RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITÉ IBN KHALDOUN DE TIARET

FACULTÉ DES SCIENCES APPLIQUÉES DÉPARTEMENT DE GÉNIE CIVIL

Mémoire de fin d'études en vue de l'obtention du diplôme de Master

Spécialité : Génie Civil

Option: Structures

Présenté par :

BERROUBA Bekhta BERREBIA Ouisseme

Sujet du mémoire

INFLUENCE DE L'EMPLACEMENT DES VOILES SUR LE COMPORTEMENT SISMIQUE DES BATIMENTS EN BETON ARME.

Soutenu publiquement le 12/07/2021 devant le jury composé de :

M. KLOUCHE Président

Mme. L.KHARROUBI Encadreur

M. M. MIMOUNI Co- encadreur

M. G. ABADA Examinateur

M. B.A. BENYAMINA Examinateur

PROMOTION: 2020/2021

Remercîments

Toute notre parfaite gratitude et remerciement à Allah le plus puissant qui nous a donné la force, le courage et la volonté pour élaborer ce travail. C'est avec une profonde reconnaissance et considération particulière que je remercie mes encadreurs Madame KHARROUBI LAMIA et MONSIEUR MIMOUNI MOHAMED pour leurs soutiens, leurs conseils judicieux et leurs grandes bienveillances durant l'élaboration de ce projet.

Ainsi j'exprime ma reconnaissance à tous les membres de jury d'avoir accepté de lire ce manuscrit et d'apporter les critiques nécessaires à la mise en forme de cet ouvrage.

Mes vifs remerciements vont aussi à mes parents qui m'ont soutenu durant toute ma vie.

Je souhaite personnellement remercier mon binôme et amie BEKHTA.

Enfin, à tous ceux qui m'ont aidé de près ou de loin pour la réalisation de ce projet de fin d'étude.

OUISSEME.

Remercîments

Toute notre parfaite gratitude et remerciement à Allah le plus puissant qui nous a donné la force, le courage et la volonté pour élaborer ce travail. C'est avec une profonde reconnaissance et considération particulière que je remercie mes encadreurs Madame KHARROUBI LAMIA et MONSIEUR MIMOUNI MOHAMED pour leurs soutiens, leurs conseils judicieux et leurs grandes bienveillances durant l'élaboration de ce projet.

Ainsi j'exprime ma reconnaissance à tous les membres de jury d'avoir accepté de lire ce manuscrit et d'apporter les critiques nécessaires à la mise en forme de cet ouvrage.

Mes vifs remerciements vont aussi à mes parents qui m'ont soutenu durant toute ma vie.

Je souhaite personnellement remercier mon binôme et amie OUISSEME.

Enfin, à tous ceux qui m'ont aidé de près ou de loin pour la réalisation de ce projet de fin d'étude.

BEKHTA.

Dédicaces

Pour que ma réussite soit complète je la partage avec toutes les personnes que j'aime, je dédie ce modeste travail à :

Ma très chère mère, qui m'a tant aidé avec son soutient, elle est ma source de courage Et de patience.

À mon très chèr père qui n'a jamais cessé de veiller à mon instruction et mon éducation et de m'encourager au cours du long chemin de mes études.

À une personne très chère qui m'a toujours soutenu.

À mes très chers frères et chères sœurs, pour le courage et la volonté qu'ils m'ont inculqués.

À mon binôme Bakhta et sa famille et toutes mes amies qui ont donné preuve d'une véritable amitié .A tous mes collègues de promotion Génie Civil.

OUISSEME.

Dédicaces

Pour que ma réussite soit complète je la partage avec toutes les personnes que j'aime, je dédie ce modeste travail à :

Ma très chère mère, qui m'a tant aidé avec son soutient, elle est ma source de courage Et de patience.

À mon très chèr père qui n'a jamais cessé de veiller à mon instruction et mon éducation et de m'encourager au cours du long chemin de mes études.

À une personne très chère qui m'a toujours soutenu.

À mes très chers frères et chères sœurs, pour le courage et la volonté qu'ils m'ont inculqués.

À mon binôme Ouisseme et sa famille et toutes mes amies qui ont donné preuve d'une véritable amitié.

À tous mes collègues de promotion Génie Civil.

BEKHTA.

Résumé:

Durant ces dernières décennies, plusieurs séismes de différentes intensités ont frappé plusieurs pays et occasionné des pertes considérables en vies humaines et d'importants dégâts matériels.

Ces dégâts ont été causés par la construction (calcul et conception), pour remédier à cela, beaucoup de recherches ont été faites pour réduire le risque sismique, c'est à-dire, comprendre l'effet sismique sur la structure, et son comportement. Pour améliorer le comportement sismique de la structure, la solution la plus répondue est d'augmenter la rigidité de la structure avec l'ajout des voiles en béton armé.

L'objectif de principal de notre travail est de choisir une conception parasismique optimale d'une structure contreventée par voiles à travers l'étude des huit variantes du système de contreventement

Pour cela, un bâtiment en béton armé a 5 étages a été modélisé par le logiciel ETABS v 9.6 .0.

Les résultats trouves après analyse montrent que les variantes 7 et 8 sont les meilleures dispositions en terme de rigidité, de déplacements, d'effort tranchant a la base et de limitation de la torsion d'ensemble.

Mots clés: séisme, voiles en béton armé, rigidité, ETABS, disposition

Abstract:

During the last decades, several earthquakes of different intensities have struck several countries and caused considerable loss of human life and extensive material damage.

This damage was caused by construction (calculation and design), to remedy this, a lot research has been done to reduce the seismic risk, that's mean understand the seismic effect on the structure, and its behavior. To improve the seismic behavior of the structure, the most popular solution is to increase the rigidity of the structure with the addition of concrete walls armed.

The main objective of our work is to choose an optimal seismic design of a structure braced by walls through the study of the eight variants of the bracing system. For this, a 5-storey reinforced concrete building was modeled using ETABS software v 9.6.0.

The results found after analysis show that variants 7 and 8 are the best arrangements in terms of rigidity, displacements, shear force at the base and limitation of torsion.

Keywords: earthquake, reinforced concrete walls, rigidity, ETABS, layout.

الملخص:

خلال العقود الماضية، ضربت عدة زلازل مختلفة الشدة العديد من البلدان و تسببت في خسائر فادحة في الأرواح البشرية وأضرار مادية جسيمة كان هذا الضرر ناتجًا عن البناء (الحساب والتصميم)، لإصلاح هذا تم إجراء الكثير من البحوث لتقليل مخاطر الزلازل أي لفهم التأثير الزلزالي على الهيكل وسلوكه. لتحسين السلوك الزلزالي للهيكل، فأن الحل الأكثر شيوعًا هو زيادة صلابة الهيكل مع إضافة جدران خرسانية مسلحة الهدف الرئيسي من عملنا هو اختيار التصميم الزلزالي الأمثل لهيكل مدعم بالجدران من خلال دراسة المتغيرات الثمانية لنظام التدعيم لهذا الغرض، تم تصميم مبنى من الخرسانة المسلحة مكون من 5 طوابق باستخدام برنامج ETABS.

الكلمات المفتاحية: الزلازل ، الجدر ان الخرسانية المسلحة ، الصلابة ،التخطيط Etabs,

Remerciments
Didicaces
Resumé
Abstract
الملخص
Liste des symboles
Liste des figures
Liste des tableaux
Introduction générale
Chapitre I : Recherche bibliographique sur les systemes de contreventement
I.1. Introduction5
I.2. Principe5
I.3. Role de contreventement5
I.3.1. Contreventement horizontal (Diaphragme)6
I.3.2. Contreventement vertical6
I.4. Differents types de contreventement
I.4.1. Le remplissage (voile, Diaphragme)7
I.4.2. Lrigidification de nœud (Portique)7
I.4.3. La triangulation (treillis)8
I.5. Voiles en beton armé
I.5.1. Définition
I.5.2. les types des voiles
I.5.3. Disposition des voiles de contreventement11
I.5.4. Torsion des voiles dans les structures11
I.5.5. Classification des structure avec voiles de contreventement
I.5.6. Fonctions des murs
I.5.7. Les principales caeacteristique du comportement des voiles14

I.5.8. Modes de repture
I.5.8.1. Modes de repture des voiles elencés15
I.5.8.1.1. Rupture en flexion
I.5.8.1.2. Rupture en flexion – effort tranchant15
I.5.8.2. Modes de repture des voiles courtes16
I.5.9. Démmensionnement des voiles17
I.5.10. Ferraillage des voiles
Chapitre II: Pre-dimmensionnement et modelisation
II.1. présentation de l'ouvrage20
II.1.2. Caractéristique géométrique20
II.2. Conception de la sructure
II.2.1. Contreventement
II.2.2. Plancher
II.2.3. Escalier
II.2.4. Maconnerie
II.2.5. Revetement
II.2.6. Acrotère
II.2.7. Terrasse
II.3. Caracteristique mécanique des matériaux21
II.3.1. Béton
II.3.1.1 Matiére constitutives du béton22
II.3.1.2. La résistance caractéristique du béton
II.3.1.3. Contrantes limite
II.3.2. Acier
II.3.2.1. Module d élasticité longitidunale23
II 2 2 2 Contranta limita da Pasiar

II.4. Pre-dimensionnement des planchers25
II.4.1. Descente des charges
II.4.1.1. Plancher terrasse inaccessible25
II.4.1.2. Plancher étage courant
II.5. Pre-dimensionnement des élémetrs porteurs27
II.5.1. Pré-dimensionnement des poutres27
II.5.1.1. Poutres Principales27
II.5.1.2. Poutres secondaires
II.5.2. Pré-dimensionnement des poteaux
II.5.2.1. Calcul de l'effort normal sollicitant les poteaux29
II.5.2.2. Effoert de compression du aux charges d'exploitation29
II.5.2. 3. Détermination de la section du poteaux(a*b)
II.6. Vérification des condition du RPA99(version2003)31
II.7. Pré-dimensionnement des voiles31
II.8. Modelisation de la structure33
II.9. Vérification des condition du RPA99(version2003)34
II.9.1. Modes et périodes34
II.92. L'effort tranchant a la base
II.9. Période fondamentale de la structure38
II.9.4. Déplacements relatifs40
II.9.5. Justification vis à vis l'effet P-Delta40
II.10. Conclusion41

Chapitre III : Etude paramétrique

III.1. Introduction43
III.2. Etude de la variante 1
III.2.1. Modes et périodes45
III.2.2. Effort tranchant a la base47
III.2.3. Période fondamentale de la structure47
III.2.4. Déplacements relatifs48
III.2.5. Justification vis-avis l'effet P-Delta48
III.2.6. Calcul de l'excentricité49
III.3. Etude de la vcariante 250
III.3.1. Modes et périodes50
III.3.2. Effort tranchant a la base52
III.3.3. Période fondamentale de la structure53
III.3.4. Déplacements relatifs53
III.3.5. Justification vis-avis l'effet P-Delta54
III3.6. Calcul de l'excentricité54
III.4. Etude de la variante 355
III.4.1. Modes et périodes55
III.4.2. Effort tranchant a la base57
III.4.3. Période fondamentale de la structure57
III.4.4. Déplacements relatifs58
III.4.5. Justification vis-avis l'effet P-Delta59
III.4.6. Excentricité59
III.5. Etude de la variante 460
III.5.1. Modes et périodes60
III.5.2. Effort tranchant a la base62
III.5.3. Période fondamentale de la structure63
III.5.4. Déplacements relatifs

III.5.5. Justification vis-avis l'effet P-Delta64
III.5.6. Calcul de l'excentricité
III.6. Etude de la variante 565
III.6.1. Modes et périodes65
III.6.2. Effort tranchant a la base67
III.6.3. Période fondamentale de la structure68
III.6.4. Déplacements relatifs68
III.5.5. Justification vis-avis l'effet P-Delta69
III.5.6. Calcul de l'excentricité69
III.7. Etude de la vcariante 670
III.7.1. Modes et périodes70
III.7.2. Effort tranchant a la base72
III.7.3. Période fondamentale de la structure
III.7.4. Déplacements relatifs73
III.7.5. Justification vis-avis l'effet P-Delta74
III.7.6. Calcul de l'excentricité74
III.8. Etude de la variante 7
III.8.1. Modes et périodes75
III.8.2. Effort tranchant a la base
III.8.3. Période fondamentale de la structure
III.8.4.Déplacements relatifs78
III.8.5. Justification vis-avis l'effet P-Delta79
III.8.6. Calcul de l'excentricité79
III.9. Etude de la variante 880
III.9.1. Modes et périodes80
III.9.2. Efort tranchant a la base
III.9.3. Période fondamentale de la structure82
III.9.4. Déplacements relatifs

III.9.5. Justification vis-avis l'effet P-Delta84	4
III.9.6. Calcul de l excentricité84	4
Chapitre IV : Resultats et discussions	
IV.1. Etude comparative entre les différentes variantes	7
IV.1.1. Période fondamentale du batiment pour les differents variantes87	7
IV.1.2. Modes de vibration des variantes88	8
IV.1.3. La force sismique88	8
IV.1.4. Déplacements relatifs89	9
IV.1.5. L'effet P-Delta91	1
IV.1.6. L'excentricité92	2
IV.2. Conclusion94	4
Refirance hibliographique94	5

E.L.S: Etat Limite De Service

E.L.U: Etat Limite Ultime

 f_{bu} : Contrainte limite de compression

γ : Coefficient de sécurité

θ : Coefficient qui est en fonction de la durée d'application des actions

 τ_u : Contrainte limite de cisaillement

V_u: Effort tranchant

b: Largeur

d: Hauteur utile

 σ_{bc} : Contrainte de service à la compression

E_s: Module d'élasticité longitudinale (**module de Young**)

 σ_{a} : Contraintes limites à l'état limite ultime

σ_s: Contrainte de l'acier

y_s: Coefficient de sécurité

f_e: Contrainte limite élastique

\eta: Coefficient de fissuration

e: Epaisseur de plancher

 \mathbf{h}_{t} : hauteur totale du plancher

L: Portée maximale entre nus d'appuis

h: Hauteur totale de la poutre

b: Largeur de la poutre

5 : La section du poteau le plus sollicité

 N_{u} : Effort normale

P_{pp}: Poids propre de la poutre principale

P_{ps}: Poids propre de la poutre secondaire

\(\lambda:\) Élancement géométrique

L_f: Hauteur de flambement

l₀: Longueur fictive

i: Rayon de giration

B_r: Section réduit du poteau

A_s: Section d'armatures longitudinale

α: Facteur réducteur de N_u

L: Longueur du voile

e : L'épaisseur de voile

h_e: Hauteur d'étage

V: L'effort tranchant à la base

A: Coefficient d'accélération de zone

R: Coefficient de comportement global de la structure

Q: Facteur de qualité

W: Poids total de la structure

W_{Gi}: Poids due aux charges permanente

W_{0i}: Charge d'exploitation

\beta: Coefficient de pondération

T: La période fondamentale de la structure

 h_N : Hauteur mesurée en mètre à partir de la base de la structure jusqu'au dernier niveau (N)

C_T: Coefficient fonction du système de contreventement et du type de remplissage

D: La dimension du bâtiment mesuré a sa base dans la direction de calcul considéré

D: Facteur d'amplification dynamique moyen, fonction de la catégorie de site

 η : Facteur de correction d'amortissement

ξ: Le pourcentage d'amortissement critique fonction du matériau constitutif

4_k: Le déplacement relatif du niveau « k » par rapport au niveau « k-1 »

 θ : L'effet P-Delta

P_k: Poids total de la structure et des charges d'exploitation associés au-dessus du niveau «k»

V_k: Effort tranchant d'étage au niveau « k »

CM: Centre de masse

CR: Centre de rigidité

Chapitre 1 : Recherche bibliographique sur les systèmes de contreventement	
Figure I.1 : Distribution de l'effort horizontal du diaphragme aux contreventements verticaux	6
Figure I.2 : Effondrement total de la structure	6
Figure I.3: Contreventement longitudinal d'un bâtiment. Disposition des pans rigides	7
Figure I.4 : Structure contreventé par portiques	7
Figure I.5 :Ossature en portiques (à des travées).	8
Figure I.6 : Contreventement triangulés.	8
Figure I.7 : Pans de contreventement triangulé.	9
Figure I.8 : Des bâtiments avec voiles en béton armé	10
Figure I.9 : Plastification d'un poteau d'angle due à la disposition asymétrique des voiles	11
Figure I.11: Limitation de la torsion d'ensemble.	12
Figure I.11: Limitation de la torsion d'ensemble.	12
Figure I.12 : structure « mixte » avec des murs porteurs couplés à des portiques	13
Figure I.14: structure uniquement à murs porteurs.	13
Figure I.15 : Modes de rupture des voiles élancés	15
Figure I.16 : Modes de rupture des voiles élancés	16
Figure I.17 : Modes de rupture des voiles courts	17
Figure I.18 : Coupe en élévation d'un voile.	17
Figure I.19: Epaisseur minimale des voiles	18
Chapitre II: Pre-dimmensionnement et modelisation.	
Figure II.1: Mur double cloison	20
Figure II.2: Mur simple cloison	21
Figure II.3 : Diagramme contraintes-déformations du béton à L'ELU.	22
Figure II.4 : Diagramme contraintes-déformations du béton à l'ELS	23
Figure II.5 : Diagramme contraintes-déformations du l acier à l'ELU	24
Figure II.6 : Planché corps creux	25
Figure II.7 : Plancher terrasse inaccessible.	25
Figure II.8 : Plancher étage courant	26
Figure II.9 : Section de poteau le plus sollicité.	28
Figure II.10 : Coupe de voile en élevation	32
Figure II.11 : Modèle en 3D	33
Figure II.12 : Mode 1 de déformation	35
Figure II.13 : Mode 2 de déformation	35
Figure II.14 : Mode 3 de déformation.	36

Chapitre III : Etude paramétrique.

Figure III.1 : Variante 1.	43
Figure III.2 :Variante 2	43
Figure III.3 :Variante 3.	43
Figure III.4: Variante 4.	43
Figure III.5: Variante 5.	44
Figure III.6: Variante 6.	44
Figure III.7: Variante 7	44
Figure III.8 : Variante 8.	44
Figure III.9 : Mode 1 de déformation (Variante 1)	46
Figure III.10 : Mode2 de déformation (Variante 1).	46
Figure III.11: Mode 3 de déformation (Variante 1)	47
Figure III.12 : Mode 1 de déformation (Variante 2)	51
Figure III.13 : Mode 2 de déformation (Variante 2)	51
Figure III.14 : Mode 3 de déformation. (Variante 2)	52
Figure III.15 : Mode 1 de déformation (Variante 3)	56
Figure III.16 : Mode 2 de déformation (Variante 3)	56
Figure III.17 : Mode 3 de déformation (Variante 3)	57
Figure III.18 : Mode 1 de déformation (Variante 4)	61
Figure III.19 : Mode 2 de déformation (Variante 4)	61
Figure III.20 : Mode 3 de déformation (Variante 4)	62
Figure III.21 : Mode 1 de déformation (Variante 5)	66
Figure III.22 : Mode 2 de déformation (Variante 5)	66
Figure III.23 : Mode 3 de déformation (Variante 5).	67
Figure III.24 : Mode 1 de déformation (Variante 6)	71
Figure III .25 :Mode 2 de déformation (Variante 6)	71
Figure III.26 : Mode 3 de déformation (Variante 6)	72
Figure III.27 : Mode 1 de déformation (Variante 7)	76
Figure III.28 : Mode 2 de déformation (Variante 7)	76
Figure III.29 : Mode 3 de déformation (Variante 7)	77
Figure III.30 : Mode 1 de déformation (Variante 8).	81
Figure III.31 : Mode 2 de déformation (Variante 8)	81
Figure III.32 : Mode 3 de déformation (Variante 8).	82
Chapitre IV : résultats et discussion	
Figure IV.1 : Période fondamentale des variantes étudiées	87

Figure IV.2 : La force sismique des variantes étudiées	89
Figure IV.3 : Déplacements relatifs des variantes étudiées suivant X.	90
Figure IV.4 : Déplacements relatifs des variantes étudiée suivant Y	90
Figure IV.5: L'Effet P-Delta des variantes étudiées suivant X	91
Figure IV.6: L'Effet P-Delta des variantes étudiées suivant Y.	92
Figure IV.7 : L'excentricité des variantes étudiées suivant X	93
Figure IV.8 : L'excentricité des variantes étudiées suivant Y	93

Chapitre II : Pré dimensionnement et modélisation.

