RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITÉ IBN-KHALDOUN DE TIARET

FACULTÉ DES SCIENCES APPLIQUÉES

DÉPARTEMENT DE GÉNIE MÉCANIQUE

LABORATOIRE DE RECHERCHE DES TECHNOLOGIES INDUSTRIELLES

MÉMOIRE DE FIN D'ÉTUDES

Parcours : Master Académique
Domaine : Sciences & Technologie
Filière : Génie Mécanique
Spécialité : Construction Mécanique

THÈME

Modélisations statistiques de la rugosité en tournage dur

Présenté par Monsieur : FERHAT Djelloul

Devant le Jury:

Nom & Prénom(s)	Grade	Qualité	Structure de rattachement
AISSAT Sahraoui	MCB	Président	Université de Tiaret
MADANI Ahmed	MAA	Examinateur	Université de Tiaret
HADDOUCHE Kamel	MCA	Encadreur	Université de Tiaret

PROMOTION 2016/2017

DEDICACE

Je dédie ce modeste travail à :

Ma mère et à la mémoire de mon père

Ma femme et mes enfants

Toute ma famille

Tous mes amis.

REMERCIEMENTS

Ce travail a été effectué au sein du Laboratoire de Recherche des Technologies Industrielles (LRTI) de l'Université Ibn Khaldoun de Tiaret, dirigé par Monsieur HADDOUCHE Kamel, Maître de Conférences au Département de Génie Mécanique, à qui j'exprime toute ma profonde reconnaissance et qui m'a témoigné de sa confiance et de son aide scientifique, et qui par son expérience, sa compétence, ses conseils avisés et ses encouragements m'a transmis sa passion dans la recherche scientifique.

Je suis également très reconnaissant envers le Jury pour l'honneur qu'il me fait d'avoir accepté d'examiner mon mémoire de Master, et je le remercie également pour le temps qu'il passe à évaluer mon manuscrit.

Enfin, je tiens à remercier ma famille et spécialement ma femme pour la patience et les encouragements qu'elle a su me donner pendant les moments les plus difficiles. Aussi, je remercie toute personne qui a contribué de près ou de loin à la réalisation de ce modeste travail.

LSITE DES ABREVIATIONS

Variable	Désignation
A _c	Section du copeau
$(a_0,, a_j)$	Paramètres du modèle
a_k	Coefficients de la RLM
a_p	Profondeur de passe
\widehat{a}_k	Coefficients estimés par la RLM
CME	Carré moyen expliqué
Ddl	Degrés de liberté
D _i	Diamètre de la pièce
$e_i (i = 1, n)$	Résidus
f	Avance
F _c	Effort de coupe
Fcalc	Statistique de Fischer
$F_{\rm f}$	Effort d'avance
F _P	Effort de pénétration
F_R	Effort résultant
$K, \overline{\alpha}, \overline{\beta}, \overline{\gamma}$	Coefficients du modèle non linéaire
K _s	Pression spécifique de coupe
lr	Longueur de base
N	Fréquence de rotation de la broche
n	Nombre des essais
MSE	Carré moyen résiduel
P _c	Puissance de coupe
R	Coefficient de corrélation
R _a	Rugosité arithmétique de la surface usinée
R_p	Profondeur moyenne de rugosité
R_t	Rugosité totale de la surface usinée
R _z	Hauteur maximal du profil de rugosité
R ²	Coefficient de détermination
SCE _M	Somme des carrés des écarts expliquée
SCE _R	Somme des carrés des résidus
SCR _T	Somme des carrés des écarts totaux
t	Test de Student
VB	Usure en dépouille
V _c	Vitesse de coupe
$V_{\rm f}$	Vitesse d'avance
Wi	Poids de connexion (ou poids synaptique)
$X_{\rm E}$	Activité du neurone
$x, x_i (i = 1, n)$	Variable (s) explicative (s) ou exogène (s), entrées du RNA
X _{i1} ,, X _{ij}	Variables explicatives ou exogènes

\overline{X}	Moyenne des x _i
Y	Sortie du modèle, potentiel du neurone
Y_d	Extrant désiré du réseau
$y, y_i (i = 1, n)$	Variable (s) endogène (s) ou expliquée (s)
\overline{y}	Moyenne des y _i
$\widehat{\mathbf{y}}_{\mathbf{i}}$	Valeur prédite de y _i
α	Angle de dépouille
α_a	Taux d'apprentissage
β	Angle de taillant
γ	Angle de coupe
Δw_i	Correction de poids
3	Vecteur des résidus
θ	Seuil d'activation du neurone
$\kappa_{\rm r}$	Angle de direction d'arête
λ_{s}	Angle d'inclinaison d'arête
$\widehat{\sigma}_{\widehat{a}_{k}}$	Variance estimée des coefficients \hat{a}_k
ω	Vitesse angulaire de la broche

LISTE DES FIGURES

Figure I.1 : Opération de chariotage	3
Figure I.2 : Design de l'outil de coupe	5
Figure I.3 : Coupe orthogonale	6
Figure I.4 : Zones de déformations	7
Figure I.5 : Défauts de surface classés par nature	11
Figure I.6 : Paramètres de la rugosité	12
Figure II.1: Structure d'un neurone biologique	18
Figure II.2 : Schématisation du modèle d'un neurone artificiel	21
Figure II.3: Architecture d'un réseau de neurones (avec deux couches cachées)	22
Figure II.4 : Étapes de construction d'un réseau de neurones	25
Figure III.1 : Composantes de l'effort de coupe	29
Figure III.2 : Comparaison des rugosités observée et prédite par RLM	31
Figure III.3: Evolution des résidus studentisés	32
Figure III.4: Comparaison des rugosités observées et prédites (Modèle proposé)	33
Figure III.5: Evolution des résidus studentisés (Modèle proposé)	34
Figure III.6: Comparaison des rugosités observées et prédites (Modèle proposé	
sans l'essai N° 3)	35
Figure III.7 : Evolution des résidus studentisés (Modèle proposé sans l'essai N° 3)	36
Figure III.8: Programme de conception du RNA élaboré	38
Figure III.9: Interface de simulation du RNA élaboré	38
Figure III.10 : Régression pour l'apprentissage du RNA élaboré	39

LISTE DES TABLEAUX

Tableau I.1 : Valeur de R _a pour différents procédés de fabrication	10
Tableau II.1 : Paramètres d'analyse de la variance	17
Tableau II.2: Analogie entre neurones biologique et artificiel	19
Tableau II.3 : Historique des réseaux de neurones	20
Tableau II.4: Fonctions de transfert sous MATLAB	22
Tableau III.1 : Données expérimentales et calculées	29
Tableau III.2 : Résultats de modélisation par RLM	30
Tableau III.3 : Précision des coefficients estimés	31
Tableau III.4: Résidus studentisés non usuels	32
Tableau III.5: Résultats de modélisation par RLM (Modèle proposé)	33
Tableau III.6: Précision des coefficients estimés (Modèle proposé)	34
Tableau III.7: Résidus studentisés non usuels (Modèle proposé)	34
Tableau III.8 : Résultats de modélisation par RLM (Modèle proposé sans l'essai N° 3)	35
Tableau III.9 : Précision des coefficients estimés (Modèle proposé sans l'essai N° 3)	36
Tableau III.10 : Résidus studentisés non usuels (Modèle proposé sans l'essai N° 3)	36
Tableau III.11 : Base de données pour l'apprentissage	37
Tableau III.12 : Base de données pour le test	37
Tableau III.13 : Choix du nombre de neurones cachés	39
Tableau III.14: Résultats de simulation du RNA élaboré	40
Tableau III.15 : Confrontation des résultats de simulation	41

TABLE DES MATIERES

Introduction générale	1
Chapitre I : Eléments associés à l'usinage	
I.1. Procédés d'usinage :	2
I.1.1. Processus de tournage :	3
I.1.2. Définition et choix des paramètres de coupe :	3
I.2. Configurations de coupe :	6
I.3. Formation du copeau :	6
I.4. Intégrité de surface :	9
1.4.1. Définition :	9
I.4.2. Etat de surface :	9
I.4.3. Influence des conditions d'usinage sur la rugosité :	12
Chapitre II : Modélisations statistiques	
II.1. Analyse descriptive des données :	14
II.2. Régression Linéaire Multiple :	16
II.3. Réseaux de Neurones Artificiels :	18
II.3.1. Neurones biologique et artificiel:	18
II.3.2. Modèle d'un neurone artificiel :	20
II.3.3. Architecture et classification des Réseaux de Neurones Artificiels :	22
II.3.4. Entraînement des Réseaux de Neurones Artificiels :	23
II.3.5. Etapes de construction d'un réseau de neurones :	25
Chapitre III : Résultats de simulation et interprétation	
III.1. Données expérimentales :	28
III.2. Modélisation et simulation par Régression Linéaire Multiple :	30
III.3. Modélisation et simulation par Réseaux de Neurones Artificiels :	36
III.4. Comparaison des résultats de simulation :	41
Conclusion générale	43
Références bibliographiques	

Introduction générale

Les procédés d'usinage tels que le tournage, le fraisage, le perçage et la rectification sont largement utilisés en fabrication mécanique. L'accroissement de performances des machines-outils, des outils de coupe, des matériaux usinés et des logiciels de CAO/FAO a œuvré à garder ces procédés compétitifs grâce aux gains de productivité et de qualité qu'ils offrent. Ces procédés de mise en forme par enlèvement de matière sont très répandus du point de vue pratique mais pas encore maîtrisés du point de vue modélisation, c'est l'empirisme qui est largement utilisé.

C'est ainsi que nous nous sommes intéressés, dans le présent travail, à une modélisation statistique de la rugosité de la pièce usinée lors d'un procédé de tournage dur. Pour ce dernier, la motivation industrielle principale c'est d'éviter les opérations de rectification. Aussi, la prédiction de la rugosité s'avère très intéressante pour contribuer à la performance du procédé. À cet effet, nous avons développé des modèles basés, d'une part, sur la Régression Linéaire Multiple, et, d'autre part, sur les Réseaux de Neurones Artificiels.

Le présent mémoire est organisé en trois chapitres.

Dans le premier chapitre, nous présentons une revue des procédés d'usinage et du processus de tournage avec les éléments qui lui sont associés tels que la définition et le choix des paramètres de coupe. Aussi, les configurations de coupe, la formation du copeau et l'intégrité de surface seront relatées.

Le deuxième chapitre est réservé aux principes de la modélisation statistique et, plus particulièrement, à la Régression Linéaire Multiple et aux Réseaux de Neurones Artificiels. Pour la Régression Linéaire Multiple, les équations nécessaires à la modélisation statistique et l'analyse de la variance sont relatées. Pour les Réseaux de Neurones Artificiels, l'historique, le modèle du neurone formel, l'architecture et la classification des Réseaux de Neurones Artificiels, le principe d'apprentissage et les étapes de leur construction sont évoqués.

Dans le troisième chapitre, des résultats de simulation obtenus par les modélisations statistiques élaborées seront présentés et confrontés à ceux obtenus expérimentalement par d'autres chercheurs.

Chapitre I Eléments associés à l'usinage

Dans ce chapitre, nous allons évoquer brièvement les types de procédés d'usinage rencontrés en pratique. Parmi ces derniers, nous avons ciblé le processus de tournage ; à cet effet, la définition et le choix des paramètres de coupe associés à ce processus seront présentés. Aussi, les notions relatives à la configuration de la coupe et à la formation du copeau seront relatées. Enfin, nous allons présenter l'intégrité de la surface usinée.

I.1. Procédés d'usinage :

L'usinage est la transformation d'une pièce-brute, de matériau défini, en une pièce fonctionnelle de forme géométrique, de dimensions et d'état de surface spécifiés. On distingue assez souvent les procédés d'usinage dits traditionnels des procédés d'usinage non traditionnels ; cette dernière appellation désigne des procédés qui sont apparus après 1945 en grande partie pour usiner des matériaux se prêtant difficilement aux techniques d'usinage classiques. On peut classer les procédés d'usinage, selon les phénomènes physiques correspondants, en trois catégories principales [1].

- **Procédés de coupe :** L'enlèvement de matière se fait par action mécanique d'un outil coupant ; la force appliquée induit la formation, à l'échelle macroscopique, de copeaux. Il existe un grand nombre de procédés dont les principaux sont :
- les procédés à forte vitesse (≥ 15 m/min) et grand débit de matière (fraisage, tournage, perçage) ;
- les procédés de vitesse plus faible (sciage, rabotage, mortaisage, brochage, taraudage et alésage, ...).
- **Procédés par abrasion :** L'enlèvement de matière est dû à l'action mécanique d'un grand nombre de grains abrasifs de petite taille et de haute dureté. Ces grains agissent selon deux modalités différentes ; ils sont soit :
 - liés à un support solide (abrasion à deux corps) : par exemple, rectification ;
- transportés par un milieu fluide (abrasion à trois corps) : par exemple, rodage et polissage à la pâte abrasive.
- **Procédés physico-chimiques :** Ils sont tous qualifiés de non traditionnels ; l'enlèvement de matière est réalisé (à l'exception de l'impact d'un jet d'eau) par des actions non mécaniques :
- action thermoélectrique d'un arc électrique (électroérosion), d'un plasma ou d'un faisceau de lumière cohérente (laser) ;
 - action thermochimique de la flamme d'un chalumeau (oxycoupage) ;

- réaction électrochimique dans un électrolyte (usinage électrochimique) ;
- réaction chimique avec un liquide (usinage chimique).

Dans la présente étude, nous nous sommes limités a priori au processus de tournage et, plus particulièrement, à une opération de chariotage afin de contribuer à son optimisation ou à sa performance.

