender systems learned from our experience. 

      At the end, we conclude this document with an assessment of our contributions, opening the 

door to certain perspectives envisaged to fill the limits of KBRS. 

 

   

 

 



 

 

CHAPTER I 
Overview on Recommendation 

Systems 

 

 

 

 
 

 

 

 

 

 

« Who loves practice without theory is like the sailor who boards ship without a 

rudder and compass and never knows where he may cast. » 

Leonardo da Vinci 
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1. Introduction 

      Nowadays, there is a wide trend of users to use recommendations applications in order to 

facilitate their different social and professional tasks. This chapter aims to present recommender 

systems and underlying concepts. After exposition of the historical aspect, it gives various 

classifications of recommender systems found in the literature in which the most important kinds 

of these systems are detailed.   

2. What Is A Recommender System? 

       In the literature, several definitions of a “Recommender system (RS)” have been introduced. 

The most popular one is given by (Bo Xiao, 2007): 

“RS are software agents that elicit the interests and preferences of individual consumers […] and 

make recommendations accordingly. They have the potential to support and improve the quality 

of the decisions consumers make while searching for and selecting products online.”  

As far as we can tell is that the recommender system is the advisor of users in overwhelming 

number of available items to help find which they are likely to prefer using user data, item data, 

user opinions, preferences, meta-data, demographic information, user behavior or combination of 

these. So, it considerably reduces the user's time to find the most interesting items for him. 

In addition, recommender system can also be used to determine the similarity of different products. 

If the products are very similar to each other, they could interest the same users. 

3. Past, Present and Future of Recommender Systems 

      The preludes of the recommendation systems stem from research into the construction of 

models representing user choices. in order to facilitate search through the web or e-services, and 

deal with the problem of overload and wealth of information.  

3.1. Past 

• 1979, Grundy (Rich, 1979), a librarian system, is the first recommender engine that 

described models of users by using stereotypes based on a short interview, and used these 

stereotypes to produce book recommendations. This work represents an interesting first 

attempt in the field of recommendation systems. However, its use has remained very 

limited.  

• 1990, Collaborative filtering (Ekstrand, 2011) appears as a solution to deal with 

information overload. 
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• 1992, the appearance of the Tapestry document recommendation system (D. Goldberg, 

1992), it was developed by the "Xerox" research center in the United States, their purpose 

was to recommend to groups of users’ documents from newsgroups that might be of 

interest to them. The approach used was of the nearest neighbors’ type from the user's 

history. As well as the creation of GroupLens research laboratory, which works explicitly 

on the automatic recommendation problem within the Usenet newsgroups framework. 

• 1994, GroupLens (P. Resnick, 1994) uses automatic collaborative filtering to identify items 

in Usenet that may be of interest to a particular user. 

• 1995-2006, successively appear Ringo (Shardanand & Maes, 1995), a music 

recommendation system and Bellcore (Hill, Stead, Rosenstein, & Furnas, 1995) a video 

recommendation system. Also, bookseller such as Amazon which is online retailer, and 

manufacturer of electronic book readers. In addition, Netflix introduces a personalized 

movie recommendation system, which uses Netflix members’ ratings to accurately predict 

choices for all Netflix members. 

3.2. Present 

      With the rise of the social networks and the rapid development of web services, everything has 

become today via the Internet and many applications become popular in our lives. People search 

for jobs on LinkedIn, look for places to spend holidays on tourism web sites, book a Flight Online, 

share fantastic pictures with there friends on Flickr. Artists also upload their paintings to 

DeviantArt. On the other hand, people not only rate holidays package or TV series, but also interact 

with each other on Facebook, see the latest updates of their favorite idols on Twitter, this brings 

the idea of social recommendation. 

Moreover, as more and more new applications appear in social media, people are again facing a 

huge amount of information that may be interesting to them. Thus, the web service providers will 

have to face a similar circumstance faced by those offering traditional recommendation (Wang, 

2011). 

Recommender systems are growing progressively more popular in both e-commerce and in 

research. Several models of recommendations have been established, e.g. knowledge-based and 

social methods, demographic and hybrid methods, etc., along with new techniques such as stacking 

Algorithms1, Matrix factorization2, Magic Barrier3 and Ranking4, etc. As well as recommendation 

system prove to be an application area for data mining and machine learning.  

                                                           
1 Algorithm Stacking: is an ensemble learning method, to the problem of building hybrid recommendation systems. 
2 Matrix factorization:  is an algorithm work by decomposing the user-item interaction matrix into the product of two lower 

dimensionality rectangular matrices. 
3 Magic Barrier: represents the lowest error we can expect from any recommendation algorithm. 
4 Ranking: is the process of ordering alternatives in relation to others. 

https://en.wikipedia.org/wiki/Matrix_(mathematics)
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All this progress is aimed at upgrading and evolving the quality of the recommendation and to deal 

with the problem of information overload. 

• 2012 - Today, Netflix becomes the most nominated service, which is available worldwide and 

hits 100 million members globally ("About Netflix,"). 

3.3. Future 

      The recommendation systems continue to be largely geared towards improving the accuracy 

of output and improvements in all dimensions. Henceforth there will be intense research going on 

and these efforts are surely shaping the future of recommender systems, to be more and more 

useable and practical in real life scenarios. 

The Table I- 1 represents some of future research directions on recommender system features and 

recommended techniques. 

System features Future research directions Recommended techniques 

User data/ 

preference 

modeling 

- Managing uncertainties of preference 

modeling. 

- Storing data in ontology-based 

repositories and discovering semantic 

similarities and relations. 

- Exploring alternate options of ranking and 

recommending items to the users by 

considering several criteria. 

Deep learning 

Semantic web 

ontologies 

Web usage mining 

Multi-objective 

optimization 

System platform 

System 

architecture 

- Utilizing distributed and elastic platforms. 

- Studying mobile applications and security 

vulnerabilities in decentralized 

environments. 

Cloud computing 

Intelligent agents 

Adaptivity - Designing a system to operate within 

dynamic environments and autonomously 

choose the appropriate recommendation 

algorithm. 

Autonomous and self-

directed learning 

Security and 

privacy 
- Analyzing the required amount of user 

data. 

- Exploring the tradeoff relation between 

security and privacy to preserve a suitable 

balance. 

Data mining 

Machine learning 

System 

performance 
- Exploring user perception by considering 

user’s privacy concerns, experience, 

knowledge domain and emotional states. 

Data warehouse 

Implicit evaluation 

techniques 

Game theory 

Table I- 1 Future research directions in recommender systems (Taghavi, Bentahar, Bakhtiyari, & 

Hanachi, 2018) 



CHAPTER I |Overview on Recommendation Systems 

7 | P a g e  
 

4. How Does Recommender System Work?  

      In the previous section, we have defined the recommender system as the user leader to find 

items of interest from an overwhelming number of available items. Now we would to clarify this 

definition by illustrating how recommender system works. 

This is an illustrating scenario: for example, you are looking for a holiday place. You have a profile 

on a tourism and vacation website (or mobile application), as well as you have previously rated 

several holiday packages for places you’ve visited. Now you are looking for recommendation 

based on your preferences or tastes. So, the system should already know your preferences. 

Apparently, you seem to like “Archaeological sites and accommodations with forest view”, etc. 

Based on this information, the system should recommend something similar. 

Typically, to provide recommendations, the process requires a list of information about users to 

formulate the user’s profile, which includes items liked or disliked, preferences, tastes, historical 

research, and so on. But the system needs to be able to learn from users’ inputs, and retrain 

periodically to improve the results. 

A recommender engine process through three main phases is summarized in Figure I-1 and 

detailed in the following points. 

4.1. Collecting Phase 

      Data is a very important part of all web-based applications, and not only recommendation 

systems. So, the first step to create a recommender engine is to gather the user information. This 

collects relevant information of users to generate a user profile or model for the recommendation 

tasks including user’s attribute, behaviors or content of the resources the user accesses. The system 

needs to know as much as possible from the user in order to provide reasonable recommendation 

right from the onset. 

Recommender systems rely on different types of input such as the explicit feedback, which 

includes explicit input by users regarding their interest in item or implicit feedback by inferring 

user preferences indirectly through observing user behavior. Hybrid feedback can also be obtained 

over the combination of both explicit and implicit feedback (Isinkaye, Folajimi, & Ojokoh, 2015). 

CollectingCollecting ProfilingProfiling RecommendingRecommending

Feedback 

 

 Figure I-1 Phases of Recommendation process 
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4.2. Profiling Phase 

      Profiling is an important part of recommendation processes since their models are used in order 

to generate customized recommendations.  

User profiles can represent the interests or preferences of both an individual user and a group of 

users: an individual user profile provides only one user’s interests and information, whereas a 

group user profile describes the common interests or goals of a group of users. 

4.2.1. Comparison of The User Profile Types 

            There are different methods of user profiles depending on the used technique. Each method 

has advantages and disadvantages. The Table I- 2 in below shows a comparison between the main 

types. 

User Profile 

Type Description Used Techniques Advantages Disadvantages 

Explicit User 

Profiles 

User manually 

creates user 

profile 

Questionnaires, 

Rating 

Information 

gathered is 

usually of high 

quality 

Requires a lot of 

efforts from user 

to update the 

profile 

information 

Implicit User 

Profiles 

System 

generates user 

pro- file from 

usage history 

of interactions 

between user 

and content 

Machine learning 

algorithms 

Minimal user 

effort is 

required and 

easily 

updatable by 

automatic 

methods 

Initially requires 

a large amount 

of interaction 

between user 

and content 

before an 

accurate user 

profile is created 

Hybrid User 

Profiles 

Combination 

of explicit and 

implicit user 

profiles 

Both explicit and 

implicit 

techniques 

To reduce 

weak points 

and promote 

strong points 

of each of the 

techniques 

used 

N/A 

Table I- 2 Comparison of the User Profile Types (Cufoglu, 2014). 
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4.3. Recommending Phase  

      The recommendation process ends by offering a list of that items may interest the user. This 

list should directly respond to key findings issued from collection and profiling phases. A 

prioritization process is essential to narrowing down finding, and which varies from approach to 

another. For example, the nearest item to the current user is more prioritized than the others items. 

5. Classification of recommendation systems 

      Recommendation systems can be classified in different ways. Sometimes several terms 

are used to designate the same method or approach. The objective here is to rely on the best-

known classifications on which we base our study. The Figure I- 2 depicts the basic 

classification of RS. 

 

Recommendation 

system 

 

content-based 

filtering 

 

collaborative 

filtering 

 

hybrid 

filtering 

 

Recommendation 

system 

 

collaborative 

filtering 

 

content-based 

filtering 

 

demographic 

filtering 

 

knowledge-

based filtering 

 

hybrid filtering 

0 

 

utility-based 

filtering 

 

collaborative 

filtering 

 

Recommendation 

system 

 

content-based 

filtering 

 

K-Nearest 

Neighbor 

Approach 

Model-based 

approach 

 

Hybrid 

Collaborative 

Filtering 
 

The classic classification 

 

The classification of Rao N. and Talwar. (2008) 

 

The Classification of Su, X. and Khoshgoftaar, T. 

(2009) 

 

 

Figure I- 2 Basic Classification of RSs 
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5.1. Classic classification 

      This classification of (Adomavicius & Tuzhilin, 2005a) is recognized by three types of 

filtering: collaborative filtering (CF), content-based filtering (CBF) and hybrid filtering. 

5.2. Classification of Rao N. and Talwar. (2008) 

      It is a classification based on the source of information used. 

5.3. Classification of Su, X. and Khoshgoftaar, T. (2009)  

      (Su & Khoshgoftaar, 2009)classify collaborative filtering into three categories: Su, X. and 

Khoshgoftaar, T. (2009) 

• Memory-based CF approaches: for K-nearest neighbors. 

• Model-based CF approaches: including a variety of techniques such as: Clustering, 

Bayesian networks, matrix factorization, decision processes of Markov. 

• Hybrid CF: which combines a CF recommendation technique with one or more 

other methods.  

