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GENERAL INTRODUCTION 

        Present day, rotors have predominantly metallic shafts. Use of fiber-reinforced 

composites has been attempted in a few specific applications. The rotating composite material 

shafts are used as structural elements in many application areas involving the rotating 

machinery systems. This is likely to contribute to the high strength to weight ratio, lower 

vibration level, and longer service life of composite materials. 

       A significant weight saving can be achieved by the use of composite materials. Also by 

appropriate design of the composite lay-up configuration, orientation, and number of plies, the 

improve performance of the shaft system can be obtained. Furthermore, the use of composite 

would permit the use of longer shafts in the supercritical range than what it is not possible 

with conventional metallic shafts. In the last few years, there existed numerous researchers 

who their study was about predicting critical speeds and natural frequencies of composite 

shaft. 

        In the early developments, composite shafts were designed to operate in the subcritical 

range.  Therefore, initial studies were directed toward to the design requirements and in 

overcoming the problems in practical application. Subsequently, in order to derive greater 

advantage in terms of reduction of weight, the possibility of super-critical operations of 

composite shafts was explored. 

        The design aspects for composite shafts vary from one application to another. Initially, 

the materials used for the drive shafts were glass/epoxy and boron/epoxy. However, as 

developments in composite technology continued, carbon fibers became more readily 

available.                  

        In many current applications, they replaced boron fibers, which it had proved that it was 

too costly and difficult to process. In automotive drive shafts, carbon fibers were found to be 

particularly suitable. Hybridization with glass/epoxy was tried, and it proved cost effective 

too. 

         One of the problems associated with design of composite drive shafts has been the 

accurate determination of the flexural critical speeds. As the drive shafts are quite long, their 

critical speeds are lower and may occur near the operating speed. In order to analyze the 

problems related to the lateral bending of composite shafts, equivalent modulus theory is 

commonly used.               
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         The theory is based on Kirchoff’s hypothesis for thin laminated beams. The equivalent 

moduli are found using classical laminate theory. 

       This work is organized in three chapters, starting with the state of the art of the first 

chapter to the last conclusion of the third one, chapter one is considered as an introductory of 

the subject of this work, it collects briefly everything related to rotor dynamics and composite 

materials. 

      Chapter two presents the theoretical elements used to obtain the equations of motion of a 

rotational system, furthermore, it improves the energy expressions into generalized 

Timoshenko form, also, it focuses on the development of the equations of motion using the 

finite element method in order to determine the elementary matrices of each element of the 

rotor system. 

      The third chapter focuses on the presentation of the MATLAB program by representing 

the results of critical speeds and vibration amplitudes of two different composite materials, 

after sitting all their properties.   
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CHAPTER I: Bibliographic studies.    

I.1 State of the art 

      The knowledge of the dynamic behavior of composite rotors is of great importance in 

power production engineering and in adjacent fields. The subject of high-performance 

composite materials is involved in development modern design and manufacturing methods 

for industrial components.  

      This development requires the implementation of the tools necessary for modelling the 

mechanical behavior of composite materials. This introductory chapter discusses the 

foundation by introducing the basic rotor and structural dynamic terminologies, concepts and 

characteristics, also, it presents a global vision of the state of the art in the field of stability of 

rotating machines.  

I.2 Problematic and objective  

       In the field of rotor dynamic, there are several problems and obstacles can be found 

throughout the studies of vibrations which lead to the damage of the rotors. Our studies are 

specialized in the field of dynamic analysis of composite rotors, in order to solve those 

problems and to find solutions for the latter. Moreover, and as it’s known that the composite 

materials are characterized by very high mechanical properties which make them able to with 

stand the applied solicitation more than a normal material. 

I.3 History  

       Studies on composite shafts started in 1970’s. The most important development of 

composite shafts has taken place in aerospace (helicopter) industry [1] [2] and automotive 

applications [3] [4]. Other applications include the use of composite shafts as quill shaft by 

Spencer [5], an aircraft power take off shaft by Garguilo [6], generator shaft by Raghava and 

Hammond [7], shaft for a cooling tower by Berg [8], a papermill by Cox [9] and naval 

propulsion systems by Wilhelmi et al [10]. The two U.S. patents by Worgan and Smith [11] 

and Yates and Rezin [12] indicate that the preliminary hurdles to a composite driveshaft 

design were overcome. Fromknecht [13] highlighted the possible benefits accruing from the 

use of composite shaft in mechanical power transmission. 

From 1970’s till today, the studies over composite rotors have passed by so many stages : 
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 Zinberg and Symonds [14] investigated the critical speeds of rotating anisotropic 

cylindrical shafts based on an equivalent modulus beam theory (EMBT), and dos Reis et 

al. [15] evaluated the shaft of Zinberg and Symonds by the finite element method. 

 Bauchau [16]: specialized in studies of high-speed graphite/epoxy shafts and the design of 

tapered composite shafts. The study of Bauchau deal with a numerical procedure using a 

generalized criterion of optimality. The shaft was modeled using a beam formulation 

including shear deformation and rotary inertia. The optimization was done under constant 

volume constraint. Different configurations are studied for various number of plies and 

orientation angle. In the optimal configuration the natural frequency increased by about 21 

to 44%, and the bending stress decreased by about 48 to 59%. 

 Spencer and Mcgee [17]: worked on the design of subcritical composite drive shafts in 

order to overcome its hurdles. Their report contains an analysis of the present steel shaft 

design  

and the two design approaches to a composite drive shaft. The first is a two-piece drive 

shaft; the second is a combined single drive shaft eliminating several other parts. The 

design section includes the design of a joint to interface between the steel couplings and 

the composite shaft. 

 Zorzi and Gioradani [18]: by the experiments on an aluminum shaft and on a composite 

shaft, they made an achievement on matching the experimental and theoretical results.   

 Lim and Darlow [19]: the reduction in weight of the rotor system led them to look forward 

if there is a possibility of supercritical operations. The optimal design of composite drive 

shafting is developed with the goal of minimizing, system weight. The study is illustrated 

with an application to a composite tail rotor drive shaft for advanced helicopters. It is also 

applicable to the design of composite synchronization drive shah for helicopters and other 

composite shah for aircraft, spacecraft and automobiles. The use and effectiveness of the 

optimal design procedure are demonstrated with an illustrative example. 

 Reis and all [15]: used the finite element method to evaluate the critical speeds of 

composite shafts. A numerical procedure to evaluate the rotor dynamic performance of 

thin-walled filamentary wound laminated composite circular cylindrical shafts of any layup 

is presented. Numerical results, for the critical speeds and the unbalance response of a 

sample composite shaft, are obtained and compared with predictions based on classical 

methods of analysis and experimental results found in the literature. 



 
6 

CHAPTER I: Bibliographic studies.    

 Hoffman [20]: proved that carbon fiber is necessary to have a balance between length, 

diameter and natural frequency. Another problem of paramount importance in composite 

shaft design has been that of optimization of the material and geometric parameters. The 

optimization objectives are somewhat different in aerospace applications as compared to 

automotive driveshaft design. In automotive applications, cost is one of the major driving 

factors. Thus, detailed cost-sensitivity analyses are performed in order to get a cost-optimal 

design. The solution lies in using hybrid composite shafts, as shown by Hoffmann. 

This provides the engineer with two important design variables to control, viz, the fiber 

winding angle and the mixing ratio of carbon and glass fibers. The additional variable of 

carbon-glass ratio greatly increases the range of designs alternatifs. 

 Hetherington and all [21]: also worked on the reduction in weight but of the tail drive rotor 

because they studied on composite helicopter. An experimental program is underway to 

investigate the dynamic behavior of supercritical composite drive shafts for helicopter 

applications. Design optimization results have shown that the system of least weight is 

achieved by the use of composite materials with a shaft that operates at a supercritical 

speed. Uncertainties in the ability to manufacture, balance, and safely operate supercritical 

composite shafts motivates the experimental program to examine their dynamic 

performance. Results are presented far experiments with both aluminum and optimized 

graphite/epoxy shafts. 

 Singh and Gupta [22] : The shell modes involving cross sectional deformation of 

nonrotating shafts have been experimentally analyzed by modal testing by Singh and 

Gupta Tests showed the existence of coupling of higher flexural modes with shell modes. 

The mounting  

of a disc on the shaft resulted in suppression of some shell modes, reduction in flexural 

natural frequencies and increase in damping ratios of all modes. 

I.4 Rotors modeling 

         In 1919, « Jeffcott » studied the basics about the dynamics of rotating machines, his 

work led to the development of essential studies such as Campbell diagram. A simple rotor 

dynamic model is known as « Jeffcott rotor ».   Any element rotating around a fixed axis is a 

rotor [23]. 
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 Its basic elements are: the shafts, the discs and the bearings, such that, the discs are defined as 

active parts mounted on the shafts, and the bearings are rotary connections in which  

the rotor is held. The complete rotor modeling is depending on the specific modeling of 

these elements [24]. 