I.1.1. Processus de tournage :

Le processus de tournage met en jeu deux éléments essentiels ; à savoir : la pièce à usiner et l'outil de coupe. Chacun d'eux est animé d'un mouvement ; l'outil est animé d'un mouvement d'avance longitudinal et/ou transversal par rapport à l'axe de la pièce. Cette dernière est animée d'un mouvement de rotation (mouvement de coupe). L'interaction entre ces deux éléments donne naissance à un copeau par enlèvement de matière de la pièce ; elle est contrôlée par des conditions de coupe : vitesse de coupe, avance, profondeur de passe, géométrie de l'outil, nature des matériaux des deux éléments, lubrification, etc. [2].

Plusieurs opérations peuvent être réalisés en tournage; à savoir : le dressage, le chariotage, le sciage, le décolletage, le perçage, etc. Pour une opération de chariotage, objet de cette étude, l'outil est animé d'un mouvement d'avance longitudinal, et la pièce est mise en rotation. Cette situation est illustrée par le schéma de la figure qui suit [9].

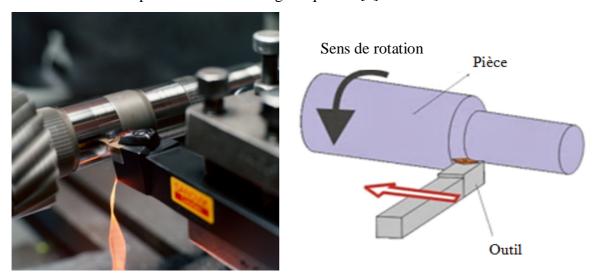


Figure I.1 : Opération de chariotage.

I.1.2. Définition et choix des paramètres de coupe :

Parmi les conditions de coupe évoquées ci-dessus, trois grandeurs physiques, définies comme étant les paramètres de coupe, sont introduites par l'opérateur [2] ; à savoir :

- La vitesse de coupe : Elle est notée V_c et elle est mesurée en $(m.min^{-1})$; son expression est la suivante :

$$V_{c} = \frac{D_{i}}{2 \times 1000} (60 \times \omega) = \frac{3D_{i} \omega}{100}$$
 (I.1)

C'est la vitesse tangentielle de défilement du copeau ; elle dépend de la vitesse angulaire ω (rad.s⁻¹) de la pièce et de son diamètre D_i (mm). La vitesse angulaire ω est définie par rapport à la fréquence de rotation de la broche N mesurée en (tr.min⁻¹) comme suit :

$$\omega = \frac{2\pi N}{60} = \frac{\pi N}{30}$$
 (I.2)

- L'avance : Elle est notée (f) et elle est mesurée en (mm.tr $^{-1}$) ; c'est le déplacement de l'outil à chaque tour de la pièce. La vitesse d'avance V_f est la vitesse de déplacement de l'outil ; elle est exprimée selon :

$$V_{\rm f} = f \cdot N \tag{I.3}$$

- La profondeur de passe est notée (a_p) ; elle est mesurée en (mm). Elle est égale à la différence des rayons avant et après usinage. Pour une opération de chariotage en coupe orthogonale, elle correspond à la largeur du copeau.

On rencontre deux approches pour le choix des paramètres de coupe [3] ; à savoir :

- La première donne une large place à l'expertise de l'entreprise en gérant une base de données souvent volumineuse et acquise au cours du temps (des tables ou des abaques permettant d'obtenir rapidement les paramètres de coupe convenables).
- La deuxième fait appel à une modélisation du problème à partir de lois expérimentales en utilisant des tables de coefficients expérimentaux associés.

Pratiquement, un opérateur choisit les paramètres de coupe en considérant les contraintes liées au processus d'usinage. Le choix de la machine impose le respect d'une gamme de vitesses de coupe et d'avances et des limitations relatives à la puissance et au couple disponible à la broche et à la poussée admissible sur le chariot. Le choix d'une plaquette (outil) limite les efforts de coupe qui doivent rester inférieurs aux efforts admissibles par celle-ci.

En plus, le choix des conditions de coupe pour un matériau donné dépend du mode de travail (ébauche ou finition). Pour un travail d'ébauche, les principaux paramètres à considérer sont :

- la durée de vie de l'outil de coupe (temps effectif de coupe avec la même arête),
- les efforts de coupe (limites de puissance de la machine-outil).

Pour un travail de finition, on recherche la qualité dimensionnelle et géométrique de la surface usinée ; le principal paramètre à prendre en compte étant la rugosité de la surface usinée.

Aussi, il existe une grande diversité d'outils de coupe; toutefois, les principaux

éléments des différents outils sont semblables. Ainsi, afin de simplifier la compréhension de différents éléments définissant un outil quelconque, nous nous baserons a priori sur un outil de coupe en tournage. Ce dernier est constitué d'un corps et d'une queue ; la partie de l'outil qui intervient directement dans l'opération de coupe est appelée partie active. Cette dernière est limitée par trois faces : la face de coupe sur laquelle glisse le copeau et les deux faces de dépouille (principale et secondaire) sur lesquelles frottent les surfaces usinée et engendrée.

L'arête principale est l'intersection entre la face de coupe et la face de dépouille principale, et l'arête secondaire est l'intersection entre la face de coupe et la face de dépouille secondaire. La jonction des arêtes principale et secondaire forme le bec de l'outil; il peut être vif ou arrondi.

Les schémas de la figure qui suit illustre le design d'un outil de tournage sans plaquette rapportée et les angles principaux tels que l'angle de coupe (γ) , l'angle en dépouille (α) , l'angle de taillant (β) et l'angle de direction d'arête (κ_r) .

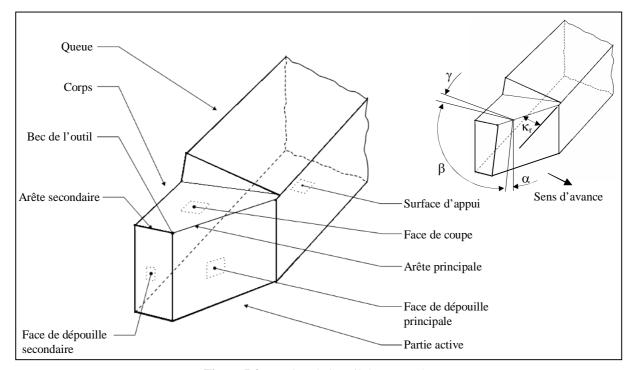


Figure I.2 : Design de l'outil de coupe [2].

Globalement, l'angle de coupe a une influence sur la manière dont s'écoule le copeau sur la face de coupe et ainsi sur les efforts de coupe, la puissance consommée, les dégagements de chaleur, etc. L'angle de dépouille influe sur le frottement entre l'outil et la surface engendrée, donc sur la durée utile de l'outil. L'angle de taillant affecte la résistance à la rupture de la partie active. L'angle de direction d'arête a une influence sur la direction des forces de coupe, la protection de la pointe de l'outil et la direction d'évacuation du copeau.

I.2. Configurations de coupe :

La coupe est dite orthogonale quand nous prenons en considération qu'une seule arête de coupe (arête principale) perpendiculairement à la vitesse de coupe et à la vitesse d'avance. L'hypothèse simplificatrice communément employée en coupe orthogonale consiste à considérer un état de déformations planes. Cette hypothèse n'est licite que lorsque la largeur de coupe est grande devant l'avance. Le cas d'une coupe orthogonale correspond, par exemple, au tournage d'un tube ou d'une couronne comme indiqué sur la figure qui suit.

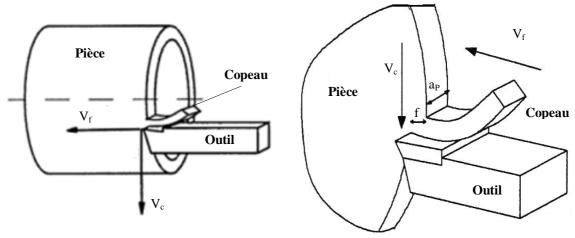


Figure I.3 : Coupe orthogonale.

La majorité des modèles de coupe actuels tant analytiques que numériques sont basés sur la configuration d'une coupe orthogonale. Pour cette dernière, la valeur de l'angle de direction d'arête $\kappa_r = 90^\circ$; l'orthogonalité de l'arête par rapport au mouvement de coupe ou à la vitesse de coupe se traduit par un angle d'inclinaison d'arête $\lambda_s = 0^\circ$.

Pratiquement, la modélisation réaliste correspond au cas d'une coupe oblique. La notion de coupe oblique est liée à la direction de l'arête de coupe, c'est-à-dire aux cas où l'arête de coupe (arête principale) n'est pas simultanément perpendiculaire à la vitesse de coupe et/ou à la vitesse d'avance. À cet effet, on peut distingue deux configurations de base où l'arête de coupe n'est pas perpendiculaire à (V_c) et/ou à (V_f) .

I.3. Formation du copeau :

La formation du copeau fait intervenir un grand nombre de paramètres tels que la rhéologie du matériau usiné, la nature du contact outil-matière et les différents paramètres d'usinage [2]. La compréhension des divers phénomènes qui entrent en jeu lors d'une opération de coupe nécessite une observation locale très fine basée sur :

- une méthode de visualisation et d'investigation métallographique des essais de coupe

brusquement interrompue (Quick-stop);

- un procédé de microcinématographie qui permet de visualiser la formation du copeau ; l'observation de ces films montre que le procédé de coupe des métaux correspond à une très forte compression d'une partie de la matière sur l'outil qui se sépare de la pièce par cisaillement.

La coupe est un phénomène assez complexe à modéliser à cause des fortes non linéarités et des phénomènes thermiques et mécaniques mis en jeu. Cette complexité est due principalement aux grandes déformations, aux grandes vitesses de déformations dans les zones de cisaillement et aux problèmes de contact dus aux frottements intenses aux interfaces outil-copeau et outil-pièce.

À toutes ces complexités de nature mécanique viennent s'ajouter la génération locale de chaleur et du fort gradient de température généré à travers les transformations en chaleur de l'énergie de déformation plastique et de frottement.

Rappelons que la coupe consiste à séparer de la pièce un copeau à l'aide de l'arête d'un outil. Cette séparation s'explique par la plastification de la matière en raison de la contrainte imposée par l'outil. Ceci implique, dans certains cas, l'apparition d'une amorce de fissure dans la matière usinée au niveau de l'arête. Le mouvement d'avance de l'outil dans la matière propage cette fissure et réalise la décohésion. Le cisaillement s'interprète donc comme une succession de ces deux phénomènes.

L'analyse expérimentale d'une séquence de coupe amène toujours à observer principalement quatre zones du champ de déformations.

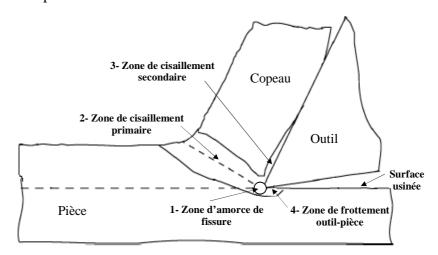


Figure I.4 : Zones de déformations [2].

- La zone 1 : est une zone d'amorce de fissure qui sépare la matière de la pièce en deux parties ; elle entoure de manière étroite l'arête de l'outil en se développant légèrement en

amont. L'arête de l'outil exerce un effort de compression, et il existe un point singulier où le métal est séparé en deux parties : surface usinée et copeau.

- La zone 2 : appelée zone de cisaillement primaire ; la matière donne naissance au copeau. Elle subit en un temps très bref une déformation plastique considérable en raison du changement brutal de direction et de l'échauffement important vu le faible volume de matière. Le cisaillement intense entraîne des conditions considérables : des déformations généralement supérieures à 200 % et des vitesses de déformation de l'ordre de 10³ à 10⁵ s⁻¹.
- La zone 3 : est une zone de frottement intense du copeau sur la face de coupe de l'outil, c'est la zone de cisaillement secondaire. Cette zone est caractérisée par son épaisseur qui est une fraction de l'épaisseur du copeau (de l'ordre de quelques pourcents ≈ 2 %).
- La zone 4 : est la zone de frottement entre la surface usinée et la face de dépouille de l'outil ; cette zone est appelée zone de dépouille.

Notons que les zones de cisaillements primaire et secondaire sont le siège de très fortes déformations plastiques à grande vitesse et de frottement intense, ce qui engendre localement un fort gradient de température et une génération de quantité de chaleur qui va se dissiper dans le copeau, l'outil et la pièce.

En fonction des conditions de coupe et du couple outil-matière, on peut effectuer une classification brève des formes d'élaboration du copeau suivant les trois groupes principaux suivants : copeau continu, discontinu et celui avec arête rapportée.

- ➤ Copeau continu : Il se forme par déformation plastique de cisaillement sans fissuration au niveau de la zone de cisaillement primaire. Ce cas est plus simple à traiter ; la matière s'écoule sur l'outil de façon continue et stationnaire. La plupart des travaux sur la modélisation de la coupe se rapportent à ce cas de copeau.
- Copeau discontinu: Dans la catégorie des copeaux discontinus, on considère deux cas distincts: les premiers résultent d'une déformation plastique jusqu'à la défaillance du matériau suivie d'une fissuration de sorte qu'il se forme des éléments plus ou moins continus; ces copeaux sont caractéristiques de l'usinage des aciers. Les seconds se forment sans déformation plastique importante par arrachement d'éléments irréguliers; on observe ce comportement dans le cas de l'usinage d'un matériau fragile comme la fonte. Aussi, la rigidité du porte-outil est un facteur influent sur la formation des copeaux discontinus.
- Copeau avec arête rapportée : L'un des phénomènes les plus particuliers lors de la formation du copeau est la création d'arête rapportée. Un fragment du matériau de la pièce se fixe dans la zone de l'arête de coupe où les vitesses de glissement sont nulles en formant à l'extrémité de celle-ci un petit tranchant dont la géométrie évolue continuellement de sorte

que tout le processus soit influencé par des formes d'élaboration différentes.

