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Abstract

In this thesis, we consider some integral inequalities for classical Lebesgue
spaces Lp with 0 < p < 1 and weighted variable exponent Lebesgue spaces
Lp(x),w with 0 < p(x) < 1. First we obtain some new integral inequalities with
0 < p < 1 under weaker condition than monotonicity via Hardy–Steklov type
operators. Second, some integral inequalities were established for the same op-
erators acting from one weighted variable exponent Lebesgue spaces to another
weighted exponent Lebesgue spaces with 0 < p(x) < 1 for nonnegative quasi-
monotone functions on (0,∞). Consequently, some results of A. Senouci et al
and R.A.Bandaliev are deduced as particular cases. Finally, we establish some
new estimates for the Hardy-Steklov operator for the same spaces and the same
functions.
Keywords: Integral inequalities, Hardy-type inequality, Hardy–Steklov opera-
tor, Hardy-Steklov type operators, quasi-monotone functions, weighted variable
exponent Lebesgue spaces.
mathematics subject classification (2010)
26D10, 26D15, 47G10, 46E30.
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ملخـــص
0 < p < 1 حيث Lp الكلاسيكية ليبيج لفضاءات التكاملية المتباينات بعض ندرس الأطروحة، هذه في
المتباينات بعض على نحصل أولاً .0 < p(x) < 1 مع Lp(x),w المتغير الأس ذات ليبيج فضاءات و
ثانياً، . Hardy–Steklov لمؤثر الرتابة من أضعف شروط تحت 0 < p < 1 أجل من الجديدة التكاملية
إلى ليبيج لفضاءات واحد متغير أس من تعمل التي المؤثرات لنفس التكاملية المتباينات بعض إنشاء تم
المجال على السلبية غير الرتيبة شبه للدوال 0 < p(x) < 1 مع Lp(x),w المتغير الأس ذي ليبيج فضاءات
على تصبح ” R.A.Bandaliev ” الاستاذ و ” A.Senouci” الاستاذ نتائج بعض وبالتالي، .(0,∞)

لنفس ” Hardy–Steklov ” لمؤثر الجديدة التقديرات بعض بوضع قمنا أخيرا، خاصة. حالات شكل
الدوال. ونفس الفضاءات

شبه الدوال هاردي-ستيكلوف، مؤثرات هاردي، متباينة التكاملية، المتباينات المفتاحية: الكلمات
المتغير. الاس ذات لوبيغ فضاءات الرتيبة،

. 26A48 47G10, 26D15, 26D10, التصنيفات
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Resumé

Dans cette thèse, nous considérons quelques inégalités intégrales pour des es-
paces de Lebesgue classiques Lp avec 0 < p < 1 et des espaces de Lebesgue
Lp(x),w pondérés avec 0 < p(x) < 1. Nous obtenons d’abord de nouvelles inégal-
ités intégrales avec 0 < p < 1 sous des conditions plus faibles que la monotonie
par l’intermédiaire d’opérateurs de type Hardy-Steklov. Deuxièmement, des
inégalités intégrales ont été établies pour les mêmes opérateurs agissant des es-
paces de Lebesgue à un autre aussi pondéré avec 0 < p(x) < 1, pour les fonctions
quasi-monotones non négatives sur (0,∞). Par conséquent, certains résultats de
A. Senouci et al et de R.A.Bandaliev sont déduits comme cas particuliers. A la
fin de ce travail, nous établissons de nouvelles estimations pour l’opérateur de
Hardy-Steklov pour les mêmes espaces et les mêmes fonctions.
Mots clés: Inégalités integrales, inégalités de type Hardy, opérateurs de Hardy–
Steklov, opérateurs de type Hardy-Steklov, fonctions quasi-monotone, espaces
de Lebesgue à exposant variable avec poids.
mathematics subject classification (2010)
26D10, 26D15, 47G10, 26A48.
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List of abbreviations and symbols

We use the following notations:

Ω Subset of Rn.
|Ω| Measure of Ω .
Lp Lebesgue spaces .
Lp(x) Variable Lebesgue spaces.
Lp(x),w Weighted variable exponent Lebesgue spaces.
|| · ||E Norm of space E.
C1(0,∞) The space of functions with continuous derivative.
C∞

0 (0,∞) The space of test functions.(
Lp(x),w

)∗
The dual space of Lp(x),w.

‖.‖Lp(x),w The norm in Lp(x),w.
a.e Almost every where.
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General Introduction

Inequalities are playing a very important role in different areas of mathe-
matics and present a very active and interesting field of research. As example,
we have the field of integration which is dominated by inequalities involving
the integral operators. Let us cite some famous integral inequalities : the in-
equalities of Hölder, Minkowski and Hardy. All these inequalities are based
on the classical Lebesgue spaces. In turn these spaces have important applica-
tions in different branches of mathematics for example Sobolev spaces (see [9]),
integral transformations and others. The variable Lebesgue spaces Lp(x), are a
generalisation of the classical Lebesgue spaces where the constant exponent p
is remplaced by a variable exponent function p(x). The spaces Lp(x) is a special
case of the Musielak-Orlicz spaces ( see [28] and [30]). In this work, we are
interested in the integral inequalities relating to the integral operators of Hardy,
Hardy-Steklov and Hardy-Steklov type acting in the quasi-normed spaces ( clas-
sical and variable Lebesgue spaces with 0 < p < 1 and 0 < p(x) < 1 respectively).
The thesis is structured into three chapters, a conclusion and a bibliography.

1. Chapter one: In this chapter, we introduce some definitions and related
properties to the classical Lebesgue spaces and we recall the Hölder and
Minkowski inequalities. In next part of this chapter we consider the classi-
cal weighted Hardy inequalities where the summability parameter is p ≥ 1,
and 0 < p < 1. At the end of the chapter we expose the variable Lebesgue
spaces Lp(x), the classical inequalities in Lp(x) (Hölder’s inequalities, Mink-
owski’s inequalities and Hardy’s inequalities).

2. Chapter two: In the second chapter, we consider the classical weighted
Hardy integral inequalities with parameter 0 < p < 1. We extend the re-
sults of [35] to Hardy–Steklov type operators, the chapter includes a work
already published under the title ”Some estimates for Hardy-Steklov type
operators”(see [18]) and some integral inequalities were established for the
same operators for quasi-monotone functions in weighted variable expo-
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General Introduction General Introduction

nent Lebesgue spaces Lp(x),w with 0 < p(x) < 1. This work is submitted under
the title ” On Hardy-Steklov-type operators for quasi-monotone functions
in weighted variable exponent Lebesgue spaces ” (see [16]).