 

 

 

Figure I. 1 :  A close view of a rotor consisting of two discs mounted on a flexible shaft [25]. 

 

1) The shaft   

     The shaft is a beam with a circular form, where the disc is based on.  

     There are some reasons that make the choice of its form necessary, like « form guide and 

assembly surfaces, resistance, cost price » [24].  

     In addition, we find two principals types of shafts « according to its form and function »: 

 Transmission shafts.  

 Machine shafts. 

2) The disk  

      The disk is defined as a solid and axially slim wheel, on which mechanical work is 

performed or from which work is extracted [26] . 

3) The bearing  

        The bearing is considered as a support for the rotor, it is classified in two categories: 

fluid-film bearing and rolling-element bearing, it provides dynamic constraint in both 

directions « transverse and axial » [26].  

4) The unbalance 

         Even that the masse of unbalance is negligible compared to the masse of the rotor [27] 

there is always a residual unbalance related to rotors no matter how they are balanced [28] ,  
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and it is all because of the results of manufacturing tolerances, operational wear and tear, 

thermal  

 

distortions [25], the unbalance is created, therefore, it has to be considered into the modeling 

[24]. 

 

 

Figure I. 2: (a) Static unbalance (b) Dynamic unbalance [29]. 

 

I.5 Characterizations of the elements of rotor  

        The influence on the dynamic behavior of the rotor appears from the characteristics of 

the rotor elements (shaft, disc, bearing), their changes also influence on the dynamic 

equations of system. There are two parameters, which can define these characteristics [30] : 

1) Geometric parameters  

 Uniformity of the shaft (eg: diameter variation) 

 Disk thickness 

  Presence of discontinuity (eg: cracked rotor) 

 The nature and the types of bearings 

2) Mechanical parameters 

 Disk stiffness or flexibility. 

 Disk flexibility effect. 

 The nature of the shaft material. 

 Isotropy and anisotropy. 

 The bearing mouvements. 
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I.6 Different types of rotors 

        In general, there are two special classes of rotos : 

1) Rigid rotor 

A rigid rotor is defined as the one : 

 Which operates below its first bending critical speed [26]. 

 That has one frequency prior to the operating or rated speed of a machine 

[29]  

   Throughout all the operating speed range, these rotors may be balanced on any two 

arbitrarily selected correction planes, also, they can be brought into and will remain in state of 

balance [26] [31]. 

 

Figure I. 3: Rigid rotor [32]. 

2) Flexible rotor 

  A flexible rotor is known as the one : 

 That cannot be balanced in a low-speed balancing machine [31] . 

 That has more than one frequency to balance before reaching to the 

operating speed [29]. 

               For dynamic effects and in order to influence rotor deformations, these rotors 

operates close to or beyond its first bending critical speed [26], moreover, they require one or 

more high speed trim plane correction [31]. 
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Figure I. 4: Flexible rotor  [32]. 

 

I.7 Classification of rotors 

       The classification of rotors has made by the international standard organization (ISO 

1973), in order to describe the types of rotors and the quality of balance [31], it may be 

determinate according to both of geometric and mechanical parameters: 

Geomatric parameters Mechanical parameters 

 Rotor shaft model (shaft dimensions) 

 Rotor disc model (disc dimensions) 

 Bladed rotor model (eg: helicopter) 

 Free rotor model (the absence of 

suspension (eg: no bearing)) 

 Rigid rotor model 

 Jeffcot rotor model (simple rotor) 

 Real rotor model (flexible rotor with 

higher speeds) 

 

Table I. 1: Classification of rotors [30]. 

I.8 Composite materials 

         Materials have always played a major role in the development and growth of human 

civilization [33], structural materials can be divided into four basic categories : metals, 

polymers, ceramics, and composites [34]. In the past decades, the theory of composite 

materials became one of the most attractive topics in mechanics of solids [35], there has been 

a major  



 
11 

CHAPTER I: Bibliographic studies.    

effort to develop composite material systems, and analyze and design structural components 

made from composite materials [36]. 

1) Definition 

              A composite material is different from the conventional macroscopically 

homogeneous material [37], it is an evolving and growing technical field [38]. Composite 

material can be defined as a heterogeneous mixture of two or more homogeneous phases 

which have been bonded together, in order to rectify some shortcoming of a particularly 

useful component [39], and to achieve a particular function , this combinations may be 

materials of the same class or of a different class [40]. 

 

 

Figure I. 5: The combination of materials on composites [40]. 

 

             Nowadays, the term advanced composite means specifically this combination of very 

strong and stiff fibers within a matrix designed to hold the fibers together  [39], the matrix 

keeps the geometric arrangement of fibers and transmits to them the load acting on the 

composite component [37].  

2) The constituents of composite material 

      In the most general case, a composite material consists of one or more phases 

discontinuous distributed in a contained phase. The discontinuous phase has mechanical 

properties superior compared to the continuous one. The continuous phase is called the 

matrix, and the discontinuous phase is called the reinforcement [41].  
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A. Matrix 

          The matrix is the essentially homogeneous material, which is based on polymer metals 

or ceramics. The choice of matrix is related to the required properties, the intended 

applications of the composite and the method of manufacture [42].  

          Its main role is to : 

 Bind the reinforcements in such a way as to form a distinct interphase between 

them [33]. 

 Transfer the load between fibers and between the composite and the supports. 

 Protect the fibers from the environment and mechanical abrasion [43].  

           The matrix is composed of a resin, which is defined as an organic polymer or 

prepolymer. This organic matrix may be a thermoset or a thermoplastic [44].  

a.  Thermoset matrices 

           A thermoset matrix is formed by the irreversible chemical transformation of a resin 

system [43], this matrix can be characterized by having polymer chains that 

become highly cross-linked during cure. Once it is cured, it is in a final rigid 

configuration and there is nothing that will change it.  These matrices are advantageous for 

high temperature applications of composites [45]. 

b.  Thermoplastic matrices 

             A thermoplastic matrix does not undergo any chemical transformation during the 

processing, this matrix can be characterized by having polymer chains that 

are not cross-linked, moreover, it is softened from the solid state to be processed, and it 

returns to a solid after the processing is completed. When using these matrices, the operating 

temperature should be kept below the cure temperature [43] [45]. 

c.  Materials for matrices 

                     By now, matrices are made from polymeric, metal, carbon, and ceramic 

materials which are classified into two principals groups of materials : organic and mineral. 
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Figure I. 6: The principal materials for the matrix. 

B. The fibre 

          A fiber can be defined as an elongated material having a more or less equiaxial and 

uniform cross section [39] . They consist of several hundreds or thousands of filaments, each 

of them having a diameter between 5 and 15 µm, allowing them to be processable on textile 

machines [37], they can be of different physical forms including : particles, whiskers, short 

fibers, continuous fibers, and plates [33].  

 

 

Figure I. 7: The different forms of fibers: a) Particles, b) Short fibers, c) Continuous fibers, d) 

Plates [45]. 
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         In most cases, the reason of using fibers in composites is because they are harder, 

stronger and stiffer, or in other words, the reinforcement is defined as the strong integral and 

inert component of a composite that is incorporated into the composite matrix to improve its 

physical properties [47]. 

a.   Materials for fibres 

             The reinforcing material is embedded in the matrix material at a macroscopic level 

[33] major progress continues to be made with inorganic and organic reinforcement materials 

[47]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I. 8: The principal materials for the reinforcement.  

I.9 Classification and types of composite materials  

           Classification of composite materials is based on the types of materials of both 

matrices and fibers, so  [33]: 

According to the type of matrix material : 

 Metal Matrix Composites (MMC). 

 Ceramic Matrix Composites (CMC). 

 Polymer Matrix Material (PMC). 

According to the type of fiber material : 

 Particulate Composites. 

Reinforcement Inorganic Organic 

Vegetals Mineral 

Wood 

Cotton 

Paper 

ect…. 

 

Polyester 

Aramid 

 

Metalics Ceramics 

Glass 

Boron 

Carbon 

ect…. 
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 Fibrous Composites. 

This classification is included into other three groups which are more specific and useful, 

there is :  

 Natural composite Materials 

 Micro composite Materials 

 Macro composite. 

Moreover, the different types of composite are given below in order to get a proper 

understanding of classification of composites. 

 

 

Figure I. 9: Types of composites : (a) phased composites, (b) Layered composites [33]. 

I.10 Applications of composite materials 

          Acute interest in investigation and modelling of physical and mechanical properties of 

composite materials is connected with the constantly increasing area of their applications [35]. 

       Nowadays, composite materials would embrace large sections of : Aerospace & 

automobile industries, marine construction, renewable energy, modern medicine   micro-

/nano-material technologies. 