I.4. Intégrité de la surface :

1.4.1 Définition :

De façon générale, l'intégrité d'une surface est un ensemble de caractéristiques permettant de qualifier une surface vis-à-vis d'une application donnée. L'intégrité d'une surface regroupe ainsi un grand nombre de spécifications en fonction des domaines :

- Métallurgiques (résistance à la corrosion),
- Mécaniques (supporter les chargements mécaniques),
- Thermiques (conductivité ou résistance thermique),
- Tribologiques (frottement, adhésion, ...),
- Optiques (apparence, réflexion, ...),
- Écoulement fluides (couches limites, ...).

Dans la conception et la validation d'une pièce, ces caractéristiques viennent de plus en plus compléter les exigences traditionnelles en termes de spécifications géométriques et de rugosité [4].

L'intégrité de surface est décrite principalement par trois paramètres [5] :

- paramètre géométrique : la rugosité ;
- paramètre mécanique : les contraintes résiduelles ;
- paramètre métallurgique : la microstructure.

De plus, le comportement en fatigue des matériaux est piloté essentiellement par l'état de la surface puisque l'amorçage de fissures apparaît principalement à la surface de la pièce.

1.4.2 Etat de surface :

D'après la norme ISO 4287, un profil d'état de surface sera décomposé en écarts géométriques de 4 ordres [5] :

- ordre 1 : écarts de forme ;
- ordre 2 : écarts d'ondulation ;
- ordre 3 : écarts de rugosité périodique (stries, sillons) ;
- ordre 4 : écarts de rugosité apériodiques (arrachements, fentes, piqûres).

Il existe plusieurs dizaines de critères pour qualifier l'état de surface d'une pièce, et en particulier sa rugosité. La plupart d'entre eux sont définis dans trois normes internationales : les normes ISO 12085, ISO 4287 et ISO 13565. C'est en général la rugosité arithmétique R_a et la rugosité totale R_t qui sont les plus souvent utilisées. En fatigue, on utilise généralement le

critère R_t qui rend le mieux compte de la profondeur d'entaille maximale qui risque de conduire à l'amorçage d'une fissure. En usinage, la rugosité R_a est la plus souvent utilisée ; c'est aussi l'indicateur de rugosité le plus utilisé sur les dessins de définition.

Le tableau qui suit donne une idée sur la valeur de la rugosité R_a pour différents procédés de fabrication.

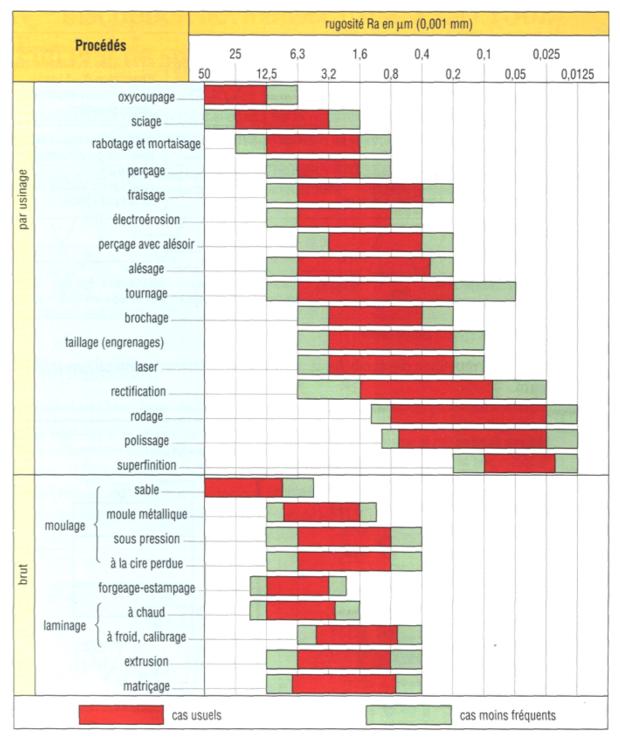


Tableau I.1 : Valeur de R_a pour différents procédés de fabrication [10].

Suite à une opération donnée, un état de surface peut être décrit en fonction des défauts surfaciques de nature géométrique tel que les défauts d'ordre macro-géométrique (écart de forme et de position) et ceux d'ordre micro-géométrique qui se diffèrent en fréquence et amplitude ; ils sont décrits sous quatre numéros d'ordre [6] :

1^{er} ordre : écart de forme ou de position, du à la machine, déformation due à la force du poids même de la pièce.

2^{ème} ordre : ondulations à caractères périodiques, dues à la vibration de la machine et de l'outil.

3^{ème} ordre : stries, sillons à caractère pseudo périodique suivant le type d'usinage et les caractéristiques du procédé.

4ème ordre : arrachement à caractère périodique, du à la rupture du matériau au départ du copeau.

À noter que le domaine de la micro-géométrie s'étend du 2^{ème} au 4^{ème} ordre. La figure qui suit montre les ordres de défauts.

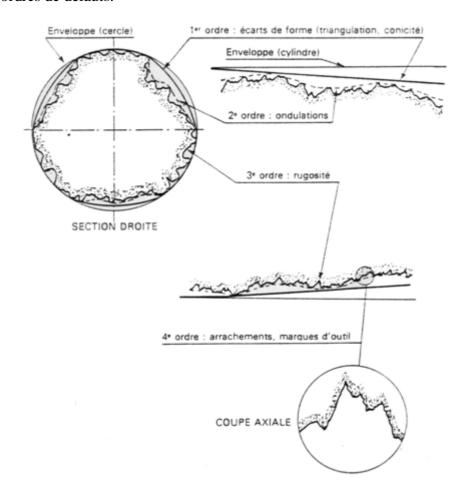


Figure I.5 : Défauts de surface classés par nature [6].

Les paramètres de la rugosité peuvent être résumés et schématisés comme suit [10].

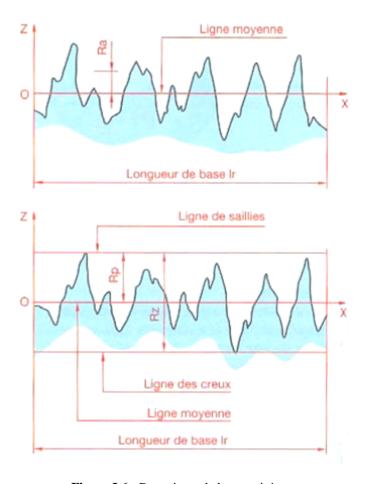


Figure I.6 : Paramètres de la rugosité.

 $Rugosit\'e \ R_z$: hauteur maximale du profil ; distance entre la ligne des saillies et la ligne des creux.

Rugosité R_a : écart moyen arithmétique du profil ; elle correspond à la moyenne des valeurs absolues des écarts entre le profil et une ligne moyenne de ce profil.

Rugosité R_p : profondeur moyenne de rugosité; moyenne arithmétique des valeurs de l'ordonnée y de tous les points du profil sur la longueur de base lr.

1.4.3 Influence des conditions d'usinage sur la rugosité :

L'état de surface en usinage est influencé par plusieurs effets [6] ; à savoir :

- la nature et les caractéristiques du matériau usiné.
- la valeur de l'avance et la géométrie de la pointe de l'outil.
- la valeur de vitesse de coupe et la lubrification.
- les vibrations du système pièce-machine.

L'état de surface après usinage diffère selon le matériau à mettre en œuvre, les traitements subis et le procédé utilisé. La qualité de surface obtenue est généralement d'autant meilleure que :

- la sensibilité à l'écrouissage est faible,
- l'allongement relatif est faible,
- la résistance à la rupture est élevée.

Pour un matériau sensible à l'écrouissage il est nécessaire :

- de donner à l'outil un angle de coupe maximal (compatible avec sa ténacité).
- d'utiliser des vitesses de coupe élevées (la limite est donnée par l'usure de l'outil).
- de prendre une profondeur de passe suffisante pour ne pas travailler dans la zone écroui par la passe précédente.

Lors d'une opération d'usinage par un l'outil coupant, celui-ci trace sur la face de la pièce un sillon de pas équivalent à celui de l'avance et sa profondeur varie avec la géométrie de la pointe. Théoriquement l'état de surface obtenu par tournage avec un outil à rayon de bec est une succession d'arcs de cercle.

La profondeur de passe n'a pas d'influence sur la rugosité.

À cause du phénomène d'arête rapportée, la vitesse a une influence sur la rugosité. Elle se détruit et se forme périodiquement provoquant ainsi des variations et des irrégularités sur la face usinée. Une augmentation de la vitesse de coupe et l'élévation de températures détruit l'arête rapportée mais à une vitesse de coupe trop élevée l'usure de l'outil est rapide, ce qui entraîne aussi une dégradation de la surface usinée.

D'autres conditions peuvent influencer la rugosité de la surface usinée; à savoir : l'usure de l'outil, la lubrification, les vibrations, le type de copeau formé et la durée d'usinage. C'est ainsi que nous nous intéressons dans la présente étude à la modélisation de la rugosité R_a ayant comme variables d'influence : l'avance, la vitesse de coupe et la durée d'usinage.

Chapitre II Modélisations statistiques

II.1. Analyse descriptive des données :

L'analyse de liaisons entre deux variables mesurées simultanément constitue l'un des principaux objets de la modélisation expérimentale. À partir d'un ensemble de mesures simultanées de deux variables (x_i, y_i) , peut-on trouver une relation mathématique qui permette d'estimer (y) en fonction de (x)?

À ce sujet, l'expérimentateur est amené à se poser une première question : comment choisir la forme mathématique du modèle ? Une fois cette forme mathématique adéquate trouvée, comment estimer les paramètres inconnus qu'elle comporte nécessairement ? Et finalement, le modèle trouvé est-il précis ou pertinent ?

Avant toute modélisation de la relation entre deux variables, un travail préliminaire d'observations des données s'avère nécessaire. Les représentations graphiques en constituent les outils de base. Tout simplement, on représente les couples (x_i, y_i) de données disponibles sur un graphique plan en faisant figurer la variable (y) en ordonnée (convention habituelle) qu'on veut privilégier comme étant la variable à prédire (variable expliquée ou réponse). La variable explicative (x) est mise en abscisse ; on parle souvent de nuage de points pour ce type de représentations.

Si le graphique met en évidence une relation à peu prés linéaire entre les deux variables, la méthode des moindres carrés s'impose comme un outil complémentaire très efficace ; c'est la première étape de mise en œuvre de la Régression Linéaire Simple (RLS) [7].

Si on suppose que le modèle empirique de relation entre deux variables (y) et (x) est une droite d'équation : $y = a_0 + a_1 x$, alors on cherche les coefficients (a_0) et (a_1) telle que la droite représente au mieux le nuage de points considéré.

On note \hat{y}_{i} les valeurs prédites par le modèle exprimée par l'équation :

$$\hat{\mathbf{y}}_{\mathbf{i}} = \mathbf{a}_0 + \mathbf{a}_1 \, \mathbf{x}_{\mathbf{i}} \tag{II.1}$$

Et e_i les résidus (écarts entre valeurs mesurées et celles prédites) exprimés par :

$$e_i = y_i - \hat{y}_i = y_i - a_0 - a_1 x_i$$
 (II.2)

Le critère des moindres carrés consiste à chercher le couple de valeurs (a_0) et (a_1) qui minimise la somme des carrés des résidus SCE_R ; soit :

$$\min SCE_R = \min \sum_{i=1}^n e_i^2 = \min \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$
 (II.3)

Pour calculer les coefficients (a_0) et (a_1) du modèle, il s'agit de trouver un seul extremum solution du système d'équations suivant :

$$\begin{cases} \frac{\partial SCE_R}{\partial a_0} = 0\\ \frac{\partial SCE_R}{\partial a_1} = 0 \end{cases}$$
 (II.4)

La première équation donne une condition sur la droite des moindres carrés :

$$\frac{\partial SCE_R}{\partial a_0} = 2\sum_{i=1}^n (a_0 + a_1 x_i - y_i) = 0 \Rightarrow a_0 = \overline{y} - a_1 \overline{x}$$
 (II.5)

Cette droite passe par le point moyen qui est le centre de gravité du nuage de points considéré. La seconde équation du système (II.4) conduit à :

$$\frac{\partial SCE_R}{\partial a_1} = 2\sum_{i=1}^n x_i (a_0 + a_1 x_i - y_i) = 0 \Rightarrow a_0 \sum_{i=1}^n x_i + a_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i y_i (II.6)$$

Cette dernière équation combinée avec l'équation (II.5) permet d'écrire :

$$a_{1} = \frac{\sum_{i=1}^{n} \frac{x_{i}^{2} y_{i}}{n} - \overline{x} \overline{y}}{\sum_{i=1}^{n} \frac{x_{i}^{2}}{n} - \overline{x}^{2}}$$
 (II.7)

Le dénominateur de cette dernière équation représente la variance empirique de (x) et son numérateur correspond à la covariance empirique de (x) et (y).

La pertinence du modèle peut être jugée par une analyse de la variance qui est souvent utilisée pour caractériser la qualité d'ajustement. On appelle somme des carrés des écarts totaux SCE_T la quantité définie par :

$$SCE_{T} = \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}$$
 (II.8)

Cette dernière quantité n'est rien d'autre que la variance empirique de (y) qui caractérise sa dispersion.