We present in the following section the Basic Models of Recommendation Systems such as 

Collaborative Filtering models, content and knowledge-based models, then Demographic Models, 

and finally the hybrid approaches. 

6. Basic Models of Recommender Systems 

      A recommendation system seeks to associate two entities: users and items. To handle this task 

many methods are modeled with different concepts but for the same purpose - supply users with 

recommendations according to their preferences. 

6.1. Collaborative Filtering Models 

      The basic idea of collaborative filtering methods is the use of something humans have been 

doing for centuries - sharing opinions with others. Which called -word of mouth- to build an 

opinion about a product or service they don’t know (Schafer, Frankowski, Herlocker, & Sen, 

2007). 

These models use the collaborative power of the ratings provided by multiple users. To translated 

into numerical values, can be notes, accounts of purchases made, numbers of visits, etc. in order 

to formulate the user profile.  
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     For example, we consider two users named A and B, if A likes the items 1, 2, 3 and B likes 

2,3,4, then these users seem to be very similar in their preferences. It is very likely that the ratings 

in which only one of them has specified a value, are also similar. Thus, similarities are used to 

make inferences about incompletely specified values. So, A should like item 4 and B should like 

item 1. 

      Most of collaborative filtering models focus on leveraging either inter-item correlations or 

inter-user correlations for the prediction process. Some models use both types of correlations. On 

the whole a classifier creates two models are referred to as memory-based methods and model-

based methods (Aggarwal, 2016):  

6.1.1. Memory-based methods 

            Memory-based methods are also referred to as neighborhood based collaborative filtering 

algorithms. These neighborhoods can be defined in one of two ways  (Aggarwal, 2016):  

• User-User Collaborative Filtering: In this case, we have to determine the users who are 

similar to the current user, then calculate a prediction value for each candidate item for 

the recommendation by analyzing the notes that the neighbors of the current user have 

expressed on this item. User-based collaborative filtering was introduced for the first 

time in the GroupLens system (P. Resnick, 1994). 

• Item-Item Collaborative filtering: With regard to conduct the rating predictions for 

target item P by user A, the first step consists in identifying a set S of items that are 

most similar to target item P. The ratings in item set S, which are specified by A, are 

used to predict whether the user A will like item P. The Similarity functions are 

computed between the columns of the ratings matrix to discover similar items. 

6.1.2. Model-based methods 

            In model-based methods, machine learning and data mining methods are used within the 

sphere of predictive models. These models are learned to impute the missing or unobserved values 

in the rating matrix. Some examples of such model-based methods include decision trees, Bayesian 

methods, rule-based and latent factor models (Aggarwal, 2016). 

Figure I- 3 Collaboratif Filtering Recommender System 
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6.2. Content-Based Models 

      Content-based models (CBM) attempts to recommend items to the active user similar to those 

bought, visited, viewed, rated positively in the past, or is examining in the present. It is based on 

the concept that items with similar contents will be rated similarly. The term “content” refers to 

the descriptions, attributes, and futures of objects intended for recommendation (J. Bobadilla, 

2013).  

For example, if a user reads a book A with attributes X, Y and Z, then the CBM will recommend 

books that are more similar to contents X, Y and Z. That's why two sets must be made: items 

profiles and user profile. The first set must include the full description and features of a specific 

item, and the second one must contain all interactions (e.g. feedback) between the user and the 

system, such as comments, critiques, ratings, opinions and all information which increase the 

accuracy of predictions and recommendations. 

      These methods are best suited to situations where there is known data on an item (name, 

location, description, etc.), but not on the user. Content-based recommenders handle 

recommendation as a user-specific classification problem and learn a classifier for the user's likes 

and dislikes based on product features (Aggarwal, 2016). 

6.2.1. Feature Extraction 

            Broadly, feature extraction entails reducing the amount of resources required to describe a 

large set of data. The first stage in all content-based models is to extract discriminative features 

for representing the items. Discriminative features are those, which are highly predictive of user 

interests. Although it is possible to use any kind of representation, such as a multidimensional data 

representation, the most common approach is to extract keywords from the underlying data. In 

many cases, the items may have multiple fields describing various aspects of the item. The various 

fields need to be weighted appropriately in order to facilitate their use in the classification process 

(Aggarwal, 2016). 

Figure I- 4 Content-Based Recommender System 
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6.3. Knowledge-Based Recommender Systems 

      In knowledge-based recommender systems, the ratings are not used for the purpose of 

recommendations. Rather, the recommendation process is performed in the context of knowledge 

bases, by using similarities between customer requirements and item descriptions, or the use of 

constraints specifying user requirements (Aggarwal, 2016).  

 

6.4. Hybrid Recommender Systems 

      We have mentioned above that collaborative filtering systems rely on community ratings, 

content-based methods rely on textual descriptions and the target user’s own ratings, and 

knowledge-based systems rely on interactions with the user in the context of knowledge bases. In 

many cases where a wider variety of inputs is available, one has the flexibility of using different 

types of recommender systems for the same task. In such cases, many opportunities exist for 

hybridization, where the various aspects from different types of systems are combined to achieve 

the best of all worlds (Aggarwal, 2016). 

 

 

Figure I- 5 Knowledge-Based Recommender System 

Figure I- 6 Hybrid-Based Recommender System 
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7. Issues and Challenges in RSs 

      This section describes the most common issues and challenges that facing RS deployment 

• Sparsity: Majority of users do not rate most of items and therefore the ratings matrix 

becomes very sparse. Due to this, the data sparsity problem arises that declines the chances 

of finding a set of users with similar ratings (Kumar & Sharma, 2016). 

• Cold-start: This problem occurs when new users enter the system or new items are added 

to the catalogue. In such cases, neither the taste of the new users can be predicted nor can 

the new items be rated or purchased by the users leading to less accurate recommendations 

(Khusro, Ali, & Ullah, 2016). 

• Grey Sheep: This problem occurs in pure CF systems where opinions of a user do not 

match with any group and therefore, is unable to get benefit of recommendations(Khusro 

et al., 2016). 

• Scalability: The rate of growth of nearest-neighbor algorithms shows a linear relation with 

number of items and number of users. It becomes difficult for a typical recommender to 

process such large-scale data (Khusro et al., 2016). 

• Privacy: RSs are bound to gather as much user data as possible and to exploit it to the 

fullest. But on the other side, this may create a negative impression on the users’ mind 

about their privacy because the system knows too much about them(Balraj Kumar, 2016). 

• Robustness of RSs: Another major challenge in RSs is their robustness to attacks. 

Robustness is a performance measure of RSs. To gain certain profits, an attacker may 

generate some fake user profiles based on some attack models, such as Push/Nuke Attacks 

to make some target items more/less popular respectively. Such attacks are collectively 

called shilling attacks or profile injection attacks (Kumar & Sharma, 2016). 

 

8. Conclusion 

     In this chapter we have discussed the recommender systems as an important kind of software 

applications in the last years. We have exposed the past, present and the future of these systems. 

Also, a focus is given on the most recommendations methods such as, filtering collaborative, 

content-based and knowledge-based. The latter (knowledge-based recommender system) will be 

the topic of the next chapter.   
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                                                                «Knowledge is knowing that a tomato is a fruit. Wisdom is 

knowing not to put it in a fruit salad. » 

Brian O’Driscoll
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1. Introduction 

      In this work we aim to propose a knowledge-based recommender system (KBRS) in the field 

of Tourism. This chapter introduces KBRS by defining the underlying concepts and notions 

allowing building that latter. We will tackle the knowledge notion which is considered as the main 

component, the ontology formalism to represent knowledges and the types of this kind of 

recommender systems, namely, case-based recommender systems and constraint-based 

recommender systems.  

2. What is Knowledge? 

      Defining the meaning of knowledge requires to determine the distinctive differences between 

Data, information, knowledge and wisdom, which they are the major elements of human thinking 

and reasoning process. (Bellinger & Castro, 2004) Proposes the following definitions: 

• Data: is raw, it simply exists and has no 

significance beyond its existence (in and of 

itself). It can exist in any form, usable or not. It 

does not have meaning of itself. 

• Information: is data that has been given 

meaning by way of relational connection. This 

"meaning" can be useful, but does not have to 

be. 

• Knowledge: is the appropriate collection of 

information, such that its intent is to be useful. 

Knowledge is a deterministic process. When 

someone "memorizes" information (as less-

aspiring test-bound students often do), then 

they have amassed knowledge. This knowledge 

has useful meaning to them, but it does not provide for, in and of itself, an integration such as 

would infer further knowledge. 

• Wisdom: is an extrapolative and non-deterministic, non-probabilistic process. It calls upon all 

the previous levels of consciousness. It beckons to give us understanding about which there 

has previously been no understanding. 

 

The definition of "knowledge" belongs to the domain of philosophy or epistemology (Bachimont, 

2004) clarify that: 

“Knowledge is the ability to exert an action to achieve a goal”. 

This definition raises the ideal character of knowledge, and the importance of the finality of 

knowledge. 

Figure II- 1 The Dick Whittington 

Model for Knowledge Management 
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2.1. Types of knowledge 

     The below table gives different types of Knowledge (Akerkar, 2010): 

Knowledge Type Description 

Domain knowledge 

 

Domain knowledge is valid knowledge for a specified domain. Specialists and 

experts develop their own domain knowledge and use it for problem solving. 

Meta knowledge  
Meta knowledge can be defined as knowledge about knowledge. 

Heuristic knowledge 
Heuristic is a specific rule-of-thumb or argument derived from experience. 

Explicit knowledge 
Explicit knowledge can be easily expressed in words/numbers and shared in 

the form of data, scientific formulae, product specifications, manuals, and 

universal principles. It is more formal and systematic. 

Tacit knowledge 
Tacit knowledge is the knowledge stored in subconscious mind of experts and 

not easy to document. It is highly personal and hard to formalize, and hence 

difficult to represent formally in system. Subjective insights, intuitions, 

emotions, mental models, values and actions are examples of tacit knowledge. 

Table II- 1 Type of Knowledge. 

3. What is Knowledge-base? 

      Knowledge-bases support collecting, organizing, retrieving, and sharing knowledge, if we 

define knowledge-base as a centralized database for spreading information or data plus their 

meaning. Then we must consider the differences between knowledge-base and database. 

3.1. Knowledge-base vs Database 

      First of all, a database is a collection of information organized in such a way that a computer 

program can quickly select desired pieces of data (Beal), it is mostly also limited on just these 

functionalities. In contrast to that, a knowledge-base is a collection of knowledge in the form of 

subject-problem-solution information that pertains to a specific topic or subject of interest (Beal). 

A knowledge-base can use many databases or can enrich it with information from public data 

sources. One popular example of a knowledge base is the Microsoft Help & Support Knowledge-

Base, and the data stored inside it provides answers, not just a list of data resources. More 

technically, RDFS and OWL provide the most popular data models for knowledge bases, but using 

them does not prevent someone to represent knowledge in a wrong way. The test is the "ontological 

commitment5" of the classes and properties used. 

 

What is the difference again? Simply the difference is that a knowledge-base stores knowledge, 

while a database stores and organizes data. 

                                                           
5See https://en.wikipedia.org/wiki/Ontological_commitment 
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4. Knowledge representations 

      The aim of the knowledge representation and reasoning is to express knowledge in a computer 

tractable form, moreover to depict or understand the behavior of systems with regard to the 

knowledge it has, etc.  

The knowledge manipulation goes through three successive steps: Knowledge acquisition, 

Knowledge reasoning, and finally the decision or the action.  

• Knowledge acquisition: is the process of collecting or absorbing and storing the knowledge. 

• Knowledge reasoning: is the use of the knowledge representation in order to derive or, deduce 

new knowledges. 

• Decision/action: is the process of making choices and decide what to do next. 

4.1. Forms of Representing Knowledge  

      In this section we will look at the possibility of using Natural Language, Databases, and First 

Order Logic as knowledge representations (John A. Bullinaria, 2005).  