      In addition, composite materials are currently the hottest topic of researchers in civil and 

mechanical engineering, chemical engineering, electrical engineering, material science, and 

solid and structural mechanics. 

     They are used in many areas of industry and transportation, including land, sea, and air 

transportation systems, commercial appliances, and electronics and computer systems [48] . 
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I.11 Advantages and disadvantages of composite materials 

           The growth of the production of a variety of composite materials and the rapid 

development of technology and research in this field clearly show advantages of composites 

[46], furthermore, these lightweight materials have some precise objectives, which cannot be 

reached with some other conventional materials [49].   

         Composites proved to be superior to the known homogeneous materials: first of all, they 

have superior physical and mechanical properties; secondly, it is possible to design the 

composite structure and to create materials with the prescribed in advance properties optimal 

for the operation conditions of the whole structure [35]. 

     However, there are other certain disadvantages as well; the table below shows both of 

advantages and disadvantages of composites: 

 

Advantages Disadvantages 

1. High tensile strength and stiffness 

2. High specific strength and specific stiffness 

3. High fatigue strength 

4. Inherent material damping and good impact 

properties 

5. Tailorable properties 

6. Design flexibility 

7. Less corrosion 

8. Simple manufacturing techniques 

9. Near net shape part and lower part count 

10. Cost-effective product development 

1. Low service temperature 

2. Sensitivity to radiation and moisture 

3. Low elastic properties in the transverse 

direction 

4. Complex design and analysis 

5. Complex mechanical characterization 

6. High cost of raw materials and fabrication 

7. Difficulty in jointing 

Table I. 2: The advantages and disadvantages of composite materials [33]. 

 

I.12 Dynamic behavior analysis of composite rotor 

          The rotors are considered as the most important part of machines, and, composite 

materials are widely used in the design of rotors, and this is why the dynamic behavior of 

composite rotors becomes a subject worthily of study. The interest studies and research in the 

field of composites for rotor dynamics, numerically and experimentally has been 

demonstrated, and, it makes them improve a large number of designs in rotor dynamics. 
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      As a definition, the rotor dynamic is the study of the stability; it plays a major role in 

improving the security and performance of the system [50]. 

 Researchers worked on the developing of a composite shaft, it is because of: rotor dynamic 

modelling of a rotating composite shaft is necessary, and the shafts made from composites are 

mostly used in almost all the applications. 

 

 

Figure I. 10: Composite driveshaft [24]. 

 

      The dynamic behavior of the rotating structure demands: the structure to be at rest and, it 

is supposed to be cyclically symmetric. The equivalent approach for modulus beam is usually 

used in the studies of the behavior of composite rotors [51]. 

      Establishing of methodologies of vibration is the purpose of rotor dynamics, and, the 

objective of the study of the dynamic behavior of rotors is as following  [50]: 

 Predict critical speeds. 

 Determine design changes to change critical speeds. 

 Predict the natural frequencies of vibration in torsion, bending and coupling. 

 Predict amplitudes of synchronous vibrations caused by the imbalance of the rotor. 

 Determine design changes to remove dynamic instability. 

      It is observed that the conventional rotor have dynamic parameters as well as critical 

speeds, natural frequencies, damping factor, imbalance of response and stability threshold, 

which they have been analyzed in detail, plus, there is a theory that the formulation of the 

dynamic of rotors is based on, it is the beam theory [23]. 
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I.13 Conclusion 

       The major facts and properties of the composite materials and the rotor dynamics has 

been identified and explained in a short way, which leads to the well-known what this study is 

based on, and it clearly appears that the use of the composite materials made the shaft system 

improve their performance, furthermore, and for a general-purpose, the composite-material 

shafts have been sought as new potential candidates for replacement of the conventional shaft 

in many application areas. Also, and thanks to their high performance, modeling the 

mechanical behavior of composite materials becomes necessary.  The composite shaft 

modeling using beam theory and finite element model will be discuss in the next chapter.  
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II.1 Introduction 

            The mathematical model of the rotor is derived from the Lagrange’s equation which is 

obtained from the strain and kinetic energies expressions. The mathematical representation of 

the specific physical phenomena that involve rotating machines requires a reliable design tool. 

            The main phenomena that occur in rotor dynamics can be evaluated by the finite 

element method. This chapter focuses exclusively on the finite element model based upon the 

Timoshenko beam theory to obtain matrix equations. In this context, the present work is 

dedicated to a numerical investigation the unbalance response (dynamic behaviour) of a 

rotating composite shaft supported by flexible journal bearings. 

II.2 Beam theory 

          The term “Beam” can be defined as a “bar” when the external forces are axial, and as 

“shaft” when it is subjected to torsion or when it has a rotational movement. 

          The different studies on the beam theory are based on either the equivalent modulus 

beam theory (EMBT) or layer wise beam theory (LBT), furthermore, the rotodynamic 

formulations are based on those two theories. The beam theory is perhaps the most successful 

theory in all of structural analysis. 

          The idea behind beam theory based on three different beam models which may be used 

in the finite element analysis, and they are: 

 Euler-Bernoulli beam. 

 Rayleigh beam 

 Timoshenko beam. 

          In Euler-Bernoulli beam theory, only pure bending energy is considered. In case of 

Rayleigh beam theory, in addition of transitional kinetic energy cross-sectional rotational 

kinetic energy is considered which is called rotary inertia. In Timoshenko beam theory, shear 

strain energy is taken into account [51] .  

          The Timoshenko beam theory formulation based on an equivalent modulus which has 

been developed and extended for a composite rotor [52] , and it is known that the equivalent 

modulus beam theory (EMBT) is widely used to study the dynamic behavior of the composite  

shaft, so, in the present analysis, the Timoshenko beam theory will be used for the 

development of a governing equation of the continuous system analysis [25].  
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II.3 Kinematic equations 

          Now, the focus will be on the governing equations, by using the Timoshenko beam 

theory, and in the layer “n” of the cross section of the beam element, the continuous 

displacement field at material points along the shaft cross section is described as [53]: 



( , , , ) ( , ) ( , )

( , , , ) ( , , , ) ( , )

( , , , ) ( , )

x z y

y

z

u x y z t y x t z x t

u x y z t u x y z t v x t

u x y z t w x t

   
 

  
 



                       (2.01) 

Where:  

 “ux”, “uy” and “uz”: are the displacements of a generic point of the cross section along x, 

y and z directions respectively. 

 “v (x; t)” and “w (x; t)”:  denote respectively the flexural displacement in y and z 

directions of the point on the reference axis of the shaft. 
 “θy (x; t)” and “θz (x; t)”:  are respectively the rotation angles of the cross section about y 

and z axis. 

1) Strain – displacement relation 

             The strain – displacement relation based on the above displacement assumption can 

be represented by the following equation [53]: 
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   

                                                (2.02)                                                   

        The strain components in cylindrical coordinate system can be expressed in terms of 

their counter parts in the Cartesian coordinate system as [53]: 
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(2.0 3) 

    Since: 0yy zz yz     , the strain components in the cylindrical coordinate system can be 

written as [53]: 
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                                                            (2.04) 

      Therefore, the tensor of the strains in the layer “n” at a point “P” according to the 

cylindrical coordinates is [53]: 
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xx xx

x xy

xr xz



 

   

  

    
         

        

                                                  (2.05) 

 

Figure II. 1: Transformation to cylindrical coordinate system (x,r,φ) [53]. 
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2) Stress – strain relation  

          The linear stress – strain relation of a structure is given by Hooke’s law and it can be 

established:                       

    E                                                                               (2.06) 

With: (σ) and (ε) are the stress and the strain respectively. The generalized Hooke’s law for an 

orthotropic material is written as follow : 

         , :C or S                                                      (2.07) 

 While: [C] and [S] can be defined as the stiffness matrix and the compliance matrix 

respectively. 

       Only the expression of the stiffness matrix will be developed here, the compliance matrix 

can be obtained by considering that    
1

S C


 .When linked to the orthotropic 

axis, Hooke’s law takes the following form [23]: 
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                              (2.08) 

 

 
Figure II. 2: Plan of ply [54]. 
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    Where: “1; 2; 3” are the orthotropic axes. “1” is the fiber direction, “2” is the direction 

transversal to the fibers in the ply, “3” is the direction perpendicular to the ply, and, “φ” is the 

ply fiber angle. 

      Since the shapes of the cross-sections of the composite shaft are assumed circular, it is 

more convenient to express the stress–strain relations of the composite material of the shaft 

using the cylindrical coordinate system ( i  ; re ; e ) [56]. The stress – strain relation 

components in this coordinates system is given as: 

            
1 T

C R C R  
 

                                                    (2.09)                                         

Where: [𝐶′] is the stiffness matrix related to the cylindrical system axis. 