L'équation d'analyse de la variance est exprimée par :

$$SCE_{T} = \sum_{i=1}^{n} (y_{i} - \overline{y})^{2} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2} + \sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2}$$
 (II.9)

Soit:

$$SCE_{T} = SCE_{R} + SCE_{M}$$
 (II.10)

Le terme SCE_M est la somme des carrés des écarts expliquée par le modèle et traduite par l'équation qui suit :

$$SCE_{M} = \sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2} = R^{2}SCE_{T}$$
 (II.11)

Où (R) est le coefficient de corrélation linéaire simple entre (y) et (x) ; soit :

$$R = \frac{\sum_{i=1}^{n} \frac{x_{i}^{2} y_{i}}{n} - \bar{x}^{2}}{\sqrt{\sum_{i=1}^{n} \frac{x_{i}^{2}}{n} - \bar{y}^{2}}}$$
(II.12)

Le coefficient de corrélation linéaire, quotient de la covariance des variables (x) et (y) par le produit de leurs écarts-types, est un nombre compris entre -1 et +1. Si $R = \pm 1$, l'ajustement linéaire est parfait ; donc, les points sont parfaitement alignés sur la droite de régression et la

somme des carrés des écarts résiduels est nulle. Par contre, si R=0, le modèle linéaire est sans intérêt.

II.2. Régression Linéaire Multiple :

La Régression Linéaire Multiple (RLM) est une analyse statistique qui décrit les variations d'une variable endogène associée aux variations de plusieurs variables exogènes [11]. C'est une généralisation de la Régression Linéaire Simple à plusieurs variables exogènes.

Le modèle théorique, formulé en termes de plusieurs variables explicatives, prend la forme suivante :

$$\hat{y}_i = a_0 + a_1 x_{i1} + a_2 x_{i2} + \dots + a_i x_{ij}$$
 (II.13)

Où \hat{y}_i (i = 1, n) est la variable endogène ou expliquée prédite, ($x_{i1}, ..., x_{ij}$) sont les variables explicatives ou exogènes, ($a_0, ..., a_i$) sont les paramètres du modèle.

Sous forme explicite, l'équation (II.13) peut être écrite comme suit :

$$\begin{cases} y_1 = a_0 + a_1 x_{11} + \dots + a_j x_{1j} + e_1 \\ y_2 = a_0 + a_1 x_{21} + \dots + a_j x_{2j} + e_2 \\ & \cdot \\ & \cdot \\ y_n = a_0 + a_1 x_{n1} + \dots + a_j x_{nj} + e_n \end{cases}$$
 (II.14)

Les erreurs ou résidus e_i traduisent l'influence des phénomènes perturbateurs.

Sous forme matricielle, ce dernier système peut être exprimé selon :

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1j} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{nj} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_j \end{pmatrix} + \begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix}$$
 (II.15)

Sous forme compacte, on peut écrire ce qui suit :

$$Y = Xa + \varepsilon \tag{II.16}$$

Rappelons que le but sera d'estimer les paramètres $(a_0, ..., a_j)$; à cet effet, le principe des moindres carrés consiste à rechercher les valeurs des paramètres qui minimisent la somme des carrés des résidus ; soit :

$$\min \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \min \sum_{i=1}^{n} (y_i - a_0 - a_1 x_{i1} - \dots - a_j x_{ij})^2$$
 (II.18)

Ceci revient à rechercher les solutions de : $\frac{\partial \sum_{i=1}^n (y_i - \widehat{y}_i)^2}{\partial a_k} = 0 \text{ (avec } k = 0, j).$

Nous avons (j+1) équations, dites équations normales, à résoudre ; la solution obtenue est l'estimateur des moindres carrés ordinaires exprimé par :

$$a = (X^T X)^{-1} X^T Y (II.19)$$

Où X^T est la matrice transposée de X.

L'équation d'analyse de la variance, définie pour la Régression Linéaire Simple, reste valable dans le cas de la Régression Linéaire Multiple exactement sous la même forme pour caractériser la qualité de l'ajustement. Le tableau qui suit résume les différents paramètres d'analyse de la variance.

Source de la variation	Somme des carrés des écarts	Degrés de liberté	Carrés moyens
Expliquée (Modèle)	$SCE_{M} = \sum (\hat{y}_{i} - \overline{y})^{2}$	j	$CME = \frac{SCE_{M}}{j}$
Résiduelle	$SCE_{R} = \sum (y_{i} - \hat{y}_{i})^{2}$	n - j - 1	$MSE = \frac{SCE_R}{n - j - 1}$
Totale	$SCE_{T} = \sum (y_{i} - \overline{y})^{2}$	n - 1	

Tableau II.1: Paramètres d'analyse de la variance.

Un autre indicateur spécifique permet de traduire la fraction de la somme des carrés des écarts totaux expliquée par le modèle, il s'agit du coefficient de détermination exprimé par l'équation qui suit :

$$R^2 = \frac{SCE_M}{SCE_T} = 1 - \frac{SCE_R}{SCE_T}$$
 (II.20)

Avec : $R = \sqrt{R^2}$ est le coefficient de corrélation multiple.

Le rapport (R²) est toujours compris entre 0 et 1, et vaut 1 dans le cas d'une liaison linéaire parfaite entre la réponse et les variables explicatives. Il est certes un indicateur pertinent mais il présente un défaut parfois ennuyeux, il a tendance à augmenter au fur et à mesure que l'on ajoute des variables dans le modèle. De ce fait, il est inopérant si l'on veut comparer des modèles comportant un nombre différent de variables. Il est conseillé dans ce cas d'utiliser le coefficient de détermination ajusté qui est corrigé des degrés de libertés. Le (R²) ajusté est toujours inférieur au (R²).

Le (R^2) est un indicateur simple, on comprend aisément que plus il s'approche de la valeur 1, plus le modèle est intéressant. En revanche, il ne permet pas de savoir si le modèle est statistiquement pertinent pour expliquer les valeurs de (y). Ainsi, nous devons nous tourner vers les tests d'hypothèses pour vérifier si la liaison mise en évidence avec la régression n'est pas un simple artefact. La statistique dédiée à ce test s'appuie (parmi les différentes formulations possibles) sur le (R^2) , il s'écrit :

$$F_{\text{calc}} = \frac{\frac{R^2}{j}}{\frac{1-R^2}{n-j-1}}$$
 (II.21)

et suit une loi de Fisher à (j, n-j-1) degrés de liberté.

La région critique du test est donc le rejet de l'hypothèse d'avoir des coefficients estimés nuls si et seulement si $F_{calc} > F1 - \alpha_r$ (j, n-j-1); où α_r est le risque de première espèce.

Une autre manière de lire le test est de comparer la p-value (probabilité critique du test) avec α_r ; si elle est inférieure, l'hypothèse d'avoir des coefficients estimés nuls est rejetée.

Après avoir obtenu l'estimateur, son espérance et une estimation de sa variance, il ne reste plus qu'à calculer sa loi de distribution pour produire une estimation par intervalle et réaliser des tests d'hypothèses. Le rapport d'une loi normale et de la racine carrée d'une loi χ^2 normalisée par ses degrés de liberté aboutit à une loi de Student. Nous en déduisons donc la statistique qui suit une loi de Student à (n-j-1) degrés de liberté :

$$t = \frac{\hat{a}_k - a_k}{\hat{\sigma}_{\hat{a}_k}} \tag{II.22}$$

II.3. Réseaux de Neurones Artificiels :

Les réseaux de neurones artificiels constituent une alternative à l'approche par Régression Linéaire Multiple. Il s'agit en fait d'un cas de régression non linéaire.

II.3.1. Neurones biologique et artificiel :

Les neurones biologiques sont les principales cellules du système nerveux, dont le rôle est d'acheminer et traiter les informations dans notre organisme. Ils sont des milliards dans notre cerveau ; ils sont composés d'un noyau (soma) entouré de structures configurées en étoile appelées les dendrites et d'un long prolongement appelé l'axone.

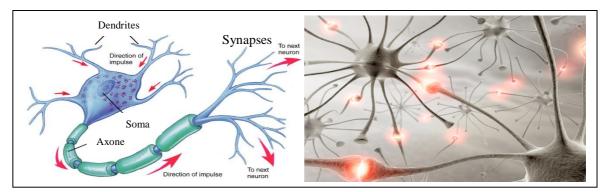


Figure II.1: Structure d'un neurone biologique [14].

Les informations après traitement sont acheminées vers les autres neurones par les synapses.

La structure d'un neurone artificiel est en fait copiée sur la structure d'un neurone biologique. Les principales structures biologiques des neurones ont toutes leur équivalent artificiel; ceci ayant pour but de reproduire leur fonctionnement de la meilleure façon possible (d'une manière logique, simple et facilement représentable par l'informatique) [12].

Un neurone est une minuscule structure qui traite les influx nerveux (entrées) qui arrivent chacun selon son importance relative, et qui émet un signal de sortie. Les neurones artificiels reproduisent le même procédé, recevant chaque un signal d'entrée tempéré par un poids ; ces poids sont aussi appelés poids synaptiques par analogie. Les entrées pondérées, habituellement sommées, sont ensuite comparées à un seuil d'activation et passées dans la fonction du neurone (habituellement une fonction très simple) qui produit la sortie désirée. Dans les neurones biologiques, les entrées et sortie sont des influx électriques. D'une manière générale, un neurone constitue un minuscule processeur capable de gérer une fonction simple. Le tableau qui suit donne une comparaison entre un neurone biologique et un neurone artificiel.

Neurone biologique	Neurone artificiel		
Soma	Neurone (processeur)		
Dendrite	Entrées		
Axone	Sortie		
Synapse	Poids		

Tableau II.2: Analogie entre neurones biologique et artificiel.

Habituellement, les neurones sont reliés ensemble en réseaux et sont bâtis en niveaux hiérarchisés. Les neurones d'un niveau passent leurs sorties aux neurones du niveau suivant (devenus des entrées).

Historiquement, les principales étapes de développement des réseaux de neurones sont synthétisées dans le tableau qui suit [7] :

Année	Référence	Développement		
1940		Différents scientifiques tentent de modéliser le cerveau		
		humain avec un objectif qui est la reproduction artificielle		
		des capacités naturelles; à savoir : la mémoire et le		
		comportement intelligent.		
1943	McCulloch et	Formalisation du fonctionnement élémentaire du cerveau		
	Pitts	humain par un operateur binaire à seuil, le neurone formel.		
		La difficulté réside dans la modélisation de la principale		
		qualité humaine ; à savoir : la faculté d'apprentissage.		
1949	Hebb	Hebb établit une règle d'apprentissage renforçant la		
		connexion entre deux neurones si ces derniers sont actifs		
		simultanément.		
1958	Rosenblatt	Développement des premiers réseaux de neurones capables		
		d'apprendre à partir d'exemples, les perceptrons.		
		Leur structure est simple, composée de deux couches, une		
		d'entrée et une de sortie. La règle d'apprentissage, utilisant		

		un ajustement itératif des poids, est plus puissante que la		
		règle de Hebb.		
1960	Widrow et Hoff	La règle Delta, proche de la loi d'apprentissage du		
		perceptron, préfigure la règle de la rétro-propagation du		
		gradient.		
1969	Minsky et Papert	Ces auteurs dénoncent les limites théoriques du perceptron		
		de Rosenblatt (en l'occurrence, la non-résolution des		
		problèmes linéairement séparables). Associé au		
		développement de l'intelligence artificielle, leur article		
		porte préjudice aux travaux sur les techniques neuronales		
		qui restent au point mort pendant une dizaine d'années.		
1970		Développement de l'informatique qui relance la recherche		
		neuronale à la fin de cette décennie.		
1985	Le Cun,	Algorithme de rétro-propagation du gradient appliqué aux		
	Rumelhart et al.	perceptrons multicouches qui permet à des réseaux		
		neuronaux de simuler les fonctions que le perceptron ne		
		pouvait pas apprendre.		
Années		Essor des réseaux de neurones dans des domaines aussi		
90		variées que la physique, les mathématiques, la biologie,		
		l'économie, l'analyse des processus industriels, etc.		

Tableau II.3 : Historique des réseaux de neurones.

II.3.2. Modèle d'un neurone artificiel :

En 1943, McCulloch et Pitts ont proposé le premier modèle de neurone artificiel, qui deviendra la base des réseaux de neurones artificiels [12]. Ce modèle de neurone (également appelé neurone de McCulloch-Pitts) utilise la sommation des entrées pondérées et une fonction de signe (comparée au seuil θ) comme fonction d'activation ; soit :

$$X_{E} = \sum_{i=1}^{n} x_{i} w_{i}$$
(II.23)

$$Y = \begin{cases} +1 & \text{si } X_E \ge \theta \\ -1 & \text{si } X_E < \theta \end{cases}$$
 (II.24)

(X_E) est la somme des entrées pondérées ou l'activité du neurone, (Y) est la sortie ou le potentiel du neurone, et (w_i) sont les poids synaptiques qui pondèrent les entrées.

Le neurone formel est ainsi défini comme un processeur mathématique non linéaire pouvant à tout instant calculer son activité et son potentiel. La figure qui suit schématise le modèle d'un neurone artificiel.

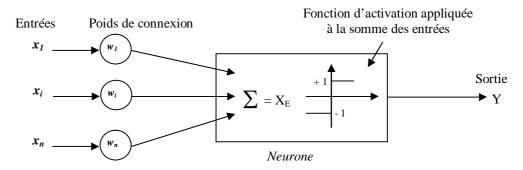


Figure II.2 : Schématisation du modèle d'un neurone artificiel.

Le seuil d'activation d'un neurone peut également être considéré comme une entrée fixe de valeur 1 et de seuil (θ) . Cette manière de procéder permet d'inclure la modification du seuil dans un algorithme dit d'entraînement du réseau. Cependant, cette modification n'est correcte que lorsque la fonction d'activation s'effectue sur (X_E) auquel on soustrait le seuil (θ) ; soit :

$$U = \sum_{i=1}^{n} x_i w_i - \theta \tag{II.25}$$

$$Y = \begin{cases} +1 & \text{si } U \ge 0 \\ -1 & \text{si } U < 0 \end{cases}$$
 (II.26)

La fonction d'activation est aussi connue sous le nom de fonction de transfert. Pratiquement, on rencontre différentes fonctions de transfert [13] ; à cet effet, le tableau qui suit résume les différentes fonctions de transfert utilisées par le logiciel MATLAB.