4.1.1. Natural Language as a Knowledge Representation 

            Natural language is so far the most comprehensive tool for humans to encode and reason 

with knowledge (how many text books are not written in natural language?). Therefore, it could 

be viewed as the best knowledge representation formalism available. so why not use that to 

represent knowledge in the knowledge-base systems? we quote here some disadvantages of natural 

language: 

• Both the syntax and semantics are very complex and not fully understood. 

• There is little uniformity in the structure of sentences. 

• It is usually ambiguous. 

4.1.2. Database as a Knowledge Representation 

            We have already defined database as a collection of information organized in this way a 

computer program can quickly select desired pieces of data. Databases are clearly very powerful, 

but they are rather limited. The important issues are: 

• Only simple aspects of the problem domain can be accommodated. 

• We can represent entities, and relationships between entities, but not much more. 

• Basically, the only reasoning possible is simple lookup, and we usually need more 

sophisticated processing than that. 
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4.1.3. First Order Logic as a Knowledge Representation 

            First-order logic6 is symbolized reasoning in which each sentence, or statement, is broken 

down into a subject and a predicate. The predicate modifies or defines the properties of the subject. 

A sentence in first-order logic is written in the form P(x), where P is the predicate, and x is the 

subject, represented as a variable. We can also manipulate the logic representations to generate 

new knowledge, e.g.: 

First-order logic as a knowledge representation is very expressive, and has unambiguous syntax 

and semantics. Except that there is no generally efficient procedure for processing knowledge. 

4.1.4. Ontologies as a knowledge representation 

            Ontology is the formal way to represent knowledge. It facilitates the management of 

unstructured information and helps to detect ambiguities, inconsistencies and contradictions while 

building representation of a large and complex domain. 

Using an Ontology, the knowledge is represented as a set of concepts within a domain and 

relationships between pairs of concepts. 

In the next section we introduce the semantic web, and the ontologies as well as the relationship 

between them. 

5. The semantic Web and Ontologies 

      The increase in information on the web has led to the appearance of diverse portals, thus the 

semantic web allows machines to understand semantics, the meaning of information on the Web, 

so the latter can perform many tasks instead of humans, for example finding, sharing, and 

combining information. 

 

                                                           
6 See https://whatis.techtarget.com/definition/first-order-logic 
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Figure II- 2 Concept and Relationship of Ontology 
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5.1. What is the Semantic Web? 

      In 1999, Tim Berners-Lee published the 

book "Weaving the Web" in which he 

designed a portrait of the Web and the paths 

for its future. whereat the term semantic web 

appeared. in the same year he enunciated his 

famous quote (Berners-Lee, 1999):  

“I have a dream for the Web in which 

computers become capable of analyzing all 

the data on the Web - the content, links, and 

transactions between people and computers. 

A « Semantic Web », which should make this 

possible, has yet to emerge, but when it does, 

the day-to-day mechanisms of trade, 

bureaucracy and our daily lives will be 

handled by machines talking to machines.” 

Berners-Lee7 suggested the Semantic Web layers illustrated in Figure II- 3, which is discussed in 

depth for instance in (Patel-Schneider & Fensel, 2002) and (Patel-Schneider & Siméon, 2002). 

The lower levels define the common syntax. Uniform resource identifiers (URIs) identify 

resources in the web, while Unicode is a standard for symbols exchange. The Extensible Markup 

Language (XML) is for transfer and store data, and XML Schema represent the grammars for valid 

XML documents. The upper levels introduce formal representations of High-level (RDF and 

OWL). The following point highlight their descriptions. 

5.2. What is RDF, RDFs, OWL and SPARQL? 

• RDF: The Resource Description Framework (RDF) is a model for describing resources in 

the World Wide Web with a triplet (subject, predicate, object), so that the subject related 

to an object via a predicate. 

 

 

 

 

 

• RDFs: RDF Schema8 is a semantic extension of RDF, which describe the basic concepts 

and abstract syntax of RDF (classes and properties). The RDF Schema class and property 

is similar to the type systems of object-oriented programming languages such as Java. 

                                                           
7 See http://www.w3.org/DesignIssues/Semantic.html. 
8 See https://www.w3.org/TR/rdf-schema/ 
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Figure II- 3 The layers of the Semantic Web 

Figure II- 4 Example of RDF 
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• OWL:  Web Ontology Language (OWL)9 is a Semantic Web language aims to represent 

rich and complex knowledge about things, groups of things, and relations between things. 

It is more expressive than RDF since it intended to formulate, exchange and reason with 

knowledge about a domain of interest. Some fundamental notions should first be explained 

to understand how knowledge is represented in OWL. These basic notions are in the 

following points: 

• Axioms: the basic statements that an OWL ontology expresses. 

• Entities: elements used to refer to real-world objects. 

• Expressions: combinations of entities to form complex descriptions from basic 

ones 

• SPARQL: (simple protocol and RDF query language) is a query language for accessing 

and manipulating data stored in RDF structures. There are some similarities with SQL 

because it shares several keywords such as SELECT, WHERE, etc. A simple example of 

a SPARQL query: 

 

 

 

 

      In the context of the Semantic Web, ontologies play a particularly fundamental role. it helps 

computers to process the web content on a semantic level. 

5.3. Ontologies 

      Ontologies are computational artefacts has appeared in computer science, particularly in 

artificial intelligence. In its original meaning in philosophy, the term "ontology" refers to the study 

of being or existence and the organization of reality (Guarino, 1995) on this paper. Guarino and 

Giaretta (Guarino, 1995) proposed to consider the ontology as: 

“a logical theory that gives an explicit and partial account of a conceptualization.” 

The meaning of conceptualization in this definition below (R.Gruber, 1993):  

“A conceptualization is an abstract, simplified view of the world that we wish to represent for 

some purpose.” 

So far, we have known the meaning of ontology in philosophy. the above definitions can be 

summarized in the following figure: 

                                                           
9 See https://www.w3.org/TR/owl-primer/ 

SELECT DISTINCT? film_URI WHERE { 

? film_URI rdf: type <http://dbpedia.org/ontology/Film>. 

} LIMIT 10 

 

 Reality 
 

Conceptualization Ontology 

Figure II- 5 From Reality to Ontology. 
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The notion ontology, has been defined from many viewpoints. In 1998, Studer et al (Studer, 

Benjamins, & Fensel, 1998) introduced a global definition that captures several features of an 

ontology: 

“An ontology is a formal, explicit specification of a shared conceptualization.” 

• Ontologies are formal because they are designed to be processed by the computers. 

• Ontologies are explicit, their concepts and relations are explicitly defined. 

• Ontologies relate to a specific domain of interest. 

• Ontologies are shared (or shareable) between users who have already agreed on ontological 

commitments. 

• Ontologies are conceptualizations, they describe the real world in abstract models 

composed of concepts. 

5.3.1. Ontology Components 

            Technically, the main components of an ontology break down into two essential design 

(Bullinger-Hoffmann, 2008):  First constructs represent classes (subclasses), attributes and 

relations between objects. Second, rules and axioms to describe general facts and conditions. 

According to (Bullinger-Hoffmann, 2008) we illustrate these elements in the subsequent points. 

• Classes: (concepts) are an abstract definition of objects which are similar to identical 

in their structure and behavior. 

• Objects: are a concrete individual of a class. 

• Attributes: are the properties of objects that constitute the object’s structure. 

• Relations: represent an association or interaction between two or more classes and 

consequently associations between the instances of these classes. 

• Axioms and Inference Rules: axioms are used to describe the ontological assertions 

that will be considered true. Inference rules allow to deduce new information that is not 

explicitly stored. 

5.3.2. Types of ontologies 

            Influenced by the publication of (Guarino, 1997), ontologies can be divided into four types, 

summarized in the Figure II-6. 

 

 

 

 

 

Top-level ontology 

Domain ontology Task ontology 

Application ontology 

Figure II- 6 Types of Ontologies 
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• Top-level ontologies: aim to describe very abstract and general concepts, such as space, 

time, matter, objects, events, actions, etc., that must be consensual for a large 

community of users. 

• Domain ontologies: provide knowledge within a specific domain, and a commonly 

agreed understanding of a domain. 

• Task ontologies: visualizes the systematized vocabulary and types of knowledge 

required for the task. 

• Application ontologies: tailored for a specific application, its concepts are related to a 

particular domain and task, it can not be reused. 

6. Knowledge-based recommender systems   

      In general, traditional recommendation methods rely on previous users’ interactions such as 

ratings. The more users interact with the recommender engine, the more accurate the 

recommendations will be. For example, in the content-based approach, the user will be 

recommended items similar to the ones she preferred in the past, while for the collaborative 

filtering the user will be recommended items that people with similar tastes and preferences liked 

in the past (Adomavicius & Tuzhilin, 2005b). Thus, in some cases, the recommendation process 

often suffers from a lack of product evaluation due to the greater complexity of the product domain. 

for this situation, it is better to give the user access to control the recommendation process through 

direct requirement specification. In other cases, the ratings may be time-sensitive. Since they 

evolve with changing product availability and corresponding user requirements. 

Knowledge-based recommender systems does not use users’ evaluations, but will instead rely on 

similarities between customer requirements and item descriptions (case-based) or through the use 

of constraints specifying user requirements (constraint-based). What makes this type of system 

special as it allows users to explicitly specify what they want. 

 

Approach Conceptual Goal Input 

Collaborative Give me recommendations based on a 

collaborative approach that leverages the ratings 

and actions of my peers/myself. 

User ratings + 

Community ratings 

Content-based Give me recommendations based on the content 

(attributes) I have favored in my past ratings and 

actions. 

User ratings +  

Item attributes 

Knowledge-

based 

Give me recommendations based on my explicit 

specification of the kind of content (attributes) I 

want. 

User specification +  

Item attributes + 

Domain knowledge 

Table II- 2 The conceptual goals of various recommender systems (Aggarwal, 2016). 
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There are different interaction forms between user and the knowledge-based recommender, which 

can be used either in isolation, or in combination, (Aggarwal, 2016) defined them as follows: 

• Conversational systems: In this case, the user preferences are determined in the context of 

a feedback loop. The main reason for this is that the item domain is complex, and the user 

preferences can be determined only in the context of an iterative conversational system. 

• Search-based systems: In search-based systems, user preferences are elicited by using a 

preset sequence of questions such as the following: “Do you prefer a house in a suburban 

area or within the city?” 

• Navigation-based recommendation: In navigation-based recommendation, the user 

specifies a number of change requests to the item being currently recommended. Through 

an iterative set of change requests, it is possible to arrive at a desirable item. An example 

of a change request specified by the user, when a specific house is being recommended is 

as follows: “I would like a similar house about 5 miles west of the currently recommended 

house.” 

6.1. Case-based recommendation 

      In case-based recommendation, specific cases are explicitly determined by the user as targets. 

Similarity metrics are defined on the item attributes to retrieve examples similar to these targets, 

which are iteratively modified through the process of critiquing. Critiques can be simple, 

compound, or dynamic  (Aggarwal, 2016). 

6.2. Constraint-based recommendation 

      Constraint-based recommendation enable users to set hard requirements or constraints on the 

item attributes, these constraints and item attributes are matched with domain-specific rules to 

provide recommendations. In addition, users can add or relax constraints depending on the size of 

the output  (Aggarwal, 2016). 

7. Conclusion 

      In this chapter, we have presented the main elements which enter into the construction of 

knowledge-based recommender systems (KBRS) such as knowledge, ontologies and briefly the 

both kinds of KBRS.  

The next chapter will detail one of them, namely, the constraint-based recommender systems, and 

describe our recommendation approach in the context of knowledge-based recommender systems.   
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1. Introduction 

      The literature witnessed a rarity of Knowledge-based recommender systems (KBRS) which 

still difficult to build. This chapter aims to propose a software architecture for this kind of 

recommendation systems, in which the main components are detailed.  Our KBRS uses 

constraint-based approach working on DATAtourisme ontology. Also, principal algorithms for 

explanation and relaxation are presented in this chapter. 

2. The Ontological Representation of e-Tourism Domain  

      Today, tourism has become one of the main income sources for a country, that's why it is 

the most important and growing sector in the world. 