             [𝑅] is the basic change matrix of the stresses expressed in function of the angle “η” 

called the orientation of fibers [23]: 
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          (2.10) 

 

Well, in the cylindrical coordinate system (x; r; θ), the stresses are expressed according to the 

following relation [23]: 
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a)                                                                                                                   b) 

             

Figure II. 3: a) Composite rotor [54].  b) Main axes (1,2,3) and reference axes (x; er; eθ) of a 

layer “n” [23]. 

 

 

Moreover, the previous relation “relation (2.11) is written in simplified form as follows: 
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                                                       (2.12) 

     From here, it is evident that there are equations which can be extracted from this new 

relation “relation (2.12)”: 
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      Where: “ks” is the shear correction factor, and as it is known that “ 0rr r      ” 

and “ xr rx   ; x x   ”, the tensor of the stresses in the layer “n” at a point “P” according to 

the cylindrical coordinates is:  
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                                                           (2.14) 

In the main axes, the stiffness constants reduced in function of the elasticity moduli are  [23]: 
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With: 12 13 23" "," "," "LT LP TP        , and: 

 

Figure II. 4: Definition of moduli for orthotropic materials  [40] 

     The transverse plane marked by the directions 2 and 3 are equivalent, so, the following 

parameters have to be identified for each ply: 

 E1, G12 and ν12 : are Young’s modulus shear modulus and poison ratio respectively in 

the longitudinal direction  

 E2, G23 and ν23 : are Young’s modulus shear modulus and poison ratio respectively in 

the transversal direction. 

     Otherwise, in the cylindrical system, the stiffness coefficients are in function of the 

coefficients referred to the layer axes, and they are expressed by the angle “η” in the main 

direction (1 or L) as follows [23]: 

4
11 11 22 12 66

3 3
16 11 12 66 12 22 66

4 4
66 11 22 12 66 66

55 44 55

' cos sin 2( 2 )sin² cos²

' ( 2 )sin cos ( 2 )sin cos

' [ 2( )]sin² cos² (sin cos )

' sin² cos²

C C C C C

C C C C C C C

C C C C C C

C C C

   

   

   

 

   

     

     

 

        (2.16) 



 
27 

CHAPTER II: Mathematical and Finite Element Models.    

II.4 Energy expressions 

       While in operation, rotors of machines have a great deal of rotational energy, and a small 

amount of vibrational energy [56], in order to study the dynamics of a system comprising one 

or more rotors, it is possible to write the equations of motion either in a fixed reference frame 

or in a reference frame rotating at the same speed as the rotor [50]. 

 

 

Figure II. 5: A micro-rotating beam with circular cross section and the corresponding 

coordinate system [57]. 

 

      The “XYZ” triad is a fixed frame of reference and “xyz” triad is a rotating frame of 

reference with “X” and “x” being collinear and coincident with the undeformed rotor center 

line. Rotating frame is one which rotates about the longitudinal axes at angular Ω [58]. 

       A typical cross section of the rotor in a deformed state is defined relative to XYZ by the 

translations “v(x,t)” and “w(x,t)” in the Y and Z directions respectively to locate the elastic 

centreline and small angle rotations θy(s,t) and θz(s,t) about Y and Z respectively to orient the 

plane of the cross-section. The “xyz” triad is attached to the cross-section with the "x" axis 

normal to the cross-section [58]. 

        The angular velocity vector of the rotational rigid-body motion of the element can be 

determined by considering three successive Euler angles : θx(x,t) , θy(x,t) and θz(x,t), where  

θx(x,t)=Ωt because the torsional deformation of the element has been assumed to be 

negligible. In terms of the Euler angles, the angular velocity vector of a given element is 

expressed as [57]: 
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 Where : 1 2 3, ,e e e  are the unit base vectors of the coordinate system X3–Y3–Z3, which is the 

one completely attached to the element. 

 

Figure II. 6: Three-axis Euler angles rotations  [57]. 

The general equations of the rotor are obtained from the expressions of the energies of each 

element of the rotor. 

1) The kinetic energy of the shaft, the disk and the unbalance 

            The expressions of kinetic energies are necessary to characterize the shaft ,the disc and 

the unbalance [59], either a composite rotor consisting of “N” layer of orthotropic material, 

and according to the beam theory , for each ply of beam element of length “L” and constant 

cross-section [27] , the kinetic energy is given by the form :  

               For an element of the shaft [53]:  
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Where:   

 2 p y zI   : this term represents the gyroscopic effect.  

  2 2
d y zI   : this one represents the effect of rotary inertia.   

 “ mI ”: the moment of mass inertia. “ dI ”: the moment of diametrical inertia. “ pI ”: the 

moment polar inertia.  

      For an element of the disk [53]: “The disk is supposed rigid, so, only its kinetic energy is 

considered, plus, both of the translational and the rotational energies are summed in the 

following form”: 

. . . . .1 1 1
( ² ²) ( ² ²) ²

2 2 2
d d dx z dy dy zy yT m v w I I I                       (2.20) 

With: 

 
. .1

( ² ²)
2

dm v w  : Kinetic energy of an element in translation in a plane. 

 
. .1

( ² ²)
2

dx z yI    : Kinetic energy of rotation of an element about the “y” and “z” axis. 

 
1

²
2

dyI   : Constant term for disc rotation energy. 

 
.

dy z yI    : Gyroscopic effect (Coriolis). 

       For the unbalance [50]: “The unbalance is defined by a mass “mu” situated at a 

distance “d” from the geometric center of the shaft. The unbalance mass is negligible in the 

relation of the rotor mass.” 

 sin cosu uT m d u t w t                                                       (2.21) 

2) The strain energy of the shaft 

            The deformation energy is not affected by the movement of the support because it 

only depends on the stresses and therefore on the deformation of the shaft in relation to the 

support [30]. 
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Figure II. 7: “k” shaft layers in composite materials  [23]. 

 

    With: “R0” is the inner radius of the shaft, “Rk” is the outer radius of the shaft and “e” is the 

thickness of the shaft. 

The expression for the strain energy of the shaft is : 

   1

2

1
( )

2

t

ij ij

V

xx xx rr rr xr xr x x r r

V

U dV

dV     

 
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

     




                   (2.22) 

    Where: “V” is the volume of the shaft, and, since: 0rr r       the deformation 

expression becomes [54]: 

 
1

( )
2

xx xx xr xr x x

V

U dV                                                          (2.23) 

Using the equation (2.13), the deformation energy expression becomes: 

 
2 2 2

11 16 55 66

1
( 2 )

2
xx x xx xr x

V

U C kC kC kC dV                                        (2.24) 

Where: 162 x xxkC   accounts for the shear-normal coupling effect. 

 

    Replacing the relations for the cross section rotation where y = r cos φ and z = r sin φ, and 

integrating over the shaft cross sectional area by summing up the contribution of each 

orthotropic layer, the deformation energy in expanded form is given by [54] : 
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(2.25) 

With:  
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                                                      (2.26) 

 

Where: “k” is the number of layers and “n” is the index of layers. 

3) The virtual work of the bearings 

        In general, bearings which induce external forces acting on the shaft have stiffness and 

damping characteristics. These characteristics are on the cross-sectional plan according to the 

directions shown in the following figure: 

 

Figure II. 8: Damping and stiffness of bearing [60]. 
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The virtual work of the external forces acting on the shaft has the following expression [50]:                  

               

. .
xx zz xx zzW k u u k w w D u u D w w                                  (2.27) 

And, the virtual work of the forces acting on the shaft is written as follows: 

                                                u wW F u F w                                                               (2.28) 

Where: “Fu and Fw” are the generalized forces. 

So, according to the two previous equations, these generalized forces can be represented in 

matrix form as follows [50]: 

                                 
0 0

0 0

u xx xx

w zz zz

F k u D u

F k w D w

       
        

       
                              (2.29) 

Where:  

 , , ,xx zz xx zzk k D D : are stiffnesses and damping according to the “x” and “z” directions of 

the shaft. 

II.5 Finite Element Model 

         There are two methods which are often used for the dynamic analysis of rotors: “The 

transfer matrix method (TMM)” and “ The finite element method (FEM)”, both of these 

methods have been used extensively for modeling and analyses of rotor systems, but, the 

finite element method is known among the most important and efficient methods for 

modelling and solving complex problems in engineering sciences, especially in rotor 

dynamics [30] [25]. 