Nom de la fonction	Relation entrée / sortie	Icone	Nom - Matlab
Seuil	Y = 0 si U < 0		hardlim
Seun	$Y = 1 \text{ si } U \ge 0$		narumi
Seuil symétrique	Y = −1 si U < 0		hardlims
Seun symetrique	$Y = 1 \text{ si } U \ge 0$		nardinis
Linéaire	Y = U		purelin
	Y = 0 si U < 0		
Linéaire saturée	$Y = U \text{ si } 0 \le U \le 1$		satlin
	Y = 1 si U > 1	***************************************	
	Y = −1 si U <−1		
Linéaire saturée symétrique	$Y = U \operatorname{si} - 1 \le U \le 1$		satlins
	Y = 1 si U > 1	1000000000	
Linéaire positive	Y = 0 si U <0		poslin
Emedic positive	$Y = U \operatorname{si} U \ge 0$		розии

Sigmoïde	$Y = \frac{1}{1 + e^{-U}}$	5	logsig
Tangente hyperbolique	$A = \frac{6_{\Omega} + 6_{-\Omega}}{6_{\Omega} + 6_{-\Omega}}$	£	tansig
Compétitive	Y = 1 pour neurone ayant max. U Y = 0 pour les autres neurones	C	compet

Tableau II.4: Fonctions de transfert sous MATLAB [13].

II.3.3. Architecture et classification des Réseaux de Neurones Artificiels :

Un réseau de neurones est un ensemble de neurones mis en réseau de sorte que les signaux sortants (sorties) des neurones deviennent des signaux entrants (entrées) pour d'autres neurones. L'architecture générale des réseaux de neurones consiste en la représentation des neurones en couches successives : la première représente la couche d'intrants, la dernière étant la couche de sortie, les couches intermédiaires étant les couches cachées du réseau [12]. Ces couches sont dites cachées car de l'extérieur du réseau, on ne connaît vraiment que les signaux intrants et extrants. La figure qui suit montre, à titre indicatif, un réseau de neurones ayant deux couches cachées.

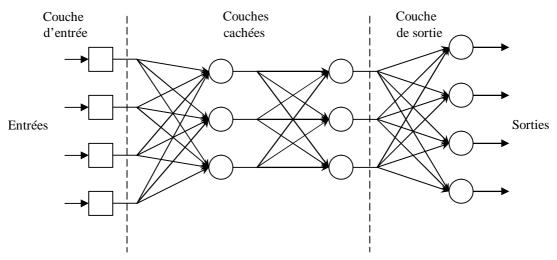


Figure II.3: Architecture d'un réseau de neurones (avec deux couches cachées) [12].

Les neurones de la couche d'intrants ne sont pas vraiment des neurones à traitement d'informations mais ont pour seule utilité de normaliser l'entrée des signaux ainsi que la distribution des signaux intrants. Dans cette architecture normalisée, les couches de neurones sont totalement interconnectées, c'est-à-dire que les neurones d'une couche sont tous reliés à tous les neurones des couches adjacentes. Cette architecture normalisée peut sembler rigide, mais elle permet une représentation correcte de la plupart des réseaux de neurones tout en permettant l'utilisation d'algorithmes d'entraînement plus généraux.

D'une manière générale, un réseau de neurones se comporte, d'un point de vue extérieur,

comme une fonction qui traite des données et produit une réponse correspondante. Les données d'entrée peuvent être de n'importe quel type représentable de manière binaire ou numérique. Ces données peuvent également être vues comme des vecteurs.

La principale catégorisation des méthodes neuronales repose sur la distinction entre deux types d'apprentissage : supervisé ou non supervisé. Dans le premier cas, le réseau évalue son succès ou échec quand un exemple connu appartenant à la base d'apprentissage lui est présenté. Dans le second cas, un nombre suffisant d'exemples contenant des corrélations est fourni au réseau autonome, de telle sorte que ce dernier dégage des régularités et les reflète au niveau des ses sorties.

Une seconde classification est basée sur la dépendance au temps des entrées-sorties. À cet effet, les réseaux de neurones peuvent être statiques ou dynamiques. Les réseaux de neurones dynamiques ou récurrents ont la capacité de s'actualiser (modifier les poids des liaisons) en tout temps ; ils contiennent des rebouclages partiels ou totaux entre neurones, et présentent donc une évolution dépendante du temps. Dans les réseaux de neurones statiques, le temps n'intervient pas de façon significative.

Dans la présente étude, nous nous intéressons, a priori, aux réseaux de neurones statiques supervisés.

II.3.4. Entraînement des Réseaux de Neurones Artificiels :

Un réseau de neurones formels apprend par l'exemple, par comparaison d'un certain nombre de cas connus à l'avance en termes de réponses. En pratique, un grand nombre d'observations sont présentées sous forme de vecteurs d'entrée et de sortie au réseau, et le calcul des poids synaptiques est réalisé afin que le réseau remplisse la tâche qui lui est affectée. Ce processus constitue l'entraînement ou l'apprentissage [7].

L'apprentissage supervisé consiste, à partir d'une base de données constituée de valeurs d'entrée et de sortie connues, à modifier l'architecture du réseau en ajustant itérativement les valeurs des poids synaptiques afin de minimiser une fonction erreur entre les sorties calculées et observées ; cette fonction erreur est aussi nommée fonction coût.

On distingue plusieurs règles d'apprentissage : la règle de Hebb, la règle d'apprentissage du Perceptron, la règle de Widrow-Hoff ou la règle Delta, et la rétro-propagation du gradient ou la règle Delta généralisée.

En 1958, Rosenblatt proposa le perceptron, accompagné d'un algorithme d'entraînement. Un perceptron est un réseau de neurones activés par une fonction de type linéaire. L'apprentissage se base sur la mise à jour des poids synaptiques des intrants. On présente

comme suit un algorithme d'entraînement pour un perceptron à un seul neurone [12].

Algorithme de traitement :

1- Initialisation

Mettre les poids initiaux $w_1(0)$, $w_2(0)$, ..., $w_n(0)$ ainsi que le seuil θ à des valeurs aléatoires dans un intervalle fixé. Mettre le taux d'apprentissage α_a à une petite valeur positive.

2- Activation

Activer le perceptron en appliquant les intrants $x_1(p)$, $x_2(p)$, ..., $x_n(p)$ et l'extrant désiré $Y_d(p)$.

Calculer l'extrant actuel à l'itération p = 1.

$$Y(p) = f \left[\sum_{i=1}^{n} x_i(p) w_i(p) - \theta \right]$$

Où f est la fonction d'activation du neurone.

3- Entraînement des poids

Mettre à jour les poids du perceptron

$$W_i(p+1) = W_i(p) + \Delta W_i(p)$$

Où $\Delta w_i(p)$ est la correction de poids à l'itération p.

La correction de poids est calculée par la règle d'apprentissage suivante :

$$\Delta w_i(p) = \alpha_a \cdot x_i(p) \cdot e_i(p)$$

Où $e_i(p) = Y_d(p) - Y(p)$ est le résidu à l'itération p.

4- Itération

Augmenter p de 1, retourner à l'étape 2 et répéter le procédé jusqu'à convergence.

La méthode de modification des poids est très simple avec l'algorithme de Rosenblatt, mais il implique quelques limitations d'apprentissage.

Dans le cas de perceptrons multicouches, comme on ne sait pas les extrants désirés des couches cachées mais seulement de la dernière couche, il faut propager les erreurs de la dernière couche à la première, et ce dans le sens contraire de l'exécution de réseau ; d'où, le nom de rétro-propagation des erreurs. De plus, les perceptrons multicouches utilisent des neurones munis de la fonction d'activation sigmoïde, celle-ci permettant les nuances nécessaires à une bonne utilisation de la rétro-propagation.

La découverte d'une méthode générale d'apprentissage supervisé des perceptrons multicouches a joué un rôle majeur dans leur reconnaissance comme outil de résolution de nombreux problèmes. Cette méthode, nommée par extension de l'algorithme de calcul du gradient qu'elle utilise, algorithme de rétro-propagation (appelée aussi règle de Delta généralisée).

II.3.5. Etapes de construction d'un réseau de neurones :

La construction d'un réseau de neurones peut être décomposée en cinq (05) grandes étapes synthétisées sur la figure II.4 [7]. Une fois les variables d'entrée sélectionnées et la base de données répartie, il convient d'optimiser le choix de l'architecture du réseau de neurones, d'optimiser la procédure d'apprentissage, et, enfin, d'évaluer les performances du réseau de neurones élaboré.

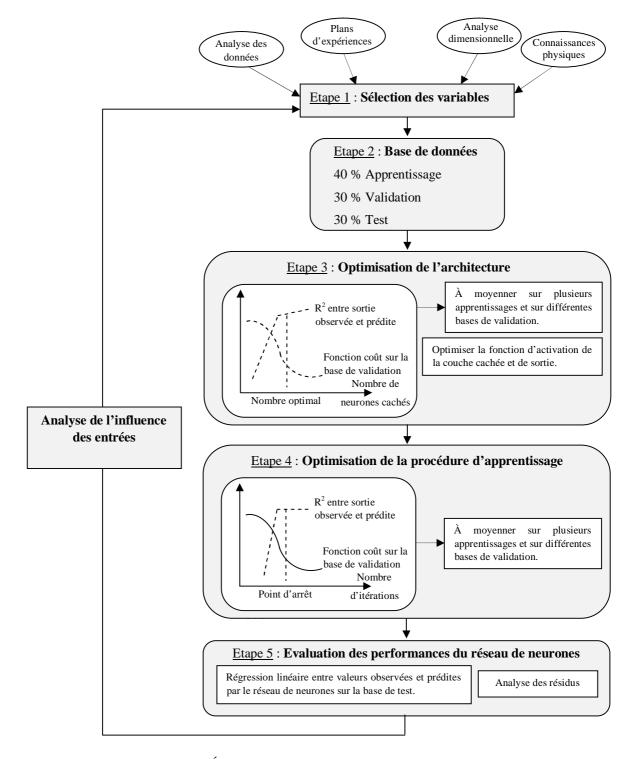


Figure II.4 : Étapes de construction d'un réseau de neurones [7].

- Étape 1 : Il convient après avoir collecté des mesures expérimentales sur un certain nombre de variables de minimiser leur nombre afin de modéliser le procédé étudié et de sélectionner les plus pertinentes par rapport à la sortie du réseau. Ceci sera réalisé par des méthodes telles que l'analyse dimensionnelle et/ou les plans d'expérience.
- Étape 2 : Une fois les variables d'entrée sont sélectionnées, la base de données est séparée aléatoirement ou d'une manière figée en trois (03) sous-bases :
 - La première est utilisée pour l'apprentissage proprement dit afin d'ajuster les valeurs des poids de connexion.
 - La seconde, dite de validation ou de vérification, est utilisée pendant l'apprentissage pour régler des paramètres tels que le nombre de neurones cachés.
 - La troisième sous-base, dite de test, permet d'établir la capacité de généralisation du réseau élaboré.
- Étape 3 : Suite aux étapes 1 et 2, il convient d'optimiser le choix de l'architecture du réseau de neurones en termes : de modèle neuronal, nombre de couches, nombre de neurones cachés, fonction d'activation, etc.

Le choix du modèle neuronal se fait selon l'application projetée ; à cet effet, il existe un grand nombre de modèles neuronaux : statiques ou dynamiques à apprentissage supervisé, et des modèles à apprentissage non supervisé.

Pour le choix du nombre de neurones cachés, il faut trouver le juste milieu entre un faible nombre de neurones cachés qui augmente la probabilité d'atteindre un minimum local, et un nombre trop élevé qui risque d'induire une mauvaise capacité de généralisation du réseau élaboré.

Dans le cas (le plus courant) où l'apprentissage est effectué avec l'algorithme de rétropropagation du gradient, la fonction d'activation de type tangente hyperbolique permet un apprentissage plus rapide pour les neurones cachés. Quant à la couche de sortie, la fonction d'activation linéaire est souvent utilisée.

- Étape 4 : L'apprentissage d'un réseau de neurones se décompose en deux parties :
- La détermination du gradient de la fonction coût par l'algorithme de rétropropagation.
- L'utilisation de ce gradient dans un algorithme d'optimisation afin de déterminer les valeurs des poids de connexion qui minimisent la fonction coût.

Le coût étant une fonction non linéaire des poids, la procédure de recherche est itérative et le terme incrémental des poids (Δw) est évalué en utilisant un algorithme d'optimisation. Elle

consiste à se déplacer en un point, à trouver une direction de descente du coût dans l'espace des poids, puis à se déplacer d'un pas suivant cette direction. Un nouveau point est ainsi atteint, et l'on répète la procédure jusqu'à l'obtention d'un critère d'arrêt satisfaisant.

Selon le nombre de poids considéré, différents algorithmes d'optimisation sont choisis ; à savoir :

- Un fiable nombre de poids : Algorithme de Levenberg-Marquardt.
- Un nombre modéré de poids : Méthode Quasi-Newton.
- Un nombre élevé de poids : Méthode de la descente du gradient conjugué.

Un algorithme d'apprentissage comprend un point de départ, constitué par les valeurs aléatoires initiales des poids de connexion, et un point d'arrêt. Ce dernier pouvant être déterminé selon différents critères, par exemple :

- un nombre maximal d'itérations,
- une durée maximale de calcul.
- ou une valeur minimale atteinte par la fonction coût.
- Étape 5 : Les résultats obtenus par le réseau de neurones élaboré sont analysés statistiquement en étudiant la régression linéaire entre les valeurs des sorties observées et prédites. Différents paramètres statistiques sont utilisables ; outre, le coefficient de détermination, des indicateurs tels que l'erreur moyenne résiduelle, l'écart-type résiduel, et le coefficient de détermination avec intervalle de confiance.