Generally, when a tourist wants to plan a trip, she/he will need to use internet as a rich source 

of information to search and select Point of Interests (POIs). This is the core problem in the 

sphere of tourism: overwhelming number of different POIs. Therefore, we need to incorporate 

recommender systems in E-tourism platforms to help find the most interesting items for him, 

based on his preferences or requirements. For example, the income level of the tourist, because 

he tends to lose money by making the wrong choices. 

Currently, there are many E-tourism applications for instance TripAdvisor, Kayak, Touropia, 

and so on. In the wake of the rapid technological development of mobile devices such as 

smartphones, tourism has reached a new higher level, according to the use of the functional 

content of these modern devices. 

Among the mobile features: webcam, GPS, Dynamic maps, and others which make the tourism 

applications more and more intelligent by providing recommendations based on the user 

location and/or time-sensitive recommendations as examples. Moreover, they may provide 

additional information about the place where the user is located and the objects in view 

(Augmented Reality), through the use of a webcam, GPS interface, machine vision algorithms 

and information about current locations.  

In this context, the large diversity of tourism vocabulary has led to design the 

"DATAtourisme"10 ontology that has been chosen in order to develop our Tourism knowledge-

based recommender system. 

2.1. DATAtourisme Ontology 

      Nowadays, Ontologies have a major role in knowledge representation and modeling. By 

using ontologies, we can benefit from several advantages, namely (McGuinness): 

• To share common understanding of the structure of information among people or 

software agents. 

• To enable reuse of domain knowledge, and to make domain assumptions explicit. 

• To separate domain knowledge from the operational knowledge 

                                                           
10 See http://www.datatourisme.fr/ 

http://www.datatourisme.fr/
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      DATAtourisme11 is a national system supported by the DGE (the Directorate-General for 

Enterprises) with the Tourism and Territories network in France, and the winner of the Future 

Investment Program (PIA) in 2015.  

It aims to gather within a national platform the tourist information produced by the Tourist 

Offices, Departmental Agencies and Regional Tourism Committees, in order to disseminate 

them in open-data and so facilitate the creation of innovative tourist services by start-ups, 

digital agencies, media and other public or private actors. 

In January 2017, the DATAtourisme project reached a new milestone with the publication of 

version 1.0 of its ontology. Then, they released version 2.0 on January 15, 2019. 

 

2.1.1. Basic Concepts 

            The central concept of ontology is the concept: PointOfInterest. It is defined as any 

tourist element that deserves to be described and valued. A POI (Point of Interest) is a tourist 

item that is managed by an Agent and that can be consumed via products and services. This is 

the minimum class to instantiate for a product to be managed in the DATAtourisme information 

system.  

As POI examples in this ontology, we find: Restaurant, Hotel, Practice, Heritage Object, and 

Event. 

A POI is broken down into 4 different subtypes ("Ontologie DATAtourisme 

v2.0_Documentation," 2019), as shown in the Figure III- 1. 

 

 

 

                                                           
11 See: http://www.datatourisme.fr/ 

Figure III- 1 Basic Schema of DATAtourisme Ontology 

http://www.datatourisme.fr/
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• Product 

: Product: a tourist object that can be consumed (e.g. a hotel room, a practice activity, 

a guided tour, ...). 

• Touristic itinerary 

: Tour: an itinerary is a POI which proposes a route composed of stages forming a path. 

• Entertainment and event 
: EntertainentAndEvent: events, festivals, exhibition, or any other event having a 

beginning and an end. 

• Place of interest 
: PlaceOfInterest: a place with a tourist interest (for example, a natural site, a cultural 

site, a village, a restaurant ...). 

 

2.1.2. Main Properties and Relationships 

            In general, POI aggregates several information ("Ontologie DATAtourisme 

v2.0_Documentation," 2019) (such as: location, features, themes, etc.). Figure III- 2 displays 

the main properties and relationships.  

Figure III- 2 General schema of DATAtourisme Ontology 
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The Table III- 1 describes main properties and relationships of DATAtourisme ontology 

depicted in previous figure. 

 

Information 

Semantic 

relationship Description 

The localization [:isLocatedAt] Where is the POI located and 

what schedules are applied. 

Contacts [:hasContact] Who to contact for what needs. 

The owner [:isOwnedBy] A POI can belong to an Agent (a 

person or an organization) via 

this relationship. 

The consumption [:offers] Price and period to consume the 

product. Note that consumption 

is only possible through an 

instance of :Offer. Depending on 

their type, not all POIs can 

directly reference tariffs (POIs 

not merchants). 

The audience [:hasAudience] The target audience for the POI. 

Multimedia [:hasRepresentation] Documents that are 

representations of the POI. 

The equipment’s [:hasFeature] What equipment is available and 

according to which cardinalities. 

Classifications and labels [:hasReview] Which rankings and labels 

evaluate the product and with 

how much score. 

The themes [:hasTheme] Which themes are associated 

with the POI. 

Suggests [:suggests] Allows you to link a POI with 

another complementary POI that 

may appeal to the consumer. Ex: 

A ski resort with a ski hire. 

Table III- 1 Main properties and relationships of the "DATAtourisme" ontology 
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2.1.3. Interconnection with Other Ontologies 

            The ontology DATAtourisme is modeled in such a way that it is interconnected with 

standard or authoritative ontologies in their field of competence, such as DublinCore, SKOS, 

EBUCore, etc. So that they do not reinvent twice a concept, a property or a relationship that 

already exists ("Ontologie DATAtourisme v2.0_Documentation," 2019). 

3. Constraint-Based Recommendation 

      As cited in Chapter II, the constraint-based approach can be used to build knowledge-based 

recommender systems. It attempts to make recommendations for domains where items are 

more complex and many customers do not know all the technical features in detail. 

This approach captures the requirements of the current user in order to derive new solutions. 

Moreover, it proposes repairs in situations where no solution could be found, and supports 

explanations as why a system has recommended a specific solution. 

Knowledge-base of a constraint-based recommender system is built on three types of 

knowledge; knowledge about the users, knowledge about the items and knowledge about the 

matching between the items and user’s need. 

Deeply, the major ingredients of a constraint satisfaction problem can be defined through two 

sets of variables (VC, VPROD), a set of finite domains for these variables (D) and three 

different sets of constraints (CCOMP, CF, CPROD). These variables and constraints are 

discussed in depth for instance in (Felfernig & Burke, 2008), (Felfernig, Friedrich, Jannach, & 

Zanker, 2015) and (Jannach, Zanker, & Fuchs, 2009). In conformity with these three references 

we give the following definitions:  

• Customer Properties: VC describes all possible requirements which can be specified by 

customers. 

• Product Properties: VPROD is a set of variables describing item features or properties. 

• Products: CPROD represents one constraint in disjunctive normal form that defines 

elementary restrictions on the possible instantiations of variables in VPROD. 

Figure III- 3 Interconnection between DATAtourisme and standard ontologies 
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• Filter Conditions: CF define the relationship between potential customer requirements 

and the given product assortment VPROD. 

• Compatibility Constraints: CCOMP are (in)compatibility constraints restricting the set of 

possible requirements. 

3.1. Recommendation Task 

      Felfernig and Burke declared that the task of deriving recommendations for a customer is 

denoted as recommendation task. Given a set of customer requirements, we can calculate a 

recommendation (result) (Felfernig & Burke, 2008). 

The recommendation task can be defined as a constraint satisfaction problem (VC, VPROD, CR 

∪ CF ∪ CCOMP∪ CPROD) where CR ∈ VC is a set of customer requirements (Felfernig et al., 

2015). 

A solution to a given recommendation task (VC, VPROD, CR ∪ CF ∪ CCOMP∪ CPROD) is a 

complete assignment to the variables of (VC, VPROD) such that this assignment is matched with 

the constraints in (CR ∪ CF ∪ CCOMP ∪ CPROD) (Felfernig & Burke, 2008). 

3.2. Preferred Conflicts and Relaxations 

      When the customer requirements (CR) include a conflict, or no items might match the 

customer requirements, we have to support the customer in getting out of these situations. 

Constraint-based approach is interested in repair actions which indicate interesting and minimal 

changes to the requirements (CR) to restore consistency. Thence, the calculation of a 

recommendation becomes possible (Felfernig et al., 2015). 

We define now preferred relaxation and preferred conflict as explained by (Junker, 2004): 

• Definition 1: a subset R of C is a relaxation of a problem P ∶= (𝛽, C) iff 𝛽 ∪ R has a 

solution. 

Where 𝛽 is a background containing the constraints that cannot be relaxed such as (CF, CCOMP, 

CPROD); C is a set of customer constraints (CR). Note that only customer requirements or 

constraints can be relaxed. 

      A relaxation exists iff 𝛽 is consistent. Over-constrained problems can have an exponential 

number of relaxations. A customer typically prefers to keep the important constraints and to 

relax less important ones. That means that the customer is at least able to compare the 

importance of some constraints. Therefore, Junker (Junker, 2004) assumes a strict partial order 

between the constraints of C, denoted by ≺. We write c1 ≺ c2 iff (the selection of) constraint c1 

is preferred to (the selection of) c2. 

• Definition 2: A subset ∁ of C is a conflict of a problem P∶=( 𝛽, C) iff 𝛽 ∪ C has no 

solution. 

S.t. CR ∪ CF ∪ CCOMP  ∪ CPROD ∪ VC ∪ VPROD is inconsistent, iff ∃ a conflict ∁ : ∁ = {c1, c2, …, 

cn} ⊆ CR. 
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There are two kinds of conflicts in a given constraint system:  

• Conflict 1 involves only very important constraints. 

• Conflict 2 involves less important constraints. 

The user will have to resolve the first conflict, and thus, he/she will have to relax at least one 

important constraint. Concerning the second conflict, a less important constraint can be relaxed 

and the user will consider such a modification as very easy to do.  

The definition of preferred relaxations and preferred conflicts can be made constructive, thus 

providing the basis for the explanation and relaxation algorithms. Consider a totally ordered 

problem P ∶= ( 𝛽, C, ≺) s.t. 𝛽 is consistent, but not 𝛽 ∪ C. We enumerate the elements of C in 

increasing order c1, . . ., cn. We construct the preferred relaxation of P by R0 ∶= ∅ and 

Ri−1 ∪ {ci}   if   𝛽 ∪ Ri−1 ∪ {ci} has a solution                           

Ri−1             otherwise 

The preferred conflict of P is constructed in the reverse order. Let ∁n : = C and 

∁i+1 − {ci}    if   𝛽 ∪ ∁i+1 − {ci} has no solution     

∁i+1                 otherwise  

Adding a constraint to a relaxation thus corresponds to the retraction of a constraint from a 

conflict. As a consequence of this duality, algorithms for computing relaxations can be 

reformulated for computing conflicts and vice versa. 

3.3. Computing Preferred Explanations 

      Explaining recommendations is an important aspect of any RS, it focuses on providing 

clarifications that justify the recommendations the user has received. Its secret is to maintain a 

higher degree of user confidence in the results generated by the system. 

There are many types of explanations (Bobadilla, Ortega, Hernando, & Gutiérrez, 2013), such 

as human style explanations. For example, we recommend movie i because it was liked by the 

users who rated movies j, k, m, ... very positively (j, k, m, ... are movies rated well by the active 

user). Item style explanations. For example, we recommend the vacation destination i because 

you liked the vacation destinations g, c, r, ... (g, c, r, ... are vacation destinations similar to i and 

rated well by the active user). 

In constraint-based approach, we use the sets of constraints CCOMP and CPROD to provide 

explanations of inconsistent requirements, and to justify the recommended repairs. In 

conformity with (Felfernig & Burke, 2008), CCOMP helps to ensure consistency of customer 

requirements and to decrease costs related to correction processes. On the other hand, CPROD 

used to enumerate the offered set of products. Thus, the customers will learn about specific 

properties of the item domain and insert consistent inputs (CR). 
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(Junker, 2004) proposed a basic algorithm which chooses (arbitrarily) one order ≺ between the 

constraints of C, thus fixing the resulting conflict or relaxation. It then inspects one constraint 

after the other and determines whether it belongs to the preferred conflict or relaxation of ≺. It 

thus applies a consistency checker isConsistent(C) to a sequence of subproblems. 