         A finite element model of the rotor was created using two noded Timoshenko beam 

elements with gyroscopic effects included [25]. It has been seen that the finite element 

method consists mainly in setting out the matrices and solving the equations of motion  [57], 

it is applied to the solution of the governing partial differential equation of the Timoshenko 

beam with rotary and gyroscopic effects. Elemental matrices are presented for the mass, 

stiffness, and gyroscopic effect [25]. 
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II.6 Equation of motion 

        The general equation of motion is obtained by applying Lagrange’s equations on the 

energy expressions of the rotor element by outputting the different characteristic matrices of  

the system (mass matrix, stiffness matrix and damping matrix), the Lagrange’s equation is 

given by [30]:                                         

             i
q

i i i

d T T U
F

dt q q q

   
   

   
                                         (2.30) 

       Where: “ iq ”: Independent generalized coordinates. With: “i” is the number of degrees of 

freedom. And “ 
i

qF ”: The generalized forces vector. 

       The anisotropic properties of composite materials and their lightness can be used to 

optimize composite shafts in order to improve their dynamic behavior, the differential 

equation that represents the dynamic behavior of a composite flexible rotor system is as 

follows [61]: 

                                     uM q D G q K q W F                                        (2.31) 

 

Where:  

 [M]: Mass matrix. [D]: Damping matrix. [K]: Stiffness matrix. [G]: Gyroscopic effect.  

 Ω : The shaft rotation speed.  W  : The weight of the rotating parts.  uF  : The 

unbalance forces, and, the vector  q  contains the generalized displacements. 

II.7 Elemental matrices 

         The product of the three finite element matrices (mass, stiffness and gyroscopic 

matrices) is based on introducing the shape function in the expressions of energy, and then, 

application of the equations of Lagrange [27]. The elemental matrices are therefore of order 8, 

because they represent conventional four degrees of freedom, two translational and two 

rotational for all particles in the structure [30]. 
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Figure II. 9: Finite element model of beam element. 

 

1) For an element of the disk 

         The disc is modelled by node with four degrees of freedom: two rotational 

displacements “θy” and “θz” around the “y” and “z” axes, and two translational displacements 

“v” and “w” along the “Oy and Oz” axes  [62]. 

 

 

Figure II. 10: Finite element model of the disk [62]. 

 

Furthermore, the nodal displacement field is given by:  
y

z

v

w
q





 
 
 

  
 
  

, and by applying the 

Lagrange’s equation on the kinetic energy expression of the disk (equation 2.20), the equation 

becomes [62]:  

w2 

 

v2 v1 

w1 

 θz1 θz2 

θy1 θy2 
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M q G q
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With: 
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                                                                       (2.34) 

Where: [Md]: is the mass matrix of the disk, and: [Gd]: is the gyroscopic matrix of the disk 

[62]. 

2) For an element of bearing 

            The bearings are modelled by considering the shaft as a linear viscoelastic solid. The 

vector displacements are that which corresponds to the four degrees of freedom of the node of 

the section where the bearing is located. The effect of the elastic forces and damping which 

appear in the bearings is taken into account by the following matrices [24]: 

0 0

0 0

v yy yy

zz zzw

F k Dv v

k DF w w

        
         

       
                                   (2.35) 

Where: the first matrix is a stiffness matrix and the second is viscous damping matrix. 

3) For an element of unbalance 

          As it is known that the unbalance is characterize by its own mass, and by applying the 

Lagrange’s equation on the kinetic energy expression of the unbalance, the new equation is 

given by [62]: 

                                         
sin( )

²
cos( )

u u
u

tT Td
m d

tdt q q

    
     

    
                                                 (2.36) 
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4) For an element of shaft 

           The shaft is modelled by two nodes, each one with four degrees of freedom: two 

rotational displacements “θyi” and “θzi” around the “y” and “z” axes, and two translational 

displacements “vi” and “wi” along the “y” and “z” axes [62]. 

 

Figure II. 11: Finite element model of the shaft[54]. 

 

Since the shaft is represented by two nodes, each one with four degrees of freedom, so the 

shaft has 8 degrees of freedom, therefore, it indicates that the nodal displacement field is 

written as follows [62]: 
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                                                       (2.37) 

The displacement in a point of the shaft is given by [62]: 
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Where “N(y)” is the shape function: 
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                                                                              (2.39) 

With [63]: 

 

 

 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

t t t t

t

t t t t

r r r r

r

r r r r

N N N N
N

N N N N

N N N N
N

N N N N

 
    

  
  
 

                   (2.40) 

 

The components of the shape function “N(y)” are as follows [63]: 
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With [63]: 

 
 

11
2

55 66

12
,comp

s

A x

k A A L L
  


 

And: “Гcomp” is the shear deformation parameter for composite shaft.  
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Moving on now to the equation of motion of the element of the shaft, by applying the 

Lagrange’s equation on the energy expressions of the shaft, the new equation will be as 

follows [63]: 

                0Tc Rc Shaft Bc Shear c cM M q G q K K K q                     (2.43) 

Where: 

      
0

L
T

Tc m t tM I N N dx   [63] is the translational mass matrix of uniform composite shaft. 

      
0

L
T

Rc d r rM I N N dx   [63] is the rotational mass matrix of uniform composite shaft. 
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Shaft c p r rG I N N dx
 

       
  [63] is the gyroscopic matrix of uniform composite 

shaft. 
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TL

Bc r rK A N N dx    
     [63]is the bending stiffness matrix of uniform composite 

shaft. 
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K k A A N N dx               [63] is the shear stiffness matrix of 

uniform composite shaft. 
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0 24
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c comp s t r r t

L
K k A N N N N dx

                      
  [63] is the geometric stiffness 

matrix due to axial load. 

II.8 Whirl speeds analysis 

          The equation of motion of the system (equation 2.32) which is presented previously, 

can be written in the homogeneous form: 
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           0M q D G q K q                                                    (2.44) 

 The new equation also can be written in the following form [63]: 

      * * 0M x K x                                                                    (2.45) 
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Where:   

 [M*] is a positive definite and real symmetric matrix 

 [K*] is an arbitrary real matrix 

 

And they are defined by the following matrices [63]: 
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With:  
 
 
q

x
q

 
  
 

 and  I  is the identity matrix. 

The solution of the equation (2.45) can be assumed in the form [63]: 
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                                                  (2.47) 

  

   The eigenvalues “λ” and the eigenvectors  X  are given by a new arbitrary real matrix that 

is obtained by substituting the equation (2.47) into equation (2.45) which gives the following 

form [63]: 

        1
* *M K X X


                                                          (2.48) 

So: 
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Where:     1
* *M K


  is the new arbitrary matrix. 
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II.9 Conclusion 

       In this chapter, the energy expressions of each element of the rotor are determined in 

order to use them on the Lagrange’s equation to obtain the general equation of motion of the 

rotor-bearing system, this last is based on the Timoshenko beam theory. This work is for the 

only purpose which is abbreviated in obtaining the elementary matrices. The modelling and 

analysis of rotor-bearing foundation system based on the finite element method were 

investigated in order to determine mass, stiffness and damping matrices of different elements 

to formulate accurate rotor system models. 
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CHAPTER III: Dynamic analysis of composite rotor. 

III.1 Introduction 

        The content of the present work is the modelling and analysis of rotor system, it basically 

deals with theory related to dynamic analysis of composite rotor, in view of this, a theoretical 

model based on finite element theory will be develop, in order to write a computation 

program in MATLAB. 

      By using MATLAB program, that can handle complex matrices, the matrix procedure is 

demonstrated by simulation analysis, furthermore, the composite rotor system is also 

considered for this analysis.        

      Any continuous structure mathematically has an infinity of natural frequencies and mode 

shapes, so, to this point, some properties of the composite rotor system elements are presented 

in this chapter in order to create a simulation analysis for the purpose of finding the whirl 

natural frequency, vibration amplitudes, Campbell diagram, critical speeds and unbalance 

responses.  

III.2 Ply plane 

         In this analysis, each layer of fiber can be considered as a unidirectional ply, and it is of 

course assumed that all plies are perfectly bounded. 

 

 

Figure III. 1: section plan [27]. 
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III.3 Description and discretization of the studied model 

1) Description of the model 

       In the study presented here, the composite rotor has a uniform circular shaft section with 

discrete isotropic rigid disk mounted at the center, it is supported by bearings that are 

modelled as springs and viscous dampers. The model studied is a linear system, and this 

system is supposed to be flexible subjected to an excitation force of an unbalance type. 

 

 

 

 

 

 

 

 

 

Figure III. 2: finite element model of the studied rotor. 

 

2) Discretization of the model 

      The finite element method involves the discretization of a continuous structure [25], 

therefore, in this study, the calculation will be obtained from the discretization of the 

composite shaft in six elements, so, its results will be in seven nodal points. 

       Each element has two nodes, each node has four degrees of freedom (two translational 

and two rotational along the “Y” and the “Z” axis), the bearings in this system are placed on 

the first node (first bearing) and on the last node (second bearing), they are modelled by 

springs and viscous damping in the “Y” and “Z” directions, and the disk is placed on the 

middle of this rotor system (on the fourth node). 

