RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITÉ IBN-KHALDOUN DE TIARET

FACULTÉ DES SCIENCES APPLIQUEES DÉPARTEMENT DE GENIE MECANIQUE

MEMOIRE DE FIN D'ETUDES

Pour l'obtention du diplôme de Master Domaine : Sciences et Technologie Filière : Génie Mécanique Spécialité: Énergétique

THÈME

ETUDE DE L'EFFET D'INERTIE SUR LES PARAMETRES D'UN ECOULEMENT DE TYPE FILM MINCE PASSANT PAR UNE RESTRICTION

Préparé par : BOUALI Abdelbaset ELHOUSSAOUI Khelil

Devant le Jury :

Nom et prénoms Mr. KARAS Abdelkader Mr. BOUZIDANE Ahmed Mr.ABOSHIGHIBA Hicham Mr. BENARIBA Abouboubakeur

MCA Professeur MAA Doctorant

Grade

Lieu d'exercice UIK Tiaret UIK Tiaret UIK Tiaret UIK Tiaret Qualité Président Examinateur Encadreur Invité

PROMOTION 2016 /2017

DEDICACES

Nous dédions ce modeste travail aux personnes les plus exceptionnels qui existent dans le monde nos chers parents en reconnaissance du soutien moral, matériel et la patience dont ils ont fait preuve qu'ALLAH les garde et à nos familles sans oublier nos chers amis. A tous ceux qui ont participé de près ou de loin dans l'élaboration de ce travail. A tous nos collègues de la promotion énergétique 2017

Abdelbaset &khelil

REMERCIMENT

Nous remercions tout d'abord Allah qui nous a donné la force pour terminer ce modeste travail.

Nous remercions vivement Monsieur : ABOUSHIGHIBA Hicham pour son encadrement et ses aides précieuses.

Nous remercions aussi les membres de jury qui nous ont fait honneur d'accepter le jugement de notre travail.

Nous tenons aussi à remercier tous les enseignants du Département Génie Mécanique qui ont assuré notre formation, ainsi que tout le corps administratif pour leur disponibilité.

Enfin, nous remercions tous ceux qui ont contribués de près ou de loin à l'élaboration de ce modeste travail, et qu'ils trouvent ici l'expression de nos profondes gratitudes et respects.

« Qui donne ne doit jamais s'en souvenir ; qui reçoit ne doit jamais l'oublier ».

SOMMAIRE

Dédicace	I
Remerciement	II
Sommaire	III
Liste des figures	IV
Liste des tableaux	VI
Nomenclature	VII
Introduction générale	1

CHAPITRE I : Formulation Mathématique Du Problème 2d

I.1.	Introduction	.3
I.2.	Ecoulement laminaire 2D d'un fluide incompressible entre 2 plans parallèles	3
I.3.	Restriction simple	6
I.3	3.1. En absence de l'effet d'inertie :	8
	I.3.1.1. Le débit volumique entrant à la section 1	. 8
	I.3.1.2. Le débit volumique sortant de la section 2	.9
I.3	3.2. Avec effet d'inertie	10

CHAPITRE II : Solution Semi-Analytique Et Simulation

II.1. Maillage de la géométrie à une section1	13
II.2. Choix des propriétés physiques et géométriques1	13
II.3. Maillage de la géométrie à deux sections :1	16
II.4. Validation1	17
II.5. Etude paramétrique1	19
II.5.1. Effet de la viscosité1	19
II.5.2. Effet de la densité	22
II.5.3. Effet des épaisseurs des deux sections du film fluide	24
II.5.3.1. Effet de l'épaisseur en amant de la restriction H1	24
II.5.3.2. Effet de l'épaisseur en aval de la restriction H2	26

CHAPITRE III : Application Aux Paliers Hydrostatiques

III.1. Formulation mathématique en régime laminaire sans effet d'inertie	
III.1.1. Le débit volumique sortant de la zone du film mince	
III.1.2. Recherche du gradient de pression dans le film mince	
III.1.3. En absence de l'effet d'inertie	
III.1.4. Avec effet d'inertie	
III.1.5. Calcul de vitesse moyenne	
III.1.6. Résolution	
III.1.7. La force générée par le patin	
III.1.7.1. La force générée par l'alvéole	
III.1.7.2. La force générée par le film mince	
III.1.7.3. La résultante de la force générée par le patin	
III.2. L'étude paramétrique	
III.2.1. Effet de la viscosité du fluide sur la force	
III.2.2. Effet de la densité du fluide sur la force	
III.2.3. Effet de l'épaisseur du film mince sur la force	
Conclusion générale	
Références bibliographiques	50
Résumé	

LISTE DES FIGURES

Figure I.1 : Ecoulement entre deux plaques parallèles	4
Figure I.2 : Restriction simple 2D	6
Figure II.1 : Maillage de la géométrie à une seule section 2D	13
Figure II.2: Variation de l'erreur relative en fonction de la viscosité dynamiq la densité	ue et de 15
Figure II.3: Variation de l'erreur relative en fonction de l'épaisseur et de l'a dynamique	viscosité 16
Figure II.4: maillage concentré dans la zone de restriction	17
Figure II.5: Qualité des éléments	17
(Abscisses : la qualité (de 0 médiocre à 1 supérieure), et ordonnés : nombre de (× 1000 éléments))	es nœuds 17
Figure II.6 : Comparaison entre la distribution analytique résolue itérativeme numérique par Ansys-CFX	nt et 19
Figure II.7 : Champ de pression obtenu par Ansys-CFX	19
Figure II.8 : Effet de la viscosité sur la distribution de la pression dans la dire	ection x 20
Figure II.9 : Effet de la densité sur la pression Pf	21
Figure II.10 : Effet de la densité sur la pression Pr	22
Figure II.11 : Effet de la densité sur la pression ΔP	22
Figure II.12 : Effet de la densité sur la distribution de la pression dans la dire	ection x
Figure II.13 : Effet de la densité sur la pression Pr	23
Figure II.14 : Effet de la densité sur la pression Pf	24
Figure II.15 : Effet de la densité sur la pression ΔP	24
Figure II.16 : Distribution de la pression dans la direction x	25
Figure II.17 : Pression en amant, en aval de la restriction et l'écart ΔP en fon H1	ction de25
Figure II.18 : Distribution de la pression dans la direction x	27
Figure II.19 : Variation de ΔP en fonction de H_2	27
Figure III.1 : palier hydrostatique en configuration mixte	29
Figure III.2 : Schéma du patin du palier	30
Figure III. 3 : Champ de vitesse entre deux plaques	31
Figure III. 4 : Paramètres géométriques du patin	

Figure III.5 : Effet de la viscosité sur la distribution de la pression
sans effet d'inertie
Figure III. 6 : Effet de la viscosité sur la distribution de la pression
avec effet d'inertie
Figure III.7 : Effet de la viscosité sur le saut de pression ΔP 40
Figure III.8 : Effet de la viscosité sur la résultante de la force40
Figure III.9 : Effet de la densité sur la distribution de la pression41
sans effet d'inertie41
Figure III.10 : Effet de la densité sur la distribution de la pression
avec effet d'inertie
Figure III. 11 : Effet de la densité sur le saut de pression ΔP
Figure III.12 : Effet de la densité sur la résultante de la force
Figure III.13 : Effet de la viscosité sur la distribution de la pression
sans effet d'inertie
Figure III.14 : Effet de l'épaisseur du film sur la distribution de la pression44
avec effet d'inertie
Figure III.15 : Effet de l'épaisseur du film sur le saut de pression ΔP
Figure III.16 : Effet de l'épaisseur du film sur la résultante de la force

LISTE DES TABLEAUX

Tableau II.1: Effets de la viscosité et de la densité avec épaisseur constante	14
Tableau II.2: Effets de l'épaisseur avec différentes viscosités avec densité constant	15

NOMENCLATURE

d_{cap}	diamètre du capillaire	[m]		
m_m	Masse du fluide entrant par la résistance capillaire			
m_{out}^{\cdot}	<i>i</i> out Masse du fluide sortant de l'alvéole			
H_1	Hauteur de la section 1	[m]		
H_2	Hauteur de la section 2	[m]		
L _C	longueur du capillaire	[m]		
L_1	Longueur de la section 1	[m]		
L_2	Longueur de la section 2	[m]		
P _f	la pression à l'entrée de la section 2	[Pa]		
P_r	la pression à la sortie de la section 1	[Pa]		
P_s	pression de l'alimentation respectivement	[Pa]		
\boldsymbol{P}_{0}	la pression à la sortie de la section 2	[Pa]		
P_1	la pression à l'entrée de la section 1	[Pa]		
Q_{Entre}	débit volumique entrant à la section 1	[m ³ /s]		
Q_{Sortie}	débit volumique sortant de la section 2	$[m^{3}/s]$		
Q_V	Débit volumique	[m ³ /s]		
$Q_{capillaire}$	débits volumiques entrant par le capillaire	[m ³ /s]		
R _l	nombre de Reynolds	[-]		
S _{Sortie}	Superficie de la zone de sortie du fluide respectivement.	[m ²]		
$\boldsymbol{U}_{\boldsymbol{x}}$	vitesse du fluide dans la direction x	[m/s]		
U_{xm}	vitesse moyenne dans la direction x	[m/s]		
V_d	Volume de l'alvéole	[m/s]		
V_m	la résultante des vitesses moyennes	[m/s]		
$\frac{\partial m}{\partial t}$	Variation temporelle de la masse à l'intérieur de l'alvéole	[-]		
ΔP	diminution ralentissant	[Pa]		
¢	coefficient de perte de charge	[-]		
μ	Viscosité dynamique	[Pa s]		
ρ	densité du fluide	[kg/m3]		

Introduction Générale

INTRODUCTION GENERALE

Lorsqu'un fluide incompressible s'écoule dans un espace qui présente une diminution de section droite de façon brusque la conservation du débit massique (dans le cas incompressible c'est aussi le débit volumique) oblige le fluide à augmenter sa vitesse au passage de la deuxième section pour compenser la chute de la section. Ceci induit des comportements spéciaux des paramètres du fluide.