This basic algorithm is predicated on the following main propositions (Junker, 2004).  

• Proposition 1: Let P∶=(𝛽, C, ≺). If 𝛽 is inconsistent then the empty set is the only 

preferred conflict of P and P has no relaxation. If 𝛽 ∪ C is consistent then C is the only 

preferred relaxation of P and P has no conflict. 

If C is not empty, then the algorithm follows the constructive definition of a preferred 

relaxation. In each step, it chooses a ≺- minimal element α and removes it from C. If 𝛽 

∪ R ∪{α} is consistent, α is added to R. A preferred relaxation can be computed by 

iterating these steps. 

     When the first inconsistency is obtained, we have detected the best element αk+1 which 

should be taken out from the preferred relaxation. According to (Junker, 2004), αk+1 is the worst 

element of the preferred conflict. Hence, the preferred conflict is a subset of Rk ∪{αk+1} and 

Cn−k is equal to {αk+1}. 

• Proposition 2: Suppose C1 and C2 are disjoint and that no constraint of C2 is preferred 

to a constraint of C1: 

1. If ∆1 is a preferred relaxation of (𝛽, C1, ≺) and ∆2 is a preferred relaxation of (𝛽 ∪ 

∆1, C2, ≺), then ∆1 ∪ ∆2 is a preferred relaxation of (𝛽, C1 ∪ C2, ≺). 

2. If ∆2 is a preferred conflict of (𝛽 ∪ C1, C2, ≺) and ∆1 is a preferred conflict of (𝛽 ∪ 

∆2, C1, ≺), then ∆1 ∪ ∆2 is a preferred conflict of (𝛽, C1 ∪ C2, ≺). 

Consequently, we divide an inconsistent problem (C) until we obtain subproblems of the form 

P’∶= (𝛽, {α}, ≺), where all except one constraint are in the background. We then know that 𝛽 

∪ {α} is inconsistent. 

Algorithm III- 1 Algorithm Divide-and-Conquer for Explanations 

(Junker, 2004) 
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Algorithm QUICKXPLAIN (cf. Algorithm II- 1) exploits propositions 1 and 2. It is 

parameterized by a split-function that selects the subproblems for a chosen order ≺ (see line 

6). 

3.3.1. Algorithm QUICKXPLAIN 

            Initially, algorithm QUICKXPLAIN (Divide-and-Conquer12 for Explanations) checks 

whether the background 𝛽 is inconsistent. If C is empty, then it returns an empty set as the only 

preferred conflict. A sub-procedure QUICKXPLAIN’ is only called if C is a non-empty 

conflict and if a part of the background, namely 𝛽 − ∆ has a solution. 

 QUICKXPLAIN spends most of its time in the consistency checks, which will search for a 

solution to prove the consistency of a set X of constraints. We can diminish the number of 

consistency checks if we remove whole blocks of constraints. We thus divide C into subsets 

C1 and C2. If the remaining problem C1 is inconsistent, then we can ignore all constraints in C2. 

4. The Proposed Knowledge-Based Recommender System 

      In the previous sections, we have introduced the e-Tourism domain, the modern 

functionalities of mobile devices and how they elevated this domain, thereafter we have given 

the full descriptions of both DATAtourisme ontology which is the representation of tourism 

knowledge, and the constraint-based approach as a type of knowledge-based recommendation.  

Now, we coordinate these sections to bring the working application of the proposed 

knowledge-based recommender system for e-Tourism, by explaining how we instantiate each 

ingredient of constraint-based approach, the designed modules, and how they communicate 

with each other. 

4.1. Specification of Our Constraint Satisfaction Problem 

      In this section, we specify our constraint satisfaction problem in accordance with 

DATAtourisme ontology, and the representation of the chosen approach (cf. 3. Constraint-

Based Recommendation). 

Formally, a constraint satisfaction problem is defined as a triple V, D, C, where: 

✓ V is a set of variables, includes VC, VPROD. 

✓ D is a set of the respective domains of values, ‘DATAtourisme ontology’. 

✓ C is a set of constraints, includes CPROD, CF, CCOMP. 

 

• Customer Properties VC  

      VC describes possible requirements of customers; requirements are instantiations of 

customer properties. In our system, we have defined an instance of this set as highlighted in 

Table III- 2. 

                                                           
12 Divide-and-Conquer: is a well-known Algorithm works by recursively breaking down a problem into two or more sub-

problems of the same or related type. 
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Properties Description 

1. Type Ex : Hotel, Restaurant, Archeological site, festival, Tour, 

Transport, etc. 

2. Theme Ex: Fitness Trail, Art Gallery, Cycling Tour De France, Sea 

Food, French Gastronomy Day, etc. 

3. Means of Payment Ex: Check, Cash, Blue Card, Eurocard Mastercard, etc. 

4. Equipment Ex: Game room, Kids Club, Wifi, Sauna, Park, Garden, Coffee 

Maker, etc. 

5. Architectural Style Ex : Antique, Roman, Classical, Modern, Xith Century, Xivth 

Century, etc. 

6. Types of Kitchen Ex : Traditional Cuisine, Halal Cuisine, European Cuisine, 

Asian Cuisine, Crepery, etc. 

7. Takeaway A restaurant or shop selling cooked food to be eaten elsewhere.  

8. Geographic Environment Ex: By the Sea, Close to Shops, In the Forest, etc. 

9. Classification Ex: Luxury, medium, economical. 

10. Tour Type Ex: Loop Itinerary, Open Jaw Itinerary, Round Trip. 

11. Hike Path Distance To express distance of Hiking. Ex: Small, Medium or Long 

Path Distance. 

12. Global Path duration Duration of tour (minutes). 

13. Max Price A number value to express maximal price of an item. 

14. Location Address and the position of an item. 

15. Reduce Mobility Access Accessible to people with reduced mobility, ex: handicap. 

16. Available Language Ex: English, French, German, Arabic, etc. 

Table III- 2 Instantiations of Customer Properties 
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• Product Properties VPROD  

      VPROD respects main properties of items specified by the DATAtourisme ontology, such as 

title, description, futures, location, review value, contacts, start date and end date for events 

and festivals, etc. 

• Products CPROD 

      CPROD represents the possible instantiations of variables in VPROD.  DATAtourisme team 

provide thesauri13 containing all the possible instantiations of items properties in the ontology 

DATAtourisme, thus we have decided to use them as a specification of our CPROD. 

• Filter Conditions CF 

      CF defines the relationship between customer requirements CR and products CPROD. The 

table below shows how we define this set. 

Identifier Constraint 

1.  The price of an item has to be lower (equal) then (to) the maxprice imposed 

by the customer. 

2.  Small Path Distance Is limited between 5 and 10. 

Medium Path Distance Is limited between 11 and 25. 

Long Path Distance Is bigger than 25. 

3.  luxury Classification express 5 or 4 Review Value. 

Medium Classification express 3 or 2 Review Value. 

Economical Classification express 2 or 1 Review Value. 

Table III- 3 Instantiations of Filter Conditions 

• Compatibility Constraints CCOMP 

      (In) Compatibility constraints can be used to model difficult constraints and to enhance 

solving efficiency. CCOMP can be modeled as shown in Table III- 4.  

 

 

 

                                                           
13 Thesaurus : is a form of controlled vocabulary that seeks to dictate semantic manifestations of metadata in the indexing 

of content objects. See https://framagit.org/datatourisme/ontology/tree/master/thesaurus.  

https://en.wikipedia.org/wiki/Controlled_vocabulary
https://en.wikipedia.org/wiki/Metadata
https://framagit.org/datatourisme/ontology/tree/master/thesaurus
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Properties Compatible-with 

1. Accommodation Equipment, Geographic Environment, Means of Payment, 

Reduce Mobility Access, Classification, Kitchen Types. 

2. Food establishment Theme, Equipment, Geographic Environment, Means of 

Payment, Reduce Mobility Access, Classification, Kitchen 

Types, Takeaway. 

3. Cultural site Theme, Equipment, Geographic Environment, Means of 

Payment, Reduce Mobility Access, Classification, Architectural 

Style. 

4. Natural heritage Theme, Equipment, Geographic Environment, Means of 

Payment, Reduce Mobility Access. 

5. Festival and event Theme, Equipment, Geographic Environment, Means of 

Payment, Reduce Mobility Access, Classification. 

6. Tour Geographic Environment, Means of Payment, Reduce Mobility 

Access, Tour Type, Hike Path Distance, Global Path duration.  

7. Small Path Distance Path duration between 2 and 4 minutes. 

8. Medium Path Distance Path duration between 5 and 7 minutes. 

9. Long Path Distance Path duration between 8 and 45 minutes. 

10. Transport Means of Payment, Reduce Mobility Access. 

Table III- 4 Set of Compatibilities 

 

4.2. Architectural Design of the Proposed Recommender System 

            The system design satisfies the requirements of the proposed constraint-based 

recommender system. It includes controller components such as compatibility checker and 

results checker to ensure consistency of customer requirements, as well as it proposes repairs 

by using QUICKXPLAIN algorithm presented in the last subsection.  

The system design will also capture the major functional building modules needed to 

understand the functioning process of our Tourism recommender system. Our knowledge-base 

which includes in particular the DATAtourisme ontology as knowledge about items and the 

several sets of constraints and variables as discussed previously. 
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The architectural design of the proposed system is illustrated in Figure III- 4. We describe its 

modules and its functioning process in the next subsections.    
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Figure III- 4 Architecture of the Proposed Knowledge-based Recommender System 
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4.2.1. Requirements Specification 

            At this initial stage, customers will select their requirements (CR) such as Types, 

Themes, Means of Payment, etc. As well as they may add or modify them through an iterative 

set of change requests, these requirements will be saved in the Cloud Firestore Database 

(Firebase) which uses real-time processing to handle requests changes. We explain this concept 

at the end of this chapter.  

4.2.2. Checking Compatibility 

            After the specification of customer requirements, the test of compatibility will start to 

check whether the specific requirements are compatible or not, by using the same concept of 

QUICKXPLAIN algorithm. 

Compatibility checker is a procedure parametrized with three variables are: M which depicts 

the Type or category (Ex: Hotel, Restaurant, Festival, etc.) selected by the current customer, 

CR which represent the customer requirements list, ≺ which is the order between constraints 

in CR. we have specified that the first added constraint (by the current user) is more important 

then the second added, and this second constraint is more important then the third one, and so 

on. 

M is considered as a very important constraint for which we don’t have to propose a repair. 

Therefore, we select set of properties from CCOMP that are compatible with M, in order to 

reduce the number of compatibility checks. Then we initialize B (background knowledge) 

with this set. These actions sequence 

 

 
 

Algorithm III- 2 Compatibility Checker Algorithm. 
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• Explanation (Conflict Case) 

      Table III- 5 Example of  Compatibility Checker, where M: “Horse Tour”, CR= {Tour 

Type: “Loop itinerary”, Means of Payment: “Cash”, Hike Path Distance: “Medium”, Global 

Path duration: “10”}. And the order ≺: {Tour Type, Means of Payment, Global Path duration, 

Hike Path Distance}. 

We consider that r1: Tour Type, r2: “Means of Payment”, r3: “Global Path duration”, r4: “Hike 

Path Distance”. 

 

The constraint that causes the conflict case is “Hike Path Distance”; thus, the system gives the 

following explanation to the customer, and allows the customer to choose the right repair. 

Constraint Compatible-with 

Long Path Distance Path duration between 8 and 45 minutes. 

Medium Path Distance Path duration between 5 and 7 minutes. 

Table III- 6 Explanation (Conflict case). 

4.2.3. Recommendation Engine 

            When customer requirements become consistent, the recommendation engine will 

execute the recommendation task (cf. 3.1. Recommendation Task). Finding items that match 

with the current requirements. 

In addition, our engine will sort the list of recommendation according to the current user's 

location. The nearest item will be at the top of recommendation list. 

 

 

Step B ∆ C C1 C2 Return 

1 Set of property 

compatibility 

with Tour (cf. 