3. Chapter three: In this chapter we obtain some integral inequalities for
Hardy-Steklov operator in weighted variable exponent Lebesgue spaces
for nonnegative quasi-monotone and monotone functions with 0 < p(x) <

1. This work is submitted under the title ”Some integral inequalities for
Hardy-Steklov operator for quasi-monotone functions with 0 < p(x) < 1”
(see [17]).
We end this thesis with a conclusion and perspectives and a fairly detailed
bibliography.
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Chapter 1

Preliminaries

In this chapter, we recall and state some definitions, Lemmas, Corollaries
and Theorems that are useful in this thesis.

1.1 Classical Lebesgue spaces.

Let Ω ⊂ Rn be a Lebesgue measurable set and f be a Lebesgue measurable func-
tion on Ω.

1.1.1 Lemmas and theorems.

Lemma 1.1.1 (Fatou’s Lemma [27]). Let f1, f2, f3, ... be a sequence of non-
negative, measurable functions on Ω, and a. e. exists the finite or infinite
lim
n−→∞

fn(x) = f(x). Then f(x) = lim
n→∞

fn(x) is measurable and∫
Ω

f(x)dx ≤ lim
n→∞

∫
Ω

fn(x)dx, (1.1)

in the sense that the finiteness of the right side implies that f is summable.

Proof. See [27] and [8].

Theorem 1.1.1 (Monotone convergence [27]). Let ∀n ∈ N, (fn) be a sequence
of nonnegative measurable functions on Ω, moreover fk(x) ≤ fk+1(x) a.e. on Ω.
Then

lim
n−→∞

∫
Ω

fn(x)dx =

∫
Ω

lim
n−→∞

fn(x)dx. (1.2)

Proof. See [27] and [8].
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Preliminaries

Theorem 1.1.2 (Dominated convergence [27]). Let ∀n ∈ N, (fn) be a sequence
of measurable functions on Ω, and the finite lim

n−→∞
fn(x)dx exists a.e on Ω. If there

exists a summable, nonnegative function G(x) on Ω such that

∀n ∈ N, |fn(x)| ≤ G(x), (1.3)

then ∀n ∈ N the functions fn and lim
n−→∞

fn(x) = f(x), are summable on Ω and

lim
n−→∞

∫
Ω

fn(x)dx =

∫
Ω

f(x)dx. (1.4)

Proof. See [27] and [8].

Theorem 1.1.3 (Fubuni’s theorem [27]). Let E and F be measurable sets (E ⊂
Rn) and (F ⊂ Rm) and the function f(x, y) summable on E × F . So for almost
every x ∈ E, f(x, y) is summable on F , for almost all y ∈ F , f(x, y) is summable
on E one of two integrals is finite, so the three integrals exist and are equal.( ∫

E×F
f(x, y)dxdy

)
=

∫
E

( ∫
F

f(x, y)dy

)
dx =

∫
F

( ∫
E

f(x, y)dx

)
dy. (1.5)

Proof. See [27] and [8].

Corollary 1.1.1. If f(x, y) is measurable function on E × F and one of two inte-
grals is finite. ∫

E

( ∫
F

|f(x, y)|dy
)
dx,

∫
F

( ∫
E

|f(x, y)|dx
)
dy.

So the three integrals in (1.5) exist and are equal.

Remark 1.1.1. If f is not summable over E × F , then the iterated integrals may
not exist or may exist and be different.

In the following we recall the definition of Lebesgue spaces.

Definition 1.1.1. Let 0 < p < ∞, Ω be a measurable subset of Rn, f : Ω → C. We
say that f ∈ Lp(Ω) if:

1. f is measurable on Ω.

2. ‖f‖Lp(Ω) =
( ∫

Ω
|f |pdx

) 1
p <∞.

Example 1.1.1. Let 0 < p <∞, γ ∈ R, r > 0

|x|γ ∈ Lp(Br) if and only if γ > −n
p
, n ∈ N, (1.6)

4



Preliminaries

where Br is the ball with center 0 and radius r > 0.
To prove (1.6), we apply the well-known formula:
If r > 0, g(ρ)ρn−1 is an integrable function on (0, r), then∫

Br

g(|x|)dx = σn

∫ r

0

g(ρ)ρn−1dρ, (1.7)

where σn = nVn, is the surface of the unitary sphere .
By (1.7), we get

‖|x|γ‖pLp(Br)
=

∫
Br

|x|γpdx

=σn

∫ r

0

ργpρn−1dρ

=
σn

γp+ n
rγp+n,

consequently ‖|x|γ‖Lp(Br)
<∞ if γp+ n > 0, then γ > −n

p
.

Definition 1.1.2. Let e ⊂ Ω such that |e| = 0, then

ess sup
x∈Ω

f(x) = inf
e∈Ω

sup
x∈Ω/e

f(x), (1.8)

ess inf
x∈Ω

f(x) = sup
e∈Ω

inf
x∈Ω/e

f(x). (1.9)

Definition 1.1.3. We say that f ∈ L∞(Ω) if f is measurable and

‖f‖L∞(Ω) = ess sup
x∈Ω

|f(x)| <∞. (1.10)

Remark 1.1.2. 1. By definition we put

‖f‖L∞(Ω) = 0, for |Ω| = 0.

2. If f ∈ L∞(Ω), we have

|f(x)| ≤ ‖f‖L∞(Ω), for a.e. x ∈ Ω.

Remark 1.1.3. 1. Let 0 < p <∞, since |α + β|p ≤ max (1, 2p−1) (|α|p + |β|p) ,
∀α, β ∈ C, then the linear combination (αf +βg) ∈ Lp(Ω), where f, g ∈ Lp(Ω).
Consequently Lp(Ω) is a linear space.

2. If p ≥ 1, Lp(Ω) is a normed space.

3. If 0 < p < 1, Lp(Ω) is a quasi-normed space. 1

Theorem 1.1.4 (Riesz’s theorem [27]). Let f be a measurable function, then

lim
p→∞

‖f‖Lp(Ω) = ‖f‖L∞(Ω). (1.11)

Proof. See [27] and [8].
1 (‖x+ y‖Lp(Ω) ≤ c

(
‖x‖Lp(Ω) + ‖y‖Lp(Ω)

)
, where c ≥ 1).

5



Preliminaries

1.1.2 The classical inequalities.

Theorem 1.1.5 (Young’s inequalities [27]). For all a, b > 0 and 1
p
+ 1

q
= 1, we

have

1. For 1 ≤ p ≤ ∞ :

ab ≤ ap

p
+
bq

q
. (1.12)

2. For 0 < p < 1 :

ab ≥ ap

p
+
bq

q
. (1.13)

3. For p < 0 :

ab ≥ ap

p
+
bq

q
. (1.14)

Proof. See [27] and [8].