Selon la littérature spécialisée, ces effets sont liés à un phénomène appelé l'effet d'inertie, qui met en jeu l'augmentation brusque de la vitesse et la densité du fluide en écoulement.

Beaucoup d'études théoriques qui s'intéressent aux comportements des paliers hydrostatiques ignore cet effet bien que plus d'un auteur ont souligné son importance sur la précision de l'estimation de la force de portance générée par le palier hydrostatique.

Le but de cette étude est de mettre en évidence l'importance de ce phénomène, d'étudier les effets des différents paramètres sur le champ de pression et surtout sur force générée.

L'étude est organisée en 3 chapitres. Dans le premier chapitre la formulation mathématique du problème 2D est développée. L'étude se fait sous les hypothèses du fluide Newtonien, incompressible, en écoulement laminaire permanent et sans apport de chaleur. L'étude porte sur une configuration simple avec une restriction.

Dans le chapitre II les effets du phénomène étudié sont étudiés en détail en fonction des différents paramètres du fluide.

Dans le chapitre suivant l'étude est étendue pour couvrir une géométrie plus complexe d'un patin de palier hydrostatique de configuration hybride.

En fin une conclusion sur les différentes remarques ainsi que les perspectives des futures études sont données.

CHAPITRE I FORMULATION MATHEMATIQUE DU PROBLEME 2D

CHAPITRE I

FORMULATION MATHEMATIQUE DU PROBLEME 2D

I.1.Introduction :

Tout écoulement de fluide est régi par les équations de conservation : la conservation de la matière (équation de continuité), la conservation des quantités de mouvement (équation de Navier-Stokes) et la conservation d'énergie (équation d'énergie).

Lorsqu'un fluide incompressible s'écoule dans un espace qui présente une diminution de section droite de façon brusque la conservation du débit massique (dans le cas incompressible c'est aussi le débit volumique) oblige le fluide à augmenter sa vitesse au passage de la deuxième section pour compenser la chute de la section. Ceci induit des comportements spéciaux des paramètres du fluide qui sont liés à l'effet de l'inertie.

Le but de ce chapitre est de donner la formulation mathématique du problème 2D. L'étude se fait sous les hypothèses du fluide Newtonien, incompressible, en écoulement laminaire permanent et sans apport de chaleur. L'étude porte sur une configuration simple d'une conduite de longueur L composée de deux plans parallèles avec une restriction au milieu de la longueur L. La configuration sera élaborée dans le chapitre III pour traiter l'effet de l'inertie sur le comportement d'un palier hydrostatique.

I.2. Ecoulement laminaire 2D d'un fluide incompressible entre 2 plans parallèles :

Dans cette partie nous allons exprimer les équations qui régissent l'écoulement d'un fluide incompressible entre 2 plans parallèles dans le contexte d'un écoulement laminaire permanent sans apport de chaleur. Le but final est l'obtention de l'expression du débit volumique. Le phénomène est régi par les équations de conservation : conservation de la masse (équation de continuité) et conservation des quantités de mouvement (Navier-Stokes), plus les conditions aux limites.

$$\begin{cases} \rho \frac{d\vec{V}}{dt} = -gradP + \mu \Delta \vec{V} \\ div \vec{V} = 0 \\ conditions aux limites \end{cases}$$

Figure I.1 : Ecoulement entre deux plaques parallèles

$$\begin{cases} \rho \frac{dU}{dt} = -\frac{\partial P}{\partial x} + \mu \Delta U \\ \rho \frac{dV}{dt} = -\frac{\partial P}{\partial y} + \mu \Delta V \\ \rho \frac{dW}{dt} = -\frac{\partial P}{\partial z} + \mu \Delta W \\ div \vec{V} = \frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial W}{\partial z} = 0 \end{cases}$$

$$V = W = 0$$

$$\begin{cases} \rho \frac{dU}{dt} = -\frac{\partial P}{\partial x} + \mu \Delta U \\ 0 = -\frac{\partial P}{\partial y} + 0 \\ 0 = -\frac{\partial P}{\partial z} + 0 \\ div \vec{V} = 0 \Rightarrow \frac{\partial U}{\partial x} = 0 \\ conditions aux limites \end{cases}$$

$$\begin{cases} \rho \left(\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} + W \frac{\partial U}{\partial z} \right) = -\frac{\partial P}{\partial x} + \mu \left(\frac{\partial U^2}{\partial x^2} + \frac{\partial U^2}{\partial y^2} + \frac{\partial U^2}{\partial z^2} \right) & \dots & (I.1) \\ CAL \end{cases}$$

$$-\frac{\partial P}{\partial x} + \frac{\partial U^2}{\partial y^2} = 0$$

$$\begin{cases}
\mu \frac{\partial^2 U(y)}{\partial y^2} = \frac{dP(x)}{dx} \\
\text{conditions aux limites}
\end{cases}$$

$$\Rightarrow \mu \frac{\partial^2 U}{\partial y^2} = \frac{dP}{dx} = -a$$

$$\Rightarrow \begin{cases}
U(y) = -\frac{a}{2\mu} y^2 + by + C \\
P(x) = -ax + d \\
\text{conditions aux limites}
\end{cases}$$

$$U(0) = 0 \Longrightarrow C = 0$$
$$U(H_1) = 0 \Longrightarrow -\frac{a}{2\mu} H_1^2 + b H_1 = 0$$
$$P(0) = P_1 \Longrightarrow d = P_1$$
$$P(L_1) = P_r \Longrightarrow P_r = -aL_1 + d$$

$$\begin{cases} u(0) = 0\\ u(H_1) = 0 \end{cases} \Rightarrow \begin{cases} C = 0\\ b = \frac{a}{2\mu}H_1 = -\left(\frac{P_r - P_1}{2\mu L_1}\right)H_1 \end{cases}$$

$$d = P_1$$
$$a = \frac{P_1 - P_r}{L_1}$$

$$P_{r} - P_{1} = \Delta P \Longrightarrow \begin{cases} u(y) = \frac{\Delta P}{2\mu L_{1}} (y(y - H_{1})) \\ P(x) = \frac{\Delta P}{L_{1}} x + P_{1} \end{cases}$$

$$Q_{V} = \int_{0}^{H_{1}} U(y) L_{V} dy = \int_{0}^{H_{1}} \frac{\Delta P}{2\mu L_{1}} (y^{2} - H_{1}y) dy$$
$$= \frac{\Delta P L_{z}}{2\mu L_{1}} \left[\frac{y^{3}}{3} - \frac{H_{1}}{2} y^{2} \right]_{0}^{H_{1}} = \frac{\Delta P L_{z}}{2\mu L_{1}} \left[\frac{2H_{1}^{3}}{6} - \frac{3H_{1}^{3}}{6} \right] = \frac{\Delta P L_{z}}{12\mu L_{1}} H_{1}^{3}$$

On obtient en fin le débit volumique :
$$Q_V = \frac{\Delta P L_Z}{12\mu L_1} H_1^3 \qquad \dots \qquad (I.2)$$

(I.4)

I.3. Restriction simple :

Hypothèse de la largeur infinie implique que les gradients dans la direction infinie (z) seront ignorés.

Figure I.2 : Restriction simple 2D

Si les épaisseurs des deux sections sont assez faibles par rapport à leurs longueurs on peut les considérer faisant partie de la catégorie des films minces. Alors, chaque section obéit à la loi de Reynolds tel que :

La pression dans le film mince est régie par l'équation de Reynolds :

$$\frac{\partial}{\partial x} \left(\frac{h^3}{\mu} \frac{\partial P}{\partial x} \right) + \frac{\partial}{\partial z} \left(\frac{h^3}{\mu} \frac{\partial P}{\partial z} \right) = 6U \frac{\partial h}{\partial x} + 12 \frac{\partial h}{\partial t} \qquad \dots \qquad (I.3)$$

Avec toutes les approximations (fluide Newtonien, écoulement laminaire incompressible sans apport de chaleur en régime permanent), l'hypothèse du palier infiniment long permet

d'écrire :
$$\frac{\partial}{\partial z} = 0$$

 $\frac{\partial}{\partial x} \left(\frac{h^3}{\mu} \frac{\partial P}{\partial x} \right) = 0 \qquad \dots$

 $=> \qquad \frac{\partial^2 P}{\partial x^2} = 0$

En intégrant l'équation (I.4) deux fois sur x :

Pour la section 1 $P_{S1}(x) = C_{S11}x + C_{S12}$ Pour la section 2 $P_{S2}(x) = C_{S21}x + C_{S22}$

Avec les conditions aux limites

Pour la section 1
$$\begin{cases} P_{S1}(0) = P_1 \\ P_{S1}(L_1) = P_n \end{cases}$$

Pour la section 2

$$\begin{cases} P_{S2}(L_1) = P_f \\ P_{S2}(L_1 + L_2) = P_0 \end{cases}$$

 P_1 : est la pression à l'entrée de la section 1.

 P_r : est la pression à la sortie de la section 1

 P_f : est la pression à l'entrée de la section 2.