Table III- 4). 

B {r1, r2, r3, 

r4} 

{r1, r2} {r3, r4} {r4} 

2 B ∪ {r1, r2} {r1, r2} {r3, r4} {r3} {r4} {r4} ∪ ∅ 

3 B ∪ {r3} {r3} {r4} / / {r4} 

4 B ∪ {r4} {r4} {r3} / / ∅ 

Table III- 5 Example of Compatibility Checker 
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4.2.4. Checking Results 

            Result Checker is a procedure Not much different than compatibility checker. Just that 

the Result Checker will look for the constraint that caused the empty result case, and 

accordingly we propose a relaxation and give a partial recommendation which respects only 

the consistent requirements.  

4.2.5. Cloud Firestore data model 

            Cloud14 Firestore is Firebase’s newest flagship database for mobile and web apps. It is 

a successor to the Realtime Database with a new and more intuitive data model. Cloud Firestore 

is richer, faster, and more scalable than the Realtime Database ("Realtime Database vs. Cloud 

Firestore," 2018; Sharma, 2018).  

Firestore is NoSQL data model (supports any data structure), we store data in documents that 

contain fields mapping to values. These documents are stored in collections, which are 

containers for our documents. Documents support all possible data types, from simple strings 

and numbers, to complex, nested objects. 

Additionally, querying in Cloud Firestore is expressive, efficient, and flexible. we can sort, 

filter our queries to paginate our results. Moreover, adding real-time listeners to our app notify 

us with a data snapshot whenever the data our client apps are listening to changes, retrieving 

only the new changes. 

Our data model encompasses different collections and documents which are fully illustrated in 

Figure III- 6. 

 

                                                           
14 See https://fr.wikipedia.org/wiki/Cloud_computing 

Algorithm III- 3 Results Checker Algorithm. 
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5. Conclusion 

      This chapter has introduced our knowledge-based recommender system (more precisely, 

constraint-based recommender system) by designing an architecture and its functioning 

process. To achieve the recommendation task, this recommender system uses several 

algorithms for explanation, relaxation and recommendation. The realization of this system will 

be established in the following chapter.   

 

 

 

 

 

 

 

 

 

Collections 
 

Customer 

Attributs 
- Name (String) 

- Sexe (Int) 

- Role (String) 

Preference 

Attributs 
- Accommodation (Array) 

- Cultural site (Array) 

- Festival and event (Array) 

- Food establishment (Array) 

- Natural heritage (Array) 

- Tour (Array) 

- Transport (Array) 

Ratings 

Attributs 
- Id user (String) 

- Id item (String) 

- Review value (Int) 

compatibility 

Attributs 
- Comatible-with (Array) 

Filter 

Conditions 

Attributs 
- Constraint (Array) 

 

Favorite 

Attributs 
- Id user (String) 

- Id item (String) 

Figure III- 5 Cloud Firestore Data Model 
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                                                                                     « talk is cheap. show me the code. »                   

Linus Torvalds
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1. Introduction 

      This chapter aims to implement the proposed architecture of our Constraint-Based 

Recommender System (cf. Chapter III) for showing the obtained results and testing the 

proposed recommendations in several execution scenarios.  

The application execution will be discussed after presenting the tools and technologies that are 

used in this implementation. Finally, a summary of advantages and limits of our application 

will be listed at the end of this chapter. 

2. Development Environment 

      In order to realize the different functional building components of the proposed 

architectural design of our constraint-based recommender system (cf. Chapter III), we have 

used a set of new tools and technologies, namely: 

 

2.1. Flutter 

      Flutter15 is Google’s open-source user interface (UI) toolkit for building high-performance, 

natively-compiled applications for mobile, web, desktop, and even embedded devices from a 

single codebase.  

• 2015, The first version of Flutter was unveiled at the 2015 Dart developer summit. It 

was known as codename "Sky" and ran on the Android operating system("Google's 

Dart language on Android aims for Java-free, 120 FPS apps," 2015). 

• December 4th, 2018, Flutter 1.0 was released at the Flutter Live event, denoting the 

first "stable" version of the Framework . 

•  February 26th, 2019, publication of Flutter 1.2 stable version,. 

• May 7th, 2019, At Google I/O 2019 developer conference, Google launched version 1.5 

of Flutter, its open source mobile UI framework that helps developers build native 

interfaces for Android and iOS. But that’s no longer true: The mobile framework is now 

a multi-platform UI framework, supporting the web, desktop, mobile, and even 

embedded devices. Flutter’s mission has expanded to building “the best framework for 

developing beautiful experiences for any screen.”("Flutter SDK releases,"). 

2.1.1. The Engine Architecture 

            The main components of Flutter include: Dart platform, Flutter engine, Foundation 

library, and Design-specific widgets, ("Flutter SDK releases,")summarizes the description of 

each components as follows. 

 

 

                                                           
15 See: https://flutter.dev 

Figure IV- 1 Flutter Logo 

https://en.wikipedia.org/wiki/Open-source_software
https://flutter.dev/docs
https://flutter.dev/web
https://flutter.dev/desktop
https://en.wikipedia.org/wiki/Dart_(programming_language)
https://en.wikipedia.org/wiki/Android_(operating_system)
https://venturebeat.com/tag/google-i-o-2019/
https://flutter.io/
https://en.wikipedia.org/wiki/Dart_(programming_language)


CHAPTER IV | Realization and Testing 

45 | P a g e  
 

• Dart platform: Flutter apps are written in the Dart16 language and make use of many 

of the language's more advanced features. A notable feature of the Dart platform is 

its support for "hot reload" where modifications to source files can be injected into 

a running application.  

• Flutter engine: Flutter's engine, written primarily in C++, provides low-level 

rendering support using Google's Skia graphics library. It is a portable runtime for 

hosting Flutter applications. The Flutter Engine implements Flutter's core libraries, 

including animation and graphics, file and network I/O, accessibility support, 

plugin architecture, and a Dart runtime and compile toolchain.  

• Foundation library: The Foundation library, written in Dart, provides basic classes 

and functions which are used to construct applications using Flutter. 

• Design-specific widgets: The Flutter framework contains two sets of widgets which 

conform to specific design languages. Material Design widgets implement Google's 

design language of the same name, and Cupertino widgets imitate Apple's iOS 

design. 

2.1.2. Benefits of Flutter 

            The major benefits of flutter are: 

• High productivity: Develop a single codebase for cross-platform, this can certainly 

save you time and resources. This means, do more with less code, and with a 

modern, expressive language and a declarative approach. 

• Highly-customized, beautiful user experiences: Benefit from a wealthy set of 

Material Design and Cupertino widgets built using Flutter’s own framework. 

Moreover, Realize custom, beautiful, brand-driven designs. 

2.2. VScode 

      Visual Studio Code is a source-code editor, developed by Microsoft for Windows, Linux 

and macOS, so we can hit the ground running, no matter the platform. It includes support 

for debugging, syntax highlighting, intelligent code completion, embedded Git control 

and GitHub.  

 

 

                                                           
16See https://en.wikipedia.org/wiki/Dart_(programming_language) 

Figure IV- 2 Dart Logo 

Figure IV- 3 Visual Studio Code 

 

https://en.wikipedia.org/wiki/Dart_(programming_language)
https://en.wikipedia.org/wiki/Dart_(programming_language)
https://en.wikipedia.org/wiki/Syntax_highlighting
https://en.wikipedia.org/wiki/Intelligent_code_completion
https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/GitHub
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In the Stack Overflow 2019 Developer Survey, Visual Studio Code was ranked the most 

popular developer environment tool, with 50.7% of 87,317 respondents claiming to use it. It 

supports major programming language such as web programming language (PHP, JavaScript, 

etc.) and mobile programing language (Dart, java, etc.). 

2.3. DATAtourisme API 

      The "DATAtourisme" system is enriched with new tools in order to help users to exploit 

the tourist data made available in Open Data. The Datatourism API17 is a PHP library that 

allows the user to easily query a semantic database containing tourist data from the 

DATAtourisme platform. It relies on a GraphQL query language whose data schema is based 

on the ontology DATAtourisme. 

With regard to implement the API, the user must: 

• Recover DATAtourisme data in semantic format on the diffuser platform. 

• Load semantic data into a semantic database (triplestore) with a SPARQL access point. 

• Use the DATAtourisme API to submit GraphQL queries to the database and retrieve 

the results. 

This API translates our GraphQL queries into a SPARQL query, in the API response of the 

executed query we will find (in addition to the results) the SPARQL query that was used. The 

Figure IV- 5 shows the list of available fields includes this SPARQL query, for more 

information see the documentation18 of DATAtourisme API. 

 

 

                                                           
17 See https://datatourisme.frama.io/api/#/start/getting_started 
18 See https://datatourisme.frama.io/api/#/api/fields 

{ 

  poi { 

      total # <= total number of results 

      results { 

          # ... <= Fields and subfields of a POI 

      } 

      query # <= SPARQL query generated and executed by the API 

   } 

} 

 

Figure IV- 4 DATAtourisme Logo 

Figure IV- 5 List of Available Fields 
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2.4. Semantic Database - Blazegraph 

            Blazegraph is an open-source semantic database management system. It provides a 

SPARQL access point that allows the API to query its contents to respond to GraphQL queries. 

Blazegraph is a product developed by Systap since 2006, formerly known as Bigdata. 

Regarding the launch of the Blazegraph server is done simply by the command “java -jar 

blazegraph.jar”, the Blazegraph server is then launched, its administration interface is 

accessible from the address “http: // localhost: 9999/”. 

2.5. Composer 

      Composer19 is a tool for dependency management in PHP. It allows us to declare the 

libraries our project depends on and it will manage (install/update) them. Composer requires 

PHP 5.3.2+ to run, and it works equally well on Windows, Linux and macOS (multi-platform).  

Composer offers several parameters such as  : 

• install: install all libraries from composer.json. it's the command to use to download 

all php repository dependencies.  

• update: update all libraries from composer.json, according to the allowed versions 

mentioned into it. 

• require: add the library in parameter to the file composer.json, and install it 

• remove: uninstall a library and remove it from composer.json.  

2.6. PHP 7 

      PHP20 (an acronym for: Hypertext Preprocessor) is a scripting language that’s generally 

used in server-side web development. It was created by Rasmus Lerdorf in 1994.  

 

 

                                                           
19 See https://getcomposer.org/ 
20 See https://www.php.net/ 

Figure IV- 6 Blazegraph Logo 

Figure IV- 7 Composer Logo 

http://www.blazegraph.com/
https://en.wikipedia.org/wiki/Rasmus_Lerdorf
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PHP code may be executed with a command line interface (CLI), and it is usually processed 

by a PHP interpreter implemented as a module in a web server or as a Common Gateway 

Interface (CGI) executable. PHP 7 is the latest stable release.  

2.7. Apache 

      Apache HTTP Server21 is free and open-source cross-platform web server software. It was 

launched in 1995 and it has been the most popular web server on the Internet since April 1996. 

The goal of this project is to provide a secure, efficient and extensible server that provides 

HTTP services in sync with the current HTTP standards. 

2.8. Firebase 

      Firebase22 is a Backend-as-a-Service (BaaS) application development platform developed 

by Firebase, Inc. in 2011, then acquired by Google in 2014(PROTALINSKI, 2019). It offers 

hosted backend services such as a real-time database, authentication, cloud storage, machine 

learning, remote configuration, and hosting for your static files.  

      In October 2018, the Firebase platform has 18 products, which are used by 1.5 million 

apps("Flutter (software)," 2019). In the following sub-sections, we provide a brief description 

of some firebase products. 

2.8.1. Firebase Authentication 

            Firebase Authentication is a service that can authenticate users using only client-side 

code. It supports social login providers Facebook, Twitter, GitHub and Google.  