Since 1
p
+ 1

q
= 1

s
, then 1

p/s
+ 1

q/s
= 1, and by applying inequality (1.12) with a = xs

and b = ys, we get the following Corollary.

Corollary 1.1.2. Let p, q, s ≥ 1 where 1
p
+ 1

q
= 1

s
, then

∀a, b ≥ 0,
(
ab
)s ≤ s

p
ap +

s

q
bq. (1.15)

Proof. (
xy
)s

= ab ≤ ap/s

p/s
+
bq/s

q/s
=
s

p
xp +

s

q
yq.

Theorem 1.1.6 (Hölder’s inequality [27]). Let 0 < p ≤ ∞, f ∈ Lp(Ω) and g ∈
Lp′(Ω), where 1

p
+ 1

p′
= 1, then

1. If 1 ≤ p ≤ ∞
‖fg‖L1(Ω) ≤ ‖f‖Lp(Ω)‖g‖Lp′ (Ω). (1.16)

2. If 0 < p < 1 or p < 0 and ∀x ∈ Ω, g(x) 6= 0

‖fg‖L1(Ω) ≥ ‖f‖Lp(Ω)‖g‖Lp′ (Ω). (1.17)

Proof. See [27] and [8].

Corollary 1.1.3. [11] Let s > 0, p ≤ ∞, −∞ ≤ q ≤ +∞ and 1
p
+ 1

q
= 1

s
, then

1. If s ≤ p

‖fg‖Ls(Ω) ≤ ‖f‖Lp(Ω)‖g‖Lq(Ω), (1.18)

2. If s > p

‖fg‖Ls(Ω) ≥ ‖f‖Lp(Ω)‖g‖Lq(Ω). (1.19)

6



Preliminaries

Proof. For the proof of (1.18) and (1.19) we apply (1.16) and (1.17) respectively,
with 1

p/s
+ 1

q/s
= 1.

Proposition 1.1.1. Let pi ∈ (1,∞), i = 1, 2, ..., k, where
k∑
i=1

1

pi
= 1,

fi ∈ Lpi(Ω), then ∥∥∥∥∥
k∏
i=1

fi

∥∥∥∥∥
L1(Ω)

≤
k∏
i=1

||fi||Lpi (Ω). (1.20)

Proof. By induction.

Theorem 1.1.7 (Minkowski’s inequality[11]). Let 1 ≤ p ≤ ∞ and f, g ∈ Lp(Ω),
then

‖f + g‖Lp(Ω) ≤ ‖f‖Lp(Ω) + ‖g‖Lp(Ω). (1.21)

Proof. See [11].

Corollary 1.1.4. Let m ∈ N and fk ∈ Lp(Ω) for all k ∈ {1, 2, . . . ,m}, then∥∥∥∥∥
m∑
k=1

fk

∥∥∥∥∥
Lp(Ω)

≤
m∑
k=1

‖fk‖Lp(Ω) . (1.22)

Proof. By induction.

Corollary 1.1.5 (Minkowski’s inequality for infinite sums[11]). Let fk ∈ Lp(Ω)

for all k ∈ N, where
∞∑
k=1

‖fk‖Lp(Ω) <∞,

then ∥∥∥∥∥
∞∑
k=1

fk

∥∥∥∥∥
Lp(Ω)

≤
∞∑
k=1

‖fk‖Lp(Ω) . (1.23)

Proof. See [11].

Theorem 1.1.8. Let 0 < p < 1 and f, g ∈ Lp(Ω), then

‖f + g‖Lp(Ω) ≤ 2
1
p
−1
(
‖f‖Lp(Ω) + ‖g‖Lp(Ω)

)
. (1.24)

Proof. We use inequality

(a+ b)p ≤ c(ap + bp), ∀a, b > 0, (1.25)

7



Preliminaries

where c = max
(
1, 2

1
p
−1
)
. By using this inequality with a = |f | and b = |g|, we

have:

‖f + g‖Lp(Ω) =

( ∫
Ω

|f + g|pdx
) 1

p

≤ c

( ∫
Ω

|f |pdx+
∫
Ω

|g|pdx
) 1

p

,

and c = max
(
1, 2

1
p
−1
)
= 2

1
p
−1, then

‖f + g‖Lp(Ω) ≤ 2
1
p
−1

(( ∫
Ω

|f |pdx
) 1

p

+

( ∫
Ω

|g|pdx
) 1

p

)
≤ 2

1
p
−1
(
‖f‖Lp(Ω) + ‖g‖Lp(Ω)

)
.

Theorem 1.1.9 (Minkowski’s integral inequality[11]). Let E ⊂ Rm and F ⊂ Rn

measurable sets, f be a measurable function on E × F , then

1. If 1 ≤ p ≤ ∞ : ∥∥∥∥ ∫
F

f(x, y)dy

∥∥∥∥
Lp(E)

≤
∫
F

‖f(x, y)dy‖Lp(E) . (1.26)

2. If 0 < p < 1 or p < 0 :∥∥∥∥ ∫
F

f(x, y)dy

∥∥∥∥
Lp(E)

≥
∫
F

‖f(x, y)dy‖Lp(E) . (1.27)

Proof. See [11].
The Minkowski inequality for p < 0 was established and proved in [34].

Proposition 1.1.2. The mapping l : Lp(Ω) → C defined by

l(f) =

∫
Ω

f(y)g(y)dy, g ∈ Lp′(Ω),

is a continuous linear functional. The set of linear functionals on Lp(Ω) is denoted
by
(
Lp(Ω)

)∗.
Proof. 1. Linearity, we use the properties of Lebesgue integral.

2. Continuity. By applying Hölder’s inequality, we get

|l(f)| =
∣∣∣∣ ∫

Ω

f(y)g(y)dy

∣∣∣∣
≤
∫
Ω

|f(y)||g(y)|dy

≤‖f‖Lp(Ω)‖g‖Lp′ (Ω)

≤c‖f‖Lp(Ω),

where c = ‖g‖Lp′ (Ω) and 1
p
+ 1

p′
= 1.
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Preliminaries

1.2 Hardy’s inequalities.

1.2.1 Hardy’s inequalities in Lp spaces (p ≥ 1).

This section presents the classical Hardy inequality, a historical result estab-
lished by G. H. Hardy in 1925, along with its generalization including power
weights, which was also examined by Hardy in 1928.