 P_0 : est la pression à la sortie de la section 2, elle est considérée nulle (atmosphérique)

$$\begin{cases} P_{S1}(x) = C_{S11}x + C_{S12} \\ P_{S1}(0) = P_{1} \\ P_{S1}(L_{1}) = P_{r} \end{cases} \implies \begin{cases} P_{S1}(0) = P_{1} \Longrightarrow C_{S12} = P_{1} \\ P_{S1}(L_{1}) = P_{r} \Longrightarrow C_{S11} = \frac{P_{r} - P_{1}}{L_{1}}, \\ P_{S1}(x) = \frac{P_{r} - P_{1}}{L_{1}}x + P_{1} & \dots \end{cases}$$
(I.5)

$$\begin{cases} P_{s2}(x) = C_{s21}x + C_{s22} \\ P_{s2}(L_1) = P_f \\ P_{s2}(L_1 + L_2) = P_0 = 0 \end{cases} \implies \qquad \begin{cases} P_{s2}(L_1) = P_f \Rightarrow C_{s21}L_1 + C_{s22} = P_f \\ P_{s2}(L_1 + L_2) = 0 \Rightarrow C_{s21}(L_1 + L_2) + C_{s22} = 0 \end{cases}$$

$$\begin{cases} C_{S22} - \frac{C_{S22}}{(L_1 + L_2)} L_1 = P_f \\ C_{S21} = \frac{-C_{S22}}{(L_1 + L_2)} \end{cases} \Rightarrow \begin{cases} C_{S22} \left(1 - \frac{L_1}{(L_1 + L_2)} \right) = P_f \\ C_{S21} = \frac{-C_{S22}}{(L_1 + L_2)} \end{cases}$$

$$\Rightarrow \begin{cases} C_{S22} \left(\frac{L_2}{L_1 + L_2} \right) = P_f \\ C_{S21} = \frac{-C_{S22}}{\left(L_1 + L_2 \right)} \end{cases} \Rightarrow \begin{cases} C_{S22} = \frac{L_1 + L_2}{L_2} P_f \\ C_{S21} = \frac{-1}{L_2} P_f \end{cases}$$

$$P_{S2}(x) = \frac{P_f}{L_2}(L_1 + L_2 - x) \quad \dots \tag{I.6}$$

I.3.1. En absence de l'effet d'inertie :

En absence de l'effet d'inertie $P_r = P_f$, il suffit d'avoir une seule équation pour déterminer l'inconnue P_r . La conservation du débit massique fourni cette équation.

$$\dot{m}_{in} = \dot{m}_{out}$$

Le palier est considéré infiniment long (dans la direction z), donc le débit dans la direction axiale (z) peut être négligé devant le débit dans la direction x :

$$Q_z \ll Q_x$$

La vitesse d'un écoulement de fluide newtonien entre deux plaques parallèles est donnée par :

$$U_{x} = \frac{1}{2\mu} \frac{\partial P}{\partial x} (y - h) y \quad \text{avec} \quad U_{xm} = \frac{\int_{0}^{h} U_{x} dy}{h}$$
$$\implies \qquad U_{xm} = \frac{\int_{0}^{h} \left(\frac{1}{2\mu} \frac{\partial P}{\partial x} (y - h) y\right) dy}{h}$$

Avec l'hypothèse de la pression constante dans la direction de l'épaisseur du film mince.

$$= \qquad U_{xm} = \frac{1}{2\mu h} \frac{\partial P}{\partial x} \int_{0}^{h} \left(\left(y - h \right) y \right) dy$$

I.3.1.1. Le débit volumique entrant à la section 1 :

$$\Rightarrow \qquad Q_{Entrée} = L_z h U_{xm} \left(0 \right)$$

$$U_{xm}(0) = \frac{1}{2\mu H_1} \frac{\partial P_{S1}(x)}{\partial x} \int_0^{H_1} \left(\left(y - H_1 \right) y \right) dy$$

$$\frac{\partial P_{S1}(x)}{\partial x}\Big|_{x=0} = \frac{\partial \left(\frac{P_r - P_1}{L_1}x + P_1\right)}{\partial x} = \frac{P_r - P_1}{L_1}$$

$$\Rightarrow P_{S2}(x) = \frac{-P_f}{L_2} x + \frac{L_1 + L_2}{L_2} P_f \qquad \qquad U_{xm}(0) = \frac{1}{2\mu h} \frac{(P_r - P_1)}{L_1} \int_0^{H_1} ((y - h)y) dy$$

$$U_{xm}(0) = \frac{1}{2\mu H_{1}} \frac{(P_{r} - P_{1})}{L_{1}} \left[\frac{1}{3} y^{3} - \frac{H_{1}}{2} y^{2} \right]_{0}^{H_{1}}$$
$$U_{xm}(0) = \frac{1}{12\mu} \frac{(P_{1} - P_{r})}{L_{1}} H_{1}^{2}$$
$$Q_{Entrée} = \frac{L_{z} H_{1}^{3} (P_{1} - P_{r})}{12\mu L_{1}} \qquad \dots \qquad (I.7)$$

I.3.1.2. Le débit volumique sortant de la section 2:

$$P_{sortie} = L_{z}H_{2}U_{xm}(L_{1}+L_{2})$$

$$U_{xm}(L_{1}+L_{2}) = \frac{1}{2\mu H_{2}} \frac{\partial P_{S2}(x)}{\partial x} \Big|_{x=(L_{1}+L_{2})} \int_{0}^{H_{2}} ((y-H_{2})y) dy$$

$$\frac{\partial P_{S2}(x)}{\partial x} \Big|_{x=(L_{1}+L_{2})} = \frac{\partial \left(\frac{P_{f}}{L_{2}}(L_{1}+L_{2}-x)\right)}{\partial x} = -\frac{P_{f}}{L_{2}}$$

$$U_{xm}(L_{1}+L_{2}) = \frac{1}{2\mu H_{2}} \left(-\frac{P_{f}}{L_{2}}\right) \int_{0}^{H_{2}} ((y-H_{2})y) dy$$

$$U_{xm}(L_{1}+L_{2}) = \frac{1}{2\mu H_{2}} \left(-\frac{P_{f}}{L_{2}}\right) \left[\frac{1}{3}y^{3} - \frac{H_{2}}{2}y^{2}\right]_{0}^{H_{2}}$$

$$U_{xm}(L_{1}+L_{2}) = \frac{H_{2}^{2}P_{f}}{12\mu L_{2}}$$

$$Q_{sortie} = L_{z}hU_{xm}(L_{1}+L_{2})$$

$$(I.8)$$

De l'équations (I.7) et (I.8) exprimant des débits :

$$Q_{sortie} = Q_{Entrée} \implies \frac{H_2^{\ 3}L_z P_f}{12\mu L_2} = \frac{L_z H_1^{\ 3} (P_1 - P_r)}{12\mu L_1}$$

$$\Rightarrow \frac{H_2^{3}P_f}{L_2} = \frac{H_1^{3}(P_1 - P_r)}{L_1}$$
$$\Rightarrow \frac{H_2^{3}L_1}{H_1^{3}L_2}P_f = (P_1 - P_r) \quad \dots \quad (I.9)$$

I.3.2. Avec effet d'inertie

En considérant l'effet d'inertie $P_r \neq P_f$ une seule équation ne suffira pas. Dans cette étude on adopte le modèle **empirique** proposé par Chaomleffel [3], [4]. Dans ce modèle la chute due à l'effet d'inertie de la pression à l'entrée de la zone 2 (de P_r à P_f) est traduite par la relation empirique suivante :

$$P_r - P_f = \frac{1}{2} \alpha \rho V_m^2 \qquad \dots \qquad (I.10)$$

 V_m : est la résultante des vitesses moyennes (W_{zm} et U_{xm}) à l'entrée de la zone 2 ($x = L_1$): $V_m = \sqrt{U_{xm}^2 + W_{zm}^2}$

Avec l'hypothèse du palier infiniment long $(W_{zm} = 0)$ la résultante des vitesses moyennes peut s'écrire : $V_m = |U_{xm}|$

 α : Est le coefficient de perte de charge

$$\alpha = 1 + a_0 R_l^{b_0}$$

avec :
$$\begin{cases} a_0 = \frac{1}{2}, b_0 = 0 & \text{lors que } R_l < 1000 \\ a_0 = 10^6, b_0 = -2.1 & \text{lors que } R_l \ge 1000 \end{cases}$$

 R_l : est le nombre de Reynolds local donné par : $R_l = \frac{\rho h V_m}{\mu}$

$$(I.10) \Longrightarrow P_r = P_f + \frac{1}{2} \alpha \rho V_m^2$$

Remplaçons dans l'équation (I.9) :

$$\Rightarrow \frac{H_2^{3}L_1}{H_1^{3}L_2} P_f = P_1 - \left(P_f + \frac{1}{2}\alpha\rho V_m^{2}\right)$$
$$\frac{H_2^{3}L_1}{H_1^{3}L_2} P_f = P_1 - \left(P_f + \frac{1}{2}\alpha\rho V_m^{2}\right) \qquad \Rightarrow \left(\frac{H_2^{3}L_1}{H_1^{3}L_2} + 1\right) P_f = P_1 - \frac{1}{2}\alpha\rho V_m^{2}$$

$$\Rightarrow \left(\frac{H_{2}^{3}L_{1} + H_{1}^{3}L_{2}}{H_{1}^{3}L_{2}}\right)P_{f} = P_{1} - \frac{1}{2}\alpha\rho V_{m}^{2}$$

$$P_{f} = \frac{H_{1}^{3}L_{2}}{H_{2}^{3}L_{1} + H_{1}^{3}L_{2}}\left(P_{1} - \frac{1}{2}\alpha\rho V_{m}^{2}\right) \qquad \dots \qquad (I.11)$$

$$U_{xm}\left(L_{1}\right) = \frac{1}{2\mu h}\frac{\partial P_{s2}\left(x\right)}{\partial x}\bigg|_{x=L_{1}}\int_{0}^{h}\left(\left(y - h\right)y\right)dy$$

$$P_{S_2}(x) = \frac{P_f}{L_2}(L_1 + L_2 - x) \implies \left. \frac{\partial P_{S_2}(x)}{\partial x} \right|_{x = L_1} = \frac{\partial \left(\frac{P_f}{L_2}(L_1 + L_2 - x) \right)}{\partial x} = -\frac{P_f}{L_2}$$