      Thus, the size of the global matrix will be obtained from the multiplication of the number 

of nodes by degrees of freedom : “7*4=28” (28*28), and after the boundary conditions will be 

applied (eliminate the two degrees of freedom of the bearings), the global matrix takes the 

size of (24*24). 

Shaft Cb Cb Kb Kb 

4 

1 2 3 5 6 7 

Unbalance 
Disk 

Bearing 
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The table below shows the numerical data concerning the discretization of the structure: 

 Elements Nodes DOFs 

Rotor 6 7 28 

Application of the boundary conditions 6 7 24 

Table III. 1: Discretization. 

III.4 Properties of the elements of the rotor 

           It is important to know the properties of the rotor’s elements to study the behavior of a 

structure, so, the geometric properties of a composite shaft and a rigid disk as well as the 

bearings are represented on the tables below: 

 Composite shaft: 

Properties Values 

Total length L=0.72m 

Inner diameter ID=0.028m 

Outer diameter OD=0.048m 

Lay-up from inside  (90°,45°, -45°, 06°, 90°) 

Shear correction factor ks=0.56 

Table III. 2: Properties of the shaft [63]. 

 Rigid disk: 

Properties Values 

Mass m=2.4364 kg 

Diametral mass moment of inertia Id=0.1901 kg.m² 

Polar mass moment of inertia Ip=0.3778 kg.m² 

The mass eccentricity of the disk e=5*10^-5 

Table III. 3: Properties of the disk [63]. 

 Bearings: 

Properties Values 

The stiffness Kyy=Kzz=1.75*10^7 N/m 

The damping Cyy=Czz=5*10^2 N.s/m 

Table III. 4: Properties of the bearings [63]. 
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III.5 Boundary conditions 

          The discussion of the boundary conditions is necessary and it must be introduced, they 

are abbreviated in cancelling the degrees of freedom. The two boundary conditions of this 

system are: 

 Along the “X” axis, the two degrees of freedom are cancelled, so, it’ll be last the four 

degrees of freedom along the “Y” and the “Z” axis (two translational and two rotational 

DOFs) 

 On the bearings, only two degrees of freedom are considered (two rotational DOFs 

along the “Y” and the “Z” axis) 

The boundary conditions are considered only for the purpose of solving the system presented 

in this study. 

III.6 Numerical models 

      The finite element model of a composite shaft is calculated by using a numerical example 

contains two composite materials “boron/epoxy” and “graphite/epoxy”, which are considered 

for the vibration analysis [63]. The results of those two composite materials can be compared 

to each other, their calculations is obtained from MATLAB program developed to perform 

the vibration analysis of composite shaft [63]. In this study, each element will be modelled 

and represented by eight degrees of freedom with taking the gyroscopic effect into account. 

The table below shows some mechanical properties of the two composite materials: 

 

 

 

 

 

 

 

 

 

Table III. 5: Properties of composite materials [63].                                     

Properties Materials 

Boron/epoxy Graphite/epoxy 

Young modulus E11 211 GPa 139 GPa 

E22 24 GPa 11 GPa 

Shear modulus G12=G13 6.9 GPa 6.05 GPa 

G23 6.9 GPa 3.78 GPa 

Poisson coefficient (ν)  0.36 0.313 

The density (ρ) 1967 Kg/m³ 1578 Kg/m³ 
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III.7 Composite rotor simulation model 

          The calculation program developed in this work, is a model written in MATLAB/ 

SIMULINK, this program consists in solving the dynamic equations of a composite rotor 

system, and, the SIMULINK model is developed in order to solve the equations of motion 

[64].  

         The simulation model of composite rotor has made to determine the natural frequencies 

of a rotational composite rotor with different boundary conditions and different physical and 

geometric parameters [23]. 

1) Resolution system 

 The different programming steps are as follows: 

 Reading the data of all the necessary elementary physical and geometric parameter of 

the system (shaft, disk and bearings). 

 Reading all the values of the integrals. 

 Formation of elementary matrices (chapter 2).  

 Formations of global matrices [M], [K], [G] and [C] with taking the boundary 

conditions into account. 

 Formations of reduced matrices [Mr], [Kr], [Gr]. 

 The programme gives the results of the eigenvalues (ω). 

2) Organizational chart 

       There are many methods for solving systems of equations, each one has its interest 

according to the phenomenon to which it is treated. After the elementary matrices have been 

expressed (on chapter 2), assembly global matrices are carried out to build the system of 

equation [27], The following organizational chart shows the steps to resolve a dynamic 

problem: 
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Figure III. 3: 

Organizational chart. 

Reading the general data 

Formulation of the composite shaft matrices 

[Mt], [Mr], [Gshear], [KBc], [Kshear], [Kc]. 

Assembly of the composite shaft matrices 

[Mshaft], [Gshear], [Kshaft]. 

Calculation of the disk matrices 

[Md], [Gd]. 

Formulation of global matrices of the rotor 

(shaft + disk + bearings) 

[Mg]= [Mshaft]+ [Md]; [Kg]= [Kshaft]+[Kp] 

[Gg]= [Gshear]+ [Gd] 

Application of boundary conditions 

Calculation of the reduce matrices 

[Mr], [Kr], [Gr]. 

Calculate the eigen values and the 

eigen modes 

Beginning 

 

Program ending 
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III.8 Results and discussions 

        The MATLAB/SIMULINK program is written to perform the vibration analysis of the 

uniform composite shaft in order to validate the finite element model. 

1) Comparison between two composite materials 

a. Campbell Diagram 

                The Campbell diagram is one of the most important tools for understanding the 

dynamic of the rotating machines, it is used to evaluate the critical speed at different operating 

speed [65]. The “Figure III.4” represents the critical speeds as function of rotating speed for 

both of composite materials. 

 

Figure III. 4: Campbell diagram of critical speeds as function of rotating speeds. 

The critical speeds obtained from the present example are shown in the table below:  

Materials Graphite/Epoxy Boron/Epoxy 

Critical speeds (Krpm) 14.5 16.5 

Table III. 6: Critical speeds of the two different composite materials 

      In this example, Campbell diagram maps two critical speeds which are caused by the 

influence of the shear deformation effect, the composite shaft made of “graphite/epoxy” has 

the first critical speed “NCG”, and the composite shaft made of “boron/epoxy” has the second 

critical speed “NCB”. 
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b. Mode shape 

         As it is known that rotating machinery has to rotate to do useful work, the plot below 

shows what happens to the first mode of this rotor system once it is spinning [66]. 

 “Figure III.5” illustrates the vibration mode shape on different parts of the structure.   

 

Figure III. 5: The first mode shape. 

    Note that the vibration amplitudes of both composite materials are obtained through only 

the first mode, and it is noticed that those amplitudes are higher at the level of the disk. The 

second and the third mode are not considered on this rotor system, which means that the using 

of composite materials on the rotor dynamics is important.  
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c. Vibration amplitudes of disk 

          The vibration amplitudes for both of composite materials as function of rotational speed 

are illustrated in the following figure “Figure III.6”. 

 

Figure III. 6: Vibration amplitudes of a rigid disk for the two composite materials. 

 

   First of all, this plot has two zones, the rigid zone on the operating range, and it is before the 

peaks, and the flexible zone which is after the peaks. Note that the “graphite/epoxy” material 

has the first vibration amplitude peak “ACG” which is bigger than the second peak “ACB” of 

the “boron/epoxy”. 
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     The difference between these amplitude values is obtained with a reducing ratio which is 

determined as follows:  
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d. Vibration amplitude of the bearings 

       For the bearings, the evolution of the vibration amplitudes as function of the rotational 

speed is presented in the “Figure III.7”. 

 

 

Figure III. 7: Vibration amplitudes of the bearings for the two composite materials. 

 

     It is noticed that “graphite/epoxy” material has the first vibration amplitude peak of 

4"5.2*10
m” which is lower than the “boron/epoxy” one that has a peak of “

45.5*10
m”. this 

difference is around to 5.45% ((5.5-5.2)/ 5.5). on the other hand, it is noticed that the damping 

ratio of the “graphite/epoxy” is much lower than the “boron/epoxy” one, so that can be 

explained the stiffness of Boron is very higher than Graphit stiffness 
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And since:  B GK K ,    so: “ B GD D ” 

Where: “D” is the damping. 
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e. Transmitted force 

         The “Figure III.8” represents the variation of the amplitude of the transmitted force as 

function of the rotational speed. 

 

Figure III. 8: Transmitted force due to rotation unbalance. 

    This plot shows that there are two amplitude’s peaks of the transmitted force at speeds 

close to a critical speed. The first peak is for the “graphite/epoxy” and the second one is for 

the “boron/epoxy”. Note that those peaks are close to each other so the reduction ratio 

between them is literally negligible. 