Theorem 1.2.1 (Discrete Case [20]). Let p > 1, ak ≥ 0 and

An =
k=n∑
k=1

ak,

then
∞∑
n=1

(
An
n

)p
≤
(

p

p− 1

)p ∞∑
k=1

apk, (1.28)

where the constant
(

p
p−1

)p
is sharp (the best possible).

Proof. 1. See [20].

2. For sharp constant : see [24].

Theorem 1.2.2 (Continuous Case [20]). Let p > 1, f be a nonnegative measur-
able function on (0,∞). The operator H is defined as follows:

(Hf)(x) :=
1

x

∫ x

0

f(y)dy,

then ∫ ∞

0

(
(Hf)(x)

)p
dx ≤

(
p

p− 1

)p ∫ ∞

0

(
f(x)

)p
dx. (1.29)

The constant
(

p
p−1

)p
is sharp.

Proof. We choose y = xs, we get(
1

x

∫ x

0

f(y)dy

)p
=

( ∫ 1

0

f(xs)ds

)p
.

Using Minkowski’s integral inequality (Theorem 1.1.9), gives( ∫ ∞

0

( ∫ 1

0

f(xs)ds

)p
dx

) 1
p

≤
∫ 1

0

( ∫ ∞

0

f(xs)pdx

) 1
p

ds

=

∫ 1

0

( ∫ ∞

0

f(u)p
du

s

) 1
p

ds

=

(
p

p− 1

)( ∫ ∞

0

(f(x))p dx

) 1
p

.
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Remark 1.2.1. The constant
(

p
p−1

)p
in Theorem 1.2.2 is sharp.(see [24]).

The following result originates from G. Hardy’s work in 1927.

Theorem 1.2.3 (weighted Hardy’s inequality [24]). Let p ≥ 1 and f be a non-
negative measurable function on (0,∞). If α < p− 1, then the inequality∫ ∞

0

(
(Hf)(x)

)p
xαdx ≤

(
p

p− 1− α

)p ∫ ∞

0

xαf p(x)dx, (1.30)

is valid and if −1 < α < p− 1 the constant
(

p
p−1−α

)p
is sharp.

Proof. Choose t = xs, we have(∫ ∞

0

(
1

x

∫ x

0

f(t)dt

)p
xαdx

) 1
p

=

(∫ ∞

0

(∫ 1

0

f(xs)ds

)p
xαdx

) 1
p

=

(∫ ∞

0

(∫ 1

0

f(xs)x
α
p ds

)p
dx

) 1
p

.

Now, applying Minkowski’s integral inequality, we get(∫ ∞

0

(∫ 1

0

f(xs)x
α
p ds

)p
dx

) 1
p

≤
∫ 1

0

(∫ ∞

0

f p(xs)xαdx

) 1
p

ds

=

∫ 1

0

(∫ ∞

0

f p(y)
(y
s

)α dy
s

) 1
p

ds

=

(∫ 1

0

s−
1
p
(α+1)ds

)(∫ ∞

0

f p(y)yαdy

) 1
p

=
p

p− α− 1

(∫ ∞

0

f p(y)yαdy

) 1
p

.

Remark 1.2.2. If we put α = 0, (p > 1) in Theorem 1.2.3, we obtain inequality
(1.29) of Theorem 1.2.2.

1.2.2 Classical Hardy’s inequalities for 0 < p < 1.

The Hardy inequality for 0 < p < 1 with weight xα, α ∈ R does not take
place for any function defined on (0,∞), on the other hand it is verified with the
additional assumption of monotonicity. This result was established by V. I. Bu-
renkov 1989 (see [10]) using a discretization technique based on the following
lemma.

Lemma 1.2.1. [10] Let α ∈ R+ then there exist constants c1, c2 such that for any
nonnegative monotone function on (0,∞), we have

c1

+∞∑
k=−∞

2k(α+1)f(2k) ≤
∫ ∞

0

xαf(x)dx ≤ c2

+∞∑
k=−∞

2k(α+1)f(2k), (1.31)

10
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where
c1 = 2−α−1, c2 = 2α.

Later V. I. Burenkov gave another proof where it specified the sharp constant
(see [10]).

Theorem 1.2.4. Let 0 < p < 1.

(a) If −1
p
< α < 1− 1

p
, then for any nonnegative and nonincreasing functions f

on (0,∞),

‖xα(Hf)(x)‖Lp(0,∞) ≤
(
1− 1

p
− α

)− 1
p

‖xαf(x)‖Lp(0,∞) . (1.32)

(b) If α < −1
p
, then for any nonnegative and nondecreasing functions f on (0,∞),

‖xα(Hf)(x)‖Lp(0,∞) ≤
(
pβ

(
p, p

(
1

p′
− α

))) 1
p

‖xαf(x)‖Lp(0,∞) , (1.33)

where β(u, v) is beta function.

(c) If α > 1
p
, then for any nonnegative and nonincreasing functions f on (0,∞),

‖xα(H∗f)(x)‖Lp(0,∞) ≤
(
pβ

(
p, p

(
α− 1

p′

))) 1
p

‖xαf(x)‖Lp(0,∞) , (1.34)

where (H∗f) (x) = 1
x

∫∞
x
f(y)dy.

We need the following lemma to prove Theorem 1.2.4.

Lemma 1.2.2. [7]

(a) Let −∞ < a < b ≤ +∞ and assume that the function f is nonnegative and
nonincreasing on the interval (a, b). If 0 < p ≤ 1, then( ∫ b

a

f(t)dt

)p
≤ p

∫ b

a

f p(t)(t− a)p−1dt. (1.35)

The inequality holds in the reversed direction if 1 ≤ p <∞.

(b) Let −∞ < a < b ≤ +∞ and f be a function that is nonnegative and nonde-
creasing on the interval (a, b). If 0 < p ≤ 1, then( ∫ b

a

f(t)dt

)p
≤ p

∫ b

a

f p(t)(b− t)p−1dt. (1.36)

The inequality holds in the reversed direction if 1 ≤ p <∞.

11
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(c) The factor p is sharp in these inequalities.

Proof. See [7].
Proof (Proof of Theorem 1.2.4 ). By applying Lemma 1.2.2 with a = 0, b = x

and Fubini’s theorem, we obtain

‖xα(Hf)(x)‖pLp(0,∞) =

∫ ∞

0

(
1

x

∫ x

0

f(t)dt

)p
xαpdx

=

∫ ∞

0

x(α−1)p

(∫ x

0

f(t)dt

)p
dx

≤
∫ ∞

0

x(α−1)pp

∫ x

0

tp−1f p(t)dtdx

=p

∫ ∞

0

tp−1f p(t)

(∫ ∞

t

x(α−1)pdx

)
dt,

since α < 1− 1
p
, we get∫ ∞

t

x(α−1)pdx =
−1

(α− 1)p+ 1
t(α−1)p+1,

consequently,∫ ∞

0

(
1

x

∫ x

0

f(t)dt

)p
xαpdx ≤

(
p

−αp+ p− 1

)∫ ∞

0

tp−1f p(t)tαp−p+1dt

=

(
p

−αp+ p− 1

)∫ ∞

0

f p(t)tαpdt.