Le gradient de la pression est constant alors la vitesse l'est aussi :

$$U_{xm}\left(L_{1}\right)=\frac{h^{2}P_{f}}{12\mu L_{2}}$$

Or que :
$$V_m = \sqrt{U_{xm}^2 + W_{zm}^2}$$

Donc : $V_m = \frac{h^2 P_f}{12\mu L_2}$
 $P_f = \frac{H_1^3 L_2}{H_2^3 L_1 + H_1^3 L_2} \left(P_1 - \frac{1}{2} \alpha \rho V_m^2 \right) \qquad \dots \qquad (I.12)$

Le problème avec l'équation (I.12) est que le coefficient de perte de charge α dépend lui-même de P_f (car il dépend du nombre de Reynolds qui dépend de la vitesse qui dépend à son tour de la pression) ce qui rend l'équation non linéaire :

$$\alpha = 1 + a_0 R_l^{b_0}$$

$$R_l$$
: est le nombre de Reynolds local donné par : $R_l = \frac{\rho h V_m}{\mu}$

CHAPITRE II Solution Semi-Analytique et Simulation

CHAPITRE II SOLUTION SEMI-ANALYTIQUE ET SIMULATION

Dans ce chapitre nous allons commencer par valider le modèle en une seule section adopté en effectuant une étude paramétrique des différents paramètres physiques et géométriques. Chaque étude fera l'objet d'une comparaison entre le modèle numérique en volumes finis sous Ansys-CFX avec la formulation analytique résolue par schéma itératif. Nous allons ensuite effectuer une étude paramétrique sur le modèle avec restriction pour déterminer le comportement du modèle sous la variation des différents paramètres, à savoir : la viscosité, la densité et les épaisseurs des deux sections.

II.1. Maillage de la géométrie à une section :

Le maillage utilisé pour la validation est du type rectangulaire structuré de 200x30 nœuds plus dense vers les extrémités par rapport aux centres (dans les deux directions x et y). Il est réalisé à l'aide du logiciel commercial ICEM-CFD inclus dans la suite Ansys 17.

Figure II.1 : Maillage de la géométrie à une seule section 2D

II.2. Choix des propriétés physiques et géométriques

En l'absence de données expérimentales le choix des paramètres physiques (viscosité, densité, conditions aux limites ...) et géométriques n'est pas une chose facile.

Ceci est dû aux multitudes possibilités obtenues par combinaison des différents paramètres. Même lorsque la solution analytique est présente, elle est souvent développée sur la base des hypothèses qu'il faut respecter pour tout choix de paramètres physique d'étude théorique.

Dans ce chapitre nous allons effectuer une étude paramétrique des diffèrent paramètre en comparant les résultats obtenus analytiquement et numériquement par la méthode des volumes finis sur le logiciel Ansys CFX.

La comparaison est faite en se basant sur le débit volumique du lubrifiant dont on va changer les paramètres jusqu'à la concordance.

La première étude consiste en 24 simulations et 24 calculs analytiques avec combinaison de variation de densité et de viscosité.

Les valeurs de la viscosité adoptées sont celles de :

- l'Eau : $\mu = 0,0008899 Pa s$
- SAE 15W40 (huile) : $\mu = 0,287 Pa s$
- La Glycerol (C3H8O3) : $\mu = 1,495 Pa s$
- Et trois valeurs moyennes imaginaires

				Débit Q			
L [m]	H [m]	ρ [kg/m3]	μ [Pa.s]	Analytique [m ³ /s]	Ansys CFX [m ³ /s]	Erreur%	
0,05	3,00E-03	6,00E+02	8,90E-04	5,0567	1,45E-01	3,376E+03	
0,05	3,00E-03	6,00E+02	1,00E-02	0,45	8,81E-02	4,106E+02	
0,05	3,00E-03	6,00E+02	1,44E-01	0,0313	1,83E-02	7,137E+01	
0,05	3,00E-03	6,00E+02	2,87E-01	0,0157	9,34E-03	6,803E+01	
0,05	3,00E-03	6,00E+02	8,91E-01	0,0051	3,02E-03	6,903E+01	
0,05	3,00E-03	6,00E+02	1,50E+00	0,003	1,79E-03	6,722E+01	
0,05	3,00E-03	8,00E+02	8,90E-04	5,0567	0,172468	2,832E+03	
0,05	3,00E-03	8,00E+02	1,00E-02	0,45	0,106947	3,208E+02	
0,05	3,00E-03	8,00E+02	1,44E-01	0,0313	0,0241199	2,977E+01	
0,05	3,00E-03	8,00E+02	2,87E-01	0,0157	0,0124642	2,596E+01	
0,05	3,00E-03	8,00E+02	8,91E-01	0,0051	0,00401542	2,701E+01	
0,05	3,00E-03	8,00E+02	1,50E+00	0,003	0,00239063	2,549E+01	
0,05	3,00E-03	1,00E+03	8,90E-04	5,057E+00	1,986E-01	2,446E+03	
0,05	3,00E-03	1,00E+03	1,00E-02	4,500E-01	1,240E-01	2,629E+02	
0,05	3,00E-03	1,00E+03	1,44E-01	3,130E-02	2,979E-02	5,054E+00	
0,05	3,00E-03	1,00E+03	2,87E-01	1,570E-02	1,55E-02	1,015E+00	
0,05	3,00E-03	1,00E+03	8,91E-01	0,0051	5,04E-03	1,281E+00	
0,05	3,00E-03	1,00E+03	1,50E+00	0,003	2,98E-03	5,251E-01	
0,05	3,00E-03	1,20E+03	8,90E-04	5,057E+00	2,238E-01	2,159E+03	
0,05	3,00E-03	1,20E+03	1,00E-02	4,500E-01	1,396E-01	2,223E+02	
0,05	3,00E-03	1,20E+03	1,44E-01	3,130E-02	3,531E-02	1,135E+01	
0,05	3,00E-03	1,20E+03	2,87E-01	1,570E-02	1,86E-02	1,562E+01	
0,05	3,00E-03	1,20E+03	8,91E-01	0,0051	6,04E-03	1,550E+01	
0.05	3.00E-03	1.20E+03	1.50E+00	0.003	3.60E-03	1.668E+01	

Tableau II.1: Effets de la viscosité et de la densité avec épaisseur constante

Figure II.2: Variation de l'erreur relative en fonction de la viscosité dynamique et de la densité

On remarque que l'erreur diminue en augmentant la viscosité. On remarque aussi que l'erreur est très peu sensible à la variation de la densité. En fait, la solution analytique est entièrement indépendante de la densité (équation ((I.2)).

A cette épaisseur h= 3.10^{-3} m choisir l'eau comme fluide n'est certainement pas adéquat car sa viscosité est d'environ 10^{-3} est donnera un très grand écart entre le débit calculé numériquement et celui calculé analytiquement. D'où l'étude paramétrique suivante.

L'étude consiste en 12 simulations et 12 calculs analytiques avec combinaison de variation d'épaisseur et de viscosité. ($1 Pa s = 1 N s/m^2 = 1 kg/(m s)$)

I [m]	H [m]	H [m] ρ [kg/m3]	μ [Pa,s]	Dét	Email: #0/	
				Analytique [m ³ /s]	Ansys CFX [m^3/s]	Erreur%
0,05	3,00E-03	1,00E+03	8,90E-04	5,0567	1,45E-01	3376
0,05	1,00E-03	1,00E+03	8,90E-04	0,1873	4,46E-02	320
0,05	1,00E-04	1,00E+03	8,90E-04	1,87E-04	1,86E-04	1
0,05	3,00E-03	1,00E+03	1,44E-01	0,0313	1,83E-02	71
0,05	1,00E-03	1,00E+03	1,44E-01	0,0012	0,0145912	92
0,05	1,00E-04	1,00E+03	1,44E-01	1,16E-06	1,80E-06	36
0,05	3,00E-03	1,00E+03	2,87E-01	1,570E-02	9,34E-03	68
0,05	1,00E-03	1,00E+03	2,87E-01	5,807E-04	5,761E-04	1
0,05	1,00E-04	1,00E+03	2,87E-01	5,807E-07	1,752E-06	67
0,05	3,00E-03	1,00E+03	1,50E+00	3,000E-03	1,79E-03	67
0,05	1,00E-03	1,00E+03	1,50E+00	1,115E-04	1,107E-04	1
0,05	1,00E-04	1,00E+03	1,50E+00	1,115E-07	5,334E-07	79

Tableau II.2: Effets de l'épaisseur avec différentes viscosités avec densité constante

Figure II.3: Variation de l'erreur relative en fonction de l'épaisseur et de l'a viscosité dynamique

On remarque que l'erreur augmente en augmentant l'épaisseur du film fluide. Ce phénomène est très prononcé lorsque le fluide considéré est à faible viscosité (Eau). Au-delà de 5.10⁻⁴m d'épaisseur l'eau ne sera plus adéquate pour l'étude.

Sur le deuxième tableau on remarque clairement qu'avec les dimensions adoptées $(h=10^{-3}m)$ les paramètres du deuxième fluide donnent une très bonne précision (erreur relative d'environ 1%)

II.3. Maillage de la géométrie à deux sections :

Le maillage utilisé pour la validation est du type rectangulaire structuré de 19968 éléments très dense dans la zone de changement de section et vers les extrémités par rapport aux centres (dans les deux directions x et y). Il est réalisé à l'aide du logiciel commercial ICEM-CFD inclus dans la suite Ansys 17.