Tableau II.1 : Dimensionnement du plancher.	25
Tableau II.2: Plancher terrasse inaccessible.	26
Tableau II.3: Plancher etage courant	27
Tableau II.4: Les caractéristiques des matériaux	30
Tableau II.5: Dimensions des défirent éléments porteurs	32
Tableau II.6: Modes propres de la structure	34
Tableau II.7 : Valeurs des pénalités p_q	37
Tableau II.8: Poids totale de la structure	38
Tableau II.9: Vérification de la force sismique à la base	38
Tableau II.10: Déplacements inter-étages suivant X.	40
Tableau II.11: Déplacements inter-étages suivant Y.	40
Tableau II.12: Vérification L'effet P-Delta suivant X	41
Tableau II.13: Vérification L'effet P-Delta suivant Y	41
Chapitre III : Etude paramétrique.	
Tableau III.1: Modes propres de la structure	45
Tableau III.2 : Vérification de la force sismique à la base	47
Tableau III.3 : Vérification de la période fondamentale(Variantre2)	47
Tableau III.4: Vérification de déplacements inter-étages suivant X	48
Tableau III.5 : Vérification de déplacements inter-étages suivant Y	48
Tableau III.6: Vérification L'effet P-Delta suivant X	48
Tableau III.7: Vérification L'effet P-Delta suivant Y	49
Tableau III.8 : Vérification de l'excentricité suivant X	49
Tableau III.9: Vérification de l'excentricité suivant Y	50
Tableau III.10: Modes propres de la structure.	50
Tableau III.11:Vérification de la force sismique à la base	52
Tableau III.12: Vérification de la période fondamentale	53
Tableau III.13: Déplacements inter-étages suivant X	53
Tableau III.14: Déplacements inter-étages suivant Y	53
Tableau III.15: Vérification L'effet P-Delta suivant X	54
Tableau III.16: Vérification L'effet P-Delta suivant Y	54
Tableau III.17 : Vérification de l'excentricité suivant X	54
Tableau III.18 : Vérification de l'excentricité suivant Y	
Tableau III.19: Modes propres de la structure	55

Tableau III.	.20 : Vérification de la force sismique à la base	.57
Tableau III	21 : Vérification de la période fondamentale	. 57
Tableau III.	.22 : Déplacements inter-étages suivant X	.58
Tableau III.	.23 : Déplacements inter-étages suivant Y	.58
Tableau III	24 : Vérification L'effet P-Delta suivant X	.59
Tableau III.	.25 : Vérification L'effet P-Delta suivant Y	.59
Tableau III.	.26 : Vérification de l'excentricité suivant X	.59
Tableau III	27 : Vérification de l'excentricité suivant Y	. 60
Tableau III	28 : Modes propres de la structure	. 60
Tableau III.	.29 : Vérification de la force sismique à la base	. 62
Tableau III.	.30 : Vérification de la période fondamentale	. 63
Tableau III.	.31 : Vérification de déplacements inter-étages suivant X	. 63
Tableau III.	.32 : Vérification de déplacements inter-étages suivant Y	. 63
Tableau III	33 : Vérification L'effet P-Delta suivant X	. 64
Tableau III	34 : Vérification L'effet P-Delta suivant Y	. 64
Tableau III.	.35 : Vérification de l'excentricité suivant X	. 64
Tableau III.	.36 : Vérification de l'excentricité suivant Y	. 65
Tableau III.	.37 : Modes propres de la structure	. 65
Tableau III.	.38 : Vérification de la force sismique à la base	. 67
Tableau III	39 : Vérification de la période fondamentale	. 68
Tableau III	40 : Vérification de déplacements inter-étages suivant X	. 68
Tableau III.	.41 : Vérification de déplacements inter-étages suivant Y	. 68
Tableau III.	.42 : Vérification L'effet P-Delta suivant X	. 69
Tableau III.	.43 : Vérification L'effet P-Delta suivant Y	. 69
Tableau III.	.44 : Vérification de l'excentricité suivant X	. 69
Tableau III.	.45 : Vérification de l'excentricité suivant Y	.70
Tableau III	46 : Modes propres de la structure	.70
Tableau III	47 : Vérification de la force sismique à la base	.72
Tableau III.	.48 : Vérification de la période fondamentale	.72
Tableau III	49 : Vérification de déplacements inter-étages suivant X	.73
Tableau III.	.50 : Vérification de déplacements inter-étages suivant Y	.73
Tableau III.	.51 : Vérification L'effet P-Delta suivant X	.74
Tableau III.	.52 : Vérification L'effet P-Delta suivant Y	.74
Tableau III.	.53 : Vérification de l'excentricité suivant X	.74
Tablean III	54 : Vérification de l'excentricité suivant Y	75

Tableau III.55 : Modes propres de la structure	75
Tableau III.56 : Vérification de la force sismique à la base	77
Tableau III 57 : Vérification de la période fondamentale	77
Tableau III 58 : Vérification de déplacements inter-étages suivant X	78
Tableau III 59 : Vérification de déplacements inter-étages suivant Y	78
Tableau III 60 : Vérification L'effet P-Delta suivant X	79
Tableau III.61: Vérification L'effet P-Delta suivant Y	79
Tableau III.72 : Vérification de l'excentricité suivant X	79
Tableau III 63 : Vérification de l'excentricité suivant Y	80
Tableau III.64 : Modes propres de la structure	80
Tableau III.65 : Vérification de la force sismique à la base	82
Tableau III.66 : Vérification de la période fondamentale	82
Tableau III.67: Déplacements inter-étages suivant X	83
Tableau III.68 :Déplacements inter-étages suivant Y	83
Tableau III.69 : Vérification L'effet P-Delta suivant X	84
Tableau III.70 : Vérification L'effet P-Delta suivant Y	84
Tableau III.71 : Vérification de l'excentricité suivant X	84
Tableau III 72 : Vérification de l'excentricité suivant Y	85
Chapitre IV : résultats et discussion	
Tableau VI.73 : La période maximale des variantes étudiées	87
Tableau VI.75: Les trois premiers modes de vibration des variantes étudiées	88
Tableau VI.76 : La force sismique des variantes étudiées	88
Tableau VI.77: Déplacements relatifs des variantes étudiées	89
Tableau VI.78: L'Effet P-Delta des variantes étudiées	91
Tableau VI.78 : L'excentricité des variantes étudiées	92

Généralité:

En génie civil, un contreventement est un système statique destiné à assurer la stabilité globale d'un ouvrage vis-à-vis des effets horizontaux issus d'éventuelles actions sur celui-ci (séisme, vent, choc etc....).Il sert également à stabiliser localement certaines parties de l'ouvrage (poteaux, poutres)

Relativement au phénomène d'instabilité

Afin d'assurer la stabilité globale d'un bâtiment il est nécessaire que celui-ci soit contreventé selon au moins 3 plan verticaux non collinaires et un plan horizontal, on distingue donc les contreventements verticaux (destinés à transmettre les efforts horizontaux dans les fondations) et le contreventement horizontaux (destinés à s'opposer aux effets de torsion dus à ces efforts).

La disposition des voiles dans les structures mixtes est essentielle pour avoir une conception adéquate et un bon comportement structurel, une bonne disposition des voiles permet d'avoir une exploitation optimale de la rigidité de la structure,

L'objectif principal de notre travail est de choisir les critères qui nous permettent de rechercher une conception parasismique optimale sur la base de l'étude de huit variantes des systèmes de contreventement, un calcul statique et sismique de la structure selon les huit variantes de disposition des voiles sera mené afin de choisir une conception adéquate,

Notre projet consiste à étudier un bâtiment à usage d'habitation, composé de cinq étages, implanté à ALGER, qui est classe selon les le règlement parasismique algérien (RPA 99 version 2003), comme une zone de forte sismicité (**Zone III**).

Problématique:

Notre projet consiste à étudier un bâtiment existant en (R+4) contreventé par des voiles en béton armé. L'utilité des voiles de contreventement dans les bâtiments en zone sismique est bien reconnue dans le monde, car lorsque ces voiles sont bien disposés dans un bâtiment, ils peuvent former un système de résistance aux fores latéraux très efficace dans le domaine linéaire.

Dans le contexte de noter sujet, des questions importants méritent d'être posées, on peut citer :

- Est-ce que le bâtiment étudié nécessite un contreventement ?
- ➤ Dans ce cas, quel type de contreventement choisir ?
- Quels sont les critères de la disposition des voiles ?

Structure du mémoire :

Ce travail est ainsi partagé en quatre chapitres représentés comme suit:

Chapitre I : Il concerne une revue bibliographique sur les différents systèmes de

Contreventement.

Chapitre II : nous avons présenté l'ouvrage concerné et par la suite nous avons fait la modélisation par l'logiciel ETABS.

Chapitre III: nous avons changé la disposition des voiles avec 8 variantes (l'étude paramétrique).

Chapitre IV: nous avons discuté les résultats obtenus.

Chapitre I : Systèmes de contreventement

I.1. Introduction:

Le contreventement d'un immeuble est constitué d'éléments verticaux assurant la stabilité sous l'action des sollicitations horizontales (pression du vent sur les façades, chocs de véhicules, secousses sismique, .. etc.).

Ces éléments transmettent également les charges verticales aux fondations, Dans la pratique, compte tenu de l'hypothèse d'élasticité linéaire, les différents effets de flexion, torsion, compression sont études séparément.

L'effet des charges verticales est généralement estimé d'une manière simple ; au prorata des surfaces de plancher, les résultats ainsi obtenus sont suffisamment proches de la réalité et un calcul plus fin tenant compte des différentes phases de la construction (fluage retrait.. etc.) ne s'impose qu'au niveau de l'exécution pour des structures exceptionnelles. [1]

.I .2. Principe:

Le contreventement d'un bâtiment doit être pensé dès sa conception, car ce sont la géométrie globale et le positionnement en plan des éléments les plus rigides qui déterminent en grande partie la bonne répartition des efforts dans la structure. A l'opposé, les formes en U ou L sont à éviter car elles posent des problèmes de concentration de contraintes au niveau des angles et font apparaître de la torsion d'ensemble. La disposition en plan des éléments de contreventement est également très importante. Un mauvais positionnement implique une torsion du plancher qui génère des efforts supplémentaires dans les éléments de contreventement. [2]

I.3. Rôle de contreventement :

Le contreventement a donc principalement pour objet :

- Assurer la stabilité des constructions non auto-stables vis-à-vis des charges horizontales (celle des structures auto-stables étant assurée intrinsèquement) donc de transmettre ces charges jusqu'au sol.
- Raidir les constructions, Car les déformations excessives de la structure sont source de dommages aux éléments non structuraux et à l'équipement.

Dans le cas d'une construction parasismique, le contreventement comporte obligatoirement deux familles d'éléments :

- Contreventement horizontal (diaphragme)
- Contreventement vertical (murs, travées triangulées ou portiques) [3]

I.3.1. Contreventement horizontal (Diaphragme):

Le contreventement horizontal est réalisé généralement par des dispositions constructives au niveau des planchers et de la toiture. Il est assuré soit par la création d'un diaphragme, soit par la réalisation de poutres au vent généralement obtenues par triangulation, on parle d'effet diaphragme lorsque les planchers sont suffisamment rigides pour qu'on puisse considérer qu'ils ne se déforment pas sous l'effet des forces horizontales (agissant dans le plan du plancher), ce qui permet de faire l'hypothèse simplificatrice que ces efforts se distribuent ensuite dans les éléments de contreventement au prorata de leurs raideurs. [4]

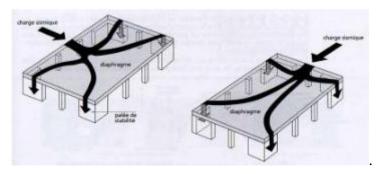


Figure I.1: Distribution de l'effort horizontal du diaphragme aux contreventements verticaux [4]

I.3.2. Contreventement vertical

L'absence de contreventement vertical parmi les principaux facteurs de ruine en cas de séisme

Figure I.2 : Effondrement total de la structure. [5]

Certaines structures comme les ossatures en poteaux et poutres, n'ont fréquemment pas la rigidité nécessaire pour résister aux charges horizontales. L'adjonction des éléments résistant à ces charges permet alors d'assurer leur stabilité. [4]

I .4. Différents types de contreventement:

Classiquement il y a trois types de contreventement :

I.4.1. Le remplissage (voile, diaphragme) : on utilise des voiles en béton pour les fortes sollicitations. Pour les faibles sollicitations des voiles en maçonnerie conviennent. Lorsqu'il existe un noyau ou un mur de refend celui-ci peut bien sur servir de contreventements (il s'agit surtout d'un cas pour les bâtiments à étages). [5]

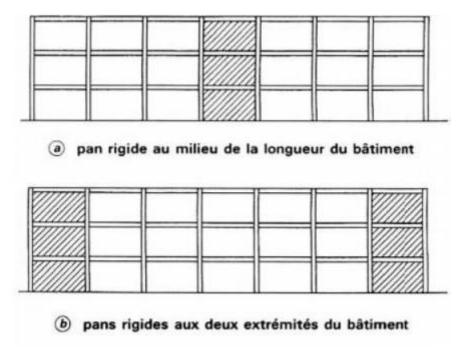


Figure I.3: Contreventement longitudinal d'un bâtiment. Disposition des pans rigides [5]

I.4.2. Les cadres (portique): ils se justifient pleinement lorsque l'on doit laisser le passage libre, ou pour éviter des diagonales inesthétiques, ou bien parfois pour laisser une plus grande liberté pour une modification de la structure. [5]

Figure I.4 : Structure contreventé par portiques [4]

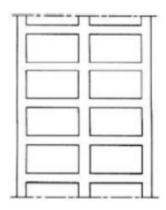


Figure I.5 : Ossature en portiques (à des travées) [5]

I.4.3. La triangulation (treillis) : il s'agit du type le plus fréquent pour les constructions en acier ; les treillis en N conviennent bien lorsqu'il n'y a pas d'inversion d'efforts. Lorsque l'on est en présence d'inversion d'efforts on préfère les croix de saint André (quelquefois les treillis en K ou V peuvent convenir). [5]

Figure I.6: Contreventement triangulés. [4]

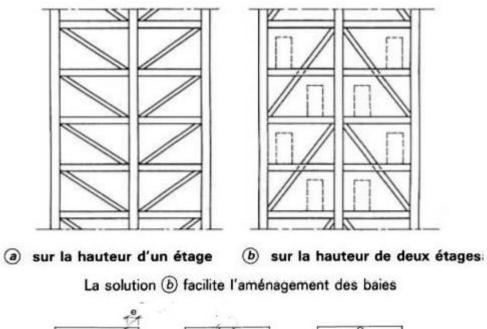


Figure I.7 : Pans de contreventement triangulés. [5]

I.5. Voiles en béton armé:

I.5.1. Définition:

Les voiles en béton montrent en général un excellent comportement sous charge sismique. Ils continuent à supporter les planchers et les charpentes même lorsqu'ils sont largement fissurés, ce qui est essentiel pour La sauvegarde des vies humaines.

Lorsqu'ils sont élancés, les voiles se comportent comme des consoles verticales, subissant les contraintes maximales sur leurs bords, Il est par conséquent souhaitable de renforcer les extrémités de ces voiles par des poteaux ou retours d'angle [6]

D'une manière générale, le système de renforcement par voiles en béton armé permet une transmission plus efficace et à moindre coût des efforts horizontaux de la structure existante à la nouvelle structure, grâce à la présence de nombreux points de liaison. [7]

Figure I.8: Des bâtiments avec voiles en béton armé [4]

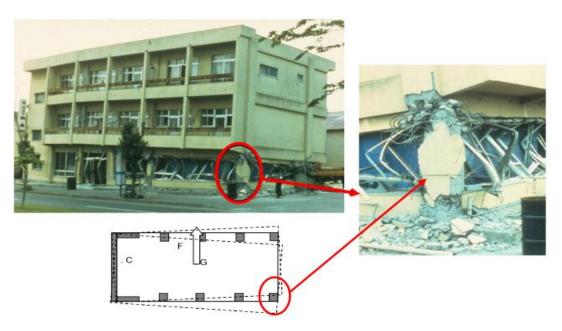
I .5.2. Les types de voiles :

- ➤ Voile simple rectangulaire (droit ou I) d'épaisseur t et de longueur h.
- ➤ Voile composé de plusieurs voiles simples ,en forme de T,U,L,H,Z, baïonnette ...etc. assemblés de façon à forme un ensemble rigide

Nous retiendrons, pour la suite, sous le terme de voile :

- > Les murs en maçonnerie.
- Les refends qui sont des voiles ou murs de grande longueur. [8]

I .5.3.Disposition des voiles de contreventement :


Les éléments de contreventement doivent être disposés de façon à conférer à la construction une grande rigidité à la torsion.

- ➤ de trois éléments verticaux (au minimum) par niveau, à condition qu'ils soient non concourantes et non parallèles.
- les plus larges possibles, courant éventuellement sur plusieurs travées. les éléments étroits sont soumis à des efforts élevés, donnant lieu à des déformations importantes.
- disposés en façades ou près des façades conférant ainsi une grande rigidité à la torsion.
- disposés symétriquement par rapport au centre de gravité du niveau.
- constitués éventuellement par un grand noyau central fermé. En effet, la rigidité des noyaux ouverts est faible. [9]

I .5.4. Torsion des voiles dans les structures :

La torsion d'ensemble survient lorsque le centre de rigidité de la structure se trouve décalé par rapport au centre des masses, c'est notamment le cas lorsque les éléments de contreventement sont répartis d'une manière asymétrique par rapport au centre de gravité de la structure. Ce type de sollicitation est mal toléré par la structure, car l'ouvrage vrille autour d'un axe vertical au lieu de fléchir comme un bloc, subissant ainsi à chaque niveau des déplacements horizontaux différents.[10] [11]

La construction est soumise à une torsion d'axe vertical d'autant plus importante que la distance entre le centre des masses et le centre de rigidité est grande, ainsi les poteaux situés aux extrémités du bâtiment peuvent subir des déplacements différentiels importants entre leurs tête set leurs pieds, déplacements pouvant entraîner leur destruction. (Figure I.10). [12]

Figure I.9: Plastification d'un poteau d'angle due à la disposition asymétrique des voiles. [12]

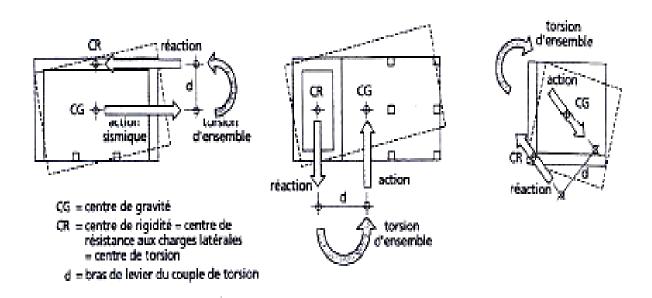


Figure I.10 : Mécaniseme de la torsion d'ensemble [13]

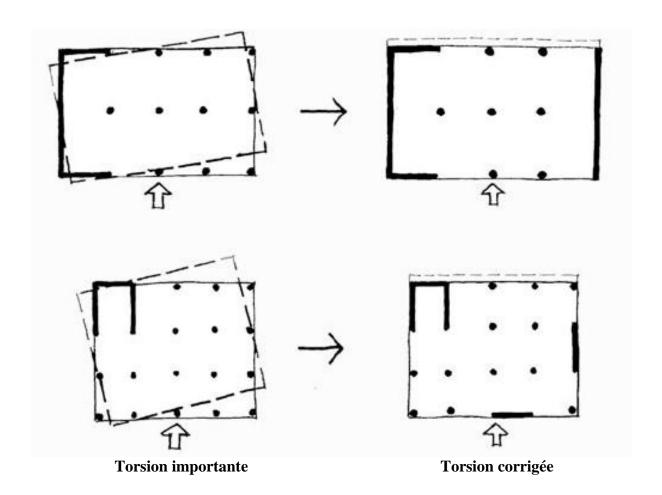


Figure I.11: Limitation de la torsion d'ensemble [13]

I .5.5. Classification des structures avec voiles de contreventement :

Vue la grande variété des constructions. Trois grandes catégories peuvent être rencontrées :

- > structures « mixtes » avec des murs porteurs associés à des portiques. (Figure I.12)
- > structures à noyau central (Figure I.13)
- > structures uniquement à murs porteurs (Figure I.14)

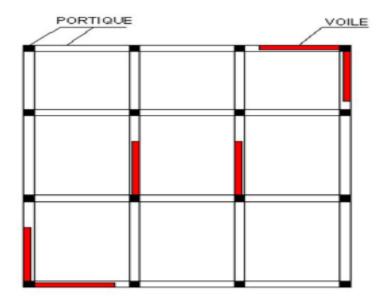


Figure I.12 : Structure « mixte » avec des murs porteurs couplés à des portiques [13]

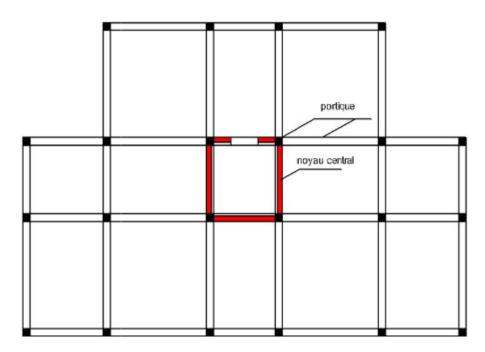
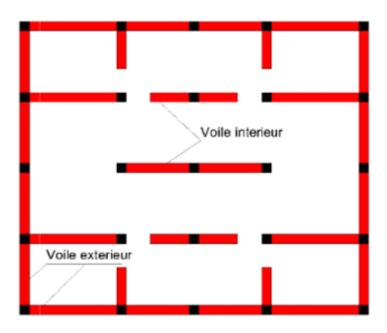



Figure I.13: Structure à noyau central [13]

Figure I.14: Structure uniquement à murs porteurs [13]

I .5.6. Fonctions des voiles :

- La stabilité mécanique sous les sollicitations provenant des charges appliquées ou des déformations imposées par les phénomènes thermiques, climatiques et de retrait.
- La sécurité en cas d'incendie, séisme ou autres sollicitation exceptionnelles normalement prévisibles.
- L'étanchéité à la pluie pour les murs qui y sont exposé.
- ➤ Une contribution à la satisfaction des exigences hygrothermiques et acoustiques
- Le cas échéant, l'aspect extérieur et/ou intérieur de la construction. [14]

I .5.7. Les principales caractéristiques du comportement des voiles :

Les principaux paramètres ayant une influence prépondérante sur le comportement d'un voile sont les suivants :

- L'élancement, défini comme le rapport de la hauteur par la largeur du voile, h/1,
- La disposition et le pourcentage des armatures,
- L'intensité de l'effort normal.

Du point de vue de leur fonctionnement, il convient de faire la distinction entre les voiles Elancés (h / 1 > 2) et le voiles courts (h / 1 < 2).