(∫ ∞

0

(
1

x

∫ x

0

f(t)dt

)p
xαpdx

) 1
p

≤
(

p

−αp+ p− 1

) 1
p
(∫ ∞

0

f p(t)tαpdt

) 1
p

,

finally

‖xα(Hf)(x)‖Lp(0,∞) ≤
(
1− 1

p
− α

)− 1
p

‖xαf(x)‖Lp(0,∞) . (1.37)

(1.33) and (1.34) are proved similarly by applying (1.36) and (1.35), respec-
tively.

1.2.3 The Hardy-Steklov Operator.

In this section, we assume that the function f is defined on (0,∞). Let us start
with an example.
Example 1.2.1. The classical Hardy operator H1, defined as

(H1f) (x) =
1

x

∫ x

0

f(t)dt, 0 < x <∞, (1.38)

it is obviously related to the triangular domain

∆ =
{
(x, t); 0 < t < x <∞

}
, (seeF ig.01).
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This can be modified by considering the operator T1, defined by

(T1f)(x) =

∫ b(x)

0

f(y)dy, 0 < x <∞,

with boundary function b(x) satisfying the following conditions:

1. b(x) is differentiable and increasing functions on (0,∞).

2. 0 < b(x) <∞ for 0 < x <∞ and b(0) = 0, b(∞) = ∞.

The operator T1 is related to a ”perturbed” triangular domain

∆(b) =
{
(x, t) : 0 < x <∞, 0 < t < b(x)

}
, (seeF ig.02).
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Definition 1.2.1 (The Steklov operator[25]). For functions f defined on (−∞,+∞)

and for δ > 0, the Steklov operator Sδ is defined as

(Sδf)(x) =

∫ x+δ

x−δ
f(y)dy. (1.39)

Definition 1.2.2 (The Hardy-Steklov operator). (see [25] for more details).
The Hardy-Steklov operator is defined as

(Tf)(x) =
1

x

∫ b(x)

a(x)

f(y)dy, (1.40)

with boundary functions a(x), b(x) satisfying the following conditions:

1. a(x), b(x) are differentiable and increasing functions on (0,∞).

2. 0 < a(x) < b(x) <∞ for 0 < x <∞, a(0) = b(0) = 0, and a(∞) = b(∞) = ∞,

where f is a nonnegative measurable function on (0,∞).

1.3 Variable Lebesgue spaces Lp(x).

For the first time the variable exponent Lebesgue spaces appeared in the lit-
erature already in the thirties of the last century, being introduced by W. Orlicz.

14
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At the beginning these spaces had theoretical interest. Later on the end of the
last century, their first use beyond the function spaces theory itself, was in vari-
ational problems and studies of p(x)-Laplacian, in Zhikov [42], [44], which in
its turn gave an essential impulse for the development of this theory. The ex-
tensive investigation of these spaces was also widely stimulated by applications
to various problems of Applied Mathematics, e.g., in modelling of electrorheo-
logical fluids [32]. Variable Lebesgue spaces appeared as a special case of the
Musielak-Orlicz spaces introduced by H. Nakano and developed by J. Musielak
and W. Orlicz (see [30]). Further developement of this theory was connected
with the theory of modular functions.

1.3.1 Definitions.

Let Ω be a measurable subset of Rn with |Ω| > 0, and let P(Ω) denote the set
of summable functions such that p : Ω −→ [1,+∞].
We set:

Ωa = Ωa(p) =
{
x ∈ Ω, p(x) = a, a ∈ (1,∞)

}
,

in particular:

Ω1 =
{
x ∈ Ω, p(x) = 1

}
, Ω∞ =

{
x ∈ Ω, p(x) = ∞

}
,

Ω0 = Ω/(Ω1 ∪ Ω∞),

p = ess sup
x∈Ω

p(x), p = ess inf
x∈Ω

p(x), if |Ω0| > 0,

cp = ‖χΩ1‖∞ + ‖χΩ∞‖∞,

rp = 1 +
1

p
− 1

p
,

where χ is the characteristic function of the corresponding sets.

Definition 1.3.1. [28] We denote by Lp(x)(Ω) the set of measurable functions f
such that:

ρp(f) =

∫
Ω/Ω∞

|f(x)|p(x)dx+ ‖f‖L∞(Ω∞). (1.41)

The functional ρp(f) : Lp(x)(Ω) −→ [0,∞) is called modular of the space Lp(x)(Ω).
In the following, we cite certain properties of ρp(f).

Proposition 1.3.1. [28] Let p(x) ∈ P(Ω)

1. ρp(f) ≥ 0, ∀f ∈ Lp(x)(Ω).

2. ρp(f) = 0 if and only if f(x) = 0 a.e.
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3. If ρp(−f) = ρp(f), ∀f ∈ Lp(x)(Ω).

4. ρp(f) is convexe.

5. If |f(x)| ≥ |g(x)| a.e., and if ρp(f) <∞, then ρp(f) ≥ ρp(g).

6. If 0 < ρp(f) < ∞ then the mapping λ 7→ ρp
(
f
λ

)
is continuous and non-

ineacresing on [1,∞).

Proof. (1), and (2) are obtained from the properties of the Lebesgue integral.
(3) Obvious equality.
(4) See [28]
(5) is deduced from a property of the Lebesgue integral.
(6) Let λ1 ≥ λ2 ≥ 1 then

1

λ1
≤ 1

λ2

|f(x)|
λ1

≤ |f(x)|
λ2∫

Ω

|f(x)|
λ1

≤
∫
Ω

|f(x)|
λ2

,

then ρp(λ1) ≤ ρp(λ2).
For the proof of continuity see [28].

Definition 1.3.2. [28] We define the following norm on Lp(x)(Ω) :

‖f‖Lp(x)(Ω) = inf
{
λ > 0 : ρp

(
f

λ

)
≤ 1

}
. (1.42)

Remark 1.3.1. If p(x) = p

ρp

(
f

λ

)
=

∫ ∣∣∣∣f(x)λ
∣∣∣∣p(x) dx

=

∫ ∣∣∣∣f(x)λ
∣∣∣∣p dx

=
1

λp

∫
|f |p ≤ 1,

so ∫
|f |p ≤ λp implies

(∫
|f |p
) 1

p

≤ λ.