Chapitre III Résultats de simulation et interprétation

Rappelons que dans cette étude, nous nous intéressons au processus de tournage dur et, en particulier, à une opération de chariotage. Le travail concerne la modélisation statistique de données expérimentales par une Régression Linéaire Multiple et par des Réseaux de Neurones Artificiels.

III.1. Données expérimentales :

Les données expérimentales sont prises de la référence [8] relative à la modélisation de l'état de la surface usinée et de l'usure en dépouille lors de l'usinage d'un acier AISI D2 avec une plaquette wiper en céramique.

- Le matériau usiné est l'acier AISI D2 (X155CrMoV12 ISO) ayant la composition chimique suivante : 1.55% C ; 0.30% Si ; 0.40% Mn ; 11.80% Cr ; 0.80% Mo ; 0.80% V. La dureté du matériau, obtenue après traitement thermique, est 60 ± 1 HRC.
- **Pour l'outil de coupe :** la plaquette utilisée de géométrie wiper a la désignation suivante : CNGA120408S01525 WH (ISO) ; le porte-outil utilisé est : DCLNL2020K12 (ISO).
- Le procédé d'usinage : est le chariotage en tournage dur sur une machine-outil CNC rigide d'une puissance de 18 kW.
 - Conditions de coupe : les paramètres de coupe considérés lors des essais sont :
 - la vitesse de coupe : $V_c = 80$; 115 et150 m/min (trois niveaux) ;
 - l'avance : f = 0.05 ; 0.10 et 0.15 mm/tr (trois niveaux) ;
 - la profondeur de passe : $a_p = 0.2 \text{ mm}$ (un seul niveau) ;
 - la durée de coupe : $t_c = 5$; 10 et 15 min (trois niveaux).

La vitesse de rotation de la broche est prise égale à 4500 tr/min.

Le tournage dur peut être considéré comme de l'Usinage à Grande Vitesse de coupe car si la vitesse de coupe est peu élevée en valeur absolue, elle est considérée comme étant élevée relativement à la dureté du matériau usiné. La motivation industrielle principale pour ce processus est d'éviter les opérations de rectification. Il s'agit donc d'opérations de finition poussée qui se pratiquent à faibles profondeurs de passe et d'avance.

Pour pouvoir usiner avec des avances doublées voire triplées, la géométrie wiper est utilisée pour les plaquettes. Ainsi, le tournage dur avec des plaquettes wiper présente un double avantage d'augmenter la productivité et d'améliorer la qualité de la surface usinée.

Le tableau qui suit reporte les données expérimentales et calculées.

N° Essai	V _c (m/min)	f (mm/tr)	t _c (min)	$F_R(N)$	$P_c(kW)$	K _s (MPa)	R_a (μm)	$R_{t}\left(\mu m\right)$	VB (mm)
1	80	0.05	5	154.22	0.08	6207.86	0.25	3.63	0.047
2	80	0.05	10	205.59	0.12	9316.20	0.34	4.77	0.070
3	80	0.05	15	209.87	0.13	9706.24	0.52	4.56	0.086
4	80	0.1	5	272.33	0.18	6803.49	0.53	3.15	0.077
5	80	0.1	10	262.70	0.18	6876.04	0.57	3.11	0.111
6	80	0.1	15	277.99	0.19	7218.18	0.55	3.64	0.164
7	80	0.15	5	451.38	0.23	5791.32	0.61	3.10	0.067
8	80	0.15	10	364.15	0.24	6051.85	0.74	3.64	0.111
9	80	0.15	15	332.75	0.22	5558.97	0.61	2.90	0.143
10	115	0.05	5	174.69	0.16	8256.18	0.20	1.67	0.071
11	115	0.05	10	167.64	0.16	8331.79	0.21	1.46	0.091
12	115	0.05	15	166.74	0.17	8834.84	0.25	1.64	0.111
13	115	0.1	5	225.10	0.22	5802.83	0.24	2.23	0.076
14	115	0.1	10	208.83	0.22	5836.78	0.36	2.90	0.104
15	115	0.1	15	205.03	0.22	5669.92	0.50	3.24	0.151
16	115	0.15	5	270.43	0.28	4944.05	0.35	3.00	0.077
17	115	0.15	10	247.10	0.27	4752.68	0.50	2.72	0.112
18	115	0.15	15	272.15	0.32	5588.35	0.59	3.05	0.133
19	150	0.05	5	159.16	0.17	6645.78	0.18	1.51	0.074
20	150	0.05	10	150.24	0.18	7012.23	0.20	2.66	0.098
21	150	0.05	15	241.08	0.21	8432.31	0.21	1.59	0.148
22	150	0.1	5	214.90	0.29	5784.38	0.28	1.91	0.083
23	150	0.1	10	209.05	0.31	6122.50	0.43	2.98	0.106
24	150	0.1	15	229.06	0.32	6343.75	0.62	4.08	0.144
25	150	0.15	5	261.91	0.38	5012.38	0.46	2.89	0.081
26	150	0.15	10	257.22	0.39	5168.53	0.69	3.93	0.120
27	150	0.15	15	261.78	0.39	5165.32	0.70	4.47	0.158

Tableau III.1: Données expérimentales et calculées [8].

Les variables mesurées sont : les rugosités R_a et R_t de la surface usinée, l'usure en dépouille VB et les composantes de l'effort de coupe résultant F_R . En coupe oblique, l'effort de coupe F_R est la résultante des trois composantes F_c , F_f et F_p ; soit :

$$F_{R} = \sqrt{F_{c}^{2} + F_{f}^{2} + F_{p}^{2}}$$
 (III.1)

La figure qui suit illustre les composantes de l'effort de coupe.

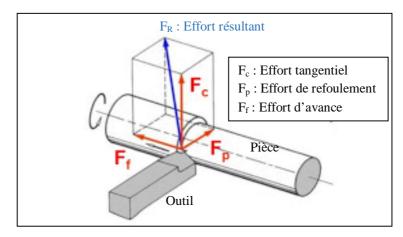


Figure III.1 : Composantes de l'effort de coupe.

Les variables calculées sont : la puissance de coupe $P_c = F_c \cdot V_c$ et la pression spécifique de coupe $K_s = \frac{F_c}{A_c} = \frac{F_c}{a_p \cdot f}$.

Dans la présente étude, nous nous intéressons à la modélisation de la rugosité de la surface usinée R_a. Pour la modélisation par Régression Linéaire Multiple, le logiciel utilisé est Statgraphics (version 16.1); pour la modélisation par Réseaux de Neurones Artificiels, le logiciel utilisé est Matlab (version 8.1 - 2013).

III.2. Modélisation et simulation par Régression Linéaire Multiple :

Après introduction des données expérimentales dans le logiciel Statgraphics, le modèle fourni par la Régression Linéaire Multiple (RLM) est exprimé par l'équation qui suit :

$$R_a = a_0 + a_1 V_c + a_2 f + a_3 t_c$$
 (III.2)

La variable à expliquer par le modèle est la rugosité R_a , et les variables explicatives sont : la vitesse de coupe V_c , l'avance f et la durée de coupe t_c .

Le tableau qui suit résume les résultats de la RLM obtenus par le logiciel Statgraphics.

Paramètre		Estimation	Eca	rt-type	t-St	udent		Probabilité
Constante a ₀		0,124153	0,0975964		1,27211		0,2	160
a ₁ pour (V _c)		-0,00150794	0,0006	0,00063207		571	0,0	257
a ₂ pour (f)		3,21111	0,4424	149	7,2575	58	0,0	000
a ₃ pour (t _c)		0,0161111	0,0044	0,00442449 3,6413		35	0,0	014
Ana				le varianc	e			
Source	S	omme des carrés	Ddl	Carré n	noyen	Fcalo	:	Probabilité
Modèle	0,6	3095	3	0,210317	'	23,87		0,0000
Résidu	0,2	02613	23	0,008809	26			
Total (Corr.)	0,8	33563	26					
		Analyse co	mplém	entaire de	variar	ice		
(V _c)	0,0	501389	1	0,050138	39	5,69		0,0257
(f)	0,4	64006	1	0,464006)	52,67		0,0000
(t _c)	0,1	16806	1	0,116806	j	13,26		0,0014

R-carré = 75,6931 %

R-carré (ajusté pour les ddl) = 72,5227 %

Estimation de l'écart-type du résidu = 0,0938577

Erreur absolue movenne = 0.0716735

Test de Durbin-Watson = 1,11417 (P = 0,0038)

Auto-corrélation résiduelle d'ordre 1 = 0,427555

Tableau III.2: Résultats de modélisation par RLM.

Le modèle de prédiction de la rugosité est exprimé par :

$$R_a = 1.241 * 10^{-1} - 1.507 * 10^{-3} * V_c + 3.211 * f + 1.611 * 10^{-2} * t_c (III.3)$$

La statistique du R-carré indique que le modèle explique 75,69 % de la variabilité de (R_a). La statistique du R-carré ajusté, qui est plus adaptée pour comparer des modèles comportant des nombres différents de variables explicatives, est 72,52 %. L'écart-type du résidu est de

0,0938577 ; cette valeur peut être utilisée pour construire des limites de prévision pour de nouvelles observations. L'erreur absolue moyenne de 0,0716735 est la valeur moyenne des résidus ; plus cette dernière est faible, le modèle est très satisfaisant. La statistique de Durbin-Watson teste les résidus pour déterminer s'il y a une corrélation significative basée sur l'ordre dans lequel ils apparaissent dans le fichier des données ; comme la valeur de la probabilité est inférieure à 0,05 (pour les paramètres a_1 , a_2 et a_3) cela indique une possible auto-corrélation sérielle des résidus au niveau de confiance de 95%. La figure qui suit montre les valeurs observées de (R_a) et celles prédites par la RLM.

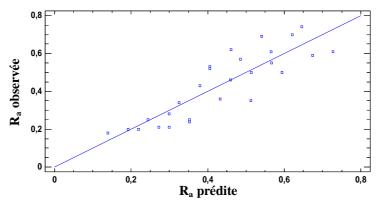


Figure III.2 : Comparaison des rugosités observée et prédite par RLM.

Pour déterminer si le modèle peut être simplifié, on note la plus grande valeur de probabilité des variables explicatives ; cette valeur, d'après le tableau III.2, est de 0,0257 qui correspond à la variable explicative (V_c). Comme cette valeur de probabilité est inférieure à 0,05, ce terme est statistiquement significatif au niveau de confiance de 95 %. Ainsi, on ne va pas supprimer ou négliger cette variable explicative du modèle.

Pour l'évaluation de la précision des coefficients estimés, les limites inférieure et supérieure, pour des intervalles de confiance de 95 %, sont calculées par le logiciel Statgraphics comme suit :

Paramètre	Estimation	Ecart-type	Limite inférieure	Limite supérieure
Constante a ₀	0,124153	0,0975964	-0,0777405	0,326047
a ₁ pour (V _c)	-0,00150794	0,00063207	-0,00281548	-0,000200397
a ₂ pour (f)	3,21111	0,442449	2,29583	4,12639
a ₃ pour (t _c)	0,0161111	0,00442449	0,00695833	0,0252639

Tableau III.3: Précision des coefficients estimés.

Ce dernier tableau affiche les intervalles de confiance à 95 % pour les coefficients du modèle. Les intervalles de confiance indiquent la précision de l'estimation des coefficients en prenant en compte la quantité des données et le bruit présent dans les données.

Le tableau III.4 relatif aux résidus non usuels liste les observations qui ont des résidus studentisés supérieurs à 2 en valeur absolue. À noter que les résidus studentisés mesurent de combien les écarts-types de chaque valeur observée de (R_a) varie si on ajuste un modèle utilisant toutes les observations sauf cette observation.

N° Essai	R _a mesurée	R _a prédite	Résidu	Résidu studentisé
16	0,35	0,512963	-0,162963	-2,00

Tableau III.4: Résidus studentisés non usuels.

La figure qui suit montre, d'une part, les résidus studentisés en fonction des valeurs prédites de (R_a), et, d'autre part, les résidus studentisés en fonction des numéros d'essais, il ya un résidu studentisé égal à 2.

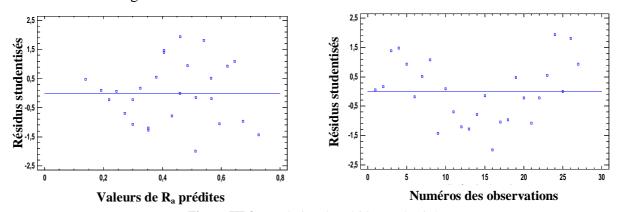


Figure III.3: Evolution des résidus studentisés.

Nous remarquons qu'il y a un résidu studentisé égal à 2 en valeur absolue ; dans une telle situation, aucun essai ne sera éliminé.

Nous allons maintenant proposer un modèle non linéaire de prédiction de la rugosité exprimé par l'équation qui suit :

$$R_a = K \cdot V_c^{\overline{\alpha}} \cdot f^{\overline{\beta}} \cdot t_c^{\overline{\gamma}}$$
 (III.4)

Cette équation est mise sous forme linéaire comme suit :

$$ln R_a = lnK + \overline{\alpha} lnV_c + \overline{\beta} lnf + \overline{\gamma} lnt_c$$
 (III.5)

Après introduction des données expérimentales dans le logiciel Statgraphics, le modèle déterminé par la Régression Linéaire Multiple est exprimé par l'équation qui suit :

$$R_a = 13,331 * V_c^{-0,53} * f^{0,763} * t_c^{0,366}$$
 (III.6)

La variable à expliquer par le modèle est la rugosité ln(Ra), et les variables explicatives sont : $ln(V_c)$, ln(f) et $ln(t_c)$.