Those transmitted force amplitudes are obtained by the hydrostatic forces which are given by 

the following equations: 

  2 2Tx x x

T Tx Ty
Ty y y

F K x D x
F F F

F K y D y

  
  

  
 

In order to have a significant reduction in the transmitted force, it has to be a proper design of 

a bearing support system [28]. 

     After the interpretation of the previous plots, the results illustrate that the shafts made of 

“boron/epoxy” have higher mechanical properties (stiffness, damping and damping ration) 

than the shafts made of “graphite/epoxy”, which can explain that the “boron/epoxy” gives 

better results. 

So, in the next interpretations and analysis, only “boron/epoxy” material is considered. 
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2) The unbalance effect on dynamic behavior 

         The “Figures III.9, 10” below represent orbits of vibration amplitudes as function of 

different eccentricity values (e=30µm, e=50µm, e=70µm), in the middle shaft and in the 

bearing journal respectively at the speed of shaft made by “boron/epoxy”.  

 

 

 

 

 

 

 

 

 

 

Figure III. 9: The effect of the unbalance eccentricity on vibration amplitude orbits in middle 

shaft at "NCB". 

 

Figure III. 10:The effect of the unbalance eccentricity on vibration amplitude orbits in 

bearing journal at "NCB
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The “Figure III.11” represent orbits of bearing transmitted forces as function of different 

eccentricity values (e=30µm, e=50µm, e=70µm), at the speed of shaft made by 

“boron/epoxy”.  

 

Figure III. 11: The effect of the unbalance eccentricity on bearing transmitted force orbits at 

"NCB". 

 

     The results show that the vibration amplitudes in middle shaft and in bearing journal, 

increase with unbalance eccentricity, as well as the bearing transmitted forces, and this is due 

to the increase of unbalance forces. 

III.9 Conclusion 

          Rotor dynamics analysis including determination of critical speeds, vibration 

amplitudes and steady-state response, is conducted through numerical simulation works. In 

this chapter, the results obtained concerning the Campbell diagram, the variation of the 

vibration amplitudes, and the influence of the unbalance eccentricity on vibration amplitudes 

and bearing transmitted forces, are presented and interpreted. 
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GENERAL CONCLUSION 

    Vibration analysis of a rotating composite shaft using the finite element model that is based 

on the Timoshenko beam theory, is presented in this work with the help of the 

“LAGRANGE” formulation to solve the equation of motions. 

      The utilization of the finite element model in the aera of rotor dynamics has yielded highly 

great results, and it has been successful in solving problems with complicated geometry and 

without the need to accept many simplifying assumptions, and the MATLAB programming 

helps to have fast calculations with high efficiency. There are several materials that shafts can 

be made of, among them, we chose in this study the graphite/epoxy and the boron/epoxy, on 

the purpose of making a comparison between them, so, the results of the numerical model 

obtained show that: 

 Rotors made of composite material don’t need to reach the second and the third 

mode shape to obtain the vibration amplitudes, the first mode shape is enough. 

 Speaking about “boron/epoxy” material, it has higher mechanical properties 

(stiffness, damping and damping ratio) than the “graphite/epoxy”, this is what 

makes it the interest of this study. 

 Transmitted force to bearings due to rotation unbalance, has influenced by the 

unbalance eccentricity, and they have a direct correlation between them, as the 

transmitted force increases with the increase of the eccentricity.  

 

 

 

 

  

 

 

 

 

 



 
56 

BIBLIOGRAPHICAL REFERENCES 

[1]  R. &. D. M. KRAUS, «Design and experimental studies of composite power 

transmission shafting,» AHS, Annual foorum, 43 rd, Saint Louis, MO, vol. 2, pp. 733-

738, 1987.  

[2]  M. D. Bielefield, «Fabrication of braided RTM driveshaft tubes for the RAH-66 

Comanche,» Annual forum proceedings-American helicopter society, vol. 50, pp. 1001-

1001, 1994.  

[3]  H. &. H. K. KLINGER, Design and Material implications of composite Driveshafts, 

Oxford: Pergamon prss, 1980.  

[4]  W. S. T. R. M. Hoffman, «The second Generation of composite Propshafts,» ATZè 

Automobiltechnische Zeitschrift, vol. 96, n° %110, pp. 612-617, 1994.  

[5]  B. Spencer, «Advances in Power transmission using filment wound composites,» 

Tomorrow's Material : Today, vol. 34, pp. 1108-1119, 1989.  

[6]  D. Gargiulo, «Design and development of a power takeoff shaft,» Journal of Aircraft, 

vol. 23, n° %112, pp. 876-880, 1986.  

[7]  Development of a filament wound composite shaft for an aircraft generator, Newyork, 

1984.  

[8]  K. Berg, «Composite driveshafts in cooling towers,» J. Cool. Tower Inst, vol. 10, 

n° %11, pp. 36-37, 1989.  

[9]  J. Cox, «Carbon fiber shafts,» Papermaker, vol. 57, n° %110, p. 25, 1994.  

[10]  G. A. W. &. L. F. Wilhelmi, «Composite shafting for naval propulsion systems,» Naval 

Engineers Journal, vol. 98, n° %14, pp. 129-136, 1986.  

[11]  G. &. S. D. Worgan, Carbon fiber drive shaft, Google patents, 1978.  

[12]  D. R. D. Yates, Carbon fiber reinforced composite drive shaft, Google Patents, 1979.  

[13]  T. Fromknecht, «Composite technology in plings and shaftings for power transmission,» 

ASME International power transmission and gearing conference, vol. 43, pp. 575-581, 

1992.  

[14]  H. &. S. M. Zinberg, «The development of an advanced composite tail rotor driveshaft,» 

proceedings of the 26th annual forum of the american helicopter society, 1970.  

[15]  H. L. M. G. R. B. &. V. P. Dos Reis, «Thin-walled laminated composite cylindrical 

tubes: part III-bending,» Journal of composites, Technology and research, vol. 9, 

n° %12, pp. 58-62, 1987.  

[16]  «Optimal design of high speed rotating graphite/epoxy shafts,» Journal of composite 

materials, vol. 17, n° %12, pp. 170-181, 1983.  



 
57 

[17]  J. S. S. D. McGee, «Feasibility study on the design of Reinforced Plastic Components for 

the LVTP(7) vehicle,» 1984.  

[18]  E. &. G. J. Zorzi, «Composite shaft rotordynamic evaluation,» ASME, Design 

engineering Technical conference, cincinnati, OH, 1985.  

[19]  J. &. D. M. Lim, «Optimal sizing of composite power transmission shafting,» Journal of 

the american Helicopter Society , vol. 31, n° %11, pp. 75-83, 1986.  

[20]  W. Hoffman, «Fibre composite in the driveline,» Plastics and rubber international, vol. 

14, n° %15, pp. 46- 49, 1989.  

[21]  P. K. R. &. D. M. Hetherington, «Demonstration of a supercritical composite helicopter 

power transmission shaft,» Journal of the american Helicopter Society, vol. 35, n° %11, 

pp. 23-28, 1990.  

[22]  S. &. G. K. Singh, «Modal testing of tubular composite shafts,» Proceedings- Spie the 

international society for optical engineering, p. 733, 1993.  

[23]  A. BOUKHALFA, Comportement vibratoire des arbres tournants en matériaux 

composites, Docttoral dissertation, 2013.  

[24]  R. ZAHI, Comportement dynamique des rotors à arbre conique en matériaux 

composites, Doctoral dissertation, 2018.  

[25]  N. Rieger, Rotordynamics 2: Problems in turbomachinery, Springer, 2014.  

[26]  R. Sino, Comportement dynamique et stabilité des rotors: application aux rotor 

composites, Lyon: Doctoral dissertation, 2007.  

[27]  W. &. G. E. Chen, Introductionto dynamics of rotor-bearing systems, Trafford Victoria, 

2007.  

[28]  R. Tiwari, Rotor systems : analysis and identification, CRC Press, 2017.  

[29]  S. &. E. Ahmima, «Contribution à l'étude du comportement dynamique des rotors 

verticaux,» 2015.  

[30]  R. &. L. J. Subbiah, Rotor and structural dynamics of turbomachinery, Switzerland: 

Springer, 2018.  

[31]  F. Ehrich, Handbook of rotordynamics, florida: Krieger publishing company, 1992.  

[32]  M. Buragohain, Composite structures: design, mechanics, analysis, manufacturing and 

testing, CRC press, 2017.  

[33]  R. Gisbon, Principles of composite material mechanics, CRC Press, 2016.  

[34]  K. Markov, Advances in mathematical modelling of composite materials, World 

scientific, 1994.  



 
58 

[35]  J. Reddy, Mechanics of composite materials: selected works of Nicholas J.Pagano, 

Springer science & business media, 2013.  