Then ∥∥f∥∥
Lp(x)(Ω)

=

{
infλ > 0, such that ρp

(
f

λ

)
≤ 1

}
=

(∫
|f |p
) 1

p

=
∥∥f∥∥

Lp
.
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Proposition 1.3.2. Let |Ω∞| = 0, then for all s, 1
p
≤ s <∞,

‖|f |s‖Lp(x)(Ω) = ‖f‖sLsp(x)(Ω).

Proof. Since |Ω∞| = 0, and if we set µ = λ
1
s , then

‖|f |s‖Lp(x)(Ω) = inf
{
λ > 0 : ρp

(
|f |s

λ

)
≤ 1
}

= inf
{
λ > 0 :

∫
Ω

(
|f(x)|s

λ

)p(x)
dx ≤ 1

}
= inf

{
µs > 0 :

∫
Ω

(
|f(x)|
µ

)sp(x)
dx ≤ 1

}
=‖f‖sLsp(x)(Ω).

Lemma 1.3.1. Let f ∈ Lp(x)(Ω), then

ρp

(
f

‖f‖Lp(x)(Ω)

)
≤ 1, ∀f, where 0 < ‖f‖Lp(x)(Ω) <∞. (1.43)

Proof. 1. If x ∈ Ω∞, (1.43) is obvious.

2. If x /∈ Ω∞, fix a decreasing sequence {λn} such that {λn} −→ ‖f‖Lp(x)(Ω),
hence the sequence

(
|f |
λn

)
n
is increasing and,(

|f |
λn

)
−→ |f |

‖f‖Lp(x)(Ω)

.

Then by Fatou’s lemma and the property (6) of proposition 1.3.1 and the
definition of the modular, we get

∫
Ω

(
|f |

‖f‖Lp(x)(Ω)

)p(x)

dx ≤ lim
n→∞

∫
Ω

(
|f |
λn

)p(x)
dx ≤ 1.

Finally, we have ρp
(

f
∥f∥Lp(x)(Ω)

)
< 1.

Corollary 1.3.1. Let f ∈ Lp(x)(Ω), such that 0 < ‖f‖Lp(x)(Ω) <∞.

1. If ‖f‖Lp(x)(Ω) ≤ 1, then ρp(f) ≤ ‖f‖Lp(x)(Ω).

2. If ‖f‖Lp(x)(Ω) > 1, then ρp(f) > ‖f‖Lp(x)(Ω).

Proof. See [14].
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1.3.2 The classical inequalities on Lp(x).

Definition 1.3.3. Let p(x) ∈ [1,∞), then we say that the function q(x) is the con-
jugate of p(x) if:

q(x) =


∞ for x ∈ Ω1,

1 for x ∈ Ω∞,
p(x)
p(x)−1

for x ∈ Ω0.

Theorem 1.3.1 (Hölder’s Inequality[14]). Let p(x), q(x) ∈ P(Ω) for all f ∈
Lp(x)(Ω) and g ∈ Lq(x)(Ω), fg ∈ L1(Ω), then∫

Ω

|f(x)g(x)|dx ≤ rp‖f‖Lp(x)(Ω)‖g‖Lq(x)(Ω), (1.44)

holds, where rp = 1 + 1
p
− 1

p
, with 1

p(x)
+ 1

q(x)
= 1 and

‖f‖Lp(x)(Ω) = inf
{
λ > 0 : ρp

(
f

λ

)
≤ 1

}
.

Proof. See [14].

Remark 1.3.2. If p(x) = p, q(x) = q then p = p and rp = 1, so we find the Theorem
1.1.6 (inequality (1.16)).

Lemma 1.3.2. [14] Let 0 < r(x) ≤ p(x) < p <∞, x ∈ Ω/Ω∞, then

‖f‖rLp(x)(Ω) ≤
∥∥f r(x)∥∥

L p(x)
r(x)

(Ω)
≤ ‖f‖rLp(x)(Ω) , for ‖f‖Lp(x)(Ω) ≥ 1, (1.45)

and

‖f‖rLp(x)(Ω) ≤
∥∥f r(x)∥∥

L p(x)
r(x)

(Ω)
≤ ‖f‖rLp(x)(Ω) , for ‖f‖Lp(x)(Ω) ≤ 1. (1.46)

Proof. See [14].

Proposition 1.3.3. [14] Let p(x) ≥ 1, q(x) ≥ 1 and r(x) ≥ 1 where 1
p(x)

+ 1
q(x)

= 1
s(x)

,
and let supx∈Ω/Ω∞ s(x) <∞, then

‖fg‖Ls(x)(Ω) ≤ C‖f‖Lp(x)(Ω)‖g‖Lq(x)(Ω), (1.47)

where C = sup s(x)
p(x)

+ sup s(x)
q(x)

.

Proof. See [14].

Remark 1.3.3. If s(x) = 1, we find the inequality (1.44) with C = rp.

Remark 1.3.4. If p(x) = p, q(x) = q and s(x) = s, then C = 1 and we get the
Corollary 1.1.3.
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We reference an additional standard definition analogous to a standard estab-
lished in the context of Orlicz spaces (see [30]).

Definition 1.3.4. [14] Let f ∈ Lp(x)(Ω). We define the following norm on Lp(x)(Ω):

‖f‖(1)Lp(x)(Ω) = sup
ρq(ψ)≤1

∣∣∣∣∫
Ω

f(x)ψ(x)dx

∣∣∣∣ <∞, (1.48)

where 1
p(x)

+ 1
q(x)

= 1.

Proposition 1.3.4 (Minkowski’s inequalities[14]). If f, g ∈ Lp(x)(Ω), then

‖f + g‖(1)Lp(x)(Ω) ≤ ‖f‖(1)Lp(x)(Ω) + ‖g‖(1)Lp(x)(Ω). (1.49)

Proof.

‖f + g‖(1)Lp(x)(Ω) = sup
ρq(ψ)≤1

∣∣∣∣∫
Ω

(
f(x) + g(x)

)
ψ(x)dx

∣∣∣∣
≤ sup

ρq(ψ)≤1

∣∣∣∣∫
Ω

f(x)ψ(x)dx

∣∣∣∣+ sup
ρq(ψ)≤1

∣∣∣∣∫
Ω

g(x)ψ(x)dx

∣∣∣∣
=‖f‖(1)Lp(x)(Ω) + ‖g‖(1)Lp(x)(Ω).