Le tableau qui suit résume les résultats obtenus par le logiciel Statgraphics.

Paramètre Estimation			E	cart-type	t -S	tudent	I	Probabilité
Constante a ₀		2,59013	0,79	92604	3,26788		0,00	34
a_1 pour $ln(V_c)$		-0,530533	0,13	56343	-3,39	339	0,00	25
a ₂ pour ln(f)		0,763267	0,08	888036	8,595	5	0,00	00
a ₃ pour ln(t _c)		0,3666	0,08	888036	4,128	321	0,00	04
		A	nalyse	de variance)			
Source	Som	me des carrés	Ddl	Carré m	oyen	F _{cal}	c	Probabilité
Modèle	4,487	56	3	1,49585		34,14		0,0000
Résidu	1,007	64	23	0,0438104				
Total (Corr.)	5,495	2	26					
		Analyse con	mplém	entaire de la	a varia	nce		
ln(V _c)	0,504	481	1	0,504481		11,52		0,0025
ln(f)	3,236	45	1	3,23645		73,87		0,0000
ln(t _c)	0,746	624	1	0,746624		17,04		0,0004
R-carré = 81.66	633 %			•		•	•	

R-carré (ajusté pour les ddl) = 79,2715 %

Estimation de l'écart-type du résidu = 0,209309

Erreur absolue moyenne = 0,161531

Test de Durbin-Watson = 0.874944 (P = 0.0003)

Auto-corrélation résiduelle d'ordre 1 = 0,547732

Tableau III.5: Résultats de modélisation par RLM (Modèle proposé).

Comparativement aux résultats obtenus et reportés sur le tableau III.2, le modèle proposé offre plus d'avantages en matière de modélisation statistique. La statistique du R-carré indique que le modèle proposé explique 81,66 % de la variabilité de ln(Ra).

Aussi, on note que la plus grande valeur de probabilité égale à 0,0025 pour les variables explicatives est relative à ln(Vc). Comme cette valeur est inférieure à 0,05, ce terme est statistiquement significatif au niveau de confiance de 95 %. Ainsi, on ne va pas supprimer ou négliger de variables explicatives du modèle.

La figure qui suit montre les rugosités ln(Ra) observées en fonction des rugosités ln(Ra) prédites.

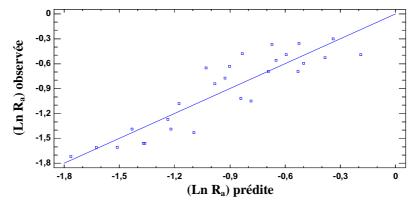


Figure III.4 : Comparaison des rugosités observées et prédites (Modèle proposé).

Pour l'évaluation de la précision des coefficients estimés, les limites inférieure et supérieure, pour des intervalles de confiance de 95 %, sont calculées par le logiciel Statgraphics et reportées dans le tableau qui suit.

Paramètre	Estimation	Ecart-type	Limite inférieure	Limite supérieure
Constante a ₀	2,59013	0,792604	0,950502	4,22976
a ₁ pour ln(V _c)	-0,530533	0,156343	-0,853953	-0,207112
a ₂ pour ln(f)	0,763267	0,0888036	0,579562	0,946971
a ₃ pour ln(t _c)	0,3666	0,0888036	0,182896	0,550305

Tableau III.6: Précision des coefficients estimés (Modèle proposé).

Le tableau qui suit reporte les résidus studentisés.

N° Essai	R _a mesurée	R _a prédite	Résidu	Résidu studentisé
3	-0,653926	-1,02845	0,37452	2,16

Tableau III.7: Résidus studentisés non usuels (Modèle proposé).

Le tableau des résidus non usuels liste les observations qui ont des résidus studentisés supérieurs à 2 en valeur absolue. Dans ce cas, il y a un résidu studentisé supérieur à 2 ; à cet effet, nous allons supprimer l'essai N° 3 (voir tableau III.1) et nous relançons de nouveau la simulation.

La figure qui suit montre, d'une part, les résidus studentisés en fonction des valeurs prédites de ln(Ra), et, d'autre part, les résidus studentisés en fonction des numéros d'essais.

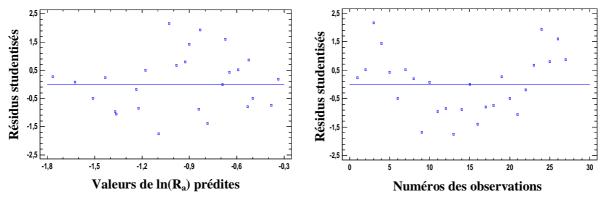


Figure III.5: Evolution des résidus studentisés (Modèle proposé).

Après relance de la simulation, le tableau qui suit résume les résultats obtenus par le logiciel Statgraphics pour le modèle proposé sans considération de l'essai N° 3.

Paramètre	Estimation	Ecart-type	t -Student	Probabilité
Constante a ₀	2,37795	0,742313	3,20344	0,0041
a ₁ pour ln(V _c)	-0,443396	0,150618	-2,94384	0,0075
a ₂ pour ln(f)	0,814069	0,0857154	9,49735	0,0000
a ₃ pour ln(t _c)	0,323955	0,0847615	3,82196	0,0009

Analyse de variance								
Source	Somme des carrés	Ddl	Carré moyen	$\mathbf{F}_{\mathrm{calc}}$	Probabilité			
Modèle	4,58439	3	1,52813	40,47	0,0000			
Résidu	0,830663	22	0,0377574					
Total (Corr.)	5,41506	25						
	Analyse con	mplém	entaire de varianc	e				
ln(V _c)	0,435978	1	0,435978	11,55	0,0026			
ln(f)	3,59688	1	3,59688	95,26	0,0000			
ln(t _c)	0,551535	1	0,551535	14,61	0,0009			

R-carré = 84,6601 %

R-carré (ajusté pour les ddl) = 82,5683 %

Estimation de l'écart-type du résidu = 0,194313

Erreur absolue moyenne = 0,150974

Test de Durbin-Watson 1,0251 (P = 0,0019)

Auto-corrélation résiduelle d'ordre 1 = 0,467589

Tableau III.8 : Résultats de modélisation par RLM (Modèle proposé sans l'essai N° 3).

L'équation du modèle proposé ajusté est donnée selon :

$$R_a = 10.783 \cdot V_c^{-0.443} \cdot f^{0.814} \cdot t_c^{0.324}$$
 (III.7)

La statistique du R-carré indique que le modèle proposé ajusté explique 84,66 % de la variabilité de $ln(R_a)$. Nous remarquons que ce modèle présente un coefficient de détermination relativement plus élevé. Pour déterminer si le modèle peut être simplifié, on note que la plus grande valeur de probabilité pour les variables explicatives, égale à 0,0075, correspond à ln(Vc). Comme cette valeur de la probabilité est inférieure à 0,05, ce terme est statistiquement significatif au niveau de confiance de 95 %. Ainsi, on ne va pas supprimer cette variable explicative du modèle. La figure qui suit montre les rugosités $ln(R_a)$ observées en fonction des rugosités $ln(R_a)$ prédites.

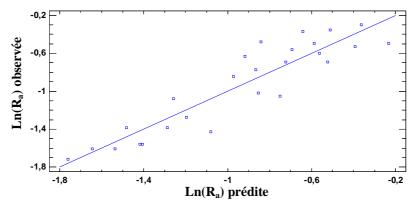


Figure III.6 : Comparaison des rugosités observées et prédites (Modèle proposé sans l'essai N° 3).

Pour l'évaluation de la précision des coefficients estimés, les limites inférieure et supérieure, pour des intervalles de confiance de 95 %, sont calculées par le logiciel Statgraphics et reportées dans le tableau qui suit.

Paramètre	Estimation	Ecart-type	Limite inférieure	Limite supérieure
Constante a ₀	2,37795	0,742313	0,838486	3,91742
a ₁ pour ln(V _c)	-0,443396	0,150618	-0,75576	-0,131033
a ₂ pour ln(f)	0,814069	0,0857154	0,636306	0,991832
a ₃ pour ln(t _c)	0,323955	0,0847615	0,14817	0,49974

Tableau III.9 : Précision des coefficients estimés (Modèle proposé sans l'essai N° 3).

Le tableau des résidus non usuels liste les observations qui ont des résidus studentisés supérieur à 2.

N° Essai	R _a mesurée	R _a prédite	Résidu	Résidu studentisé
11	-1,42712	-1,07901	-0,348105	-2,02
22	-0,478036	-0,840923	0,362887	2,17

Tableau III.10 : Résidus studentisés non usuels (Modèle proposé sans l'essai N° 3).

La figure qui suit montre, d'une part, les résidus studentisés en fonction des valeurs prédites de $ln(R_a)$, et, d'autre part, les résidus studentisés en fonction des numéros d'essais.

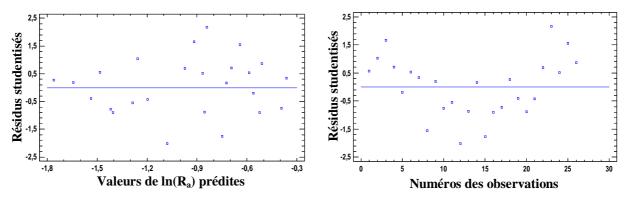


Figure III.7: Evolution des résidus studentisés (Modèle proposé sans l'essai N° 3).

Nous pouvons seulement se contenter de l'élimination de l'essai N° 03 car les résidus studentisés peuvent atteindre une valeur limite de 3.

Nous allons maintenant présenter les résultats de simulation relatifs à la modélisation par les Réseaux de Neurones Artificiels.

III.3. Modélisation et simulation par Réseaux de Neurones Artificiels :

Pour les mêmes données expérimentales, nous allons maintenant effectuer une modélisation statistique par des Réseaux de Neurones Artificiels (RNA). Le réseau de neurones élaboré présente trois couches : une couche d'entrée, une couche cachée et une

couche de sortie. Les entrées sont, a priori, les variables : vitesse de coupe (V_c) , l'avance (f) et la durée de coupe (t_c) ; la sortie du réseau est la rugosité de la surface usinée (R_a) .

Les neurones cachés utilisent une fonction d'activation de type tangente hyperbolique qui permet un apprentissage plus rapide. Quant à la couche de sortie, la fonction d'activation utilisée est linéaire. Pour l'apprentissage, la régularisation bayésienne est utilisée ; elle associe la rétro-propagation du gradient et l'algorithme d'optimisation de Levenberg-Marquardt. La base des données est scindée en deux parties : dix huit (18) essais sont utilisés pour l'apprentissage et neuf (09) pour le test (voir tableau III.1). Soit un pourcentage de 70 % des essais sont dédiés à l'apprentissage et 30 % au test. Aussi, les données ont été normalisées dans l'intervalle [-1, 1].

Nous avons utilisé le logiciel Matlab pour la simulation du réseau de neurones élaboré. Deux approches sont possibles :

- Pour la première, l'utilisateur peut utiliser des commandes qui permettent une conception plus au moins automatique du réseau ; à savoir : nntool et nftool. Pour cette première approche, les bases de données sont divisées d'une manière aléatoire ; ceci conduit à des performances non figées du réseau.
 - Pour la seconde approche, l'utilisateur peut concevoir son propre programme.

Pour notre étude, nous avons opté pour la seconde approche afin d'avoir des performances figées quand la simulation d'apprentissage est répétée. Les tableaux qui suivent montrent respectivement les bases de données relatives à l'apprentissage et au test.

Base de données _ Apprentissage							
N° Essai	Vc	f	t _c	Ra			
2	80	0,05	10	0,34			
3	80	0,05	15	0,52			
4	80	0,1	5	0,53			
6	80	0,1	15	0,55			
7	80	0,15	5	0,61			
8	80	0,15	10	0,74			
10	115	0,05	5	0,2			
11	115	0,05	10	0,21			
12	115	0,05	15	0,25			
15	115	0,1	15	0,5			
16	115	0,15	5	0,35			
17	115	0,15	10	0,5			
20	150	0,05	10	0,2			
21	150	0,05	15	0,21			
22	150	0,1	5	0,28			
24	150	0,1	15	0,62			
25	150	0,15	5	0,46			
26	150	0,15	10	0,69			

Base de données _ Test						
N° Essai	V_c	f	t _c	Ra		
1	80	0,05	5	0,25		
5	80	0,1	10	0,57		
9	80	0,15	15	0,61		
13	115	0,1	5	0,24		
14	115	0,1	10	0,36		
18	115	0,15	15	0,59		
19	150	0,05	5	0,18		
23	150	0,1	10	0,43		
27	150	0,15	15	0,7		

Tableau III.12 : Base de données pour le test.

Tableau III.11 : Base de données pour l'apprentissage.

Le programme élaboré pour la simulation du réseau de neurones est schématisée par la figure qui suit.

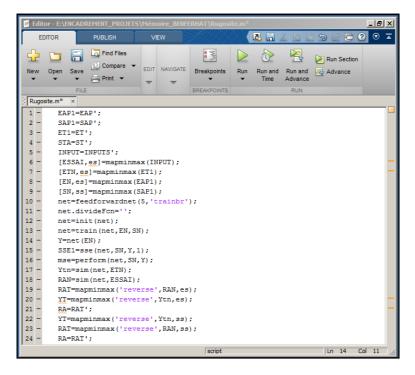


Figure III.8 : Programme de conception du RNA élaboré.

La figure qui suit schématise l'interface de simulation sous Matlab.

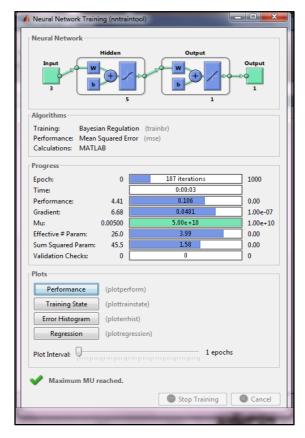


Figure III.9: Interface de simulation du RNA élaboré.