I .5.8. Modes de rupture :

I .5.8.1. Modes de rupture des voiles élancés :

I .5.8.1.1. Ruptures en flexion :

- ➤ Mode f1: rupture par plastification des armatures verticales tendues et écrasement du béton comprimé. C'est le schéma de ruine le plus satisfaisant qui correspond à la formation d'une rotule plastique dans la partie inférieure du voile avec une importante Dissipation d'énergie. On observe ce mode de ruine dans les voiles très élancés, soumis à un effort normal de compression faible et à un cisaillement modéré.
- ➤ Mode f2: rupture par écrasement du béton. Ce mode de ruine se rencontre pour les voiles assez fortement armés soumis à un effort normal important. Le mode f2 est moins ductile que le mode f1, surtout dans le cas d'une section rectangulaire.
- ➤ Mode f3 : rupture fragile par rupture des armatures verticales tendues. C'est un mode de rupture qui se rencontre dans les voiles faiblement armés, lorsque les armatures verticales sont essentiellement réparties et non concentrées aux extrémités. La ductilité et la capacité d'absorption d'énergie peuvent être améliorées en concentrant les armatures verticales aux extrémités.

I .5.8.1.2. Ruptures en flexion-effort tranchant :

- ➤ Mode f/t : rupture par plastifications des armatures verticales de flexion et des armatures transversales. C'est ce qui se produit dans les voiles moyennement élancés où la flexion n'est Plus prépondérante et où les armatures horizontales sont insuffisantes.
- ➤ Mode g : rupture par glissement au niveau des reprises de bétonnage. Ce mode de Rupture qui est plutôt caractéristique aux voiles courts a été aussi observée dans les cas des voiles Moyennement élancés. Ce type de rupture peut apparaître lorsque les armatures verticales Réparties sont insuffisantes, la qualité des reprises de bétonnage est mauvaise et la valeur de L'effort normal est faible.

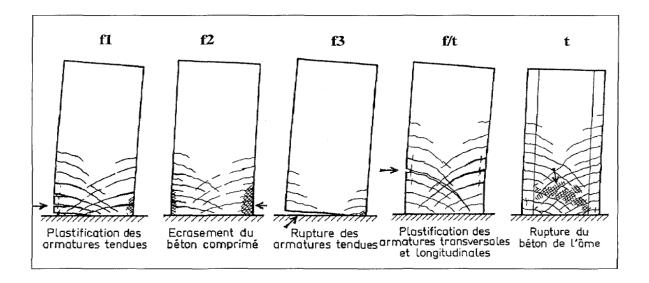


Figure I.15 : Modes de rupture des voiles élancés [15]

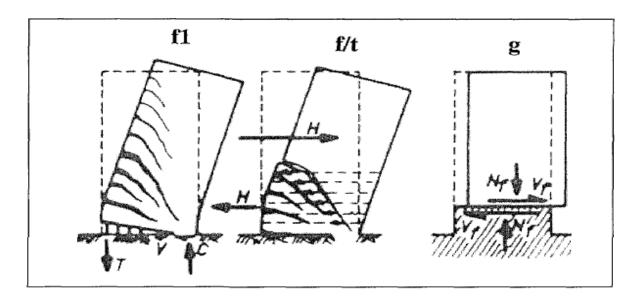


Figure I.16 : Modes de rupture des voiles élancés [15]

I .5.8.2. Modes de rupture des voiles courtes :

Dans ce cas, l'effort tranchant est généralement prépondérant sur la flexion. Les principaux modes de ruptures on distingue trois cas :

- ➤ Mode Tl: rupture par glissement («sliding shear») à l'encastrement. Ce mode de Rupture, Conséquence de la plastification progressive des armatures verticales est accompagné D'importants glissements qui réduisent d'une façon significative la raideur et la dissipation Hystérétique. Ce type de rupture peut aussi être obtenu lorsque les armatures verticales Réparties sont insuffisantes.
- ➤ Mode T2 : rupture diagonale (« diagonal tension failure ») avec plastification ou rupture des Armatures le long des fissures diagonales. Ce mode est rencontré dans les voiles moyennement armés sollicités par un faible effort normal.
- ➤ Mode T3 : rupture par écrasement (« diagonal compression failure ») du béton de l'âme, à la Base des bielles transmettant les efforts de compression. C'est un mode de ruine caractéristique des voiles fortement armés, surtout s'ils sont associés à des raidisseurs sur leur bord. [15]

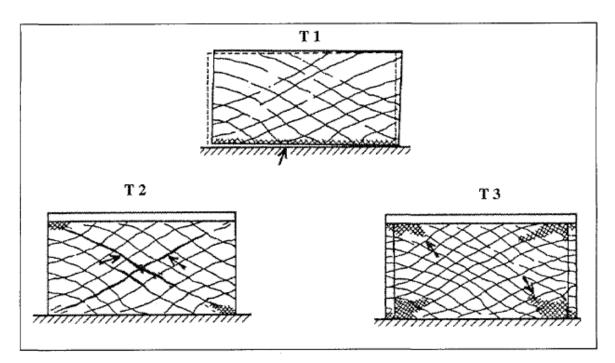


Figure I.17: Modes de rupture des voiles courts [15]

I.5.9. Dimensionnement des voiles :

Sont considérés comme voiles les éléments satisfaisant à la condition $1 \ge 4a$.

Dans le cas contraire, ces éléments sont considérés comme des éléments linéaires. [16]

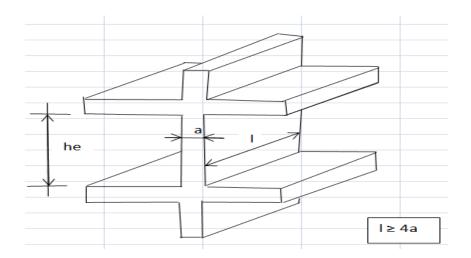


Figure I.19 : Coupe en élévation d'un voile [16]

Selon le RPA99/version2003:

L'épaisseur minimale est de 15 cm. De plus, l'épaisseur doit être déterminée en fonction de la hauteur libre d'étage he et des conditions de rigidité aux extrémités comme indiqué à la **(Figure I.20)**

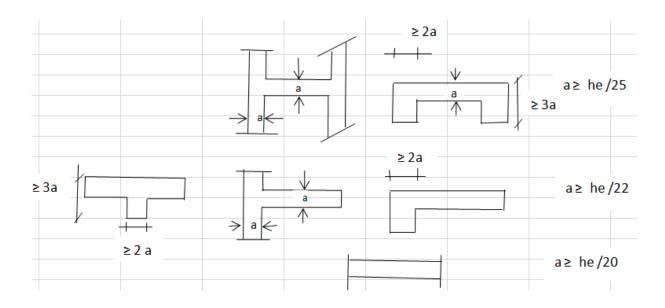


Figure I.20: Epaisseur minimale des voiles [16]

I.5.10. Ferraillage des voiles :

Ils travaillent en flexion composée et sont sollicités par un effort normal et un moment fléchissant. Le ferraillage est composé d'armatures verticales concentrées aux deux extrémités, d'armatures de montage et d'armatures horizontales uniformément réparties.

Les armatures verticales extrêmes sont soumises à d'importantes forces de traction

/compression créant ainsi un couple capable d'équilibrer le moment appliqué. A la base du voile, sur une hauteur critique, des cadres sont disposés autour de ces armatures afin d'organiser la ductilité de ces zones. Enfin, les armatures de l'âme horizontales et verticales

ont le rôle d'assurer la résistance à l'effort tranchant. [17]

Le calcul du ferraillage des voiles en béton armé se fait généralement avec les deux méthodes suivantes :

➤ La méthode classique (MC) (BAEL 1991) :

Le ferraillage des voiles par la méthode classique du béton armé aux états limites

(BAEL 1991) se fait en flexion composé tout en respectant les recommandations du règlement parasismique algérien (RPA99/ (version2003).Ils sont alors sollicités par un effort normal N et un moment fléchissant M. [17]

La méthode des bandes (MDB) (DTU 23-1) :

La méthode des bandes (MDB) est une méthode de résistance des matériaux, qui ne tient pas compte des phénomènes d'amplification dynamiques dus aux séismes. Les efforts sont résumés en une résultante verticale équivalente à la situation la plus défavorable (M, N) qui est censée être reprise par les armatures verticales. [17]

Chapitre II: Pré dimensionnement et modélisation

II .1. Présentation de l'ouvrage :

Le bâtiment a étudier est un bâtiment à usage d'habitation, composé d'un Rez de chaussée plus quatre étages, implanté à ALGER, qui est classe selon les le règlement parasismique algérien (RPA 99 version 2003), comme une zone de fort sismicité (**Zone III**).

II.1.2. Caractéristiques géométriques :

•	Longueur totale du bâtiment :	.L=15,84 m
•	Largeur totale du bâtiment :	L=13,45 m
•	Hauteur totale du bâtiment :	H=15,84 m
•	Hauteur du RDC :	h=3 ,60 m
•	Hauteur des étages courant :	h=3,06 m

II.2. Conception de la structure :

II.2.1. Le contreventement :

Pour La structure du bâtiment on prévoit un système de contreventement mixte assuré par des voiles et des portiques avec justification d'interaction portiques, voiles

II.2.2. Plancher:

Les planchers des différents niveaux sont prévus en corps creux.

II.2.4. Maçonnerie:

La maçonnerie la plus utilisée en ALGERIE est en briques creuses pour cet ouvrage nous avons deux types de murs :

• Murs extérieurs :

Ils sont réalisés en doubles cloisons de briques creuses de 10 cm d'épaisseur avec une lame d'air de 5 cm (10+5+10).

Figure II.1: Mur double cloison

• Murs intérieurs:

Ils sont réalisés en briques creuses de 10 cm d'épaisseur.

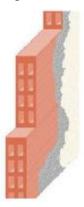


Figure II.2: Mur simple cloison

II.2.5. Revêtement:

Le revêtement est constitué de :

- Enduit en ciment pour les faces extérieur des murs de façade.
- Enduit de plâtre pour les murs et les plafonds.
- Carrelage pour les planchers et les escaliers.

II.2.6. Acrotères:

La terrasse étant inaccessible, le dernier niveau est entouré d'un acrotère en béton armé d'une hauteur 60cm.

II.2.7. Terrasse:

La terrasse du bâtiment est inaccessible

II.3. Caractéristique mécanique des matériaux :

La structure de notre bâtiment sera construite en béton armé. Par conséquent nous avons besoin de déterminer les caractéristiques des deux matériaux composant le béton armé à savoir:

- Béton.
- Acier.

II.3.1. Béton :

Le béton est un matériau utilisé pour construire de nombreux type d'ouvrage dans les domaines du bâtiment des travaux publics et de l'hydraulique, il est constitué par le mélange du ciment, de granulats (sable et gravier) et d'eau, et dans certains cas d'adjuvants.

II.3.1.1. Matières constitutives du béton:

La composition courante d' 1m3 de béton est la suivante :

- 350 kg de ciment de 42.5R
- 530 L de sable
- 740L de gravillon
- 175 L d'eau de gâchage

II.3.1.2. La résistance caractéristique du béton:

Compte tenu de la durée des réactions chimiques qui est de 28 jours (réaction achevée à 90%), on détermine à cet âge la résistance caractéristique à la traction dite ft28 et à la compression notée fc28 par des essais ; une valeur de 25MPa pour fc28, et par conséquent :

$$ftj=0,6+0,06fc28 = 2,1 \text{ MPa}$$

II.3.1.3. Contraintes limites:

➤ Contrainte limite de compression:(art A-5.121 BAEL 91)

Elle est donnée par :
$$f_{bu} = \frac{0.85 f_{C28}}{\gamma_b \theta}$$
 MPa

γ: Coefficient de sécurité

$$\gamma_b = 1,50$$
 en situation courante $f_{bu} = 14,20$ MPa
 $\gamma_b = 1,15$ en situation accidentelle $f_{bu} = 18,48$ MPa

θ: Coefficient qui est en fonction de la durée d'application des actions

 θ = 1: si la durée d'application est > 24 heures. θ = 0,9: si la durée d'application est entre 1 heure et 24 heures. θ = 0,85: si la durée d'application est < à 1 heure.

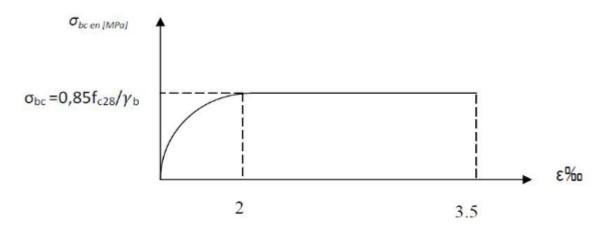


Figure II.3: Diagramme contraintes-déformations du béton à L'ELU

➤ Contrainte limite de cisaillement : (art A-5.121 BAEL 91)

Elle est donnée par: $\tau_u = \frac{v_u}{b \cdot d}$

V_u: Effort tranchant.

b : largeur de l'élément.

d: hauteur utile de la section

 $.\tau \mathbf{u} \le \min \left\{ \frac{\mathbf{0.2.} f_{ef}}{\gamma_b}; 5 \text{Mpa} \right\} \text{ si la fissuration est non préjudiciable.}$

 $\tau u \le \min \left\{ \frac{0.15.f_{ef}}{\gamma_h}; 4Mpa \right\}$ si la fissuration est préjudiciable

Contrainte de service à la compression: (art A-4.5.2.BAEL 91) :

 $\sigma_{bc} = 0.6 f_{c28}$ Pour notre cas $\sigma_{bc} = 0.6 \text{ x} 25 = 15 \text{ MPa}$

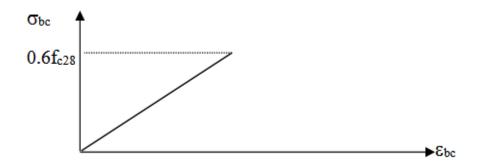


Figure II.4: Diagramme contraintes-déformations du béton à l'ELS

II.4.2.Acier:

C'est un matériau qui possède une très bonne résistance à la traction et classé en trois catégories:

- Les ronds lisses FeE215 et FeE235 correspondant à des limites d'élasticité garanties de 215 MPa 235 MPa respectivement.
- ➤ Les aciers à haute adhérence FeE400 etFeE500 correspondant à des limites d'élasticité garanties respectivement de 400 MPa et 500 MPa.
- Treillis soudés formés par assemblage des barres tréfilées soudées

II.3.2.1 Module d'élasticité longitudinale :

La valeur du module d'élasticité donné par la formule

 $E_s = 2 \times 10^5 MPa$ (module de Young)

II.3.2.2.Contraint limite de l'acier :

> Contraintes limites à l'état limite ultime (ELU) :

Donné par la formule suivante :

$$\sigma_s$$
: Contrainte de l'acier: $\sigma_s = \frac{f_s}{\gamma_s}$

y_s: Coefficient de sécurité

1,15 Cas des situations durables son transitoire

1,00 Cas des situations accidentelles

f_{ϵ} : Contrainte limite élastique.

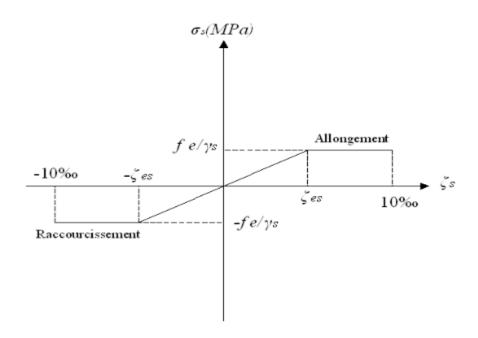


Figure II.5 : Diagramme contraintes-déformations de l'acier é l'ELU

> Contraintes limites à l'état limite de service (ELS) :

C'est l'état où on fait des vérifications des contraintes par rapport aux cas appropriées

- Fissuration peu préjudiciable : (pas de vérification)
- Fissuration préjudiciable

 η : Coefficient de fissuration

 $\eta = 1,00$ pour les aciers ronds lisses

 $\eta = 1,60$ pour les aciers à haute adhérence.

II.4. Pré dimensionnement des planchers :

Dans notre projet, les plancher sont à corps creux

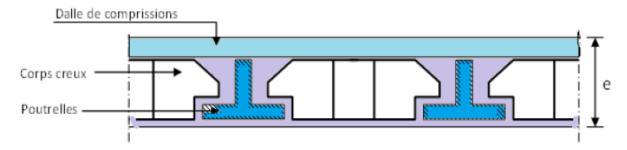


Figure II.6: Planchers corps creux.

> Epaisseur du plancher :

Pour dimensionner le plancher en corps creux, on utilise la condition de rigidité

Suivante:

$$\frac{h_t}{L} \geq \frac{1}{22.5} \qquad Avec: \begin{cases} h_t: \text{ hauteur totale du plancher.} \\ L: \text{port\'ee maximale entre nus d'appuis} \end{cases}$$

L _{max} (m)	L _{max} 22,5	h _t (cm)	Le choix
4,30	19,11cm	20cm	4 cm : dalle de compression 16 cm : corps creux

Tableau II.1: Dimensionnement du plancher.

II.4.1. Descente des charges :

II.4.1.1. Plancher terrasse (inaccessible):

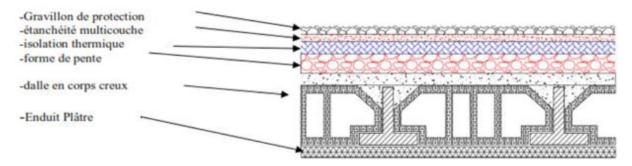


Figure II.7: Planchers terrasse inaccessible.

Les Charge permanente et les charges d'exploitations sont données sans le tableau :

Désignation	Epaisseur (m)	Charge (KN/m ²)
1-Gravions de protection	4	0,80
2-Etancheité multi couche	2	0,12
3-Forme de ponte en béton	5	0,90
4-Isolation thermique	2,5	0,66
5-dalle en corps creux	16+4	2,80
6-Enduit en plâtre	0,20	
Charge permanente totale	G _T =5,48	
Charge d'exploitation		Q=1

Tableau II.2: Plancher terrasse inaccessible.

II.4.1.2. Plancher étage courant :

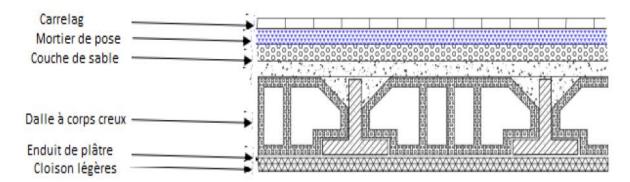


Figure II.8 : Plancher étage courant.

Désignation	Epaisseur (m)	Charge (KN/m ²)
1-revetement en carrelage	2	0,4
2-mortier de pose	2	0,4
3-Lit de sable	2	0,34
4-dalle en corps creux	16+4	2,8
5- Enduit en plâtre	2	0,2
6- Cloison en brique creuses	10	0,9
Charge permanente tota	G _T =5,04	
Charge d'exploitation	n	Q=1,5

Tableau II.3: Plancher étage courant.

II.5. Pré-dimensionnement des éléments porteurs :

II.5.1. Pré-dimensionnent des poutres :

Selon le B.A.E.L.91, le critère de rigidité est :

$$\begin{cases} \frac{L}{15} \leq h_t \leq \frac{L}{10} \\ 0,3 \ d \leq b \leq 0,4 \ d \\ \frac{h_t}{b} \leq 3 \end{cases} \text{ avec: } \begin{cases} h: \text{haureur totale de la poutre} \\ b: \text{largeur de la poutre} \\ L: \text{la plus grande portée} \\ d: \text{haureur utile} \end{cases}$$

II.5.1.1. les poutres principales : reçoivent les charges transmisses par les poutrelles et la reparties aux poteaux sur lesquels ces poutres reposent.

$$\begin{split} L_{max} &= 4{,}30 \text{ m} \\ \left\{ \begin{array}{l} L &= 430 \text{ cm} \\ d &= 0{,}9 \text{ h} = 36 \text{ cm} \end{array} \right. \Longrightarrow \begin{cases} 28{,}66 \leq h \leq 43 \\ 10{,}8 \leq b \leq 14{,}4 \end{cases} \end{split}$$
 On prend
$$\begin{cases} \mathbf{h} &= \mathbf{40cm} \\ \mathbf{b} &= \mathbf{30cm} \end{cases}$$

D'après le RPA 99 (version 2003), les dimensions doivent vérifier les conditions :

$$\begin{cases} h \geq 30 \, \text{cm} \\ b \geq 20 \, \text{cm} \\ \frac{h}{b} < 4 \\ b_{\text{Max}} \leq 1,5 \, h + b \end{cases} \implies \begin{cases} h = 40 > 30 \, \dots \, \text{condition v\'erifi\'ee} \\ h = 30 > 20 \, \dots \, \text{condition v\'erifi\'ee} \\ \frac{h}{b} = 1,33 < 4 \, \dots \, \text{condition v\'erifi\'ee} \\ b = 30 < 82,50 \, \dots \, \text{condition v\'erifi\'ee} \end{cases}$$
On adopte la section des poutres principales (30x40) cm²

II.5.1.2. Les poutres secondaires : reliant les portiques entre eux pour ne pas basculer.

$$\begin{array}{c} L_{max} = 4{,}30 \text{ m} \\ \left\{ \begin{array}{l} L = 430 \text{ cm} \\ d = 0{,}9 \text{ h} = 31{,}5 \end{array} \right. \Longrightarrow \begin{cases} 28{,}66 \leq h \leq 43 \\ 9{,}45 \leq b \leq 12{,}6 \end{cases} \\ \text{On prend} \left\{ \begin{array}{l} \mathbf{h} = \mathbf{35} \text{ cm} \\ \mathbf{b} = \mathbf{30} \text{ cm} \end{array} \right. \end{array}$$

D'après le RPA 99 (version 2003), les dimensions doivent vérifier les conditions :

$$\begin{cases} h \geq 30 \text{cm} \\ b \geq 20 \text{cm} \\ \frac{h}{b} < 4 \\ b_{\text{Max}} \leq 1,5 \text{ h} + b \end{cases} \Rightarrow \begin{cases} h = 35 > 30 \dots \text{condition v\'erifi\'ee} \\ b = 30 > 20 \dots \text{condition v\'erifi\'ee} \\ \frac{h}{b} = 1,16 < 4 \dots \text{condition v\'erifi\'ee} \\ b = 30 < 82,50 \dots \text{condition v\'erifi\'ee} \end{cases}$$

On adopte la section des poutres secondaires (30x35) cm².