 

 

                                                           
21 See https://httpd.apache.org/ 
22 See https://firebase.google.com/ 

Figure IV- 8 PHP Logo 

Figure IV- 9 Apache Logo 

Figure IV- 10 Firebase Logo 

https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Free_and_open-source
https://en.wikipedia.org/wiki/Cross-platform
https://en.wikipedia.org/wiki/Web_server
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Social_login
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2.8.2. Realtime Database 

            The Firebase Realtime Database is a cloud-hosted database. Data is stored as JSON and 

synchronized in real-time to every connected client. 

2.8.3. Cloud Firestore  

            Cloud Firestore is a cloud-hosted, NoSQL database that your iOS, Android, and web 

apps can access directly via native SDKs. Cloud Firestore is also available in native Node.js, 

Java, Python, and Go SDKs, in addition to REST and RPC APIs. 

2.8.4. Firebase Analytics 

            Google Analytics for Firebase helps you understand how people use your iOS or 

Android app. The SDK automatically captures a number of events and user properties and also 

allows you to define your own custom events to measure the things that uniquely matter to your 

business. 

2.8.5. Firebase Prediction 

           Firebase Predictions applies machine learning to your analytics data to create dynamic 

user segments based on the predicted behavior of users in your app. By default, Predictions 

provides two types of predictions:  

• churn, which helps you identify users likely to stop using your app. 

• spend, which helps you find users who are likely to spend money in your app. You can 

also create your own predictions based on custom conversion Analytics events that you 

collect in your app. 

 

2.9. Leaflet Map  

       Leaflet is the leading open-source JavaScript library for mobile-friendly interactive maps, 

it has all the mapping features most developers ever need. Leaflet is designed with simplicity, 

performance and usability in mind. It works efficiently across all major desktop and mobile 

platforms, can be extended with lots of plugins, it has a readable source code that is a joy to 

contribute to("Technical Overview,"). 

 

3. Execution and Results 

      In this section, we show the execution process of our application by testing the obtained 

results in two different scenarios (without and with conflicts in user’s requirements). 

 

 

 

Figure IV- 11 Leaflet maps Logo 

https://en.wikipedia.org/wiki/Firebase#Firebase_Realtime_Database
https://firebase.google.com/docs/cloud-messaging/
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3.1. Registration / Authentication 

      Application Home Page Figure IV- 12 is the first page of our application (FRANCE 

Advisor); it allows users to visualize the registration and authentication pages (Figure IV- 13 

and Figure IV 14 , respectively). 

3.2. User Profile 

            The user profile Figure IV- 15 allows the users to specify their preferences and needs, 

it contains all possible requirements for a Tourist such as Accommodation, Food establishment, 

Cultural site, etc. 

Figure IV- 14 Application 

Home Page 
Figure IV- 13 Registration 

Page 

Figure IV- 12 Authentication 

Page 

Figure IV- 15 User Profile Page 
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3.2.1. Example of User Preferences / Needs 

            Figure IV- 16 displays a representations sequence to express the different 

preferences/needs. For instance, the user “Djamila”, has as preferences:  Hotel, Fluvial or sea 

tour, Museum, etc. 
 

             

These steps are intended to explicitly define user preferences / needs, and narrow down 

available Tourism services. Figure IV- 17 visualizes selected services by the current user.  

Figure IV- 16 Example of User Profile 
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3.3. Tourism services 

     Each tourism service contains Guidance which show how many items are in the current 

service, how many items are matched with the specific filters, and help the user to select the 

best filters choices. Figure IV- 18 depicts some examples of Tourism services with default 

results. 

 

 

Figure IV- 17 The selected Tourism services List. 

Figure IV- 18 Tourism Services Exemples 
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3.4. Execution Scenarios 

            In order to present the execution capabilities of our application (Constraint-based 

recommender system), we have processed for two use's scenarios. The first scenario concerns 

the execution of the user's request without conflict in its requirements. In contrast, the second 

one deals with the appearance of conflicts into user’s requirements and how these can be 

explained (cf. Chapter III).    

 

3.4.1. Scenario 1 (without conflict) 

            Figure IV- 19 depicts example scenario without conflict case. A list of recommended 

items which respects all user constraint (Equipped with, Geographic environment, means of 

payment, and Mobility access). We usually choose the top 20 items. 

 

 
 
 
 
 
 
 

Figure IV- 19 Scenario 1 (Without conflict) 
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3.4.2. Scenario 2 (with conflict) 

            Figure IV- 20 shows an example of user’s requirements that containing a conflict 

(Theme incompatible with Accommodation). 

• Details on recommended items 

      We give here (Figure IV- 21) an example of hotel which is one of the results finding through 

the previous requirements (or constraints). 

Figure IV- 20 Scenario 2 (With conflict) 

Figure IV- 21 Example Hotel 
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4. Advantages and Limits 

      Our experience has enhanced the major advantages of Knowledge-based recommender 

systems (KBRS) found in the literature (such as, No Cold-start issue). However, we can note 

some limits of the current application (FRANCE Advisor) in order to be tackled in the near 

future. 

4.1. Advantages  

• KBRS (precisely, Constraint-Based Recommender System) do not suffer from either 

the “cold start problem” with a new user (cf. Chapter 1), or “rump-up problem” with a 

new item. 

• They, do not face a user privacy issue that is usually caused by the user information 

collection phase. 

• Explicit dynamic user profile (real-time preferences). 

• In case of a conflict within user’s requirements, the provided explanations may have 

many advantages, mainly, enhancing users trust to the recommender system (reliability) 

by helping them to make coherent constraints. 

• Provide suggestions that allows users to know the offering relevant items, and define 

what they want. 

• Last but not least, our recommendation system is multiplatform application with can be 

executed either on a mobile (android/IOS), web, or desktop platforms  

 

4.2. Limits 

• Our proposed sets of constraints are not sufficient to represent all knowledge about the 

matching between the items and user’s needs. Generally, they are made by domain 

experts. 

•  In its current version, our application does not sort results by the nearest items to the 

current user's location, or by the values of their ratings. 

5.  Conclusion 

      In this chapter, we have presented the realization of our recommendation system in order 

to show its feasibility on the DATAtourisme ontology as a recent knowledge-base. For a 

reproducible implementation, we have mentioned the different tools and technologies used in 

this application. The execution has been displayed according two different scenarios showing 

all possibilities of user’s requirements cases.  

The chapter has been concluded by giving some advantages of our application and its limits 

for eventual research perspectives. 
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General Conclusion 

Summary and contributions 

      Our graduation project was to design and build a knowledge-based recommender system 

for the Tourism domain, by using the “DATAtourisme” ontology as a new and rich knowledge-

base in this domain. Our recommender system can work on mobile, web and desktop platforms. 

Thanks to the gained benefits by using the Google project “Flutter”. 

To carry out this work, we had to go through several phases. At first, we did research 

on the field of study, this research focused on generalities of recommender systems and 

the basic designed models for them, such as Collaboratif filtering and Content-based 

models. Then we did a research on the field of knowledge-based recommender systems, 

we explained what is knowledge, knowledge-based, and we clarified the main forms to 

represent knowledge. Moreover, we gave a brief explanation of the two types of 

knowledge-based recommender systems.  

Concerning the design phase, we gave a full description of DATAtourisme ontology, 

and constraint-based recommendation as an adopted approach. This phase ended by 

highlighting our architectural design for the proposed recommender system with 

appropriate descriptions for its modules inclosing several formal algorithms. 

In implementation phase, we presented our development environment by indicating 

various tools and technologies which are used, such as Flutter, API DATAtourisme, 

firebase, etc. then we proved the execution process of our application by depicting the 

obtained results while presenting some screenshots (interfaces) according to several 

uses scenarios. Finally, we cited some advantages and limits of this research work. 

As far as we can tell is that the Knowledge-based recommender systems requires a big efforts 

in term of system design, they use a lot of techniques (not simple as in content-based or 

collaborative-based filtering). In addition, Knowledge-based recommender systems help users 

to explore and understand the domain knowledge. In this kind of recommender system, users 

are an integral part of recommendation process knowledge, by developing their information 

needs during their frequent interactions with the recommender system. 

This project was a good opportunity to discover and deepen our knowledge domain, 

recommender systems, and to push our skills by using further new technologies. 

Future work 

      Nevertheless, any large-scale project requires considerable effort and continuous 

improvement. For our case, some points remain to be explored, among them we can indicate: 

• First, evaluation of the proposed recommender system using standard metrics (such as 

recall, precision and F-measure). 
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• Construction of an ontological representation of the user’s profile in order to achieve 

the matching between the ontologies of items (tourism services) and user’s needs. 

• Finally, we aim to perform some non-functional requirements of this software 

application (like as performance and maintainability).   
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Annex 
 
Our Dart Classes to read the ontology DATAtourisme (Json files): 

• Model_results.dart 

class Tourism { 

  Data data; 

  Tourism({this.data}); 

  factory Tourism.fromJson(Map<String, dynamic> parsedJson) { 

    var mydata = Data.fromJson(parsedJson['data']); 

    return Tourism(data: mydata); 

  } 

} 

 

//data 

class Data { 

  Poi poi; 

 

  Data({ 

    this.poi, 

  }); 

  factory Data.fromJson(Map<String, dynamic> parsedJson) { 

    var mypoi = Poi.fromJson(parsedJson['poi']); 

    return Data(poi: mypoi); 

  } 

} 

 

//poi 

class Poi { 

  List<Results> results; 

  int total; 

 

  Poi({this.results, this.total}); 

 

  factory Poi.fromJson(Map<String, dynamic> parsedJson) { 

    var list = parsedJson['results'] as List; 

    List<Results> resultsList = list.map((i) => Results.fromJson(i)).toList(); 

 

    var totalFromJson = parsedJson['total']; 

    int totalList = totalFromJson; 

 

    return Poi(results: resultsList, total: totalList); 

  } 

} 
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//results 

class Results { 

  List<String> rdfslabel; 

  List<HasDescription> hasDescription; 

  List<HasArchitecturalStyle> hasArchiStyle; 

  List<ProvidesCuisineOfType> providesCuisineOfType; 

  List<HasTheme> hasTheme; 

  List<Hascontact>hascontact; 

  List<IsLocatedAt> isLocatedAt; 

  List<HasReview> hasReview; 

  List<Offers> offers; 

  List<IsEquippedWith> isEquippedWith; 

  Results( 

      {this.rdfslabel, 

      this.hasDescription, 

      this.hasArchiStyle, 

      this.providesCuisineOfType, 

      this.hasTheme, 

      this.hascontact, 

      this.isLocatedAt, 

      this.hasReview, 

      this.offers, 

      this.isEquippedWith}); 

 

  factory Results.fromJson(Map<String, dynamic> parsedJson) { 

    var rdfslabelFromJson = parsedJson['rdfs_label']; 

    List<String> rdfslabelList = rdfslabelFromJson.cast<String>(); 

 

    var description = parsedJson['hasDescription'] as List; 

    List<HasDescription> descriptionList; 

    if (parsedJson['hasDescription'] != null) { 

      descriptionList = 

          description.map((i) => HasDescription.fromJson(i)).toList(); 

    } 

 

    var archiStyle = parsedJson['hasArchitecturalStyle'] as List; 

    List<HasArchitecturalStyle> archiStyleList; 

    if (parsedJson['hasArchitecturalStyle'] != null) { 

      archiStyleList = 

          archiStyle.map((i) => HasArchitecturalStyle.fromJson(i)).toList(); 

    } 

 

    var pcuisineOfType = parsedJson['providesCuisineOfType'] as List; 

    List<ProvidesCuisineOfType> pcuisineOfTypeList; 

    if (parsedJson['providesCuisineOfType'] != null) { 

      pcuisineOfTypeList = 
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          pcuisineOfType.map((i) => 

ProvidesCuisineOfType.fromJson(i)).toList(); 

    } 

 

    var theme = parsedJson['hasTheme'] as List; 

    List<HasTheme> themeList; 

    if (parsedJson['hasTheme'] != null) { 

      themeList = 

          theme.map((i) => HasTheme.fromJson(i)).toList(); 

    } 

 

    var contact = parsedJson['hasContact'] as List; 

    List<Hascontact> contactList; 

    if (parsedJson['hasContact'] != null) { 

      contactList = contact.map((i) => Hascontact.fromJson(i)).toList(); 