[36]  D. Gay, Composite materials : design and applications, CRC press, 2014.  

[37]  M. Handbook, Polymer matrix composites: guidelines for characterization of structural 

materials, SAE International, 2012.  

[38]  A. Mortensen, Concise encyclopedia of composite materials, Elsevier, 2006.  

[39]  T. Chou, Structure and properties of composites, VCH, 1993.  

[40]  J. Berthelot, «Mécanique des matériaux et structures composites,» Institut superieur des 

matériaux et mécanique avancés, 2010.  

[41]  T. &. H. D. Clyne, An introduction to composite materials, Cambridge university press, 

1996.  

[42]  E. Barbero, Introduction to composite materials design, Taylor and Francis group, 1999.  

[43]  T. Handbook, Polymer matrix composites: materials properties, Technomic publishing 

company, 1997.  

[44]  J. Vinson, The behavior of structures composed of composite materials, Kluwer 

academic, 2004.  

[45]  H. Ishida, Characterization of composite materials, Momentum press, 2010.  

[46]  S. Lee, Handbook of composite reinforcements, VCH, 1992.  

[47]  P. &. M. A. Pastuszak, «Application of composite materials in modern construction,» 

Key engineering materials, vol. 542, pp. 119-129, 2013.  

[48]  B. Attaf, Advances in composite materials: ecodesign and analysis, inTech, 2011.  

[49]  A. SAIMI, Comportement vibratoire des roues aubagées, Doctoral dissertation, 2013.  

[50]  E. L. D. &. J.-R. G. Chatelet, «A three dimensional modeling of the dynamic behavior of 

composite rotors,» International journal of rotating machinery, vol. 8, n° %13, pp. 185-

192, 2002.  

[51]  S. Laha, Analysis of stability and unbalance response of flexible rotor supported on 

hydrodynamic porous journal bearing, Doctoral dissertation, 2010.  

[52]  S. &. G. Singh, «composite shaft rotordynamic analysis using a layerwise theory,» 

journal of sound and vibration, vol. 191, n° %15, pp. 739--756, 1996.  

[53]  S. B. R. J. B. S. &. H. Arab, «A finite element baesd on equivalent single layer theory for 

rotating composite shafts dynamic analysis,» composite structures, vol. 178, pp. 135--

144, 2017.  



 
59 

[54]  R. B. T. C. E. &. J. G. Sino, «Dynamic analysis of a rotating composite shaft,» 

Composite science and technology, vol. 68, n° %12, pp. 337--345, 2008.  

[55]  M. Y. C. J. &. C. C. Chang, «A simple spinning laminated composite shaft model,» 

International journal of solids and structures, vol. 41, n° %13-4, pp. 637--662, 2004.  

[56]  E. Kramer, Dynamics of rotors and foundations, Springer science, 2013.  

[57]  M. &. A. M. Hashemi, «Analytical study of three-dimensional flexural vibration of 

micro-rotating shafts with eccentricity utilizing the strain gradient theory,» Meccanica, 

vol. 51, n° %16, pp. 1435--1444, 2016.  

[58]  G. Maurya, Analysis of gyroscopic effects in rotor disc systems, Doctoral dissertation, 

2013.  

[59]  M. HACHEMI, Application de l'ODS à l'analyse des problemes de vibration des 

machines tournantes, Doctoral dissertation, 2012.  

[60]  A. Bouzidane, Conception d'un palier hydrostatique intelligent pour controler les 

vibrations de rotors, Doctoral dissertation, Ecole de technologie supérieure, 2007.  

[61]  A. G. T. d. S. B. S. J. V. Cavalini Jr, «Analysis of the dynamic behavior of a rotating 

composite hollow shaft,» Latin American Journal of Solids and Structures, vol. 14, 

n° %11, pp. 1--16, 2017.  

[62]  T. Kanyiki, Simulation par la methode des elements finis du compostement vibratoire 

d'un rotor, 2018.  

[63]  M. Al Muslmani, Rotordynamic analysis of tapered comosite driveshaft using 

conventional and hierchical finite element formulations, Doctoral Dissertation, 2013.  

[64]  B. Mohamed, Conception d'un paier intelligent à patins hydrostatiques contrôlés par des 

valves électorhéologique pour contrôler les vibration de rotor., Doctora dissertation, 

2020.  

[65]  N. S. E. &. M. M. Dumitru, «Study of rotor-bearings systems using Campbell diagram,» 

In preccedings of the 1st international conference on Manufacturing Engineering, 

Quality and Production Systems., vol. 2, 2009.  

[66]  E. P. C. W. S. Swanson, «A Practical review of rotating machinery critical speeds and 

modes,» vol. 39, n° %15, pp. 16--17, 2005.  

 



 

ABSTRACT 

Rotor dynamic is a branch of applied mechanics that plays a major role in keeping the vibrational 

energy as small as possible. It covers several topics, two of them are the base of this study: modelling 

and analysis. The use of composite materials in rotor dynamic analysis gives an important calculation 

to design efficient rotating composite shaft. The energy expressions of a composite rotor system are 

obtained by the use of rotating coordinate system. Lagrange’s equation obtains the equation of 

motions, and the finite element method solves those equations to obtain the matrices of the rotor 

system with the use of the MATLAB program that can handle complex and large matrices. Those 

mathematical models are used in order to explain the dynamic behavior of composite rotor. This 

model is used to investigate the unbalance response of a rotating composite shaft supported by flexible 

journal bearings in transient regime. The numerical results show that composite shaft made of 

Boron/Epoxy have better dynamic characteristics than Graphite/Epoxy. 

Key words: Rotor dynamics, Composite materials, Finite element model, Vibration analysis, Energy 

expressions, Natural frequencies. 

Résumé 

La dynamique du rotor est une branche de la mécanique appliquée qui joue un majeur rôle dans 

maintien de l’énergie vibratoire aussi petite que possible. Il couvre plusieurs sujets, dont deux sont la 

base de cette étude : la modélisation et l’analyse. L’utilisation des matériaux composites dans 

l’analyse dynamic de rotor donne un calcul important pour concevoir un efficace rotatif arbre en 

composite. Les expressions d’énergie d’un système du rotor en composite sont obtenues par 

l’utilisation d’un system de coordonnées de rotation. L’équation de Lagrange obtient l’équation des 

mouvements, et la méthode des éléments finis résout ces équations pour obtenir les matrices du 

système de rotor avec l’utilisation de programme MATLAB qui peut gérer des matrices complexes et 

volumineuses.  Ces modelés mathématiques sont utilisés pour expliquer le comportement dynamique 

du rotor en composite.  Ce modèle est utilisé pour étudier la réponse au déséquilibre d'un arbre 

composite rotatif supporté par des paliers lisses flexibles en régime transitoire.Les résultats 

numériques montrent que l'arbre composite en Bore / Epoxy a de meilleures caractéristiques 

dynamiques que le Graphite / Epoxy.  

Mots clé : Dynamique des rotors, Matériaux composites, Model des élément finis, Analyse vibratoire, 

Expression d’énergie, Fréquences naturelles. 

 ملخص

الدوار الديناميكي هو فرع من الميكانيك التطبيقية، يلعب دورا رئيسيا في الحفاظ على الطاقة الاهتزازية صغيرة قدر الإمكان. يشمل 

بة في تحليل الدوار الدوار الديناميكي عدة مواضيع، اثنان منها هما أساس هذه الدراسة: النمذجة والتحليل. استخدام المواد المرك

الميكانيكي يعطي عملية حسابية مهمة لتصميم عمود دوار مركب فعال. يتم الحصول على عبارات الطاقة لنظام الدوار المركب عن 

على معادلة الحركات، وتقوم طريقة العناصر المحدودة بحل تلك  Lagrange طريق استخدام نظام احداثيات الدوران. تتحصل معادلة

الذي يمكنه التعامل مع المصفوفات المعقدة والكبيرة. MATLABبرنامج ت للحصول على مصفوفات النظام الدوار باستخدام المعادلا

يستخدم هذا النموذج للتحقيق في الاستجابة غير  يتم استخدام هذه النماذج الرياضية لشرح السلوك الديناميكي للعضو الدوار المركب.

يستخدم هذا النموذج لفحص الترددات الطبيعية واستقرار  عوم بمحامل مجلة مرنة في نظام عابر.المتوازنة لعمود مركب دوار مد

له خصائص ديناميكية أفضل   Boron/Epoxy تظهر النتائج العددية أن العمود المركب     .النظام. بعد التحليل الاهتزازي

Graphite/Epoxy. 

المركبة، نموذج العناصر المحدودة، التحليل الاهتزازي، عبارات الطاقة، ترددات  الدوار الديناميكي، الموادالكلمات المفتاحية: 

 الطبيعية.