II.5.2. Pré-dimensionnement des poteaux :

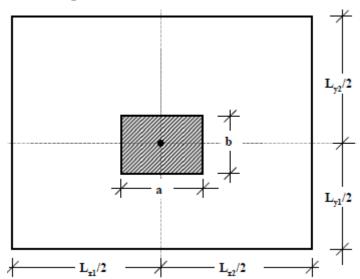


Figure II.9 : Section de poteau le plus sollicité.

Le calcul est basé sur la section du poteau le plus sollicité :

$$S = \left[\left(\frac{Lx1}{2} + \frac{Lx2}{2} \right) \times \left(\frac{Ly1}{2} + \frac{Ly2}{2} \right) \right]$$

$$S = \left[(4,3/2 + 2,4/2) \times (4,3/2 + 2,2/2) \right]$$

$$S = 10.88 \text{ m}^2$$

II.5.2.1. Calcul de l'effort normal sollicitant les poteaux :

$$N_u = 1.35N_G + 1.50N_O$$

> Effort de compression dû aux charges permanente

$$N_G = N_{GT} + N_{GEC} + P_{pp} + P_{ps}$$

> Plancher terrasse :

$$N_{CT} = G \times S = 5.48 \times 10.88 = 59.62 \text{KN}$$

▶ Plancher (RDC + étage courant)

$$N_{GEC} = 4 \times 5,04 \times 10,88 = 219,34 \text{ KN}$$

$$P_{pp} = 25 \times 0.30 \times 0.4 \times 5 \times 3.35$$

$$P_{pp} = 50,25 \text{ KN}$$

$$P_{ps} = 25 \times 0.30 \times 0.35 \times 5 \times 3.25$$

$$P_{ps} = 42,65 \text{ KN}$$

Donc:
$$N_G = 59,62+219,34+50,25+42,65$$

$$N_G = 371,86KN$$

II.5.2.2.L'effort de compression du aux charges d'exploitation :

Plancher terrasse:

$$N_0 = Q \times S = 1 \times 10,88 = 10,88 \text{KN}$$

Plancher étage courent :

$$N_{OEC} = n \times Q \times S = 4 \times 1.5 \times 10.88 = 65.28 \text{ KN}$$

$$N_0 = 10,88 + 65,28$$

$$N_0 = 76,16KN$$

Alors:

$$N_u = (1.35 \times 371.86 + 1.50 \times 76.16) \times 1.1$$

$$N_{ij} = 616,251 \times 1,1$$

$$N_{ii} = 677,87KN$$

II.5.2.3. Détermination de la section du poteau (a x b) :

Détermination de "a":

Vérification du flambement :

Le poteau à dimensionner est de section rectangulaire (a x b), on doit dimensionner les poteaux de telle façon qu'il n'ait pas de flambement c'est-à-dire :

$$\lambda \leq 50$$
.

$$\lambda = \frac{L_f}{i} = \frac{0.7 \times l_0}{i}$$

Avec:

$$\begin{split} i &= \sqrt{\frac{I}{B}} = \sqrt{\frac{b \times a^3}{12 \times b \times a}} = 0,289 \times a \\ \text{On a : L}_0 &= 3,60 \text{ m ; L}_f = 252 \text{cm} \\ \lambda &= \frac{2,52}{0,289 \times a} < 50 \Longrightarrow \alpha \ge \frac{252}{50 \times 0,289} = 17,44 \text{ cm}. \end{split}$$

On prend:

a = 35cm

Détermination de "b":

Selon les règles BAEL91, l'effort normal ultime N_u est comme suit:

$$\begin{split} N_{\mathrm{u}} & \leq \ \alpha \Big[\frac{B_{\mathrm{r}} \times f_{\text{c28}}}{0.9 \times \gamma_{b}} + A_{\text{s}} \frac{f_{\text{e}}}{\gamma_{\text{s}}} \Big]. \\ B_{\mathrm{r}} & = (35-2)(b-2) = 33(b-2)\text{cm}^{2}. \end{split}$$

Selon le RPA 99 (version 2003):

$$\lambda \le 50 \Longrightarrow \frac{252}{0,289 \times 35} = 24,91 < 50$$

Et:
$$\alpha = \frac{0.85}{1 + 0.2 \left(\frac{\lambda}{a}\right)^2} = \frac{0.85}{1 + 0.2 \left(\frac{24.91}{85}\right)^2} = 0.771$$

Sachant que:

$f_{c28}(Mpa)$	f _€ (Mpa)	γ_b	γ_s
25	400	1,5	1,15

Tableau II.4 : Les caractéristiques des matériaux.

Donc :

$$N_{\rm u} \leq 0,771 \left[\frac{33(b-2) \times 25}{0.9 \times 1.5 \times 10} + \frac{0.297(b-2) \times 400}{1.15 \times 10} \right] =$$

 $b \ge 16.5$ cm

On prend:

b = 35 cm

II.6. Vérification des conditions du RPA 99 (version 2003)

$$\begin{cases} \text{Min}\,(a,b) > 30 \\ \text{Min}(a,b) > \frac{h_e}{20} \\ \frac{1}{4} < \frac{a}{b} < 4 \end{cases} \Rightarrow \begin{cases} \text{Min}\,(a,b) = 35 > 30 & \dots \dots \dots \text{condition v\'erifi\'ee} \\ \text{Min}\,(a,b) = 35 > \frac{330}{20} = 16,50 \dots \dots \text{condition v\'erifi\'ee} \\ 0,25 < \frac{a}{b} = 1 < 4 \dots \dots \text{condition v\'erifi\'ee}. \end{cases}$$

$$Ou: G = g \times S + n \times G_{pp} + n \times G_{ps}$$

Avec:

$$g = \ G_{\text{ter}} + 4 \ G_{\text{eta}} = 5{,}48 + 4 \times 5{,}04 = 25{,}64 \ KN/m^2.$$

$$P_{pp} = 25 \times 0.30 \times 0.4 \times 5 \times 3.35$$

$$P_{pp} = 50,25 \text{ KN}$$

$$P_{ps} = 25 \times 0.30 \times 0.35 \times 5 \times 3.25$$

$$P_{ps} = 42,65 \text{ KN}$$

Donc:
$$N_c = 25,64 \times 10,88 + 5 \times 9,844 + 5 \times 9,00 = 453,16 \text{ KN}$$

Alors:
$$N_G = 1,15 \times 453,16$$

$$N_G = 521, 13 \text{ KN}$$

II.7. Pré-dimensionnement des voiles :

Les voiles sont considérée comme des éléments satisfaisants la condition de (R.P.A 99 V 2003 P 56) :

$$L \ge 4e$$

L: Longueur du voile.

e: L'épaisseur de voile.

L'épaisseur minimale est de 15 cm.

L'épaisseur doit être déterminée en fonction de la hauteur d'étage h_e et de condition de rigidité aux extrémités :

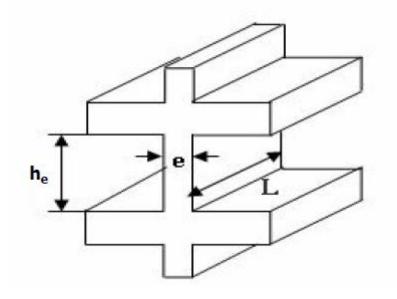


Figure II.10 : coupe de voile en élevation

On a:

$$h_e = 360 \; cm \; \to e \geq \max\left(\frac{h_e}{22}; 15\right) cm = \max\left(\frac{360}{22}; 15\right) cm = \max(16,36; 15) cm$$

$$h_e = 306 \ cm \ \rightarrow e \ge max\left(\frac{h_e}{22}; 15\right) cm = max\left(\frac{306}{22}; 15\right) cm = max(13,90; 15) \ cm$$
 on prend : $e = 20 \ cm$

Poteaux		Poutres principales		Poutres secondaires		Voiles	Plancher
a(cm)	b (cm)	b(cm)	h (cm)	b(cm)	h (cm)	e (cm)	e (cm)
35	35	30	40	30	35	20	16+4

Tableau II.5 : Dimensions des défirent éléments porteurs.

II.8. Modélisation de la structure :

Les résultats ont été obtenue avec le logiciel ETABS V 9.6, est un logiciel de calcul et de conception des structure d'ingénierie particulièrement adapté aux bâtiments de génie civil. Il offre de nombreuses possibilités d'analyses des effets statique et dynamique avec des compléments de conception et vérification des structures en béton arme.

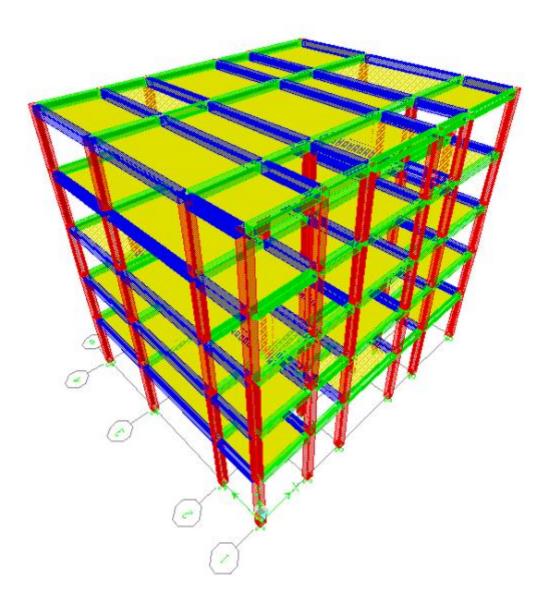


Figure II.11: Modèle en 3D

II.9. Vérification des conditions du RPA99 /version 2003:

II.9.1. Modes de vibration et périodes :

Pour les structures représentées par des modèles plans dans deux directions orthogonales, le nombre de modes de vibration à retenir dans chacune des deux directions d'excitation doit être tel que :

- La somme des masses modales effectives pour les modes retenus soit égale à90% au moins de la masse totale de la structure.
- Ou que tous les modes ayant une masse modale effective supérieure à 5% de la masse totale de la structure soient retenus pour la détermination de la réponse totale de la structure
- Le minimum de mode à retenir est de 03 dans chaque direction considérée.

Les résultats de calcul sont résumés dans les tableaux suivants :

Mode	Période (s)	UX	UY	Sum UX	Sum UY
1	1.027891	37.2606	11.9411	37.2606	11.9411
2	0.98431	22.258	65.2892	59.5186	77.2304
3	0.937285	28.2217	10.272	87.7403	87.5024
4	0.331956	3.7735	1.2528	91.5139	88.7551
5	0.317608	2.2834	6.9347	93.7973	<u>95.6898</u>
6	0.302709	2.9474	1.1049	96.7447	96.7948
7	0.189895	0.9971	0.2583	97.7417	97.053
8	0.1807	0.6128	1.7328	98.3545	98.7858
9	0.173168	0.7625	0.3589	99.117	99.1447
10	0.13327	0.2729	0.0777	99.3899	99.2224
11	0.126367	0.1946	0.5169	99.5845	99.7393
12	0.121553	0.2601	0.114	99.8446	99.8533

Tableau II.6 : Modes propres de la structure.

> Commentaire :

La somme des masses modales dépasse 90% de la masse totale du bâtiment, d'où la condition du RPA est vérifiée

Mode 1: Le $\mathbf{1}^{er}$ mode de notre structure est une rotation de période T_1 =1,02 s

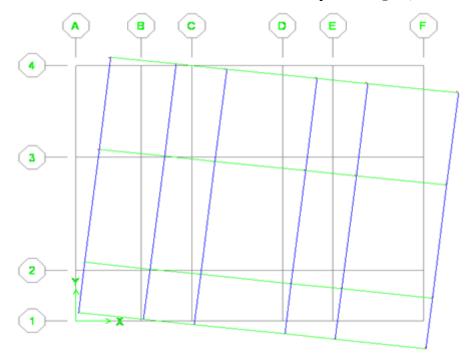


Figure II.12 : Mode 1 de déformation

Mode 2: Le 2^{eme} mode de notre structure est une translation suivant l'axe Y-Y de période $T_2=0.98$ s

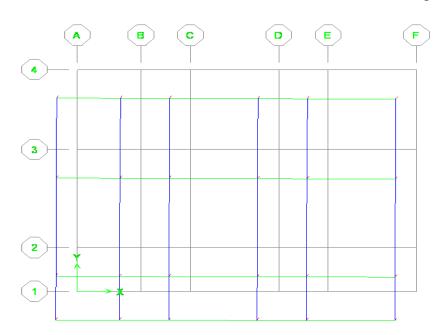
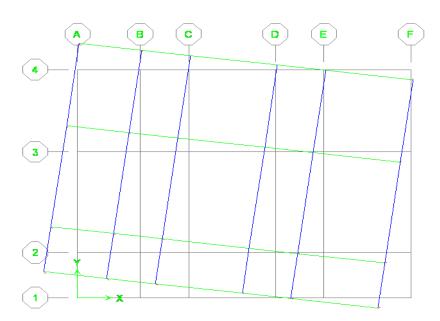



Figure II.13: Mode 2 de déformation

Mode 3: Le 3^{eme} mode de notre structure est une rotation de période $T_2=0.93$ s

Figure II.14: Mode 3 de déformation.

II.9.2. Effort tranchant à la base :

D'âpres l'Art 4.3.6 du R.P.A 99/2003 :

La résultante des forces sismiques à la base obtenues par combinaisons des valeurs modales ne doit pas être inférieure à 80% de la résultante des forces sismiques déterminées par la méthode statique équivalente pour une valeur de la période fondamentale donnée par la formule empirique appropriée soit : $V_{dynamique} > 80\%V_{statique}$

➤ Calcule de la force sismique par la méthode statique équivalente

Tout bâtiment sera conçu et construit pour résister aux forces sismiques horizontales totales agissant non simultanément suivant chacun des axes principaux selon la formules suivante :

$$V = \frac{A D Q}{R} W KN$$

A: coefficient d'accélération de zone donne par le RAP99/version 2003 (Tableau 4.1)

Dans notre cas ,zone III groupe d'usage 2 A=0,25

R:coefficient de comportement global de la structure donnée par le (tableau 4.3)

 $\mathbf{R} = 5$

Q: Facteur de qualité : $Q = \sum_{1}^{5} p_{a}$

La pénalité qui dépend de l'observation ou non du critère «q» d'après le tableau 4.4 on peut ressortir que :

	p_q			
Critère « q»	Observé	N /Observé		
Conditions minimales sur les files de contreventement	0	0,05		
2. Redondance en plan	0	0,05		
4. Régularité en élévation	0	0,05		
5. Contrôle de la qualité des matériaux	0	0,05		
6. Contrôle de la qualité de l'exécution	0	0		
$\sum p_q$	0,2			
Q	1	.,2		

Tableau II.7 : Valeurs des pénalités p_q .

W: poids total de la structure

Selon les RPA99/version2003 il faut prendre la totalité des charges permanentes et une fraction β des charges d'exploitation,

$$W_T = \sum W_i$$
 Avec $W_i = W_{Gi} + \beta W_{Qi}$

 W_{Gi} : Poids due aux charges permanente

 W_{Qi} : Charge d'exploitation

 β : Coefficient de pondération (d'après RPA99/version2003 ; β = 0, 2)

Pour le calcul des poids des différents niveaux de la structure on a le tableau suivant qui est donné par le logiciel ETABS

Etage	Poids (KN)
5	3549.83385
4	3519.98888
3	3519.98888
2	3519.98888
1	2346.67757
Σ	16456.4781

Tableau II.8: Poids total de la structure.

Les résultats de calcul de la force sismique sont résumés dans les tableaux suivants :

	$V_{\rm dynamique}$	V _{statique}	$80\%V_{\text{statique}}$	$80\%V_{\rm sta}$ < $V_{ m dyn}$
Sens X-X	1678,36	2237,52	1790,02	Condition non vérifiée
Sens Y-Y	1782,61	2237,52	1790,02	Condition non vérifiée

Tableau II.9 : Vérification de la force sismique à la base.

Commentaire:

La résultante des forces sismiques à la base obtenue par la méthode dynamique Modale spectrale est inférieure à 80 % de celle obtenue par la méthode statique équivalente. (Art4-3-6 du RPA 99/V 2003.est non vérifie)

II.9.3. Période fondamentale de la structure :

La période donnée par ETABS ne doit pas dépasser celle estimée à partir de la formule empirique de plus de 30%, $T_{dynamigus} < 1,3 \times T_{empirique}$

$$T_{empirique} = Min\{C_T \times h_N^{\frac{s}{4}}, 0, 09h_N/\sqrt{D_X}\}$$

$$T_{empirique} = Min\{C_T \times h_N^{\frac{5}{4}}, 0.09h_N / \sqrt{D_Y}\}$$

 h_N : Hauteur mesurée en mètre à partir de la base de la structure jusqu'au dernier niveau (N).

C_T: Coefficient fonction du système de contreventement et du type de remplissage. Il est donné par (le tableau 4.6 du RPA99/v2003 page 31)

D: la dimension du bâtiment mesuré a sa base dans la direction de calcul considéré.

Donc

$$C_T = 0, 05 \rightarrow T = 0, 05 \times (15,84)^{\frac{3}{4}} \rightarrow T = 0, 39 \text{ s}$$
 $T_x = 0, 09 \times 15,84/\sqrt{16,5} \Rightarrow T_x = 0,35 \text{ s}$
 $T_y = 0, 09 \times 15,84/\sqrt{13,45} \Rightarrow T_y = 0,38 \text{ s}$
 $T = Min\{0,39 \text{ s},0,35\text{s}\} \Rightarrow T_{empirique} = 0,35 \text{ s}$
 $T = Min\{0,39 \text{ s},0,38\text{s}\} \Rightarrow T_{empirique} = 0,35 \text{ s}$

D: facteur d'amplification dynamique moyen, fonction de la catégorie de site, du facteur de correction d'amortissement (η) et de la période fondamentale de la structure (T).

D=

$$\begin{cases} 2.5 \, \eta & 0 \le T \le T_2 \\ 2.5 \, \eta (T_2/T)^{\frac{2}{3}} & T_2 \le T \le 3.0s \\ 2.5 \, \eta (T_2/3.0)^{\frac{2}{3}} (3.0/T)^{\frac{5}{3}} & T \ge 3.0s \end{cases}$$

T₁et T₂ Périodes caractéristiques, associées à la catégorie du site et données par le tableau 4.7

Dans notre cas: site meuble (site 3) \Rightarrow ($T_1 = 0.15$, $T_2 = 0.5$)

 η : Facteur de correction d'amortissement donné par la formule :

$$\eta = \sqrt{7/(2+\xi)} \ge 0.7$$

 $\xi(\%)$ est le pourcentage d'amortissement critique fonction du matériau constitutif, du type de structure et de l'importance des remplissages (Tableau 4.2) $\xi = 6\%$

Donc:
$$\eta = \sqrt{7/(2+6)} = 0.935 > 0.7$$

On a $0 < 0.351 < 0.5 \rightarrow (D = 2.5 \times 0.935) \rightarrow (D=2.34)$

 $T_{dynamiqus} < 1.3 \times T_{empiriqus} \implies 1.02 \text{s} > 1,3 \times 0,35 = 0.45 \text{ s}$ (Condition non vérifiée)

Commentaire:

On remarque que la période donnée par l'ETABS est supérieur à 1,3 de la période empirique du bâtiment

II.9.4.Déplacements relatifs:

D'après le RPA 99 (Art 5-10), les déplacements relatifs latéraux d'un étage par rapport aux Étages adjacents ne doivent pas dépasser 1% de la hauteur d'étage.

$$\Delta_k = R \delta_{ek}$$

Le déplacement relatif du niveau k" par rapport au niveau k-1" est égal à : $\Delta_k = \delta_{k-1}$

Condition non Vérifiée

 $\overline{U_x}$ 1%he≥ Δ_k N h_{θ} 1%he R RU_x Δ_k 5 0.0444 5 0.222 Condition Vérifiée 3.06 0.0306 0.0175 4 3.06 0.0306 0.0409 5 0.2045 0.0335 Condition non Vérifiée 3 3.06 0.0306 0.0342 5 0.171 0.048 Condition non Vérifiée 2 5 0.0306 0.0246 Condition non Vérifiée 3.06 0.123 0.0585

Les résultats de calcul sont résumés dans les tableaux suivants :

0.036

0.0129

Tableau II.10: Déplacements inter-étages suivant X.

0.0645

0.0645

5

N	h_e	1%he	U_x	R	RU_x	$\Delta_{ m k}$	1%he≥ $\Delta_{\mathbf{k}}$
5	3.06	0.0306	0.0468	5	0.234	0.0195	Condition Vérifiée
4	3.06	0.0306	0.0429	5	0.2145	0.036	Condition non Vérifiée
3	3.06	0.0306	0.0357	5	0.1785	0.0505	Condition non Vérifiée
2	3.06	0.0306	0.0256	5	0.128	0.061	Condition non Vérifiée
1	3.6	0.036	0.0134	5	0.067	0.067	Condition non Vérifiée

Tableau II.11: Déplacements inter-étages suivant Y.

Commentaire:

1

3.6

On remarque que dans les deux sens les déplacements relatifs dus aux efforts sismiques sont supérieurs aux déplacements admissibles donnés par le RPA99 /2003, donc la stabilité de l'ouvrage sous charges horizontales est non assurée (Art5.10 du RPA/ version 2003est vérifié).

II.9.5. Justification vis-à-vis de l'effet P-Delta :

D'après le RPA 99 /version 2003 (article 4.9), L'effet P-Delta est un effet de second ordre qui se produit dans chaque structure où les éléments sont soumis à des charges axiales. Cet effet est étroitement lié à la valeur de la force axiale appliquée (P) et le déplacement (Delta). L'effet P- Δ peut être négligé dans le cas des bâtiments si la condition suivante est satisfaite à tous les niveaux:

$$\theta = \frac{P_k \times \Delta_k}{V_k \times h_k} < 0.1$$

 $\mathbf{P}_{\mathbf{k}}$: Poids total de la structure et des charges d'exploitation associés au-dessus du niveau «k».