Lemma 1.3.3. Let n ∈ N, fi(x) ∈ Lp(x), i = {1, 2..., n}, then∥∥∥∥∥
i=n∑
i=1

fi

∥∥∥∥∥
(1)

Lp(x)(Ω)

≤
i=n∑
i=1

∥∥fi∥∥(1)
Lp(x)(Ω)

, (1.50)

Proof. By induction.
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Chapter 2

Some estimates for Hardy-Steklov
type operators

2.1 Introduction

It is well-known that for Lp spaces with 0 < p < 1, the Hardy inequality is
not satisfied for arbitrary nonnegative measurable functions, but is satisfied for
nonnegative monotone functions (see [10]).
In 2013 Rovshan A. Bandaliev et al. established some estimates for Hardy
operators for monotone functions in variable exponent Lebesgue spaces with
0 < p(x) < 1. The aim of this chapter is to establish some new estimates for the
Hardy-Steklov type operator. This chapter is structured into two sections:

1. Section one: The objective of this section is to establish some new integral
inequalities with 0 < p < 1 for nonnegative function under weaker condi-
tion than monotonicity ( see [35] for more details), via Hardy–Steklov-type
operators ( this work is published, see [18]).

2. Section two: The investigations of the Hardy inequality in variable ex-
ponent Lebesgue spaces Lp(x) with 0 < p(x) ≤ 1, are much less known. R.A
Bandaliev and A. Senouci et al. have established some weighted inequali-
ties for the classical Hardy operator acting from one weighted variable ex-
ponent Lebesgue spaces to another weighted variable exponent Lebesgue
spaces with 0 < p(x) ≤ 1 for nonnegative monotone and quasi-monotone
functions defined on (0,∞) (see [2] and [36]). In this section we extend
some results of [2] and [36] for the Hardy-Steklov type operators (see [16]).
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2.2 Some estimates for Hardy-Steklov type operators for
monotone functions with 0 < p < 1.

Throughout this section, we will assume that the function f is a Lebesgue
measurable function on (0,∞).

2.2.1 Introduction.

The following Lemma and Theorem were proved in [35].

Lemma 2.2.1. Let 0 < p < 1, c1 > 0 and f be a nonnegative measurable function
on (0;∞), such that for all x > 0,

f(x) ≤ c1
x

( ∫ x

0

f p(y)yp−1dy

) 1
p

. (2.1)

Then ( ∫ x

0

f(y)dy

)p
≤ c2

∫ x

0

f p(y)yp−1dy, (2.2)

where
c2 = c

p(1−p)
1 .

The classical Hardy operators are defined as follows:

(H1f) (x) =
1

x

∫ x

0

f(y)dy, (H2f) (x) =
1

x

∫ ∞

x

f(y)dy.

Theorem 2.2.1 ([35]). Let 0 < p < 1, α < 1 − 1
p
and c1 > 0. If f is nonnegative

measurable function on (0,∞) and satisfies (2.1) for all x > 0, then

‖xα(H1f)(x)‖Lp(0,∞) ≤ c3‖xαf(x)‖Lp(0,∞), (2.3)

where
c3 = c1−p1

(
1− α− 1

p

)− 1
p
p−

1
p .

The constant c3 is sharp (the best possible).

Remark 2.2.1. If f is a nonincreasing function on (0,∞), then (2.1) is satisfied
with c1 = p

1
p . For such functions inequality (2.3) takes the form

‖xα(H1f)(x)‖Lp(0,∞) ≤
(
pp
(
1− α− 1

p

))− 1
p

‖xαf(x)‖Lp(0,∞). (2.4)

The factor
(
pp
(
1− α− 1

p

))− 1
p is sharp. Inequality (2.4) was proved earlier (for

more details, see [10]).
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The well-known Hardy–Steklov operator is defined as follows

(Tf)(x) =
1

x

∫ b(x)

a(x)

f(y)dy.

Where f is a nonnegative measurable function on (0,∞), with the boundary func-
tions a(x), b(x) satisfying the following conditions.

1. a(x), b(x) are differentiable and increasing functions on (0,∞).

2. 0 < a(x) < b(x) <∞ for 0 < x <∞, a(0) = b(0) = 0 and a(∞) = b(∞) = ∞.

The objective of this section is to extend the results of [35] to Hardy-Steklov
type operators T1 and T2 defined as follows:

(T1f)(x) =
1

x

∫ b(x)

0

f(y)dy,

with boundary function b(x) satisfying the following conditions:

1. b(x) is differentiable and increasing function on (0,∞).

2. 0 < b(x) <∞ for 0 < x <∞ and b(0) = 0, b(∞) = ∞.

(T2f)(x) =
1

x

∫ ∞

a(x)

f(y)dy,

with boundary function a(x) satisfying the following conditions:

1. a(x) is differentiable and increasing function on (0,∞).

2. 0 < a(x) <∞ for 0 < x <∞ and a(0) = 0, a(∞) = ∞.

2.2.2 Main results

Throughout this section, we will assume that the function f is a nonnegative
measurable function on (0,∞).

Theorem 2.2.2. Let 0 < p < 1, α < 1 − 1
p
, and 1

p
+ 1

p′
= 1. If f is a nonnegative

measurable function on (0,∞) and satisfies (2.1) for all x > 0, then

‖xα(T1f)(x)‖Lp(0,∞) ≤ c4

∥∥∥x 1
p′
(
b−1(x)

)α− 1
p′ f(x)

∥∥∥
Lp(0,∞)

,

where
c4 = c1−p1

(
(1− α)p− 1

)− 1
p
.
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Proof. Choose t = b(x), hence x = b−1(t), where b−1(t) is the reciprocal function
of b(t). Applying (2.2) and Fubini’s Theorem, we get

‖xα(T1f)(x)‖Lp(0,∞) =

(∫ ∞

0

x(α−1)p

(∫ b(x)

0

f(y)dy

)p

dx

) 1
p

=

(∫ ∞

0

(
b−1(t)

)(α−1)p
(∫ t

0

f(y)dy

)p (
b−1(t)

)′
dt

) 1
p

≤(c2)
1
p

(∫ ∞

0

(
b−1(t)

)(α−1)p
(∫ t

0

f p(y)yp−1dy

)(
b−1(t)

)′
dt

) 1
p

=(c2)
1
p

(∫ ∞

0

f p(y)yp−1

(∫ ∞

y

(
b−1(t)

)′ (
b−1(t)

)(α−1)p
dt

)
dy

) 1
p

.