Le choix du nombre de neurones cachés a été établi après diverses simulations en faisant varier leur nombre. Le tableau qui suit reporte les résultats de simulation.

Nombre de	MSE	R
neurones cachés		
3-1-1	0,1050	0,86732
3-2-1	0,1053	0,86631
3-3-1	0,1061	0,86491
3-4-1	0,1062	0,86465
3-5-1	0,1063	0,86452
3-6-1	0,1063	0,86451
3-7-1	0,1063	0,86445
3-8-1	0,1063	0,86441
3-9-1	0,1063	0,86447
3-10-1	0,1063	0,86433

Tableau III.13: Choix du nombre de neurones cachés.

Avec MSE est la moyenne des carrés des erreurs, et R est le coefficient de corrélation.

Selon le tableau III.13, le meilleur choix du nombre de neurones cachés correspond à cinq (5). Nous remarquons que le critère de performance MSE se stabilise pour un nombre de neurones supérieur ou égal à 5. À noter que plus le nombre de neurones cachés augmente plus le temps de simulation devient important. Ainsi, il est inutile d'augmenter le nombre de neurones cachés.

La figure qui suit montre les résultats de la régression linéaire obtenue durant la phase d'apprentissage.

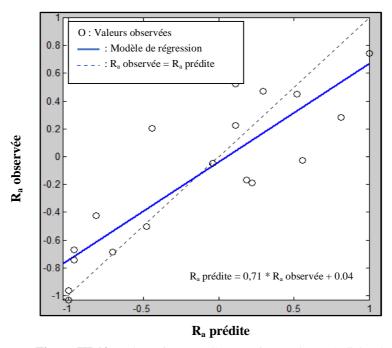


Figure III.10: Régression pour l'apprentissage du RNA élaboré.

Le tableau qui suit reporte les résultats de simulation obtenus par le Réseau de Neurones Artificiels élaboré.

N° Essai	R _a observée	R _a prédite	Résidu		
1	0,25	0,2501	-0,0001		
2	0,34	0,3348	0,0052		
3	0,52	0,4248	0,0952		
4	0,53	0,4191	0,1109		
5	0,57	0,5098	0,0602		
6	0,55	0,5966	-0,0466		
7	0,61	0,5915	0,0185		
8	0,74	0,6713	0,0687		
9	0,61	0,7409	-0,1309		
10	0,2	0,1911	0,0089		
11	0,21	0,2696	-0,0596		
12	0,25	0,3561	-0,1061		
13	0,24	0,3505	-0,1105		
14	0,36	0,4409	-0,0809		
15	0,5	0,5310	-0,0310		
16	0,35	0,5255	-0,1755		
17	0,5	0,6113	-0,1113		
18	0,59	0,6888	-0,0988		
19	0,18	0,1382	0,0418		
20	0,2	0,2089	-0,0089		
21	0,21	0,2897	-0,0797		
22	0,28	0,2844	-0,0044		
23	0,43	0,3719	0,0581		
24	0,62	0,4627	0,1573		
25	0,46	0,4570	0,0030		
26	0,69	0,5466	0,1434		
27	0,7	0,6307	0,0693		
MSE		0,0086			
R-carré	76,16 %				
MAPE	17,41 %				

Tableau III.14: Résultats de simulation du RNA élaboré.

Avec MAPE est l'erreur absolue moyenne ; c'est la moyenne des résidus en valeurs absolues par rapport aux valeurs observées. Il s'agit d'un indicateur pratique de comparaison relativement à la MSE.

III.4. Comparaison des résultats de simulation :

Nous allons maintenant confronter les différents résultats obtenus par la Régression Linéaire Multiple et par le Réseau de Neurones Artificiels. À cet effet, le tableau qui suit reporte les résultats de simulation obtenus par les deux modélisations statistiques.

N°		Régression Linéaire Multiple				Réseau de	
Essai		Modèle linéaire		Modèle non linéaire		Neurones Artificiels	
	R _a observée	R _a prédite	Résidu	R _a prédite	Résidu	R _a prédite	Résidu
1	0,25	0,2446	0,0054	0,2395	0,0105	0,2501	-0,0001
2	0,34	0,3252	0,0148	0,3087	0,0313	0,3348	0,0052
3	0,52	0,4057	0,1143	0,3581	0,1619	0,4248	0,0952
4	0,53	0,4052	0,1248	0,4065	0,1235	0,4191	0,1109
5	0,57	0,4857	0,0843	0,5239	0,0461	0,5098	0,0602
6	0,55	0,5663	-0,0163	0,6077	-0,0577	0,5966	-0,0466
7	0,61	0,5657	0,0443	0,5539	0,0561	0,5915	0,0185
8	0,74	0,6463	0,0937	0,7138	0,0262	0,6713	0,0687
9	0,61	0,7268	-0,1168	0,8280	-0,2180	0,7409	-0,1309
10	0,2	0,1919	0,0081	0,1976	0,0024	0,1911	0,0089
11	0,21	0,2724	-0,0624	0,2547	-0,0447	0,2696	-0,0596
12	0,25	0,3530	-0,1030	0,2954	-0,0454	0,3561	-0,1061
13	0,24	0,3524	-0,1124	0,3354	-0,0954	0,3505	-0,1105
14	0,36	0,4330	-0,0730	0,4322	-0,0722	0,4409	-0,0809
15	0,5	0,5135	-0,0135	0,5014	-0,0014	0,5310	-0,0310
16	0,35	0,5130	-0,1630	0,4570	-0,1070	0,5255	-0,1755
17	0,5	0,5935	-0,0935	0,5889	-0,0889	0,6113	-0,1113
18	0,59	0,6741	-0,0841	0,6831	-0,0931	0,6888	-0,0988
19	0,18	0,1392	0,0409	0,1717	0,0083	0,1382	0,0418
20	0,2	0,2197	-0,0197	0,2212	-0,0212	0,2089	-0,0089
21	0,21	0,3003	-0,0903	0,2566	-0,0466	0,2897	-0,0797
22	0,28	0,2997	-0,0197	0,2913	-0,0113	0,2844	-0,0044
23	0,43	0,3803	0,0498	0,3754	0,0546	0,3719	0,0581
24	0,62	0,4608	0,1592	0,4355	0,1845	0,4627	0,1573
25	0,46	0,4603	-0,0002	0,3969	0,0631	0,4570	0,0030
26	0,69	0,5408	0,1492	0,5116	0,1784	0,5466	0,1434
27	0,7	0,6214	0,0787	0,5934	0,1066	0,6307	0,0693
M	MSE		088	0,0101		0,0086	
R-carré		75,69 %		81,66 %		76,16 %	
MAPE		17,9	99 %	16,24 %		17,41 %	

Tableau III.15 : Confrontation des résultats de simulation.

En conclusion, nous remarquons que la prédiction de la rugosité de la surface usinée par le modèle non linéaire est la plus performante car elle présente une MAPE minimale de 16,24 % et un coefficient de détermination égale à 81,66%.

Conclusion générale

Le travail projeté pour cette étude concerne les modélisations statistiques de la rugosité de la surface usinée en tournage dur.

Dans un premier temps, nous avons utilisé le logiciel Statgraphics pour développer des modèles de prédiction de la rugosité de la surface usinée tout en utilisant la Régression Linéaire Multiple. Le premier modèle est de type linéaire où les variables explicatives sont la vitesse de coupe, l'avance et la durée d'usinage; la variable expliquée est la rugosité de la surface usinée. Le second modèle développé est de type non linéaire; cette dernière modélisation nous a permis d'obtenir de meilleurs résultats de prédiction.

Dans une seconde étape, nous avons développé une modélisation basée sur les Réseaux de Neurones Artificiels, et ce pour les mêmes variables explicatives et expliquée utilisées dans la modélisation par Régression Linéaire Multiple. Le réseau élaboré utilise une couche cachée ayant un nombre optimisé de cinq (05) neurones. Les neurones cachés utilisent une fonction d'activation de type tangente hyperbolique qui permet un apprentissage plus rapide. Quant à la couche de sortie, la fonction d'activation utilisée est de type linéaire.

Pour la phase d'apprentissage, la régularisation bayésienne est associée à la rétro-propagation du gradient et l'algorithme d'optimisation de Levenberg-Marquardt. La base des données est scindée, de manière figée, en deux sous-bases : dix huit (18) essais sont utilisés pour l'apprentissage et neuf (09) pour le test. Soit un pourcentage de 70 % des essais sont dédiés à l'apprentissage et 30 % au test. Aussi, les données ont été normalisées dans l'intervalle [-1, 1], et la simulation du réseau a été réalisée sous l'environnement Matlab.

En conclusion, nous remarquons que la prédiction de la rugosité de la surface usinée par le modèle non linéaire est la plus performante car elle présente une MAPE minimale de 16,24 % et un coefficient de détermination égale à 81,66 %.

Perspectives:

Comme complément à cette étude, nous pouvons penser à l'utilisation d'autres outils de méthodologie expérimentale tels que les plans d'expérience. Aussi, cette étude peut être généralisée à d'autres procédés d'usinage.

REFERENCES BIBLIOGRAPHIQUES

Bibliographie:

- [1] **E. FELDER**, " Procédés d'usinage ", Techniques de l'Ingénieur, traité Génie mécanique, B 7000 / 1-16.
- [2] **K. DJELLOULI**, "Synthèse et analyse des effets tribologiques associés à l'usinage des matériaux ", Mémoire de Master, Département de Génie Mécanique, Université de Tiaret, 2016.
- [3] **P. BOURDET & F. VILLENEUVE**, "La gamme automatique en usinage ", Hermès, 1990.
- [4] **A. MONDELIN**, "Modélisation de l'intégrité des surfaces usinées : Application au cas du tournage finition de l'acier inoxydable 15-5PH ", Thèse de Doctorat, Ecole Centrale de Lyon, 2012.
- [5] **K. MOUSSAOUI**, " Influence de l'usinage sur la durée de vie en fatigue de pièces aéronautiques en alliage de titane ", Thèse de Doctorat, Université Toulouse 3, 2013.
- [6] **M. YAHYAOUI**, " Etude des interactions outil-matière ", Mémoire d'Ingénieur, Département de Génie Mécanique, Université de Tiaret, 2001.
- [7] **J. N. BALEO & Co-auteurs**, "Méthodologie expérimentale : Méthodes et outils pour les expérimentations scientifiques ", TEC & DOC, 2003.
- [8] **T. ÖZEL & al.**, " Modelling of surface finish and tool flank wear in turning of AISI D2 steel with ceramic wiper inserts ", Journal of Materials Processing Technology, 2007.

Webographie:

- [9] http://www.sandvik.coromant.com/fr-fr/knowledge/general_turning/how-to-achieve-good-component-quality/turning-in-different-materials/hard-part-turning
- [10] http://sti-beziers.fr/tsipm/spip_tsipm/IMG/pdf/etats_de_surface.pdf
- [11] https://fr.wikipedia.org/wiki/R%C3%A9gression_lin%C3%A9aire_multiple
- [12] http://www.ugtr.uquebec.ca/~biskri/Personnel/mol/RRN.doc
- [13] http://wcours.gel.ulaval.ca/2010/a/GIF4101/default/5notes/reseauxdeneurones.pdf
- [14] http://epat2014.sciencesconf.org/conference/epat2014/pages/EPAT_2014_ANN.pdf

ملخص:

في هذا العمل، قمنا بنمذجة إحصائية لتوقع خشونة سطح القطعة في الخراطة الصلبة. النماذج المطورة، استعمل فيها طريقة الانحدار الخطي المتعدد و الشبكات العصبية الاصطناعية. أجريت عمليات المحاكاة بواسطة البرامج: Statgraphics و Matlab. تشير نتائج المحاكاة إلى توافق جيد مع النتائج التجريبية التي تم الحصول عليها من قبل باحثين آخرين. توقع خشونة سطح القطعة من قبل نموذج غير خطي هو الأكثر فعالية لأنه قدم MAPE قدره 16.24 % و معامل التحديد يساوي 81.66

مفاتيح: خشونة سطح القطع، الخراطة الصلبة، النمذجة الإحصائية، المحاكاة، الانحدار الخطى المتعدد، الشبكات العصبية الإصطناعية.

Résumé:

Dans ce travail, nous avons effectué une modélisation statistique pour la rugosité de la surface usinée lors d'un tournage dur. Les modèles développés utilisent, d'une part, la Régression Linéaire Multiple, et, d'autre part, les Réseaux de Neurones Artificiels.

Les simulations ont été réalisées sous les logiciels Statgraphics et Matlab. Les résultats de simulation montrent une bonne concordance avec ceux obtenus expérimentalement par d'autres chercheurs. La prédiction de la rugosité par un modèle non linéaire est la plus performante car elle présente une MAPE minimale de 16.24 % et un coefficient de détermination égale à 81.66 %.

Mots clés : Rugosité de la surface usinée, Tournage dur, Modélisation statistique, Simulation, Régression Linéaire Multiple, Réseaux de Neurones Artificiels.

Abstract:

In this work, statistical modeling to predict surface roughness in hard turning has been investigated. The developed models use, on the one hand, the Multiple Linear Regression and, on the other hand, the Artificial Neural Networks.

Simulations were carried out under Statgraphics and Matlab. The simulation results show a good agreement with those obtained in experiments by other researchers. The prediction of surface roughness by non linear model is most powerful because it gives a minimal MAPE of 16.24 % and determination coefficient equal to 81.66 %.

Key words: Surface roughness, Hard turning, Statical modeling, Simulation, Multiple Linear Regression, Artificial Neural Networks.