V_k: Effort tranchant d'étage au niveau « k ».

h_k: Hauteur de l'étage « k ».

Δ_k: Déplacement relatif du niveau « k » par rapport au niveau « k-1 »

Les résultats de calcul sont résumés dans les tableaux suivants :

N	h_k	$\Delta_{\mathbf{k}}$	P_k	V_k	θ	θ<0,1
5	3.06	0.01225	3426.58199	395.34	0.03469805	Condition Vérifiée
4	3.06	0.02345	6833.31246	866.58	0.06042881	Condition Vérifiée
3	3.06	0.0336	10240.0429	1230.6	0.09136981	Condition Vérifiée
2	3.06	0.04095	13646.7734	1505.4	0.1213139	Condition non Vérifiée
1	3.6	0.04515	15936.8218	1678.36	0.11908905	Condition non Vérifiée

Tableau II.12: Vérification L'effet P-Delta suivant X.

N	h_k	Δ_{k}	P_k	V_k	θ	θ<0,1
5	3.06	0.01365	3426.58199	422.22	0.03620208	Condition Vérifiée
4	3.06	0.0252	6833.31246	923.65	0.06092604	Condition Vérifiée
3	3.06	0.03535	10240.0429	1309.57	0.09033188	Condition Vérifiée
2	3.06	0.0427	13646.7734	1600.05	0.11901532	Condition non Vérifiée
1	3.6	0.0469	15936.8218	1782.61	0.11647044	Condition non Vérifiée

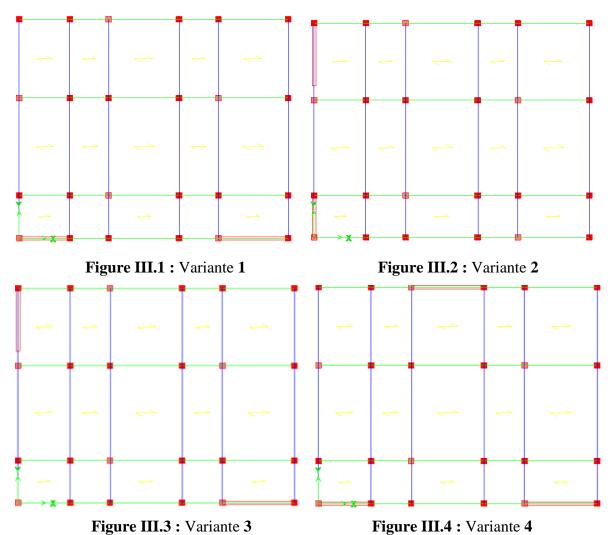
Tableau II.13: Vérification L'effet P-Delta suivant Y.

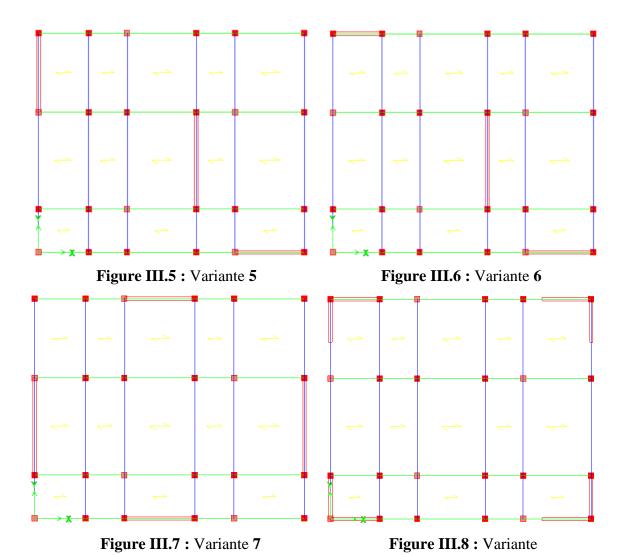
> Commentaire:

On constate que θ_x et θ_y sont supérieurs à 0,1 au le premier et au deuxième niveau, donc l'effet P-Delta ne peut pas être négligé (Art5-9 du RPA 99/V 2003.est non vérifié).

II.10.Conclusion:

Par suite des résultats obtenus dans cette étude sismique, on peut dire que notre bâtiment est vulnérable il faut le rigidifier par des voiles en béton armé.


Chapitre III : Etude paramétrique


III.1.Introduction:

La disposition des voiles dans les structures mixtes est essentielle pour avoir une conception adéquate et un bon comportement structurel .Une bonne disposition des voiles permet d'avoir une exploitation optimale de la rigidité de la structure, cependant dans le code parasismique algérien RPA99/V2003, aucun article n'est relatif à ce paramètre, ce qui pousse les concepteurs des structures mixtes à essayer d'une manière systématique de disposer les voiles sur la périphérie du bâtiment.

L'objectif de ce chapitre est de rechercher la disposition optimale des voiles en évaluant la performance sismique de la structure selon plusieurs variantes de la disposition de voiles.

Les différentes variantes de disposition des voiles de contreventement sont mentionnées sur les figures suivantes :

III.2. Etude de la variante 1 :

III.2.1. Modes de vibration et périodes :

La somme des masses modales dépasse 90% de la masse totale du bâtiment, d'où la condition du RPA est vérifiée. Les résultats de calcul sont résumés dans le tableau suivant :

Mode	Période (s)	UX	UY	Sum UX	Sum UY
1	1.013112	33.1927	8.8504	33.1927	8.8504
2	0.958876	3.8734	78.2343	37.0661	87.0847
3	0.330826	8.1794	0.1805	45.2455	87.2652
4	0.320445	34.6997	1.1422	79.9452	88.4073
5	0.307468	2.906	8.101	82.8512	96.5083
6	0.186097	0.6514	0.1436	83.5027	96.6519
7	0.17397	0.0335	2.3789	83.5362	99.0309
8	0.129902	0.3969	0.0306	83.9331	99.0615
9	0.120353	0.0157	0.7665	83.9488	99.828
10	0.103957	0.034	0.0044	83.9828	99.8324
11	0.095358	0.0003	0.1676	83.9831	100
12	0.072559	12.039	0	96.022	<u>100</u>

Tableau III.1 : Modes propres de la structure.

Mode 1: Le $\mathbf{1}^{er}$ mode de notre structure est une rotation de période T_1 =1.01 s

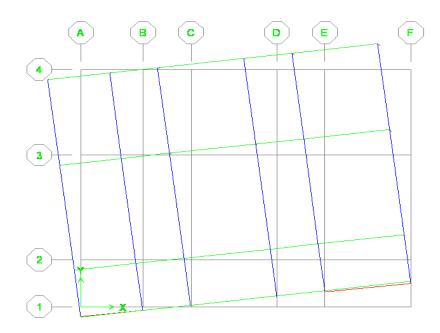


Figure III.9 : Mode 1 de déformation.

Mode 2: Le 2^{eme} mode de notre structure est une translation suivant l'axe Y-Y de période T_2 =0.95 s

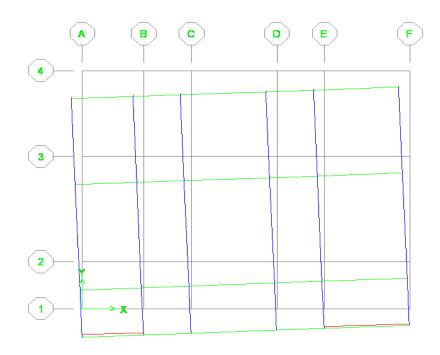


Figure III.10 : Mode 2 de déformation.

Mode 3: Le 3^{eme} mode de notre structure est une translation suivant l'axe X-X de période T_2 =0.33 s

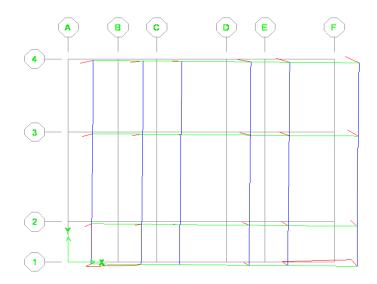


Figure III.11 : Mode 3 de déformation.

III.2.2. Effort tranchant à la base (KN):

	$V_{ m dynamique}$	$\mathbf{V}_{statique}$	80%V _{statique}	$80\%V_{\rm sta} < V_{\rm dyn}$
Sens X-X	1744.82	2310.4895	1848.3916	Condition non vérifiée
Sens Y-Y	1859.68	2310.4895	1848.3916	Condition vérifiée

Tableau III. 2 : Vérification de la force sismique à la base.

Commentaire:

Dans le sens X on remarque que La résultante des forces sismiques à la base obtenue par la méthode dynamique Modale spectrale est inférieure à 80 % de celle obtenue par la méthode statique équivalente.

III .2.3.Période fondamentale de la structure (s) :

$T_{ m dynamique}$	$T_{ m empirique}$	1.3T _{empirique}	$T_{\rm dyn} < 1.3 T_{\rm emp}$
1.01	0.35	0.45	Condition non vérifiée

Tableau III.3 : Vérification de la période fondamentale.

III .2.4.Déplacements relatifs (m):

Les résultats de calcul sont résumés dans les tableaux suivants :

N	h _e	1%he	U_x	R	RU_x	$\Delta_{\mathbf{k}}$	1%he≥ $\Delta_{\mathbf{k}}$
5	3.06	0.0306	0.023	5	0.115	0.0105	condition vérifiée
4	3.06	0.0306	0.0209	5	0.1045	0.017	condition vérifiée
3	3.06	0.0306	0.0175	5	0.0875	0.024	condition vérifiée
2	3.06	0.0306	0.0127	5	0.0635	0.0305	condition vérifiée
1	3.6	0.036	0.0066	5	0.033	0.033	condition vérifiée

Tableau III. 4 : Déplacements inter-étages suivant X.

N	h _e	1%he	U_y	R	RU_y	$\Delta_{\mathbf{k}}$	1%he≥ ∆ _k
5	3.06	0.0306	0.0466	5	0.233	0.0205	condition vérifiée
4	3.06	0.0306	0.0425	5	0.2125	0.037	Condition non Vérifiée
3	3.06	0.0306	0.0351	5	0.1755	0.051	Condition non Vérifiée
2	3.06	0.0306	0.0249	5	0.1245	0.061	Condition non Vérifiée
1	3.6	0.036	0.0127	5	0.0635	0.0635	Condition non Vérifiée

Tableau III.5: Déplacements inter-étages suivant Y.

Commentaire:

On remarque que dans le sens Y les déplacements relatifs dus aux efforts sismiques sont supérieurs aux déplacements admissibles données par le RPA99 /V2003, donc la stabilité de l'ouvrage sous charges horizontales n'est pas assurée (Art5.10 du RPA/ version 2003est non vérifiée).

III .2.5. Justification vis-à-vis de l'effet P-Delta :

Les résultats de calcul sont résumés dans les tableaux suivants :

N	h _e	$\Delta_{\mathbf{k}}$	$P_{\mathbf{k}}$	V_k	θ	θ<0,1
5	3.06	0.0105	3549.83385	413.3	0.02947206	condition vérifiée
4	3.06	0.017	7069.82273	831.64	0.04722812	condition vérifiée
3	3.06	0.024	10589.8116	1183.62	0.07017231	condition vérifiée
2	3.06	0.0305	14109.8005	1526.64	0.09212185	condition vérifiée
1	3.6	0.033	16456.4781	1744.82	0.08645651	condition vérifiée

Tableau III.6 : Vérification de L'effet P-Delta suivant X.

N	h_e	$\Delta_{\mathbf{k}}$	P_k	V_k	θ	θ<0,1
5	3.06	0.0205	3549.83385	441.92	0.05381419	condition vérifiée
4	3.06	0.037	7069.82273	966.26	0.08846975	condition vérifiée
3	3.06	0.051	10589.8116	1369.85	0.12884393	Condition non Vérifiée
2	3.06	0.061	14109.8005	1672.48	0.16817768	Condition non Vérifiée
1	3.6	0.0635	16456.4781	1859.68	0.15608814	Condition non Vérifiée

Tableau III.7: Vérification de L'effet P-Delta suivant Y.

Commentaire:

Dans la direction Y la justification de l'effet P-Delta n'est pas satisfaite $(\theta>0,1)$

III .2.6. Calcul de l'excentricité:

D' après l'article (4.3.7 du RPA99/2003), dans le cas où il est procédé à une analyse tridimensionnelle, en plus de l'excentricité théorique calculée, une excentricité accidentelle égale \pm 0.05 L, (L étant la dimension du plancher perpendiculaire à la direction de l'action sismique) doit être appliquée au niveau du plancher considéré et suivant chaque direction. Soit : **CM :** centre de masse

CR: centre de rigidité

Les résultats de calcul sont résumés dans les tableaux suivants :

N	XCM	XCR	CM-CR	5%Lx	(CM-CR)-5%Lx	(CM-CR)+5%Lx
5	8.237	7.974	0.263	0.825	0.562	1.088
4	8.237	7.926	0.311	0.825	0.514	1.136
3	8.237	7.909	0.328	0.825	0.497	1.153
2	8.237	7.9	0.337	0.825	0.488	1.162
1	8.233	7.892	0.341	0.825	0.484	1.166

Tableau III.8 : Vérification de l'excentricité suivant X.

N	YCM	YCR	CM-CR	5%Ly	(CM-CR)-5%Ly	(CM-CR)+5%Ly
5	6.539	0.282	6.257	0.6725	5.5845	6.9295
4	6.56	0.458	6.102	0.6725	5.4295	6.7745
3	6.56	0.713	5.847	0.6725	5.1745	6.5195
2	6.56	1.026	5.534	0.6725	4.8615	6.2065
1	6.675	1.386	5.289	0.6725	4.6165	5.9615

Tableau III.9 : Vérification de l'excentricité suivant Y.

Dans la direction X, nous constatons que l'excentricité est faible .Dans la direction Y l'excentricité est important, ce qui peut donner lieu à une torsion d'ensemble.

III.3. Etude de la variante 2 :

III.3.1. Modes de vibration et périodes :

Mode	Période (s)	UX	UY	Sum UX	Sum UY
1	1.023093	32.2514	28.3112	32.2514	28.3112
2	0.961978	55.2811	16.9659	87.5325	45.277
3	0.344642	0.0073	28.259	87.5398	73.5361
4	0.328689	3.2306	7.3285	90.7704	80.8646
5	0.308615	5.8311	4.1896	96.6014	85.0541
6	0.187095	0.6677	0.6876	97.2691	85.7418
7	0.175676	1.7924	0.2343	99.0615	85.9761
8	0.130347	0.1279	0.3654	99.1894	86.3414
9	0.121551	0.6432	0.0929	99.8326	86.4343
10	0.104217	0.0144	0.0412	99.847	86.4756
11	0.09596	0.1529	0.0026	100	86.4781
12	0.076008	0	9.9572	<u>100</u>	<u>96.4353</u>

Tableau III.10 : Modes propres de la structure.

Mode 1: Le $\mathbf{1}^{er}$ mode de notre structure est une rotation de période T_1 =1.02 s

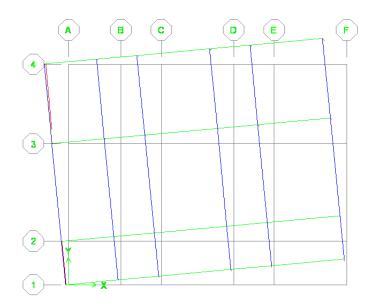


Figure III.12 : Mode 1 de déformation.

Mode 2: Le 2^{eme} mode de notre structure est une rotation période T_2 =0.96 s

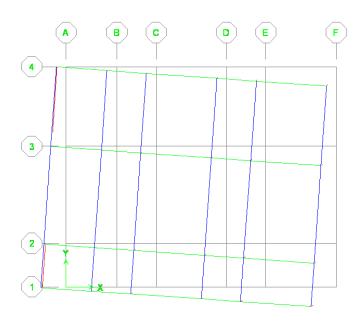


Figure III.13 : Mode 2 de déformation.

Mode 3: Le 3^{eme} mode de notre structure est une rotation de période T_2 =0.34 s

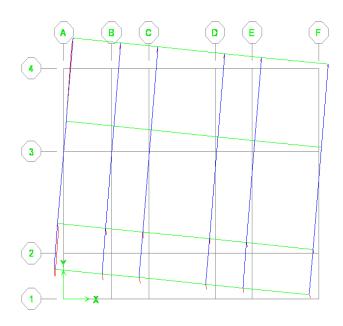


Figure III.14 : Mode 3 de déformation.

III.3.2. Effort tranchant à la base (KN):

Les résultats de calcul sont résumés dans le tableau suivant :

	$V_{\rm dynamique}$	V _{statique}	$80\%V_{\rm statique}$	$80\%V_{sta} < V_{dyn}$
Sens X-X	1775 ,06	2283,12994	1826.50395	condition non vérifiée
Sens Y-Y	1594,92	2283,12994	1826.50395	condition non vérifiée

Tableau III.11: Vérification de la force sismique à la base

> Commentaire:

La résultante des forces sismiques à la base obtenue par la méthode dynamique Modale spectrale est inférieure à 80 % de celle obtenue par la méthode statique équivalente. (Art4-3-6 du RPA 99/V 2003 est non vérifié)

III.3.3. Période fondamentale de la structure (s) :

$T_{ m dynamique}$	${ m T_{empirique}}$	1.3T _{empirique}	$T_{\rm dyn}$ <1.3 $T_{\rm emp}$
1.02	0.35	0.45	Condition non vérifiée

Tableau III.12 : Vérification de la période fondamentale.

Commentaire:

La période obtenue par l'ETABS est supérieure à celle obtenue par la méthode empirique du RPA99 /V2003 .

III .3.4.Déplacements relatifs (m):

Les résultats de calcul sont résumés dans les tableaux suivants :

N	h _e	1%he	U_x	R	RU_x	$\Delta_{\mathbf{k}}$	1%he≥ ∆ _k
5	3.06	0.0306	0.0461	5	0.2305	0.019	Condition Vérifiée
4	3.06	0.0306	0.0423	5	0.2115	0.0355	Condition non Vérifiée
3	3.06	0.0306	0.0352	5	0.176	0.05	Condition non Vérifiée
2	3.06	0.0306	0.0252	5	0.126	0.061	Condition non Vérifiée
1	3.6	0.036	0.013	5	0.065	0.065	Condition non Vérifiée

Tableau III.13 : Déplacements inter-étages suivant X.

N	h _e	1%he	U_y	R	RU_Y	$\Delta_{\mathbf{k}}$	1%he≥ $\Delta_{\mathbf{k}}$
5	3.06	0.0306	0.0269	5	0.1345	0.0115	Condition Vérifiée
4	3.06	0.0306	0.0246	5	0.123	0.0195	Condition Vérifiée
3	3.06	0.0306	0.0207	5	0.1035	0.029	Condition Vérifiée
2	3.06	0.0306	0.0149	5	0.0745	0.0355	Condition non Vérifiée
1	3.6	0.036	0.0078	5	0.039	0.039	Condition non Vérifiée

Tableau III.14: Déplacements inter-étages suivant Y

> Commentaire:

On remarque que dans le sens Y les déplacements relatifs dus aux efforts sismiques sont supérieurs aux déplacements admissibles données par le RPA99 /V2003, donc la stabilité de l'ouvrage sous charges horizontales n'est pas assurée (Art5.10 du RPA/ version 2003est non vérifiée).

III .3.5. Justification vis-à-vis de l'effet P-Delta :

Les résultats de calcul sont résumés dans les tableaux suivants :

N	h_{e}	$\Delta_{\mathbf{k}}$	P_k	V_k	θ	θ<0,1
5	3.06	0.019	3503.61501	418.29	0.05200811	Condition Vérifiée
4	3.06	0.0355	6981.13248	917.02	0.08831897	Condition Vérifiée
3	3.06	0.05	10458.65	1303.12	0.13114139	Condition non Vérifiée
2	3.06	0.061	13936.1674	1593.79	0.17430934	Condition non Vérifiée
1	3.6	0.065	16261.6093	1775.06	0.16540984	Condition non Vérifiée

Tableau III.15 : Vérification de L'effet P-Delta suivant X.

N	h_{e}	Δ_{k}	P_{k}	V_k	θ	θ<0,1
5	3.06	0.0115	3503.61501	371.85	0.03540992	Condition Vérifiée
4	3.06	0.0195	6981.13248	760.84	0.0584717	Condition Vérifiée
3	3.06	0.029	10458.65	1088.19	0.09108513	Condition Vérifiée
2	3.06	0.0355	13936.1674	1397.56	0.11568574	Condition non Vérifiée
1	3.6	0.039	16261.6093	1594.92	0.11045534	Condition non Vérifiée

Tableau III.16: Vérification de L'effet P-Delta suivant Y.

> Commentaire:

Dans la direction Y la justification de l'effet P-Delta n'est pas satisfaite $(\theta>0,1)$

III.3.6. Calcul de l'excentricité:

N	XCM	XCR	CM-CR	5%Lx	(CM-CR)-5%Lx	(CM-CR)+5%Lx
5	8.03	0.453	7.577	0.825	6.752	8.402
4	8.045	0.775	7.27	0.825	6.445	8.095
3	8.045	1.2	6.845	0.825	6.02	7.67
2	8.045	1.694	6.351	0.825	5.526	7.176
1	8.089	2.24	5.849	0.825	5.024	6.674

Tableau III.17 : Vérification de l'excentricité suivant X. (Variantre3)

N	YCM	YCR	CM-CR	5%Ly	(CM-CR)-5%Ly	(CM-CR)+5%Ly
5	6.768	6.124	0.644	0.6725	0.0285	1.3165
4	6.772	6.161	0.611	0.6725	0.0615	1.2835
3	6.772	6.167	0.605	0.6725	0.0675	1.2775
2	6.772	6.168	0.604	0.6725	0.0685	1.2765
1	6.835	6.165	0.67	0.6725	0.0025	1.3425

Tableau III.18 : Vérification de l'excentricité suivant Y.