Figure II.4: maillage concentré dans la zone de restriction

Sur la figure suivante on peut voir clairement la supériorité de la qualité du maillage utilisé. Le critère choisis est Erikson Skewness (Déformation).

Figure II.5: Qualité des éléments (Abscisses : la qualité (de 0 médiocre à 1 supérieure), et ordonnés : nombre des nœuds (× 1000 éléments))

II.4. Validation :

D'après les équations (I.1) développées dans le chapitre précédent, on calcule les valeurs de la pression en amant et en aval de la zone de changement de section qui vérifient l'égalité des débits entrant et sortant :

$$\begin{cases} Q_{Entrée} = \frac{L_z H_1^3 (P_1 - P_r)}{12 \mu L_1} \\ Q_{sortie} = \frac{L_z H_2^3 P_f}{12 \mu L_2} \end{cases}$$

On cherche la valeur de P_f qui vérifie la conservation des débits volumiques

$$Q_{Entrée} = Q_{sortie} \implies Q_{Entrée} - Q_{sortie} = 0 \implies \frac{H_2^{\ 3}P_f}{L_2} - \frac{H_1^{\ 3}(P_1 - P_r)}{L_1} = 0$$
$$\implies \frac{H_2^{\ 3}P_f}{L_2} - \frac{H_1^{\ 3}(P_1 - P_r)}{L_1} = 0 \qquad \dots \qquad (II.1)$$

Avec :

$$\left. \begin{array}{l} P_{r} - P_{f} = \frac{1}{2} \alpha \rho V_{m}^{2} \\ V_{m} = \frac{H_{2}^{2} P_{f}}{12 \mu L_{2}} \end{array} \right\} \quad \Rightarrow \quad P_{r} = P_{f} + \frac{1}{2} \alpha \rho \left(\frac{H_{2}^{2} P_{f}}{12 \mu L_{2}} \right)^{2} \qquad \dots \qquad (\text{II.2})$$

Les pressions P_f et P_r sont obligatoirement comprises entre la pression d'alimentation P_1 et la pression à la sortie P_0 .

Il a été déjà mentionné que l'équation (II.1) est non linéaire à cause de la dépendance du coefficient α du champ de pression dans le fluide. La résolution sera faite par un schéma itératif.

Le schéma itératif cherche la valeur de P_f qui annule la différence entre les deux débits par la méthode de bissection.

Une fois les deux valeurs de pression amant et avale P_r et P_f le champ de pression dans le film fluide suit un comportement linéaire comme l'indique l'équation (I.10) du chapitre précédent.

On adopte les paramètres suivants pour la validation :

$$\begin{split} L_1 &= L_2 = 5e-2 : \text{Longueur de la section 1 dans la direction x [m]} \\ L_z &= 1 : \text{Largueur dans la direction z [m]} \\ H_2 &= 3e-3 : \text{Epaisseur du film fluide Section 2 [m]} \\ H_1 &= 10*H_2 : \text{Epaisseur du film fluide Section 1 [m]} \\ P_1 &= 1e5 : \text{Pression d'alimentation (entrée de la section 1) [Pa]} \\ P_0 &= 0 : \text{Pression à la sortie (Sortie de la section 2) [Pa]} \\ \text{Rho} &= 1000 : \text{Densité du fluide Eau [kg/m^3]} \end{split}$$

Visco=0.001 : Viscosité dynamique [Pa.s]

Figure II.7 : Champ de pression obtenu par Ansys-CFX

La concordance entre les deux champs ; analytique obtenu par schéma itératif et numérique obtenu par la méthode des volumes finis sous le logiciel Ansys-CFX.

La simulation sous Ansys-CFX prend quelques minutes pour chaque cas, alors que la résolution itérative de la formulation analytique utilisant la corrélation exprimée par l'équation II.2 ne prend que quelques secondes pour la totalité des cas considérée.

II.5. Etude paramétrique :

Dans cette partie nous allons étudier l'effet des paramètres les plus importants sur l'écart de pression dû à l'effet d'inertie c'est-à-dire $\Delta P = P_r - P_f$.

D'après l'équation (II.2)
$$P_r = P_f + \frac{1}{2} \alpha \rho \left(\frac{H_2^2 P_f}{12\mu L_2}\right)^2$$
, il est clair que $\Delta P = P_r - P_f$

dépend de l'épaisseur du film fluide de la façon la plus forte (facteur de puissance 4), puis de la viscosité et la longueur du film (facteur inverse 2) et enfin de la densité et du coefficient α d'un facteur 1.

Le débit (équation II.1) aussi dépend de l'épaisseur du film fluide, des longueurs L_1 et L_2 et de la pression d'alimentation (la pression à la sortie influe aussi mais elle n'est pas apparente car elle est considérée nulle).

II.5.1. Effet de la viscosité :

Le calcul de la distribution de la pression est effectué pour 6 valeurs de $\mu = 0.1, 0.25, 0.5, 1, 2, 3$ Pa.s. Les autres paramètres sont maintenus fixes.

Figure II.8 : Effet de la viscosité sur la distribution de la pression dans la direction x

L'augmentation de la viscosité fait augmenter P_f considérablement mais de façon « ralentissant » et fait diminuer P_r très légèrement. L'effet sur l'écart ΔP est une diminution ralentissant. Ceci peut être confirmé par les courbes des 3 figures suivantes.

Figure II.10 : Effet de la densité sur la pression Pr

Figure II.11 : Effet de la densité sur la pression ΔP

II.5.2. Effet de la densité :

Quatre valeurs de densité sont utilisées $\rho = 600, 800, 1000, 1200 \text{ kg}/m^3$. Les épaisseurs en amant et en aval H_1 et H_2 sont maintenues constantes $H_1 = 3 \times 10^{-2} m$ et $H_2 = 3 \times 10^{-3} m$ ainsi que les autres paramètres.

Figure II.12 : Effet de la densité sur la distribution de la pression dans la direction x

L'augmentation de la densité fait augmenter les deux pressions P_r et P_f , mais elle a plus d'effet sur la pression en aval P_f que celle en amant P_r , ceci peut être confirmé par les courbes des figures II.13, figures II.14 et figures II.15. On remarque aussi que l'effet est quasiment linéaire, ce qui peut être aussi confirmé par les mêmes courbes.

Figure II.13 : Effet de la densité sur la pression Pr

Figure II.14 : Effet de la densité sur la pression Pf

Figure II.15 : Effet de la densité sur la pression ΔP

II.5.3. Effet des épaisseurs des deux sections du film fluide :

II.5.3.1. Effet de l'épaisseur en amant de la restriction H1 :

Le calcul de la distribution de la pression est effectué pour 5 valeurs de l'épaisseur en amant de la restriction $H_1 = 2H_2$, $3H_2$, $4H_2$, $5H_2$, $10H_2$, $20H_2$. L'épaisseur en aval H_2 est maintenue constante $H_2 = 2.5 \times 10^{-3} m$ ainsi que les autres paramètres.

La figure II.16 montre que la variation de H_1 influe les deux pressions P_r et P_f , mais avec des intensités différentes. En effet, la variation de P_r est plus importante que celle de P_f et cela est clair en comparant les pentes des deux segments en amant et en aval de la restriction. Ceci cause la variation de l'écart ΔP .

Figure II.16 : Distribution de la pression dans la direction x

Figure II.17 : Pression en amant, en aval de la restriction et l'écart ΔP en fonction de H1

On remarque sur la figure II.9 que la variation des trois paramètres est rapide lorsque l'épaisseur H1 est inférieure à 5 fois l'épaisseur H2. Au-delà de cette limite les trois paramètres atteignent un palier et deviennent très peu sensibles à la variation de H1.

II.5.3.2. Effet de l'épaisseur en aval de la restriction H2 :

Le calcul de la distribution de la pression est effectué pour 10 valeurs de l'épaisseur en aval de la restriction $H_2 = (0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8) \times 10^{-3}$ m. L'épaisseur en amant H_1 est maintenue constante $H_1 = 3 \times 10^{-2} m$ ainsi que les autres paramètres.

On remarque sur la figure II.18 que la variation de l'écart ΔP est plus prononcée vers le milieu de l'intervalle considéré aux extrémités la variation est moins importante. Cette constatation est confirmée par la figure II.19 représentant la variation de ΔP en fonction de H_2 .

Figure II.18 : Distribution de la pression dans la direction x

Figure II.19 : Variation de ΔP en fonction de H_2

Dans le chapitre suivant nous allons effectuer une étude similaire sur un cas réel qui est un patin d'un palier hydrostatique

CHAPITRE III APPLICATION AUX PALIERS HYDROSTATIQUES

CHAPITRE III APPLICATION AUX PALIERS HYDROSTATIQUES

Dans ce chapitre nous allons suivre la même démarche du chapitre précédent et l'appliquer à un patin d'un palier hydrostatique. La résolution de la formulation analytique sera aussi basée sur la conservation du débit volumique (le fluide est considéré incompressible).

L'étude paramétrique portera sur l'influence des différents paramètres sur la force portante générée par le champ de pression.

III.1. Formulation mathématique en régime laminaire sans effet d'inertie :

Hypothèse du palier infiniment long implique que les gradients dans la direction infinie (z) seront ignorés.