    } 

 

    var isLocatedAt = parsedJson['isLocatedAt'] as List; 

    List<IsLocatedAt> isLocatedAtList = []; 

    isLocatedAtList = isLocatedAt.map((i) => 

IsLocatedAt.fromJson(i)).toList(); 

 

    var hasReview = parsedJson['hasReview'] as List; 

    List<HasReview> hasReviewList = []; 

    hasReviewList = hasReview.map((i) => HasReview.fromJson(i)).toList(); 

 

    var offers = parsedJson['offers'] as List; 

    List<Offers> offersList = []; 

    offersList = offers.map((i) => Offers.fromJson(i)).toList(); 

 

    var isEquippedWith = parsedJson['isEquippedWith'] as List; 

    List<IsEquippedWith> isEquippedWithList = 

        isEquippedWith.map((i) => IsEquippedWith.fromJson(i)).toList(); 

 

    return new Results( 

        rdfslabel: rdfslabelList, 

        hasDescription: descriptionList, 

        hasArchiStyle: archiStyleList, 

        providesCuisineOfType: pcuisineOfTypeList, 

        hasTheme: themeList, 

        hascontact: contactList, 

        isLocatedAt: isLocatedAtList, 

        hasReview: hasReviewList, 

        offers: offersList, 

        isEquippedWith: isEquippedWithList); 

  } 

} 
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//description 

class HasDescription { 

  List<String> shortDescription; 

 

  HasDescription({ 

    this.shortDescription, 

  }); 

 

  factory HasDescription.fromJson(Map<String, dynamic> parsedJson) { 

    var shortDescriptionFromJson; 

    List<String> shortDescriptionlList; 

    if (parsedJson != null) { 

      shortDescriptionFromJson = parsedJson['shortDescription']; 

      shortDescriptionlList = shortDescriptionFromJson.cast<String>(); 

    } 

    return new HasDescription( 

      shortDescription: shortDescriptionlList, 

    ); 

  } 

} 

 

//archi style 

class HasArchitecturalStyle { 

  List<String> rdfslabelArchiStyle; 

 

  HasArchitecturalStyle({ 

    this.rdfslabelArchiStyle, 

  }); 

 

  factory HasArchitecturalStyle.fromJson(Map<String, dynamic> parsedJson) { 

    var rdfslabelArchiStyleFromJson; 

    List<String> rdfslabelArchiStyleList; 

    if (parsedJson['rdfs_label'] != null) { 

      rdfslabelArchiStyleFromJson = parsedJson['rdfs_label']; 

      rdfslabelArchiStyleList = rdfslabelArchiStyleFromJson.cast<String>(); 

    } 

    return new HasArchitecturalStyle( 

      rdfslabelArchiStyle: rdfslabelArchiStyleList, 

    ); 

  } 

 

} 

//cuisine type 

class ProvidesCuisineOfType { 

  List<String> rdfslabelCuisineOfType; 
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  ProvidesCuisineOfType({ 

    this.rdfslabelCuisineOfType, 

  }); 

 

  factory ProvidesCuisineOfType.fromJson(Map<String, dynamic> parsedJson) { 

    var rdfslabelCuisineOfTypeFromJson; 

    List<String> rdfslabelCuisineOfTypeList; 

    if (parsedJson['rdfs_label'] != null) { 

      rdfslabelCuisineOfTypeFromJson = parsedJson['rdfs_label']; 

      rdfslabelCuisineOfTypeList = 

rdfslabelCuisineOfTypeFromJson.cast<String>(); 

    } 

    return new ProvidesCuisineOfType( 

      rdfslabelCuisineOfType: rdfslabelCuisineOfTypeList, 

    ); 

  } 

 

} 

 

//hastheme 

class HasTheme { 

  List<String> rdfslabeltheme; 

 

  HasTheme({ 

    this.rdfslabeltheme, 

  }); 

 

  factory HasTheme.fromJson(Map<String, dynamic> parsedJson) { 

    var rdfslabelthemeFromJson; 

    List<String> rdfslabelthemeList; 

    if (parsedJson != null) { 

      rdfslabelthemeFromJson = parsedJson['rdfs_label']; 

      rdfslabelthemeList = rdfslabelthemeFromJson.cast<String>(); 

    } 

    return new HasTheme( 

      rdfslabeltheme: rdfslabelthemeList, 

    ); 

  } 

} 

  

 

//hascontact 

class Hascontact { 

  List<String> foafhomepage; 

  List<String> schematelephone; 

  List<String> schemaemail; 

 

  Hascontact({ 
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    this.foafhomepage, 

    this.schematelephone, 

    this.schemaemail, 

  }); 

 

  factory Hascontact.fromJson(Map<String, dynamic> parsedJson) { 

 

    var foafhomepageFromJson; 

    List<String> foafhomepageList; 

    if (parsedJson['foaf_homepage'] != null) { 

      foafhomepageFromJson = parsedJson['foaf_homepage']; 

      foafhomepageList = foafhomepageFromJson.cast<String>(); 

    } 

 

    var schematelephoneFromJson; 

    List<String> schematelephoneList; 

    if (parsedJson['schema_telephone'] != null) { 

      schematelephoneFromJson = parsedJson['schema_telephone']; 

      schematelephoneList = schematelephoneFromJson.cast<String>(); 

    } 

 

    var schemaemailFromJson; 

    List<String> schemaemailList; 

    if (parsedJson['schema_email'] != null) { 

      schemaemailFromJson = parsedJson['schema_email']; 

      schemaemailList = schemaemailFromJson.cast<String>(); 

    } 

 

    return new Hascontact( 

      foafhomepage: foafhomepageList, 

      schematelephone:schematelephoneList , 

      schemaemail: schemaemailList, 

 

    ); 

  } 

} 

 

//isLocatedAt 

class IsLocatedAt { 

  List<SchemaAddress> schemaAddress; 

  List<Schemageo> schemageo; 

 

  IsLocatedAt({this.schemaAddress, this.schemageo}); 

 

  factory IsLocatedAt.fromJson(Map<String, dynamic> parsedJson) { 

 

    var isLocatedAt = parsedJson['schema_address'] as List; 

    List<SchemaAddress> schemaAddressList = 
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        isLocatedAt.map((i) => SchemaAddress.fromJson(i)).toList(); 

 

    var isLocatedAt2 = parsedJson['schema_geo'] as List; 

    List<Schemageo> schemageoList = 

        isLocatedAt2.map((i) => Schemageo.fromJson(i)).toList(); 

 

    return new IsLocatedAt( 

        schemaAddress: schemaAddressList, schemageo: schemageoList); 

  } 

} 

 

//Schema_address 

class SchemaAddress { 

  List<String> schemaAddressLocality; 

  SchemaAddress({ 

    this.schemaAddressLocality, 

  }); 

 

  factory SchemaAddress.fromJson(Map<String, dynamic> parsedJson) { 

    var schemaAddressLocalityFromJson = parsedJson['schema_addressLocality']; 

    List<String> schemaAddressLocalitylList = 

        schemaAddressLocalityFromJson.cast<String>(); 

 

    return new SchemaAddress( 

      schemaAddressLocality: schemaAddressLocalitylList, 

    ); 

  } 

} 

 

class Schemageo { 

  List<double> schemalatitude; 

  List<double> schemalongitude; 

  Schemageo({ 

    this.schemalatitude, 

    this.schemalongitude, 

  }); 

 

  factory Schemageo.fromJson(Map<String, dynamic> parsedJson) { 

    var schemalatitudeFromJson = parsedJson['schema_latitude']; 

    List<double> schemalatitudeList = schemalatitudeFromJson.cast<double>(); 

 

    var schemalongitudeFromJson = parsedJson['schema_longitude']; 

    List<double> schemalongitudeList = schemalongitudeFromJson.cast<double>(); 

 

    return new Schemageo( 

      schemalatitude: schemalatitudeList, 

      schemalongitude: schemalongitudeList, 

    ); 
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  } 

} 

 

//HasReview 

class HasReview { 

  List<HasReviewValue> hasReviewValue; 

 

  HasReview({ 

    this.hasReviewValue, 

  }); 

 

  factory HasReview.fromJson(Map<String, dynamic> parsedJson) { 

    var hasReviewValue = parsedJson['hasReviewValue'] as List; 

    List<HasReviewValue> hasReviewValueList = 

        hasReviewValue.map((i) => HasReviewValue.fromJson(i)).toList(); 

 

    return new HasReview(hasReviewValue: hasReviewValueList); 

  } 

} 

 

//HasReviewValue 

class HasReviewValue { 

  List<String> rdfslabelreview; 

  HasReviewValue({ 

    this.rdfslabelreview, 

  }); 

 

  factory HasReviewValue.fromJson(Map<String, dynamic> parsedJson) { 

    var rdfslabelreviewFromJson = parsedJson['rdfs_label']; 

    List<String> rdfslabelreviewList = rdfslabelreviewFromJson.cast<String>(); 

 

    return new HasReviewValue( 

      rdfslabelreview: rdfslabelreviewList, 

    ); 

  } 

} 

 

//offers 

class Offers { 

  List<SchemaacceptedPaymentMethod> schemaacceptedPaymentMethod; 

 

  Offers({ 

    this.schemaacceptedPaymentMethod, 

  }); 

 

  factory Offers.fromJson(Map<String, dynamic> parsedJson) { 

    var schemaacceptedPaymentMethod = 

        parsedJson['schema_acceptedPaymentMethod'] as List; 
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    List<SchemaacceptedPaymentMethod> schemaacceptedPaymentMethodList = 

        schemaacceptedPaymentMethod 

            .map((i) => SchemaacceptedPaymentMethod.fromJson(i)) 

            .toList(); 

 

    return new Offers( 

        schemaacceptedPaymentMethod: schemaacceptedPaymentMethodList); 

  } 

} 

 

//SchemaacceptedPaymentMethod 

class SchemaacceptedPaymentMethod { 

  List<String> rdfslabelPayment; 

  SchemaacceptedPaymentMethod({ 

    this.rdfslabelPayment, 

  }); 

 

  factory SchemaacceptedPaymentMethod.fromJson( 

      Map<String, dynamic> parsedJson) { 

    var rdfslabelPaymentFromJson = parsedJson['rdfs_label']; 

    List<String> rdfslabelPaymentList = 

rdfslabelPaymentFromJson.cast<String>(); 

 

    return new SchemaacceptedPaymentMethod( 

      rdfslabelPayment: rdfslabelPaymentList, 

    ); 

  } 

} 

 

//is equipped 

class IsEquippedWith { 

  List<String> rdfslabelEquipped; 

  IsEquippedWith({ 

    this.rdfslabelEquipped, 

  }); 

 

  factory IsEquippedWith.fromJson(Map<String, dynamic> parsedJson) { 

    var rdfslabelEquippedFromJson = parsedJson['rdfs_label']; 

    List<String> rdfslabelEquippedList = 

        rdfslabelEquippedFromJson.cast<String>(); 

 

    return new IsEquippedWith( 

      rdfslabelEquipped: rdfslabelEquippedList, 

    ); 

  } 

} 

 

class Mydata { 
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  String rdfslabel; 

  String shortDescription; 

  List<String> cuisineType; 

  String archiStyle; 

  List<String> rdfslabeltheme; 

  String foafhomepage; 

  String schematelephone; 

  String schemaemail; 

  String schemaAddressLocality; 

  String rdfslabelreview; 

  List<String> rdfslabelPayment; 

  List<String> rdfslabelEquipped; 

  double schemalatitude; 

  double schemalongitude; 

  int total; 

  Mydata( 

      this.total, 

      this.rdfslabel, 

      this.shortDescription, 

      this.cuisineType, 

      this.archiStyle, 

      this.rdfslabeltheme, 

      this.foafhomepage, 

      this.schematelephone, 

      this.schemaemail, 

      this.schemaAddressLocality, 

      this.rdfslabelreview, 

      this.rdfslabelPayment, 

      this.rdfslabelEquipped, 

      this.schemalatitude, 

      this.schemalongitude); 

} 
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