III.4. Etude de la variante 3 :

III.4.1. Modes de vibration et périodes :

Mode	Période (s)	UX	UY	Sum UX	Sum UY
1	1.006627	23.4926	33.2289	23.4926	33.2289
2	0.490137	38.642	35.3322	62.1346	68.5611
3	0.327166	4.3782	2.0594	66.5128	70.6204
4	0.319877	13.5955	12.1818	80.1083	82.8022
5	0.182517	0.5247	0.8406	80.633	83.6428
6	0.125928	0.2881	0.2905	80.9212	83.9334
7	0.11924	9.9984	9.0199	<u>90.9196</u>	92.9532
8	0.099344	0.0306	0.0499	90.9501	93.0031
9	0.074682	4.523	2.8887	95.4732	95.8918
10	0.056849	2.3807	2.3625	97.8539	98.2543
11	0.038749	0.7284	0.5756	98.5824	98.8299
12	0.035177	0.9742	0.8068	99.5566	99.6367

Tableau III.19 : Modes propres de la structure.

Mode 1: Le $\mathbf{1}^{er}$ mode de notre structure est une rotation de période T_1 =1.00 s

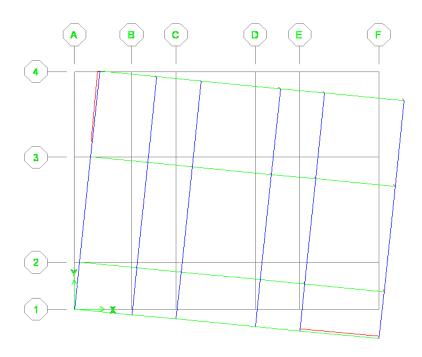


Figure III.20 : Mode 1 de déformation.

Mode 2: Le 2^{eme} mode de notre structure est une translation suivant l'axe X-X de période T_2 =0.49 s

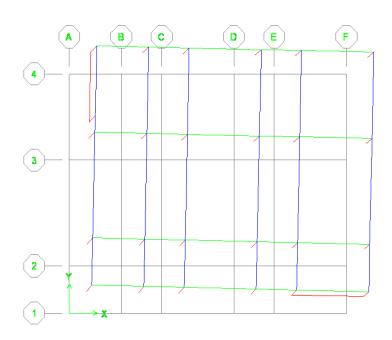
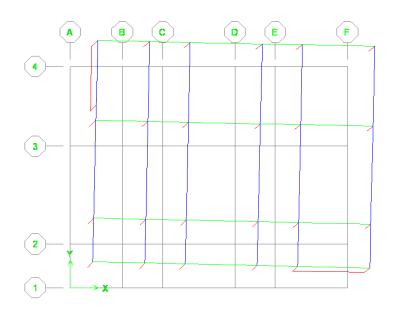



Figure III.16 : Mode 2 de déformation.

Mode 3: Le 3^{eme} mode de notre structure est une translation suivant l'axe Y-Y de période T_2 =0.32 s

Figure III.17 : Mode 3 de déformation.

III.4.2. Effort tranchant à la base (KN):

Les résultats de calcul sont résumés dans le tableau suivant :

	$V_{ m dynamique}$	V _{statique}	80%V _{statique}	$80\%V_{\text{sta}} \!\!<\!\! V_{ ext{dyn}}$
Sens X-X	1620, 6	2299,39765	1839 ,51812	Condition non vérifiée
Sens Y-Y	1535,42	2299,39765	1839,51812	Condition non vérifiée

Tableau III.20 : Vérification de la force sismique à la base

> Commentaire :

La résultante des forces sismiques à la base obtenue par la méthode dynamique Modale spectrale est inférieure à 80 % de celle obtenue par la méthode statique équivalente. (Art4-3-6 du RPA 99/V 2003 est non vérifié)

III.4.3. Période fondamentale de la structure (s):

$T_{ m dynamique}$	$T_{ m empirique}$	1.3T _{empirique}	$T_{\rm dyn} < 1.3 T_{\rm emp}$
1.00	0.35	0.45	Condition non vérifiée

Tableau III.21: Vérification de la période fondamentale.

La période obtenue par l'ETABS est supérieure à celle obtenue par la méthode empirique du RPA99 appropriée de 30%

III.4.4.Déplacements relatifs (m):

Les résultats de calcul sont résumés dans les tableaux suivants :

N	h _e	1%he	U_x	R	RU_x	$\Delta_{\mathbf{k}}$	1%he≥ $\Delta_{\mathbf{k}}$
5	3.06	0.0306	0.0188	5	0.094	0.013	Condition vérifiée
4	3.06	0.0306	0.0162	5	0.081	0.0165	Condition vérifiée
3	3.06	0.0306	0.0129	5	0.0645	0.02	Condition vérifiée
2	3.06	0.0306	0.0089	5	0.0445	0.0225	Condition vérifiée
1	3.6	0.036	0.0044	5	0.022	0.022	Condition vérifiée

Tableau III.22 : Déplacements inter-étages suivant X.

N	h _e	1%he	U_{Y}	R	RU_y	$\Delta_{\mathbf{k}}$	1%he≥ ∆ _k
5	3.06	0.0306	0.0225	5	0.1125	0.0115	Condition vérifiée
4	3.06	0.0306	0.0202	5	0.101	0.018	Condition vérifiée
3	3.06	0.0306	0.0166	5	0.083	0.0245	Condition vérifiée
2	3.06	0.0306	0.0117	5	0.0585	0.0285	Condition vérifiée
1	3.6	0.036	0.006	5	0.03	0.03	Condition vérifiée

Tableau III.23 : Déplacements inter-étages suivant Y.

Commentaire:

On remarque que dans les deux sens les déplacements relatifs dus aux efforts sismiques sont inférieurs aux déplacements admissibles données par le RPA99 /V2003, donc la stabilité de l'ouvrage sous charges horizontales est assurée (Art5.10 du RPA/ version 2003 est vérifié).

III.4.5. Justification vis-à-vis de l'effet P-Delta:

Les résultats de calcul sont résumés dans les tableaux suivants :

N	h_e	$\Delta_{\mathbf{k}}$	P_k	V_k	θ	θ<0,1
5	3.06	0.013	3531.09675	442.49	0.03390222	Condition vérifiée
4	3.06	0.0165	7033.86712	883.56	0.04292602	Condition vérifiée
3	3.06	0.02	10536.6375	1214.8	0.05668992	Condition vérifiée
2	3.06	0.0225	14039.4079	1461.77	0.07062051	Condition vérifiée
1	3.6	0.022	16377.4762	1620.6	0.06175773	Condition vérifiée

Tableau III.24: Vérification L'effet P-Delta suivant X.

N	h_{e}	$\Delta_{\mathbf{k}}$	P_k	V_k	θ	θ<0,1
5	3.06	0.0115	3531.09675	403.75	0.03286802	Condition vérifiée
4	3.06	0.018	7033.86712	812.35	0.05093333	Condition vérifiée
3	3.06	0.0245	10536.6375	1133.98	0.07439458	Condition vérifiée
2	3.06	0.0285	14039.4079	1377.28	0.09494017	Condition vérifiée
1	3.6	0.03	16377.4762	1535.42	0.08888706	Condition vérifiée

Tableau III.25: Vérification L'effet P-Delta suivant Y.

Commentaire:

On constate que θ_x et θ_y sont inférieurs à 0, 1, donc l'effet P-delta peut être négligé pour cette variante (Art5-9 du RPA 99/V 2003.est vérifie).

III.4.6. Calcul de l'excentricité:

N	XCM	XCR	CM-CR	5%Lx	(CM-CR)-5%Lx	(CM-CR)+5%Lx
5	8.258	0.787	7.471	0.825	6.646	8.296
4	8.257	1.166	7.091	0.825	6.266	7.916
3	8.257	1.685	6.572	0.825	5.747	7.397
2	8.257	2.273	5.984	0.825	5.159	6.809
1	8.248	2.899	5.349	0.825	4.524	6.174

Tableau III.26 : Vérification de l'excentricité suivant X.

N	YCM	YCR	CM-CR	5%Ly	(CM-CR)-5%Ly	(CM-CR)+5%Ly
5	6.699	0.471	6.228	0.6725	5.5555	6.9005
4	6.699	0.717	5.982	0.6725	5.3095	6.6545
3	6.699	1.073	5.626	0.6725	4.9535	6.2985
2	6.699	1.49	5.209	0.6725	4.5365	5.8815
1	6.699	1.937	4.762	0.6725	4.0895	5.4345

Tableau III.27 : Vérification de l'excentricité suivant Y.

Dans les deux directions, nous constatons que l'excentricité est important, ce qui peut donner lieu à une torsion d'ensemble.

III.5. Etude de la variante 4 :

III.5.1.Modes de vibration et périodes :

Mode	Période (s)	UX	UY	Sum UX	Sum UY
1	0,960676	0,0001	86,7832	0,0001	86,7832
2	0,382485	16,3316	0,0175	16,3316	86,8007
3	0,320422	56,5462	0,0468	72,8778	86,8475
4	0,307027	0,1415	9,4828	73,0193	96,3303
5	0,17243	0	2,6268	73,0193	98,9571
6	0,118277	0	0,8537	73,0193	99,8108
7	0,092842	0,0019	0,1892	73,0213	100
8	0,090813	4,3647	0	77,386	100
9	0,071481	16,0319	0	93,4179	<u>100</u>
10	0,043107	1,0677	0	94,4856	100
11	0,032929	3,935	0	98,4206	100
12	0,029265	0,2914	0	98,712	100

Tableau III.28 : Modes propres de la structure.

Mode 1: Le $\mathbf{1}^{er}$ mode de notre structure est une translation suivant l'axe Y-Y de période T_1 =0,96 s

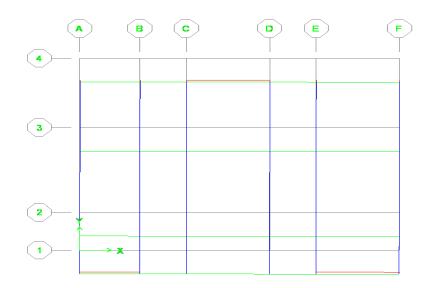


Figure III.18 : Mode1 de déformation.

Mode 2: Le 2^{eme} mode de notre structure est rotation de période T_2 =0,38 s

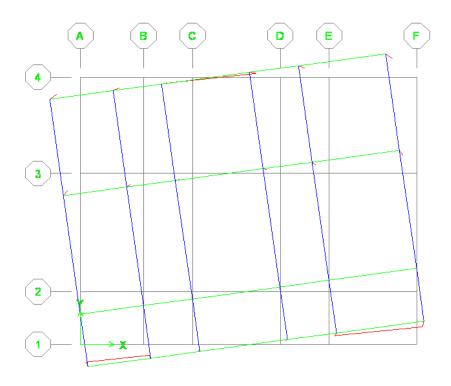
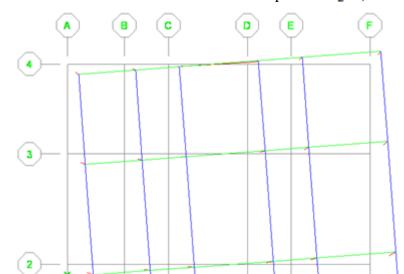



Figure III.19 : Mode2 de déformation.

Mode 3: Le 3^{eme} mode de notre structure est une rotation de période T_2 =0,32 s

Figure III.20 : Mode 3 de déformation.

III.5.2.Effort tranchant à la base (KN):

Les résultats de calcul sont résumés dans le tableau suivant :

	$V_{ m dynamique}$	V _{statique}	80%V _{statique}	$80\%V_{sta} < V_{dyn}$
Sens X-X	2316,17	2856,3317	2285,06536	Condition vérifiée
Sens Y-Y	1924,84	2856,3317	2285,06536	Condition non vérifiée

Tableau III.29: Vérification de la force sismique à la base.

Commentaire:

Dans le sens Y on constate que La résultante des forces sismiques à la base obtenue par la méthode dynamique Modale spectrale est inférieure à 80 % de celle obtenue par la méthode statique équivalente. (Art4-3-6 du RPA 99/V 2003 est non vérifié).

III.5.3.La période fondamentale de la structure (s) :

$T_{\mathrm{dynamique}}$	$T_{ m empirique}$	1.3T _{empirique}	$T_{\rm dyn}$ <1.3 $T_{\rm emp}$
0.96	0.35	0.45	Condition non vérifiée

Tableau III.30 : Vérification de la période fondamentale.

Commentaire :

La période obtenue par l'ETABS est supérieure à celle obtenue par la méthode empirique du RPA99 appropriée de 30% ((Art du RPA 99/V 2003 est non vérifie)

III.5.4.Déplacements relatifs (m):

Les résultats de calcul sont résumés dans les tableaux suivants :

N	h _e	1%he	U_x	R	RU_x	$\Delta_{\mathbf{k}}$	1%he≥ ∆ _k
5	3.06	0.0306	0.0086	5	0.043	0.01	Condition Vérifiée
4	3.06	0.0306	0.0066	5	0.033	0.0105	Condition Vérifiée
3	3.06	0.0306	0.0045	5	0.0225	0.01	Condition Vérifiée
2	3.06	0.0306	0.0025	5	0.0125	0.008	Condition Vérifiée
1	3.6	0.036	0.0009	5	0.0045	0.0045	Condition Vérifiée

Tableau III.31: Déplacements inter-étages suivant X.

N	h _e	1%he	U_y	R	RU_{Y}	$\Delta_{\mathbf{k}}$	1%he≥ $\Delta_{\mathbf{k}}$
5	3.06	0.0306	0.0466	5	0.233	0.0205	Condition Vérifiée
4	3.06	0.0306	0.0425	5	0.2125	0.037	Condition non Vérifiée
3	3.06	0.0306	0.0351	5	0.1755	0.0515	Condition non Vérifiée
2	3.06	0.0306	0.0248	5	0.124	0.0615	Condition non Vérifiée
1	3.6	0.036	0.0125	5	0.0625	0.0625	Condition non Vérifiée

Tableau III.32 : Déplacements inter-étages suivant Y.

> Commentaire :

Dans le sens Y les déplacements relatifs dus aux efforts sismiques sont supérieurs aux déplacements admissibles données par le RPA99 /V2003, donc la stabilité de l'ouvrage sous charges horizontales est n'est pas assurée (Art5.10 du RPA/ V 2003 est non vérifié).

III.5.5. Justification vis-à-vis de l'effet P-Delta:

Les résultats de calcul sont résumés dans les tableaux suivants :

N	h_e	$\Delta_{\mathbf{k}}$	P_k	V_k	θ	θ<0,1
5	3.06	0.01	7207.25495	708.58	0.03323989	Condition Vérifiée
4	3.06	0.0105	10793.0562	1364.96	0.02713266	Condition Vérifiée
3	3.06	0.01	14378.8574	1810.11	0.0259596	Condition Vérifiée
2	3.06	0.008	17964.6586	2125.67	0.02209488	Condition Vérifiée
1	3.6	0.0045	20344.2429	2316.17	0.01097946	Condition Vérifiée

Tableau III.33 : Vérification de L'effet P-Delta suivant X.

N	h_{e}	$\Delta_{\mathbf{k}}$	P_k	V_k	θ	θ<0,1
5	3.06	0.0205	7207.25495	458.59	0.10528772	Condition non Vérifiée
4	3.06	0.037	10793.0562	1002.29	0.1302061	Condition non Vérifiée
3	3.06	0.0515	14378.8574	1420.7	0.17033653	Condition non Vérifiée
2	3.06	0.0615	17964.6586	1733.47	0.2082842	Condition non Vérifiée
1	3.6	0.0625	20344.2429	1924.84	0.18349508	Condition non Vérifiée

Tableau III.34: Vérification de L'effet P-Delta suivant Y.

> Commentaire:

Dans la direction Y la justification de l'effet P-Delta n'est pas satisfaite $(\theta>0,1)$

III.5.6. Calcul de l'excentricité:

N	XCM	XCR	CM-CR	5%Lx	(CM-CR)-5%Lx	(CM-CR)+5%Lx
5	8.225	7.944	0.281	0.825	0.544	1.106
4	8.226	7.899	0.327	0.825	0.498	1.152
3	8.226	7.882	0.344	0.825	0.481	1.169
2	8.226	7.874	0.352	0.825	0.473	1.177
1	8.225	7.87	0.355	0.825	0.47	1.18

Tableau III.35 : Vérification de l'excentricité suivant X.

N	YCM	YCR	CM-CR	5%Ly	(CM-CR)-5%Ly	(CM-CR)+5%Ly
5	6.676	5.196	1.48	0.6725	0.8075	2.1525
4	6.686	5.453	1.233	0.6725	0.5605	1.9055
3	6.686	5.595	1.091	0.6725	0.4185	1.7635
2	6.686	5.684	1.002	0.6725	0.3295	1.6745
1	6.769	5.744	1.025	0.6725	0.3525	1.6975

Tableau III.36 : Vérification de l'excentricité suivant Y.

Dans la direction X, nous constatons que l'excentricité est faible .Dans la direction Y l'excentricité est important, ce qui peut donner lieu à une torsion d'ensemble.

III.6. Etude de la variante 5 :

III.6.1. Modes de vibration et périodes :

Mode	Période (s)	UX	UY	Sum UX	Sum UY
1	0,597142	55,0826	1,7534	55,0826	1,7534
2	0,350131	17,7893	22,121	72,8718	23,8744
3	0,274705	2,4049	50,3904	75,2767	74,2648
4	0,157726	12,5821	0,3803	87,8588	74,6452
5	0,083956	3,3862	7,2262	91,245	81,8714
6	0,077948	5,0318	0,0743	96,2768	81,9457
7	0,063076	0,7831	12,7213	<u>97,0599</u>	<u>94,667</u>
8	0,053948	0,603	0,0475	97,6629	94,7145
9	0,044148	0,1617	0,0039	97,8246	94,7184
10	0,040225	1,441	1,5607	99,2656	96,2791
11	0,030094	0,214	2,5663	99,4796	98,8454
12	0,027722	0,3767	0,3838	99,8563	99,2291

Tableau III.37 : Modes propres de la structure.

Mode 1: Le $\mathbf{1}^{er}$ mode de notre structure est une rotation de période $T_1=0,59$ s

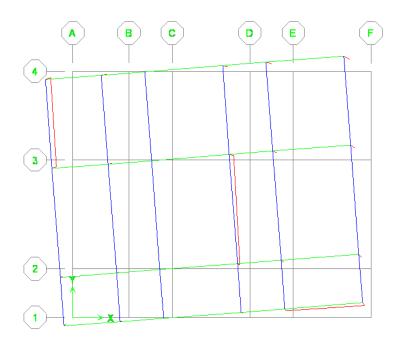


Figure III.21: Mode 1de déformation.

Mode 2: Le 2^{eme} mode de notre structure est une rotation de période T_2 =0,35 s

Figure III.22 : Mode 2 de déformation.

Mode 3: Le 3^{eme} mode de notre structure est une rotation de période T_2 =0,27 s

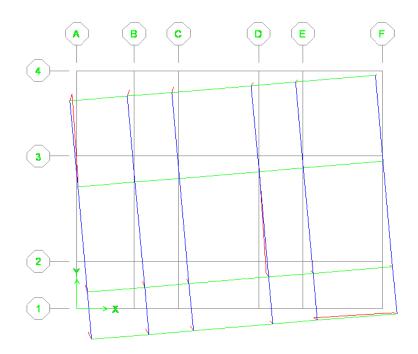


Figure III.23: Mode 3de déformation.

III.6.2. Effort tranchant à la base (KN):

Les résultats de calcul sont résumés dans le tableau suivant :

	$V_{ m dynamique}$ $V_{ m statique}$		80%V _{statique}	$80\%V_{sta} < V_{dyn}$
Sens X-X	1932,95	2386,40734	1909,12588	Condition vérifiée
Sens Y-Y	2173,25	2386,40734	1909,12588	Condition vérifiée

Tableau III.38 : Vérification de la force sismique à la base.

Commentaire:

La résultante des forces sismiques à la base obtenue par la méthode dynamique Modale spectrale est supérieure à 80 % de celle obtenue par la méthode statique équivalente. (Art4-3-6 du RPA 99/V 2003 est vérifié)

III.6.3. Période fondamentale de la structure (s) :

$T_{\mathrm{dynamique}}$	${ m T_{empirique}}$	1.3T _{empirique}	$T_{\rm dyn}$ <1.3 $T_{\rm emp}$
0.59	0.35	0.45	Condition non vérifiée

Tableau III.39 : Vérification de la période fondamentale.

Commentaire :

La période obtenue par l'ETABS est supérieure à celle obtenue par la méthode empirique du RPA99 appropriée de 30% ((Art du RPA 99/V 2003 est non vérifie) **III.6.4.Déplacements relatifs:** Les résultats de calcul sont résumés dans les tableaux suivants :

N	h_e	1%he	U_x	R	RU_x	$\Delta_{\mathbf{k}}$	1%he≥ Δ _k
5	3.06	0.0306	0.021	5	0.105	0.022	Condition vérifiée
4	3.06	0.0306	0.0166	5	0.083	0.0235	Condition vérifiée
3	3.06	0.0306	0.0119	5	0.0595	0.024	Condition vérifiée
2	3.06	0.0306	0.0071	5	0.0355	0.021	Condition vérifiée
1	3.6	0.036	0.0029	5	0.0145	0.0145	Condition vérifiée

Tableau III.40 : Déplacements inter-étages suivant X.