La conservation de la masse (débit massique) permet d'écrire :

$$\dot{m}_{in} = \dot{m}_{out} + \frac{\partial m}{\partial t} = \dot{m}_{out} + \frac{\partial \left(\rho V_{al}\right)}{\partial t}$$

 \dot{m}_{in} : Masse du fluide entrant par la résistance capillaire

 \dot{m}_{out} : Masse du fluide sortant de l'alvéole

 $\partial m/\partial t$: Variation temporelle de la masse à l'intérieur de l'alvéole dû principalement à la variation du volume

 ρ : densité du fluide

 V_{al} : Volume de l'alvéole

Figure III.2 : Schéma du patin du palier

$$\rho Q_{capillaire} = \rho Q_{sortie} + \rho \frac{\partial V_{al}}{\partial t} + V_{al} \frac{\partial \rho}{\partial t}$$

 $Q_{capillaire}$, Q_{sortie} : Les débits volumiques entrant par le capillaire et sortant de la zone du film.

 $\frac{\partial V_{al}}{\partial t}$: Variation du volume de l'alvéole supposée nulle

$$\frac{\partial V_{al}}{\partial t} = \iint \vec{h} \cdot \vec{n} \, ds = 0$$

Le coefficient de compressibilité est donné par : $\beta = \frac{1}{\rho} \frac{\partial \rho}{\partial P_{al}}$

$$\frac{\partial \rho}{\partial t} = \frac{\partial \rho}{\partial P_{al}} \frac{\partial P_{al}}{\partial t} = \rho \beta \frac{\partial P_{al}}{\partial t} \implies \Rightarrow$$

La conservation des débits massiques s'écrit :

$$\rho Q_{capillaire} = \rho Q_{sortie} + V_{al} \rho \beta \frac{\partial P_{al}}{\partial t}$$

La densité peut être simplifiée d'où la conservation des débits volumiques :

$$Q_{capilaire} = Q_{sortie} + V_{al} \beta \frac{\partial P_{al}}{\partial t}$$
(III.13)

Cas du fluide incompressible: $\beta = 0$

(1) => $Q_{capilaire} = Q_{sortie}$

Le débit volumique entrant par le capillaire : $Q_{capillaire} = \frac{\pi d_{cap}^4}{128\mu L_c} (P_s - P_{alv})$

 d_{cop}, L_c, P_s : sont le diamètre du capillaire, sa longueur et la pression de l'alimentation respectivement.

III.1.1. Le débit volumique sortant de la zone du film mince :

Le palier est considéré infiniment long (dans la direction z), donc le débit dans la direction axiale (z) peut être négligé devant le débit dans la direction x :

$$Q_z \ll Q_x$$

Aussi, grâce à la symétrie on ne considère que la partie du débit dans la direction +x positive et on le multiplie par deux :

$$Q_{sortie} = 2U_{xm}S_{sortie} = 2L_zhU_{xm}$$

 U_x, U_{xm}, S_{sortie} : sont la vitesse du fluide dans la direction x (fonction de y), la vitesse moyenne dans la direction x et la superficie de la zone de sortie du fluide respectivement.

$$U_{xm} = \frac{\int_{0}^{n} U_{x} dy}{h}$$

Figure III. 3 : Champ de vitesse entre deux plaques

La vitesse d'un écoulement de fluide newtonien entre deux plaques parallèles est donnée par :

$$U_{x} = \frac{1}{2\mu} \frac{\partial P}{\partial x} (y - h) y \qquad \qquad = > \qquad U_{xm} = \frac{\int_{0}^{h} \left(\frac{1}{2\mu} \frac{\partial P}{\partial x} (y - h) y \right) dy}{h}$$

Avec l'hypothèse de la pression constante dans la direction de l'épaisseur du film mince.

$$= V_{xm} = \frac{1}{2\mu h} \frac{\partial P}{\partial x} \int_{0}^{h} ((y - h)y) dy$$

$$= V_{xm} = 2L_{z}hU_{xm} = L_{z} \frac{1}{\mu} \frac{\partial P}{\partial x} \int_{0}^{h} ((y - h)y) dy$$

$$= V_{sorrie} = \frac{L_{z}}{\mu} \frac{\partial P}{\partial x} \int_{0}^{h} (y^{2} - hy) dy = \frac{L_{z}}{\mu} \frac{\partial P}{\partial x} \left[\frac{1}{3} y^{3} - \frac{1}{2} hy^{2} \right]_{0}^{h} = \frac{L_{z}}{\mu} \frac{\partial P}{\partial x} \left[\frac{1}{3} h^{3} - \frac{1}{2} hh^{2} \right]$$

$$= V_{sorrie} = -\frac{L_{z}h^{3}}{6\mu} \frac{\partial P}{\partial x} \Big|_{x=L_{x}} \qquad (III.14)$$

$$\frac{\pi d_{cap}^{4}}{128\mu L_{c}} \left(P_{s} - P_{alv} \right) = -\frac{L_{z}h^{3}}{6\mu} \frac{\partial P}{\partial x} \Big|_{x=L_{x}}$$

$$\frac{\pi d_{cap}^{4}}{128L_{c}} \left(P_{s} - P_{alv} \right) = -\frac{L_{z}h^{3}}{6} \frac{\partial P}{\partial x} \Big|_{x=L_{x}} \qquad (III.15)$$

III.1.2. Recherche du gradient de pression dans le film mince $\frac{\partial P}{\partial x}\Big|_{x=L}$

La pression dans le film mince est régie par l'équation de Reynolds :

$$\frac{\partial}{\partial x} \left(\frac{h^3}{\mu} \frac{\partial P}{\partial x} \right) + \frac{\partial}{\partial z} \left(\frac{h^3}{\mu} \frac{\partial P}{\partial z} \right) = 6U \frac{\partial h}{\partial x} + 12 \frac{\partial h}{\partial t} \qquad \dots \qquad (\text{III.16})$$

U: Vitesse de glissement, c.à.d. vitesse de la surface mobile dans la direction x, elle est nulle ainsi que la variation spatiale de l'épaisseur $\frac{\partial h}{\partial x}$

 $\frac{\partial h}{\partial t} = \dot{h}$: est la vitesse d'écrasement

L'hypothèse du palier infiniment long permet d'écrire : $\frac{\partial}{\partial z} = 0$

(4) =>
$$\frac{h^3}{\mu} \frac{\partial^2 P}{\partial x^2} = 12\dot{h}$$

 $\frac{\partial^2 P}{\partial x^2} = \frac{12\mu\dot{h}}{h^3}$... (III.17)

Avec $\dot{h} = 0$

En intégrant l'équation (III.17) deux fois sur x :

$$P(x) = C_1 x + C_2$$

Avec les conditions aux limites : $\begin{cases} P(0) = P_f \\ P(L_x) = P_0 \end{cases}$

 P_f : est la pression dans l'entrée de la zone du film mince

 P_0 : est la pression à la sortie de la zone du film mince, elle est souvent considérée nulle (atmosphérique)

$$\Rightarrow P(0) = P_f \Rightarrow C_2 = P_f, \qquad P(L_x) = P_0 \Rightarrow C_1 L_x + P_f = P_0$$
$$\Rightarrow C_1 = \frac{1}{L_x} (P_0 - P_f) \quad \text{et} \quad C_2 = P_f$$

Donc la pression dans le film mince sera :

$$P(x) = \frac{\left(P_0 - P_f\right)}{L_x} x + P_f \qquad \dots \qquad \text{(III.18)}$$

Son gradient spatial est :

Le gradient est constant

A l'entrée de la zone du film mince x = 0, et à sa sortie $x = L_x$:

$$\frac{\partial P(0)}{\partial x} = \frac{\left(P_0 - P_f\right)}{L_x} \qquad \dots \qquad \text{(III.20)}$$

Le débit sortant l'équation (III.14) peut être maintenant écrit en remplaçant le gradient par l'équation (III.21) :

$$Q_{sortie} = \frac{h^3 L_z}{6\mu L_x} \left(P_f - P_0 \right) \qquad \dots \qquad (\text{III.22})$$

Et l'équation (3) devient :

$$\frac{\pi d_{cap}^{4}}{128\mu L_{c}} \left(P_{s} - P_{alv} \right) = \frac{h^{3}L_{z}}{6\mu L_{x}} \left(P_{f} - P_{0} \right)$$

On simplifie la viscosité

$$\frac{\pi d_{cap}^4}{128L_c} \left(P_s - P_{alv} \right) = \frac{h^3 L_z}{6L_x} \left(P_f - P_0 \right) \qquad \dots \qquad (\text{III.23})$$

En absence de l'effet d'inertie $P_{alv} = P_f$

En considérant l'effet d'inertie $P_{alv} \neq P_f$

Figure III.4 : Paramètres géométriques du patin

III.1.3. En absence de l'effet d'inertie :

 $P_{alv} = P_f$ (on choisit aussi $P_0 = 0$) l'équation (III.23) devient :

$$P_{alv} = P_s - \frac{64h^3 L_c L_z}{3\pi d_{cap}^4 L_x} P_{alv} \Rightarrow \left(1 + \frac{64h^3 L_c L_z}{3\pi d_{cap}^4 L_x}\right) P_{alv} = P_s$$
$$\Rightarrow \left(\frac{3\pi d_{cap}^4 L_x + 64h^3 L_c L_z}{3\pi d_{cap}^4 L_x}\right) P_{alv} = P_s$$
$$P_{alv} = \frac{3\pi d_{cap}^4 L_x}{3\pi d_{cap}^4 L_x} P_s \qquad \dots \qquad \text{(III.24)}$$

III.1.4. Avec effet d'inertie :

Dans cette étude on adopte le modèle **empirique** proposé par Chaomleffel [3]. Dans ce modèle la chute due à l'effet d'inertie de la pression à l'entrée de la zone du film mince (de P_{alv} la pression dans l'alvéole à P_f la pression à l'entrée de la zone du film mince) est traduite par la relation empirique suivante :

$$P_{alv} - P_f = \frac{1}{2} \alpha \rho V_m^2 \qquad \dots \qquad (\text{III.25})$$

 V_m : est la résultante des vitesses moyennes (W_{zm} et U_{xm}) à l'entrée de la zone du film mince (x = 0) : $V_m = \sqrt{U_{xm}^2 + W_{zm}^2}$

Avec l'hypothèse du palier infiniment long $(W_{zm} = 0)$ la résultante des vitesses moyennes peut s'écrire : $V_m = |U_{xm}|$

 α : est le coefficient de perte de charge

$$\alpha = 1 + a_0 R_l^{b_0}$$

avec :
$$\begin{cases} a_0 = \frac{1}{2}, b_0 = 0 & \text{lors que } R_l < 1000 \\ a_0 = 10^6, b_0 = -2.1 & \text{lors que } R_l \ge 1000 \end{cases}$$

 R_l : est le nombre de Reynolds local donné par : $R_l = \frac{\rho h V_m}{\mu}$

$$(15) => P_{alv} = P_f + \frac{1}{2} \alpha \rho V_m^2$$

Remplaçons dans l'équation (III.23) :

$$\frac{\pi d_{cap}^4}{128L_c} \left(P_s - \left(P_f + \frac{1}{2} \alpha \rho V_m^2 \right) \right) = \frac{h^3 L_z}{6L_x} \left(P_f - P_0 \right)$$

Avec $P_0 = 0$,

$$\frac{\pi d_{cap}^4}{128L_c} \left(P_s - \left(P_f + \frac{1}{2} \alpha \rho V_m^2 \right) \right) = \frac{h^3 L_z}{6L_x} P_f \qquad \dots \qquad (\text{III.26})$$

III.1.5. Calcul de V_m :

La résultante des vitesses moyennes (W_{zm} et U_{xm}) à l'entrée de la zone du film mince (x = 0)

$$V_{m} = U_{xm} = \frac{\int_{0}^{h} U_{x} dy}{h} = \frac{\int_{0}^{h} \left(\frac{1}{2\mu} \frac{\partial P}{\partial x} (y - h) y\right) dy}{h} = -\frac{h^{2}}{12\mu} \frac{\partial P}{\partial x}$$
(III.27)

Le gradient analytique de la pression est donné par l'équation (III.19)

$$V_{m} = -\frac{h^{2}}{12\mu} \left(\frac{\left(P_{0} - P_{f}\right)}{L_{x}} \right) \Longrightarrow V_{m}\left(x\right) = \frac{h^{2}\left(P_{f} - P_{0}\right)}{12\mu L_{x}}$$

Le gradient de la pression étant constant la vitesse l'est aussi, à x = 0 c.à.d. à l'entrée de la zone du film mince avec $P_0 = 0$

$$V_m(x=0) = \frac{h^2 P_f}{12\mu L_x}$$
 ... (III.28)

III.1.6. Résolution :

L'équation (16) de conservation des débits entrant par le capillaire et le débit sortant du film mince donne :

$$\frac{\pi d_{cap}^{4}}{128L_{c}} \left(P_{s} - \left(P_{f} + \frac{1}{2} \alpha \rho V_{m}^{2} \right) \right) = \frac{h^{3}L_{z}}{6L_{x}} P_{f}$$

Qui peut être écrite :

$$\frac{\pi d_{cap}^{4}}{128L_{c}} \left(P_{s} - \left(P_{f} + \frac{1}{2} \alpha \rho V_{m}^{2} \right) \right) - \frac{h^{3}L_{z}}{6L_{x}} P_{f} = 0 \qquad \dots \qquad (\text{III.29})$$

L'équation (III.29) a la forme : $f(P_f) = 0$, où f est une fonction dont les racines sont les valeurs de P_f recherchées. Le problème avec l'équation (III.29) c'est que α et V_m dépendent du nombre de Reynolds local R_1 qui dépend à son tour de la pression P_f , donc l'équation est moins simple à résoudre. L'équation (III.29) est donc non-linéaire, et le calcul de P_f se fait par un schéma itératif.

La méthode la plus simple à utiliser pour trouver la racine est la méthode de Bissection. La méthode est basée sur le principe suivant : si la fonction $f(P_f)$ est définie et continue sur un intervalle $[P_a, P_b]$ et que le produit $f(P_a) \times f(P_b)$ est négatif alors il existe une valeur $P_0 \in [P_a, P_b]$ pour laquelle $f(P_0) = 0$. La méthode de Bissection consiste en la division de l'intervalle de localisation de la racine de façon successive jusqu'à atteindre une longueur d'intervalle minimum.

III.1.7. La force générée par le patin :

Le patin étant symétrique et en absence de l'écoulement de Couette on ne va formuler l'expression de la force que sur la moitié du patin [2] puis la multiplier par deux.

La force est générée en partie par la moitié de l'alvéole où règne une pression constante et partie par un coté du film mince où la pression suit un comportement linéaire qui peut être décrit par l'équation (III.18)

III.1.7.1. La force générée par l'alvéole :

La pression dans l'alvéole étant constante le calcul de la force est direct :

$$F_{alv} = L_z \frac{L_{alv}}{2} P_{alv} \qquad \dots \qquad (\text{III.30})$$

III.1.7.2. La force générée par le film mince :

La pression dans le film mince étant variable dans la direction x le calcul de la force se fait par intégration du champ de pression régi par l'équation (III.18) selon x de 0 à L_x :

(III.18)
$$\Rightarrow F_{film} = \int_{ds} P(x) ds = L_z \int_0^{L_x} P(x) dx$$

$$\Rightarrow F_{film} = L_z \int_0^{L_x} \left(\frac{\left(P_0 - P_f\right)}{L_x} x + P_f \right) dx$$

Ce qui donne en fin :

$$F_{film} = \frac{L_z L_x}{2} \left(P_0 + P_f \right) \qquad \dots \qquad (\text{III.31})$$

III.1.7.3. La résultante de la force générée par le patin :

La force totale générée par le patin est le double de la somme des deux forces précédemment calculées :

$$F_{totale} = 2\left(F_{alv} + F_{film}\right) = 2\left(L_z \frac{L_{alv}}{2}P_{alv} + \frac{L_z L_x}{2}\left(P_0 + P_f\right)\right)$$
$$F_{totale} = \left(L_{alv} P_{alv} + L_x \left(P_0 + P_f\right)\right)L_z \qquad \dots \qquad (III.32)$$

Dans la suite nous allons résoudre l'équation (III.29) pour différentes valeurs des paramètres physiques et géométriques pour voir leurs influences sur la force de portance générée par le patin.

III.2. L'étude paramétrique :

Dans cette partie nous allons effectuer une étude sur la force générée par le patin sous différentes conditions. On adopte les paramètres suivants :

 $Lx=10^{-2}$ m : Longueur du film mince dans la direction x

Lz=1m : Largueur dans la direction z

h=1e-4 : Epaisseur du film mince

P₁=P_s=100000 Pas: Pression d'alimentation (entrée du capillaire)

P0=0 : Pression relative à la sortie (Sortie film mince atmosphérique)

 ρ =1000 kg/m³ : Densité du fluide

μ=0.0135 Pas.S : La viscosité du fluide

Epsi=1e-10% : Précision relative

Dc=10e-3m : Diamètre du capillaire

Lc=6e-2m : Longueur du capillaire 60 mm

Lalv=0.0185m : Longueur de l'alvéole

III.2.1. Effet de la viscosité du fluide sur la force:

Cinq valeurs de viscosité sont utilisées $\mu = 0.001, 0.01, 0.1, 1, 1.4 Pa s$. Les autres paramètres sont maintenus constants.

Figure III.5 : Effet de la viscosité sur la distribution de la pression

sans effet d'inertie

Figure III. 6 : Effet de la viscosité sur la distribution de la pression

avec effet d'inertie

Sur la figure III.5 on peut remarquer que l'augmentation de la viscosité n'a aucun effet sur la distribution de la pression dans le patin lorsque l'effet d'inertie n'est pas pris en considération (ce qui est confirmé par l'équation III.24). Lorsqu'il est considéré l'effet d'inertie fait diminuer l'écart entre la pression dans l'alvéole et à l'entrée du film mince (figure III.6 et III.7)

Figure III.7 : Effet de la viscosité sur le saut de pression ΔP

En ce qui concerne la force résultante, on constate sur la figure III.8 qu'elle est insensible aussi au changement de la viscosité en absence de l'effet d'inertie mais en sa présence elle en est proportionnelle avec une grande sensibilité vers les petites valeurs de la viscosité et très faible sensibilité, voir insensible, vers les grandes valeurs de celleci.

Figure III.8 : Effet de la viscosité sur la résultante de la force

III.2.2. Effet de la densité du fluide sur la force :

Le calcul de la distribution de la pression ainsi que la force générée par le patin est effectué pour 4 valeurs de la densité fluide: $\rho = 600,800,1000,1200 \text{ kg} / m^3$.

Figure III.9 : Effet de la densité sur la distribution de la pression

sans effet d'inertie

Sur la figure III.9 il est clair que la densité n'a aucun effet sur la distribution de la pression dans le patin lorsque l'effet d'inertie n'est pas pris en considération (ce qui est aussi confirmé par l'équation III.24).

Lorsque l'effet est considéré le saut de pression ΔP est proportionnel à la variation de la densité (figure III.10 et III.11)

La résultante de des forces est aussi insensible au changement de la densité en absence de l'effet d'inertie. Mais en sa présence elle en est inversement proportionnelle de façon linéaire (figure III.12).

Figure III.10 : Effet de la densité sur la distribution de la pression

avec effet d'inertie

Figure III. 11 : Effet de la densité sur le saut de pression ΔP

Figure III.12 : Effet de la densité sur la résultante de la force

III.2.3. Effet de l'épaisseur du film mince sur la force :

Le calcul de la distribution de la pression ainsi la force générée par le patin est effectué pour 8 valeurs de l'épaisseur du film mince :

 $H_1 = 10^{-3}, 5 \times 10^{-4}, 3 \times 10^{-4}, 10^{-4}, 5 \times 10^{-5}, 10^{-5}, 5 \times 10^{-6}, 10^{-6} m$.