N	h_e	1%he	U_{y}	R	RU_y	$\Delta_{\mathbf{k}}$	1%he≥ Δ _k
5	3.06	0.0306	0.0066	5	0.033	0.0075	Condition vérifiée
4	3.06	0.0306	0.0051	5	0.0255	0.008	Condition vérifiée
3	3.06	0.0306	0.0035	5	0.0175	0.007	Condition vérifiée
2	3.06	0.0306	0.0021	5	0.0105	0.0065	Condition vérifiée
1	3.6	0.036	0.0008	5	0.004	0.004	Condition vérifiée

Tableau III.41: Déplacements inter-étages suivant Y.

Commentaire:

On remarque que dans les deux sens les déplacements relatifs dus aux efforts sismiques sont inférieurs aux déplacements admissibles données par le RPA99/V 2003, donc la stabilité de l'ouvrage sous charges horizontales est assurée (Art5.10 du RPA/ version 2003 est vérifié).

III.6.5. Justification vis-à-vis de l'effet P-Delta:

Les résultats de calcul sont résumés dans les tableaux suivants :

N	h_e	$\Delta_{\mathbf{k}}$	$P_{\mathbf{k}}$	V_k	θ	θ<0,1
5	3.06	0.022	3678.08292	536.71	0.04927006	Condition vérifiée
4	3.06	0.0235	7315.92228	1106.53	0.05077528	Condition vérifiée
3	3.06	0.024	10953.7616	1500.85	0.05724213	Condition vérifiée
2	3.06	0.021	14591.601	1763.91	0.05677072	Condition vérifiée
1	3.6	0.0145	16997.2033	1932.95	0.03541786	Condition vérifiée

Tableau III.42 : Vérification de L'effet P-Delta suivant X.

N	h_e	Δ_{k}	P_k	V_k	θ	θ<0,1
5	3.06	0.0075	3678.08292	641.12	0.01406119	Condition vérifiée
4	3.06	0.008	7315.92228	1263.27	0.01514054	Condition vérifiée
3	3.06	0.007	10953.7616	1681.81	0.0148992	Condition vérifiée
2	3.06	0.0065	14591.601	1982.42	0.01563505	Condition vérifiée
1	3.6	0.004	16997.2033	2173.25	0.00869011	Condition vérifiée

Tableau III.43: Vérification de L'effet P-Delta suivant Y.

Commentaire:

On constate que θ_x et θ_y sont inférieurs à 0,1, donc l'effet P-delta peut être négligé pour cette variante (Art5-9 du RPA 99/V 2003 est vérifié).

III.6.6. Calcul de l'excentricité:

N	XCM	XCR	CM-CR	5%Lx	(CM-CR)-5%Lx	(CM-CR)+5%Lx
5	8.192	5.688	2.504	0.825	1.679	3.329
4	8.195	6.021	2.174	0.825	1.349	2.999
3	8.195	6.264	1.931	0.825	1.106	2.756
2	8.195	6.434	1.761	0.825	0.936	2.586
1	8.202	6.554	1.648	0.825	0.823	2.473

Tableau III.44 : Vérification de l'excentricité suivant X.

N	YCM	YCR	CM-CR	5%Ly	(CM-CR)5%Ly	(CM-CR)+5%Ly
5	6.705	0.64	6.065	0.6725	5.3925	11.4575
4	6.713	1.073	5.64	0.6725	4.9675	10.6075
3	6.713	1.542	5.171	0.6725	4.4985	9.6695
2	6.713	1.93	4.783	0.6725	4.1105	8.8935
1	6.789	2.213	4.576	0.6725	3.9035	8.4795

Tableau III.45 : Vérification de l'excentricité suivant Y.

Dans la direction X, nous constatons que l'excentricité est important .Dans la direction Y l'excentricité est faible, ce qui peut donner lieu à une torsion d'ensemble.

III.7. Etude de la variante 6:

III.7.1.Modes de vibration et périodes :

Mode	Période (s)	UX	UY	Sum UX	Sum UY
1	0,51824	24,6868	3,7538	24,6868	3,7538
2	0,382226	45,0895	12,5847	69,7763	16,3385
3	0,342741	3,3942	58,771	73,1705	75,1095
4	0,121739	5,0093	1,6041	78,1798	76,7136
5	0,091313	10,6999	8,0808	88,8797	84,7944
6	0,083389	4,2179	10,0193	<u>93,0976</u>	<u>94,8137</u>
7	0,055941	1,1823	0,5327	94,28	95,3464
8	0,043884	2,0653	2,4107	96,3453	97,7571
9	0,040155	1,8891	1,1031	98,2344	98,8602
10	0,036901	0,3333	0,1882	98,5677	99,0484
11	0,030138	0,3382	0,6771	98,9059	99,7255
12	0,029727	0,1398	0,0039	99,0458	99,7295

Tableau III.46 : Modes propres de la structure.

Mode 1: Le $\mathbf{1}^{er}$ mode de notre structure est une rotation de période T_1 =0,51 s

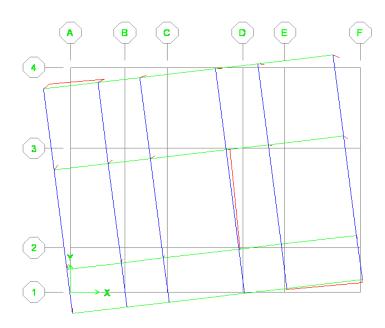


Figure III.24: Mode 1de déformation.

Mode 2: Le 2^{eme} mode de notre structure est une rotation de période T_2 =0,38 s

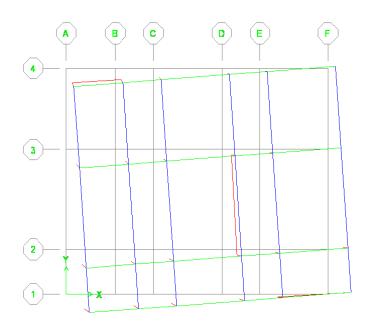


Figure III.25 : Mode 2 de déformation.

Mode 3: Le 3^{eme} mode de notre structure est une rotation de période T_2 =0,34 s

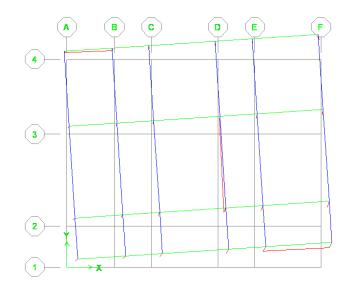


Figure III.26 : Mode 3 de déformation.

III.7.2.Effort tranchant à la base (KN):

Les résultats de calcul sont résumés dans le tableau suivant :

	$V_{ m dynamique}$	V _{statique}	$80\%V_{\rm statique}$	$0.8\%V_{sta} < V_{dyn}$
Sens X-X	2024,65	2369,15333	1895,32266	Condition vérifiée
Sens Y-Y	2409,57	2369,15333	1895,32266	Condition vérifiée

Tableau III.47 : Vérification de la force sismique à la base.

Commentaire:

La résultante des forces sismiques à la base obtenue par la méthode dynamique Modale spectrale est supérieure à 80 % de celle obtenue par la méthode statique équivalente. (Art4-3-6 du RPA 99/V 2003.est vérifie)

III.7.3. Période fondamentale de la structure(s) :

$T_{ m dynamique}$	$T_{ m empirique}$	1.3T _{empirique}	$T_{\rm dyn} < 1.3 T_{\rm emp}$
0.51	0.35	0.45	Condition non vérifiée

Tableau III.48: Vérification de la période fondamentale

La période obtenue par l'ETABS est supérieure à celle obtenue par la méthode empirique du RPA99 appropriée de 30%

III.7.4. Déplacements relatifs (m):

Les résultats de calcul sont résumés dans les tableaux suivants :

N	h_e	1%he	U_x	R	RU_x	$\Delta_{\mathbf{k}}$	1%he≥ $\Delta_{\mathbf{k}}$
5	3.06	0.0306	0.0127	5	0.0635	0.015	Condition vérifiée
4	3.06	0.0306	0.0097	5	0.0485	0.0155	Condition vérifiée
3	3.06	0.0306	0.0066	5	0.033	0.0145	Condition vérifiée
2	3.06	0.0306	0.0037	5	0.0185	0.0115	Condition vérifiée
1	3.6	0.036	0.0014	5	0.007	0.007	Condition vérifiée

Tableau III.49 : Vérification de déplacements inter-étages suivant X.

N	h_e	1%he	U_y	R	RU_y	$\Delta_{\mathbf{k}}$	1%he≥ ∆ _k
5	3.06	0.0306	0.0102	5	0.051	0.0115	Condition vérifiée
4	3.06	0.0306	0.0079	5	0.0395	0.012	Condition vérifiée
3	3.06	0.0306	0.0055	5	0.0275	0.0115	Condition vérifiée
2	3.06	0.0306	0.0032	5	0.016	0.0095	Condition vérifiée
1	3.6	0.036	0.0013	5	0.0065	0.0065	Condition vérifiée

Tableau III.50 : Vérification de déplacements inter-étages suivant Y.

Commentaire:

On remarque que dans les deux sens les déplacements relatifs dus aux efforts sismiques sont inférieurs aux déplacements admissibles données par le RPA99/V2003, donc la stabilité de l'ouvrage sous charges horizontales est assurée (Art5.10 du RPA/ version 2003 est vérifié).

III.7.5.Justification vis-à-vis de l'effet P-Delta:

Les résultats de calcul sont résumés dans les tableaux suivants :

N	h _e	$\Delta_{\mathbf{k}}$	P_k	V_k	θ	θ<0,1
5	3.06	0.015	3648.93545	615.34	0.02906838	Condition vérifiée
4	3.06	0.0155	7259.99056	1191.12	0.03087385	Condition vérifiée
3	3.06	0.0145	10871.0457	1586.48	0.03247008	Condition vérifiée
2	3.06	0.0115	14482.1008	1860.21	0.02925809	Condition vérifiée
1	3.6	0.007	16874.3115	2024.65	0.01620584	Condition vérifiée

Tableau III.51 : Vérification de L'effet P-Delta suivant X.

N	h_e	$\Delta_{ m k}$	Pk	V_k	θ	θ<0,1
5	3.06	0.0115	3648.93545	701.06	0.01956084	Condition vérifiée
4	3.06	0.012	7259.99056	1402.1	0.02030565	Condition vérifiée
3	3.06	0.0115	10871.0457	1878.46	0.02174932	Condition vérifiée
2	3.06	0.0095	14482.1008	2210.65	0.02033826	Condition vérifiée
1	3.6	0.0065	16874.3115	2409.57	0.01264438	Condition vérifiée

Tableau III.52 : Vérification de L'effet P-Delta suivant Y.

Commentaire:

On constate que θ_x et θ_y sont inférieurs à 0,1 ; Donc l'effet P-delta peut être négligé pour cette variante (Art5-9 du RPA 99/V 2003 est vérifié).

III.7.6. Calcul de l'excentricité:

N	XCM	XCR	CM-CR	5%Lx	(CM-CR)-5%Lx	(CM-CR)+5%Lx
5	8.28	9.668	1.388	0.825	2.213	0.563
4	8.277	9.577	1.3	0.825	2.125	0.475
3	8.277	9.485	1.208	0.825	2.033	0.383
2	8.277	9.409	1.132	0.825	1.957	0.307
1	8.263	9.357	1.094	0.825	1.919	0.269

Tableau III.53 : Vérification de l'excentricité suivant X.

N	YCM	YCR	CM-CR	5%Ly	(CM-CR)-5%Ly	(CM-CR)+5%Ly
5	6.704	5.191	1.513	0.6725	0.8405	2.1855
4	6.713	4.803	1.91	0.6725	1.2375	2.5825
3	6.713	4.695	2.018	0.6725	1.3455	2.6905
2	6.713	4.672	2.041	0.6725	1.3685	2.7135
1	6.789	4.661	2.128	0.6725	1.4555	2.8005

Tableau III.54 : Vérification de l'excentricité suivant Y.

Dans les deux directions, nous constatons que l'excentricité est importante, ce qui peut donner lieu à une torsion d'ensemble.

III.8.Etude de la variante 7:

III.8.1.Modes de vibration et périodes :

Mode	Période (s)	UX	UY	Sum UX	Sum UY
1	0,358735	73,663	0	73,663	0
2	0,270483	0	74,0779	73,663	74,0779
3	0,220242	0,0498	0,0169	73,7128	74,0948
4	0,084313	19,9757	0	93,6885	74,0948
5	0,065323	0	20,5951	<u>93,6885</u>	94,6899
6	0,052665	0,0018	0,0007	93,6903	94,6906
7	0,039857	4,8394	0	98,5297	94,6906
8	0,032086	0	4,1321	98,5297	98,8227
9	0,026964	1,2461	0	99,7757	98,8227
10	0,025671	0,0003	0,0003	99,776	98,823
11	0,022523	0	0,9979	99,776	99,8209
12	0,022003	0,224	0	100	99,8209

Tableau III.55 : Modes propres de la structure.

Mode 1: Le $\mathbf{1}^{er}$ mode de notre structure est une translation suivants l'axe X-X de période T_1 =0,35 s

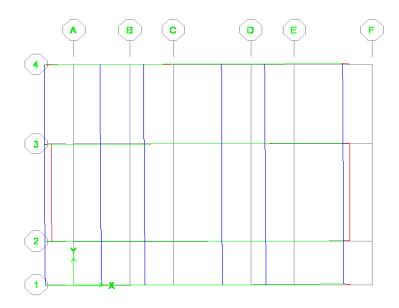


Figure III.27 : Mode 1 de déformation.

Mode 2: Le 2^{eme} mode de notre structure est une translation suivant l'axe Y-Y de période T_2 =0,27 s

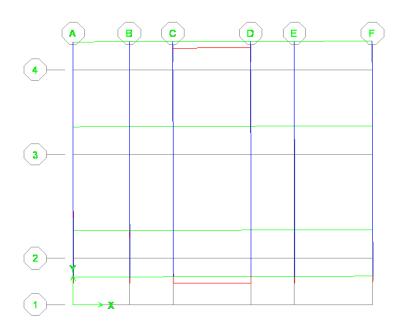


Figure III.28 : Mode 2 de déformation.

Mode 3: Le 3^{eme} mode de notre structure est une rotation de période T_3 =0,22 s

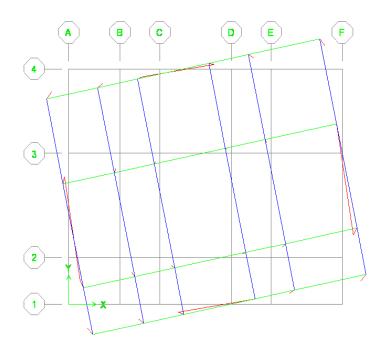


Figure III.29 : Mode 3 de déformation.

III.8.2. Effort tranchant à la base (KN):

Les résultats de calcul sont résumés dans le tableau suivant :

	$V_{\rm dynamique}$	V _{statique}	80%V _{statique}	$0.8\%V_{\text{sta}} < V_{ ext{dyn}}$
Sens X-X	2718,06	2439,64849	1951,71879	Condition vérifiée
Sens Y-Y	2760,84	2439,64849	1951,71879	Condition vérifiée

Tableau III.56 : Vérification de la force sismique à la base.

Commentaire:

La résultante des forces sismiques à la base obtenue par la méthode dynamique Modale spectrale est supérieure à 80 % de celle obtenue par la méthode statique équivalente. (Art4-3-6 du RPA 99/V 2003 est vérifié)

III.8.3. Période fondamentale de la structure (s) :

$T_{ m dynamique}$	$T_{ m empirique}$	1.3T _{empirique}	$T_{\rm dyn} < 1.3 T_{\rm emp}$
0.35	0.35	0.45	Condition vérifiée

Tableau III.57: Vérification de la période fondamentale.

La période obtenue par l'ETABS est inférieur à celle obtenue par la méthode empirique du RPA99 appropriée de 30%

III.8.4.Déplacements relatifs (m):

Les résultats de calcul sont résumés dans les tableaux suivants :

N	h _e	1%he	U_x	R	RU_x	$\Delta_{ m k}$	1%he≥ ∆ _k
5	3.06	0.0306	0.0112	5	0.056	0.013	Condition vérifiée
4	3.06	0.0306	0.0086	5	0.043	0.0135	Condition vérifiée
3	3.06	0.0306	0.0059	5	0.0295	0.0125	Condition vérifiée
2	3.06	0.0306	0.0034	5	0.017	0.0105	Condition vérifiée
1	3.6	0.036	0.0013	5	0.0065	0.0065	Condition vérifiée

Tableau III.58 : Vérification de déplacements inter-étages suivant X.

N	h _e	1%he	U_y	R	RU_y	$\Delta_{\mathbf{k}}$	1%he≥ Δ _k
5	3.06	0.0306	0.0066	5	0.033	0.008	Condition vérifiée
4	3.06	0.0306	0.005	5	0.025	0.0075	Condition vérifiée
3	3.06	0.0306	0.0035	5	0.0175	0.0075	Condition vérifiée
2	3.06	0.0306	0.002	5	0.01	0.006	Condition vérifiée
1	3.6	0.036	0.0008	5	0.004	0.004	Condition vérifiée

Tableau III.59 : Vérification de déplacements inter-étages suivant Y.

Commentaire:

On remarque que dans les deux sens les déplacements relatifs dus aux efforts sismiques sont inférieurs aux déplacements admissibles données par le RPA 99/V2003, donc la stabilité de l'ouvrage sous charges horizontales est assurée (Art5.10 du RPA/ version 2003 vérifié).

III.8.5. Justification vis-à-vis de l'effet P-Delta :

Les résultats de calcul sont résumés dans les tableaux suivants :

N	h _e	$\Delta_{\mathbf{k}}$	P_k	V_k	θ	θ<0,1
5	3.06	0.013	3768.02394	821.31	0.01949075	Condition vérifiée
4	3.06	0.0135	7488.51157	1596.34	0.02069581	Condition vérifiée
3	3.06	0.0125	11208.9992	2124.48	0.02155275	Condition vérifiée
2	3.06	0.0105	14929.4868	2496.46	0.02052051	Condition vérifiée
1	3.6	0.0065	17376.4138	2718.06	0.01154282	Condition vérifiée

Tableau III.60: Vérification L'effet P-Delta suivant X.

N	h _e	Δ_{k}	P_k	V_k	θ	θ<0,1
5	3.06	0.008	3768.02394	831.21	0.01185145	Condition vérifiée
4	3.06	0.0075	7488.51157	1609.98	0.01140026	Condition vérifiée
3	3.06	0.0075	11208.9992	2127.83	0.01291129	Condition vérifiée
2	3.06	0.006	14929.4868	2511.92	0.01165384	Condition vérifiée
1	3.6	0.004	17376.4138	2760.84	0.00699321	Condition vérifiée

Tableau III.61: Vérification L'effet P-Delta suivant Y.

Commentaire:

On constate que θ_x et θ_y sont inférieurs à 0,1, donc l'effet P-delta peut être négligé pour cette variante (Art5-9 du RPA 99/V 2003 est vérifié).

III.8.6. Calcul de l'excentricité:

N	XCM	XCR	CM-CR	5%Lx	(CM-CR)-5%Lx	(CM-CR)+5%Lx
5	8.191	8.226	0.035	0.825	0.86	0.79
4	8.194	8.197	0.003	0.825	0.828	0.822
3	8.194	8.167	0.027	0.825	0.798	0.852
2	8.194	8.142	0.052	0.825	0.773	0.877
1	8.201	8.126	0.075	0.825	0.75	0.9

Tableau III.62 : Vérification de l'excentricité suivant X.

N	YCM	YCR	CM-CR	5%Ly	(CM-CR)-5%Ly	(CM-CR)+5%Ly
5	6.712	6.668	0.044	0.6725	0.6285	0.7165
4	6.719	6.594	0.125	0.6725	0.5475	0.7975
3	6.719	6.52	0.199	0.6725	0.4735	0.8715
2	6.719	6.462	0.257	0.6725	0.4155	0.9295
1	6.792	6.424	0.368	0.6725	0.3045	1.0405

Tableau III.63 : Vérification de l'excentricité suivant Y.

Dans les deux directions, nous constatons que l'excentricité est faible.

III.9. Etude de la variante 8:

III.9.1. Modes de vibration et périodes :

Mode	Période (s)	UX	UY	Sum UX	Sum UY
1	0,381497	0,001	72,9461	0,001	72,9461
2	0,317986	73,3337	0,0015	73,3348	72,9477
3	0,228479	0,2422	0,0146	73,577	72,9622
4	0,086707	0	19,9442	73,577	92,9064
5	0,074738	19,8636	0	93,4406	92,9064
6	0,053906	0,0275	0,0025	93,468	92,9089
7	0,039798	0,0001	5,2028	93,4682	98,1116
8	0,035319	4,8696	0,0001	98,3377	98,1117
9	0,026258	0,0001	1,3355	98,3378	99,4472
10	0,026204	0,002	0,235	98,3398	99,6822
11	0,02388	1,3892	0	99,729	99,6822
12	0,021098	0	0,3162	99,729	99,9984

Tableau III.64 : Modes propres de la structure.

Mode 1: Le $\mathbf{1}^{er}$ mode de notre structure est une translation suivant l'axe Y-Y de période T_1 =0,38 s

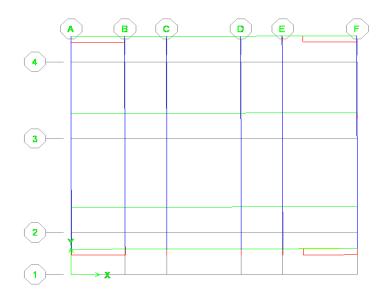


Figure III.30 : Mode 1 de déformation.