Les autres paramètres sont maintenus constants.

La figure III.13 montre que lorsque l'effet de l'inertie est considéré, l'augmentation de l'épaisseur h fait diminuer la pression de l'alvéole diminuant ainsi le champ de pression dans le film mince aussi.

Sur la figure III.14, qui représente l'influence de l'épaisseur du film sur le champ de pression dans le patin en présence de l'effet d'inertie, on peut voir que la variation de l'épaisseur a le même effet sur la pression dans l'alvéole. Quant à la pression à l'entrée du film mince, on peut voir que l'effet est très fort entre 5×10^{-5} et $5 \times 10^{-4} m$, et très faible au-dessous et au-dessus de cet intervalle. Ceci peut être clairement confirmé par la figure III.15

Figure III.13 : Effet de la viscosité sur la distribution de la pression sans effet d'inertie

Figure III.14 : Effet de l'épaisseur du film sur la distribution de la pression

avec effet d'inertie

Figure III.15 : Effet de l'épaisseur du film sur le saut de pression ΔP

Figure III.16 : Effet de l'épaisseur du film sur la résultante de la force

La dernière figure III.14 représente l'influence de l'épaisseur du film sur la résultante des forces dans les deux cas : en absence et en présence de l'effet d'inertie.

L'augmentation de l'épaisseur du film fait diminuer la force résultante dans les deux cas. Ceci est prévisible et logique vu l'effet inverse de l'épaisseur du film sur le champ

de pression. Mais ce qui intéressant à constater c'est que les taux de variation sont différents.

Le modèle qui ne prend pas en considération l'effet d'inertie prévoit une diminution de la force qui commence lente puis rapide et qui s'accélère avec l'augmentation de l'épaisseur du film. Alors que le modèle avec effet d'inertie prévoit le contraire avec un ralentissement de la diminution vers les grandes valeurs de h.

Vers une épaisseur voisine de $5 \times 10^{-4} m$, les deux modèles prévoient la même valeur de la force résultante.

A une épaisseur h=10-4m et densité ρ =1000 kg/m³, on peut remarquer sur la figure III.8 que la force estimée en considérant l'effet d'inertie est plus petite que celle calculée sans l'effet. En augmentant la viscosité les deux valeurs se rapprochent et convergent vers la même valeur.

Ensuite, en fixant la viscosité à μ =0.0135 Pa.s et l'épaisseur à h=10-4m la force du modèle avec effet d'inertie reste inférieure à celle du modèle sans cet effet quel que soit la densité.

Enfin, en variant l'épaisseur avec une viscosité et une densité constantes sur (valeurs précédentes μ =0.0135 Pa.s et ρ =1000 kg/m3) on remarque un comportement intéressant. Il existe une valeur précise de l'épaisseur 5.10-4m pour laquelle la force du modèle inertiel est égale à la force du modèle sans effet d'inertie. Si h est inférieure à cette valeur critique les remarques précédentes restent valables. Au-delà de cette valeur la force avec effet d'inertie devient supérieure celle sans effet d'inertie.

Conclusion Générale

CONCLUSION GENERALE

Dans cette étude nous avons mis en évidence l'importance de l'effet d'inertie et développé les mécanismes nécessaires pour le mettre en œuvre. Après avoir validé le modèle mathématique adopté par une comparaison numérique par volumes finis et semi-analytique, nous avons étudié les effets des différents paramètres sur le champ de pression et surtout sur la force générée. L'étude s'est portée sur une configuration simple avec une restriction puis sur une géométrie plus complexe d'un patin de palier hydrostatique de configuration hybride.

L'étude est en deux dimensions et se fait sous les hypothèses du fluide Newtonien, incompressible, en écoulement laminaire permanent et sans apport de chaleur.

Le résultat le plus important atteint par l'étude paramétrique du patin c'est que la réponse du système en terme de force ne peut pas être définie par un seul paramètre isolé des autres, mais c'est leur combinaison qui le décide.

En perspective, une future étude doit tenir compte surtout de la turbulence, de l'aspect transitoire dynamique et du mouvement de la paroi supérieure qui représente le grain mobile (lié au rotor).

Références Bibliographique

REFERENCES BIBLIOGRAPHIQUE

- 1. Bouzidane, Ahmed, 2007, conception d'un palier hydrostatique intelligent pour contrôler les vibrations de rotors. Phd thesis, Ecole de Technologie Supérieure Université du Québec.
- Braun, M. J., & Dzodzo, M. B. (OCTOBER 1997). Three-Dimensional Flow and Pressure Patterns in a Hydrostatic Journal earing Pocket. Journal of Tribology, ASME, Vol. 119/711.
- 3. Chaomleffel J.P, (Décembre 1983), Influence des forces d'inertie en lubrification hybride, thèse docteur ingénieur, INSA Lyon
- Chaomleffel, J, Nicolas, D. (October 1986). Experimental investigation of hybrid journal bearings. TRIBOLOGY international, Butterworth & Co , Vol 19 (No 5), 253-259.
- 5. Hamrock, B. J., Schmid, S. R., & Jacobson, B. O. (2004). Fundamental of Ftuid Film Lubrication . NEW YORK : MARCEL DEKKER, INC.
- 6. Khonsari, M. M., & Booser, E. R. (2008). Applied Tribology Bearing Design and Lubrication (2nd ed.). England: John Wiley & Sons Ltd.
- 7. Minikes, A., & Bucher, I. (2006). Comparing numerical and analytical solutions for squeeze-film levitation force. Journal of Fluids and Structures , 713-719.
- 8. M.M.REDDI. (JULY 1969). Finite-Element Solution of the Incompressible Lubrication Problem. Journal of Lubrication Technology, ASME , 524-533.
- 9. Panday, K. M., Choudhury, P. L. & Kumar, N. P., April 2012. Numerical Unsteady Analysis of Thin Film Lubricated. IACSIT International Journal of Engineering and Technology, Vol. 4, No. 2, pp. 185-191.
- R.C.Ghai, D.V.Singh, & R.Sinhasan. (1975). Load capacity and flow characteristics of a hydrostatically lubricated four-pocket journal bearing by finite element method. International Journal of Machine Tool Design and Research , 16 (4), 233-240.
- 11. Reynolds O, 1886. On the theory of lubrication and its application to M. Beauchamp Tower's experiments. London: 157-234.
- 12. San Andres, L. (OCTOBER 1990). Turbulent Hybrid Bearings With Fluid Inertia Effects. Journal of Tribology, ASME , 112, 699-707.
- 13. San Andres, L., & Velthuis, J. F. (1992). Laminar Flow in a Recess of a Hydrostatic Bearing. Tribology Transactions , 35 (4), 738-744.

Résumé

RESUME

Le but de cette étude est de mettre en évidence l'importance du phénomène lié à l'inertie pendant le passage d'un fluide incompressible par un espace qui présente une diminution de section droite de façon brusque. La conservation du débit massique (dans le cas incompressible c'est aussi le débit volumique) oblige le fluide à augmenter sa vitesse au passage de la deuxième section pour compenser la chute de la section. Ceci induit des comportements spéciaux des paramètres du fluide.

Après avoir validé le modèle mathématique adopté par une comparaison numérique par volumes finis avec semi-analytique, nous avons étudié les effets des différents paramètres sur le champ de pression et surtout sur la force générée. L'étude s'est portée sur une configuration simple avec une restriction puis sur une géométrie plus complexe d'un patin de palier hydrostatique de configuration hybride.

En fin une conclusion sur les différentes remarques ainsi que les perspectives des futures études sont données.

Abstract:

The objective of this study is to know the importance of the phenomenon related to the inertia during the passage of an incompressible fluid through a space which exhibits a sudden decrease in the cross-section. The conservation of the mass flow (in the incompressible case it is also the volumetric flow) forces the fluid to increase its speed when passing through the second section to compensate the fall in the cross-section. This induces special behavior of the fluid parameters.

After the validation of the mathematical model by a comparison between the numerical (finite volumes method) and the semi-analytic model, we studied the effects of the different parameters on the pressure field and also on the generated force. The study is carried out on a simple configuration with a restriction then on a more complex geometry of a hydrostatic bearing pad of hybrid configuration.

Finally, we conclude the study by giving a summary on the various remarks as well as the prospects of the future studies.

ملخص:

الهدف من هذه الدراسة هو تسليط الضوء على أهمية ظاهرة تأثير العطالة (مبدأ العطالة) عند مرور سائل غير قابل للانضغاط عبر فضاء ذي مقطع متغير بصورة غير متدرجة. انخفاض التدفق الكتلي (والتدفق الحجمي في حالة سائل غير قابل الانضغاط) يتطلب زيادة في سرعة السائل الذي يمر في المقطع الثاني من اجل تعويض النقص في مساحة هذا المقطع. تسبب هذه الظاهرة تغيرات نمطية في خصائص السائل.

بعد التحقق من العلاقات الرياضية بواسطة مقارنة النموذج الرقمي (طريقة الحجوم المحدودة) مع العلاقات نصف تحليلية، نقوم بدراسة تأثير مبدأ العطالة على مجال الضغط وخصوصاً القوة المتولدة عن هذا الضغط تبدأ هذه الدراسة بإعدادات بسيطة هندسيا، ثم تتدرج الى مقاطع هندسية معقدة تمثل الحوامل الهيدروستاتيكية ذات التكوين المختلط

وفي الأخير نختم الدراسة بخلاصة حول جميع الملاحظات، ونقدم اقتر احات البحث في هذا المجال للدر اسات المستقبلية.