Mode 2: Le 2^{eme} mode de notre structure est une translation suivant l'axe X-X de période T_2 =0,31s

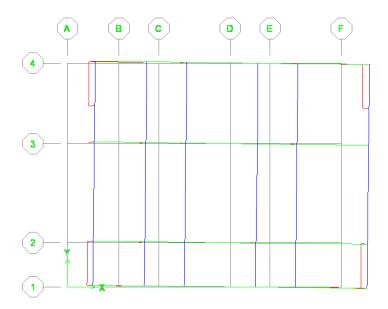
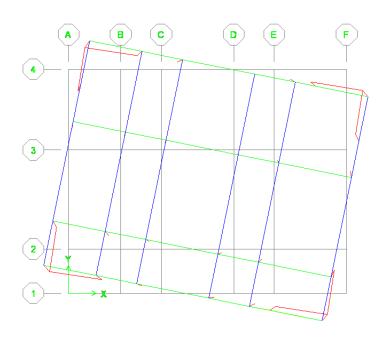



Figure III.31 : Mode 2 de déformation (Variante 8)

Mode 3: Le 3^{eme} mode de notre structure est une rotation de période T_2 =0,22 s

Figure III.32 : Mode 3de déformation.

III.9.2. Effort tranchant à la base (KN):

Les résultats de calcul sont résumés dans le tableau suivant :

	$V_{ m dynamique}$	V_{statique}	80%V _{statique}	$80\%V_{sta} < V_{dyn}$
Sens X-X	2745,84	2407,60532	1926,08426	Condition vérifiée
Sens Y-Y	2720,55	2407,60532	1926,08426	Condition vérifiée

Tableau III.65 : Vérification de la force sismique à la base.

> Commentaire:

La résultante des forces sismiques à la base obtenue par la méthode dynamique modale spectrale est supérieure à 80 % de celle obtenue par la méthode statique équivalente. (Art du RPA/ version 2003 est vérifiée).

III.9.3. La période fondamentale de la structure(s) :

T _{dynamique}	$T_{ m empirique}$	1.3T _{empirique}	$T_{\rm dyn} < 1.3 T_{\rm emp}$
0.38	0.35	0.45	Condition vérifiée

Tableau III.66 : Vérification de la période fondamentale.

La période obtenue par la ETABS est inférieure à celle obtenue par la méthode empirique du RPA99 (Art du RPA 99/V 2003 est vérifié)

III.9.4.Déplacements relatifs (m):

Les résultats de calcul sont résumés dans les tableaux suivants :

N	h _e	1%he	U_x	R	RU_x	$\Delta_{\mathbf{k}}$	1%he≥ $\Delta_{\mathbf{k}}$
5	3.06	0.0306	0.0088	5	0.044	0.01	Condition vérifiée
4	3.06	0.0306	0.0068	5	0.034	0.0105	Condition vérifiée
3	3.06	0.0306	0.0047	5	0.0235	0.0105	Condition vérifiée
2	3.06	0.0306	0.0026	5	0.013	0.008	Condition vérifiée
1	3.6	0.036	0.001	5	0.005	0.005	Condition vérifiée

Tableau III.67: Déplacements inter-étages suivant X.

N	h _e	1%he	U_y	R	RU_y	$\Delta_{\mathbf{k}}$	1%he≥ $\Delta_{\mathbf{k}}$
5	3.06	0.0306	0.013	5	0.065	0.0155	Condition vérifiée
4	3.06	0.0306	0.0099	5	0.0495	0.0155	Condition vérifiée
3	3.06	0.0306	0.0068	5	0.034	0.015	Condition vérifiée
2	3.06	0.0306	0.0038	5	0.019	0.012	Condition vérifiée
1	3.6	0.036	0.0014	5	0.007	0.007	Condition vérifiée

Tableau III.68 : Déplacements inter-étages suivant Y.

Commentaire:

On remarque que dans les deux sens les déplacements relatifs dus aux efforts sismiques sont inférieurs aux déplacements admissibles données par le RPA99/V2003, donc la stabilité de l'ouvrage sous charges horizontales est assurée (Art5.10 du RPA/ version 2003est vérifié).

III.9.5. Justification vis-à-vis de l'effet P-Delta :

Les résultats de calcul sont résumés dans les tableaux suivants :

N	h _e	$\Delta_{\mathbf{k}}$	P_k	V_k	θ	θ<0,1
5	3.06	0.01	3713.89236	835.16	0.01453243	Condition vérifiée
4	3.06	0.0105	7384.63838	1611.96	0.01571965	Condition vérifiée
3	3.06	0.0105	11055.3844	2139.45	0.01773126	Condition vérifiée
2	3.06	0.008	14726.1304	2517.91	0.01529033	Condition vérifiée
1	3.6	0.005	17148.1861	2745.84	0.00867382	Condition vérifiée

Tableau III.69: Vérification L'effet P-Delta suivant X.

N	h _e	$\Delta_{\mathbf{k}}$	P_k	V_k	θ	θ<0,1
5	3.06	0.0155	3713.89236	832	0.02261082	Condition vérifiée
4	3.06	0.0155	7384.63838	1607.1	0.02327537	Condition vérifiée
3	3.06	0.015	11055.3844	2137.29	0.02535597	Condition vérifiée
2	3.06	0.012	14726.1304	2507.1	0.02303439	Condition vérifiée
1	3.6	0.007	17148.1861	2720.55	0.01225623	Condition vérifiée

Tableau III.70: Vérification L'effet P-Delta suivant Y.

> Commentaire:

On constate que θ_x et θ_y sont inférieurs à 0,1 ; Donc l'effet P-delta peut être négligé pour cette variante (Art5-9 du RPA 99/V 2003 est vérifié).

III.9.6. Calcul de l'excentricité:

N	XCM	XCR	CM-CR	5%Lx	(CM-CR)-5%Lx	(CM-CR)+5%Lx
5	8.142	8.207	0.065	0.825	0.89	0.76
4	8.148	8.1	0.048	0.825	0.777	0.873
3	8.148	8.047	0.101	0.825	0.724	0.926
2	8.148	8.026	0.122	0.825	0.703	0.947
1	8.166	8.013	0.153	0.825	0.672	0.978

Tableau III.71 : Vérification de l'excentricité suivant X.

N	YCM	YCR	CM-CR	5%Ly	(CM-CR)-5%Ly	(CM-CR)+5%Ly
5	6.722	6.666	0.056	0.6725	0.6165	0.7285
4	6.729	6.51	0.219	0.6725	0.4535	0.8915
3	6.729	6.428	0.301	0.6725	0.3715	0.9735
2	6.729	6.392	0.337	0.6725	0.3355	1.0095
1	6.8	6.37	0.43	0.6725	0.2425	1.1025

Tableau III.72 : Vérification de l'excentricité suivant Y.

Dans les deux directions, nous constatons que l'excentricité est faible.

Chapitre IV : Résultats et discussion

IV.1. Etude comparative entre les différentes variantes :

IV.1.1. Période propre du bâtiment pour les différentes variantes:

Les résultats des variantes sont résumés dans le tableau suivant :

Variante	Période (s)
1	1,01
2	1,02
3	1,01
4	0,96
5	0,59
6	0,51
7	0,35
8	0,38

Tableau IV.1 : Période fondamentale des variantes étudiées.

Les périodes sont mis sous forme d'histogramme :

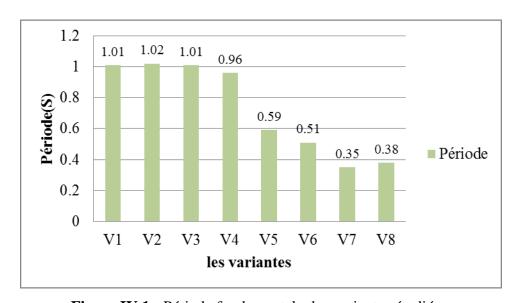


Figure IV.1 : Période fondamentale des variantes étudiées.

Commentaire:

D'après les résultats trouvés, les périodes des variants 1, 2,3 et 4 sont de l'ordre d'une seconde (1s). Concernant les variantes 5 et 6, la période est de l'ordre de 0,5 à 0,6. Pour les variantes 7 et 8, la période à diminuer jusqu'au environ 0.35 s.

IV.1.2. Modes de vibrations des variantes:

Après avoir visualisé les trois premiers modes de chaque variante, nous avons remarquées que chaque variante a son propre comportement sismique vis-à-vis des sollicitations horizontales, nous a mené à réaliser le tableau suivant :

Mode	V ₁	V ₂	V ₃	V_4	V_{5}	V ₆	V ₇	V ₈
Mode 1	Rot	Rot	Rota	Tr. y-y	Rot	Rot	Tr. x-x	Tr. y-y
Mode 2	Tr. y-y	Rot	Tr. diag.	Rot	Rot	Rot	Tr. y-y	Tr. x-x
Mode 3	Tr. x-x	Rot	Rot	Rot	Rot	Rot	Rot	Rot

Tableau IV.2: Modes de vibration des variantes.

Commentaire:

D'après les résultats du tableau IV.2, on constate que les variantes 7 et 8 présentent deux modes de vibration en translation pure et un troisième mode de rotation, tandis que pour les autre variantes nous remarquons une combinaison de translation et rotation dans les trois premier mode de vibration sachant que le règlement parasismique algérien 99 version 2003 exige que les deux premier mode soient des modes de translation pure et le troisième en rotation.

IV.1.3.Effort tranchant à la base (KN):

Les résultats des variantes sont résumés dans le tableau suivant :

Variante	V_{x}	\mathbf{v}_{y}		
1	1744,82	1859,68		
2	1775,06	1594,92		
3	1620,6	1535,42		
4	2316,17	1924,84		
5	1932,95	2173,25		
6	2024,65	2409,57		
7	2718,06	2760,84		
8	2745,84	2720,55		

Tableau IV.3 : Force sismique des variantes étudiées.

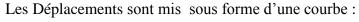
3000 2500 Efforts tranchant(KN) 2000 1500 ■ Vx 1000 ■ Vy 500 0 V1 V2V3 V4V5 V6 V7 V8

Les Valeurs des forces sismiques sont mis sous forme d'histogramme :

Figure IV.2 : Forces sismiques des variantes étudiées

les variantes

Commentaire:


D'après les valeurs du tableau IV.3 l'effort tranchant à la base est plus important pour les Variantes 7 et 8, Par contre pour les variantes 1 à 6 l'effort tranchant ne vérifie pas les conditions exigées par le RPA99/V2003.

IV.1.4.Déplacements relatifs (m):

Les résultats des variantes sont résumés dans le tableau suivant :

	Variantes									
Déplacements	V ₁	V ₂	V ₃	V_4	V _s	V ₆	V_7	V ₈		
	0.0105	0.019	0.013	0.01	0.022	0.015	0.013	0.01		
	0.017	0.0355	0.0165	0.0105	0.0235	0.0155	0.0135	0.0105		
sens X-X	0.024	0.05	0.02	0.01	0.024	0.0145	0.0125	0.0105		
	0.0305	0.061	0.0225	0.008	0.021	0.0115	0.0105	0.008		
	0.033	0.065	0.022	0.0045	0.0145	0.007	0.0065	0.005		
	0.0205	0.0115	0.0115	0.01	0.0075	0.0115	0.008	0.0155		
	0.037	0.0195	0.018	0.0105	0.008	0.012	0.0075	0.0155		
sens Y-Y	0.051	0.029	0.0245	0.01	0.007	0.0115	0.0075	0.015		
	0.061	0.0355	0.0285	0.008	0.0065	0.0095	0.006	0.012		
	0.0635	0.039	0.03	0.0045	0.004	0.0065	0.004	0.007		

Tableau IV.4 : Déplacements relatifs des variantes étudiées

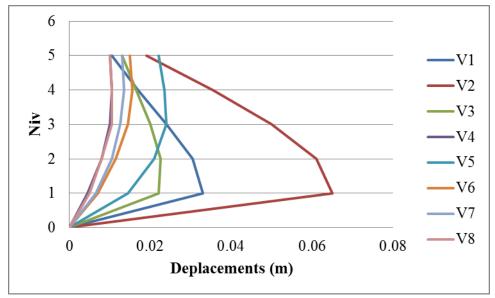


Figure IV.3 : Déplacements relatifs des variantes étudiées suivant X

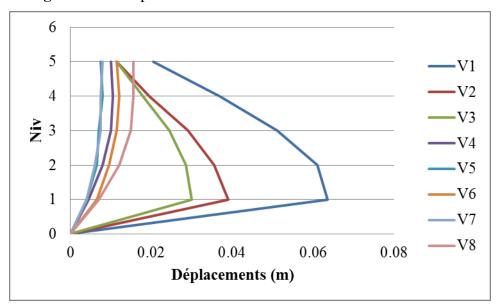
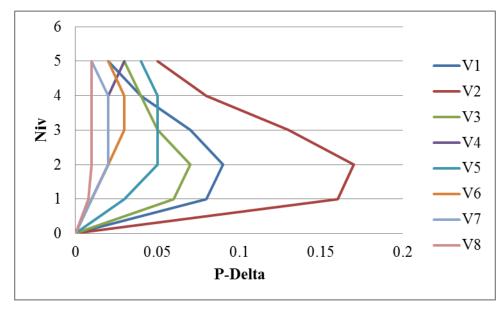


Figure IV.4 : Déplacements relatifs des variantes étudiées suivant Y

> Commentaire:


On constate que les déplacements relatifs de la variante 7 et 8, représentent le meilleur résultat comparativement aux autres variantes, les variantes 1 et 2 ont des déplacements relatifs assez importants qui peuvent causer l'instabilité du bâtiment.

IV.1.5.Effet P-Delta:

	Variantes									
P-Delta	V ₁	V ₂	V ₃	V_4	V_5	V ₆	V_7	V ₈		
sens X-X	0.02	0.05	0.03	0.03	0.04	0.02	0.01	0.01		
	0.04	0.08	0.04	0.02	0.05	0.03	0.02	0.01		
	0.07	0.13	0.05	0.02	0.05	0.03	0.02	0.01		
	0.09	0.17	0.07	0.02	0.05	0.02	0.02	0.01		
	0.08	0.16	0.06	0.01	0.03	0.01	0.01	0.008		
sens Y-Y	0.05	0.03	0.03	0.10	0.01	0.01	0.01	0.02		
	0.08	0.05	0.05	0.13	0.01	0.02	0.01	0.02		
	0.12	0.09	0.07	0.17	0.01	0.02	0.01	0.02		
	0.16	0.11	0.09	0.20	0.01	0.02	0.01	0.02		
	0.15	0.11	0.08	0.18	0.008	0.01	0.006	0.01		

Tableau IV.5: Effet P-Delta des variantes étudiées.

Les valeurs de L'Effet P-Delta sont mis sous forme d'un courbe :

Figure IV.5 : Effet P-Delta des variantes étudiées suivant X

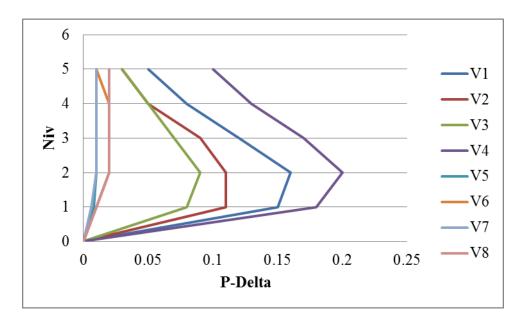


Figure IV.6: Effet P-Delta des variantes étudiées suivant Y

> Commentaire:

D'après les valeurs du tableau IV.5, on remarque que les variantes 1 à 4 ont $\theta > 0.1$.Par contre pour les variantes 5, 6, 7 et 8.L'effet P-Delta peut être négligé puisque $\theta < 0.1$.

IV.1.6. Excentricité:

	Variantes										
	V_{1}	V_2	V_3	V_4	$V_{\rm S}$	V_6	V_7	V_8			
	0.263	7.577	7.471	0.281	2.504	1.388	0.035	0.065			
Ex	0.311	7.27	7.091	0.327	2.174	1.3	0.003	0.048			
	0.328	6.845	6.572	0.344	1.931	1.208	0.027	0.101			
	0.337	6.351	5.984	0.352	1.761	1.132	0.052	0.122			
	0.341	5.849	5.349	0.355	1.648	1.094	0.075	0.153			
	6.257	0.644	6.228	1.48	6.065	1.513	0.044	0.056			
Ey	6.102	0.611	5.982	1.233	5.64	1.91	0.125	0.219			
	5.847	0.605	5.626	1.091	5.171	2.018	0.199	0.301			
	5.534	0.604	5.209	1.002	4.783	2.041	0.257	0.337			
	5.289	0.67	4.762	1.025	4.576	2.128	0.368	0.43			

Tableau IV.6: Excentricité des variantes étudiées

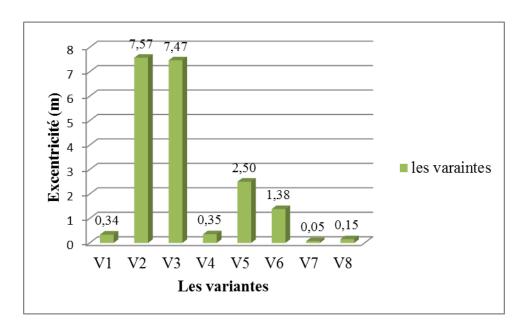


Figure IV.7 : L'excentricité des variantes étudiées suivant X.

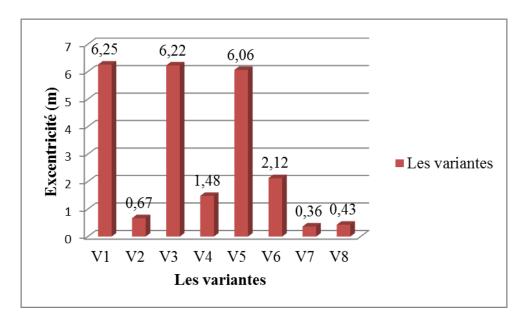


Figure IV.8 : L'excentricité des variantes étudiées suivant Y

Commentaire:

Les deux variantes qui ont donné des excentricités les plus faibles sont les variantes 7et 8. Tandis que, les variantes 2 et 3 ont donné les excentricités les plus élevées.

IV.2. Conclusion:

Les conclusions auxquelles a abouti le présent travail, sont résumées dans les points suivants :

- ➤ La participation des masses modales est supérieure ou égale à 90% de la masse totale
- du la structure pour l'ensemble des variantes
 - Les variantes qui présentent des translations pures au premier et au deuxième mode de

vibration et une rotation pure au troisième mode sont: V7et.V8

La période diminue avec l'augmentation de la rigidité de la structure, cela justifie le

Fait que la condition sur la période (Article 4.2.4 de l'RPA99/2003), n'est pas vérifiée pour les variantes 1, 2,3 et 4, par contre elle est vérifiée pour les variantes 5, 6,7 et 8

Les variantes qui présentent une force sismique plus importante sont : V7et.V8

Par conséquent la meilleure disposition des voiles de contreventements est celle ou les voiles sont placées à l'extrémité de la structure avec une symétrie parfaite.

L'analyse des résultats de l'étude comparative entre les huit variantes nous permet de choisir les variantes 7 ou 8 comme une solution pour le contreventement de notre bâtiment

Conclusion générale

Conclusion:

L'expérience des séismes passés a montré qu'une bonne disposition des voiles de contreventement permet d'avoir une exploitation optimale de la rigidité de la structure.

L'objectif assigné à cette étude est de rechercher la disposition adéquate des voiles en évaluant la performance sismique de la structure selon plusieurs variantes de disposition de voiles.

La quantité des voiles n'implique pas un bon comportement de la structure mais la disposition optimale de ces derniers c'est à dire le rapprochement maximale du centre de masses avec le centre de rigidité donne des résultats satisfaisants et qui se traduit par une économie sur l'utilisation du béton et de l'acier tout en respectant la règlementation en vigueur comme c'est le cas dans notre projet

Apres l'analyse approfondie des variantes, il ressort que le choix des dispositions des voiles de contreventement est un facteur prédominant pour une bonne conception.

- [1]: MORGAN LARDO, Grands bâtiments contreventement dynamique des structures calcul automatique
- [2]: PHILIPPE.BERGER2.free.fr/Bois/Cours/Contreventement1/contreventement1.htm
- [3]: Association française du génie parasismique, Guide AFPS Conception parasismique des bâtiments ,01 Juillet 1901.
- [4]: Dr. TALEB HOSNI ABDERRAHMANE, cours : système de contreventement
- [5]: V. Davidovici, Rapport de mission, Séisme de BOUMERDES, 21Mais 2003
- [6]: PROF.A.KASSOUL -USB Chlef, cours: ossatures bâtiment, chapitre 3: les contreventements (2015/2016)
- [7] : VICTOR DAVIDOVICI, Rapport préliminaire de la mission AFPS : le séisme du 21 Mai en Algérie
- [8]: HENRY THONIER, Conception et calcule des structures de bâtiment Tome 4
- [9]: PROF. MIMOUNI.M, cour, Université Ibn Khaldoun Tiaret
- [10]: Cim béton, 2009, béton et construction parasismique, collection CIM béton
- [11]: MILAN ZACEK, 2004, conception parasismique niveau d'avant-projet, cahier numéro 1 collection conception parasismique,
- [12]: Mr. BELKHIR MOHAMMED AGHILES, Influence de la disposition des voiles sur la performance sismique des structures mixtes, Mémoire de magister juillet 2012
- [13]: PROF.A.KASSOUL -USB Chlef, cours: ossatures bâtiment, chapitre 1: les murs (2015/2016)
- [14]: Règles de conception et de calcul des parois et murs en béton banche version révisée 1997
- [15]: NICOLAE ILE, contribution à la compréhension du fonctionnement des voiles en béton armé sous sollicitations sismique : apport de l'expérimentation et de la modélisation a la conception, thèse doctorat, spécialité génie civil sols, matériaux
- [16]: RPA 2003, règlement parasismique algériennes 99 révisé 2003, centre national des recherche en géni parasismique, Algérie
- [17]: KHEDDACHE LYNDA, Tenue au séisme des voiles en béton arme, mémoire de magister, option: Structures et matériaux, Université Mouloud Mammeri de Tizi-Ouzou 2014/2015