Since α < 1− 1
p
and b−1(∞) = ∞, we have∫ ∞

y

(
b−1(t)

)′ (
b−1(t)

)(α−1)p
dt =

1

(1− α)p− 1

[
b−1(y)

](α−1)p+1
,

consequently,

‖xα(T1f)(x)‖Lp(0,∞) ≤
(

(c1)
p(1−p)

(1− α)p− 1

) 1
p
[∫ ∞

0

f p(y)yp−1
[
b−1(y)

](α−1)p+1
dy

] 1
p

= (c1)
1−p
(
(1− α)p− 1

)− 1
p

[∫ ∞

0

(
f(y)y1−

1
p
[
b−1(y)

](α−1)+ 1
p

)p
dy

] 1
p

= (c1)
1−p
(
(1− α)p− 1

)−1
p

[∫ ∞

0

(
f(y)y

1
p′
[
b−1(y)

]α− 1
p′
)p
dy

] 1
p

= c4

∥∥∥x 1
p′
(
b−1(x)

)α− 1
p′ f(x)

∥∥∥
Lp(0,∞)

.

We get the desired inequality.

Remark 2.2.2. If f is a nonincreasing function on (0,∞), we obtain the following
inequality:

‖xα(T1f)(x)‖Lp(0,∞) ≤
(

p1−p

(1− α)p− 1

) 1
p ∥∥∥x 1

p′
(
b−1(x)

)α− 1
p′ f(x)

∥∥∥
Lp(0,∞)

.

Choosing b(x) = βx in Theorem 2.2.2, where β > 0, we have the following result.

Corollary 2.2.1. Let f satisfy the assumptions of Theorem 2.2.2 and

(S1f)(x) =
1

x

∫ βx

0

f(y)dy, for x > 0,

then
‖xα(S1f)(x)‖Lp(0,∞) ≤

(
1

β

)α− 1
p′

c4 ‖xαf(x)‖Lp(0,∞) .
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Remark 2.2.3. Taking β = 1 in the above corollary, we get Theorem 2.2.1.

For the next results we need the following

Lemma 2.2.2. Let 0 < p < 1. Suppose that a nonnegative function f satisfies the
condition: there is a positive constant c5 such that for all x > 0,

f(x) ≤ c5
x

( ∫ ∞

x

f p(y)yp−1dy
) 1

p
, (2.5)

then ( ∫ ∞

x

f(y)dy

)p
≤ c6

∫ ∞

x

f p(y)yp−1dy, (2.6)

where
c6 = c

p(1−p)
5 .

Proof. Note that
f(x) = (f p(x)xp)

1
p
−1 f p(x)xp−1.

Using (2.5), we have

xpf p(x) ≤ cp5

( ∫ ∞

x

f p(y)yp−1dy

)
,

therefore,

(xpf p(x))
1
p
−1 ≤ c1−p5

( ∫ ∞

x

f p(y)yp−1dy

) 1
p
−1

.

Multiplying by f p(x)xp−1 and putting 0 < t ≤ x, we get

f(x) ≤ c1−p5

( ∫ ∞

t

f p(y)yp−1dy

) 1
p
−1

f p(x)xp−1,

consequently∫ ∞

t

f(x)dx ≤ c1−p5

( ∫ ∞

t

f p(y)yp−1dy

) 1
p
−1 ∫ ∞

t

f p(x)xp−1dx

= c1−p5

( ∫ ∞

t

f p(x)xp−1dx

) 1
p
−1 ∫ ∞

t

f p(x)xp−1dx

= c1−p5

( ∫ ∞

t

f p(x)xp−1dx

) 1
p

.

Theorem 2.2.3. Let 0 < p < 1, α > 1 − 1
p
. If f is a nonnegative and measurable

function on (0,∞) and satisfies (2.5) for all x > 0, then

‖xα(T2f)(x)‖Lp(0,∞) ≤ c7

∥∥∥x 1
p′
(
a−1(x)

)α− 1
p′ f(x)

∥∥∥
Lp(0,∞)

,

where
c7 = c1−p5

(
(α− 1)p+ 1

)− 1
p .
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Proof. Put t = a(x), then a−1(t), where a−1(t) is the reciprocal function of a(t).
Applying inequality (2.6) and Fubini’s Theorem, we get

‖xα(T2f)(x)‖Lp(0,∞) =

(∫ ∞

0

x(α−1)p

(∫ ∞

a(x)

f(y)dy

)p
dx

) 1
p

=

(∫ ∞

0

(
a−1(t)

)(α−1)p
(∫ ∞

t

f(y)dy

)p (
a−1(t)

)′
dt

) 1
p

≤(c6)
1
p

(∫ ∞

0

(
a−1(t)

)(α−1)p
(∫ ∞

t

f p(y)yp−1dy

)(
a−1(t)

)′
dt

) 1
p

≤(c6)
1
p

(∫ ∞

0

f p(y)yp−1

(∫ y

0

(a−1(t))′
(
a−1(t)

)(α−1)p
dt

)
dy

) 1
p

.

Since α > 1− 1
p
and a−1(0) = 0, we have∫ y

0

(
a−1(t)

)′ (
a−1(t)

)(α−1)p
dt =

1

(α− 1)p+ 1

[
a−1(y)

](α−1)p+1
,

consequently,

‖xα(T2f)(x)‖Lp(0,∞) ≤

(
c
p(1−p)
5

(α− 1)p+ 1

) 1
p [∫ ∞

0

f p(y)yp−1
[
a−1(y)

](α−1)p+1
dy

] 1
p

= c1−p5 ((α− 1)p+ 1)−
1
p

[∫ ∞

0

(
f(y)y1−

1
p
[
a−1(y)

](α−1)+ 1
p

)p
dy

] 1
p

= c7

∥∥∥x 1
p′
(
a−1(x)

)α− 1
p′ f(x)

∥∥∥
Lp(0,∞)

.

Choosing a(x) = λx in Theorem 2.2.3, where λ > 0, we obtain the following
result.

Corollary 2.2.2. Let f satisfy the assumptions of Theorem 2.2.3 and

(S2f)(x) =
1

x

∫ ∞

λx

f(y)dy for x > 0.

Then the inequality.

‖xα(S2f)(x)‖Lp(0,∞) ≤
(
1

λ

)α− 1
p′

c7 ‖xαf(x)‖Lp(0,∞) ,

holds.

Remark 2.2.4. Taking λ = 1, we get

‖xα(H2f)(x)‖Lp(0,∞) ≤ c7 ‖xαf(x)‖Lp(0,∞) .

Now, we have obtained the analogue of Theorem 2.2.1 for H2 which is the dual
of Hardy averaging operator H1.
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2.3 On Hardy-Steklov type operators for quasi-monotone
functions in weighted variable Lebesgue exponent spaces.

The objective of this section is to extend the results of [36] and [2] to Hardy-
Steklov type operators T1 and T2 defined as follows :( Submitted work see [16]).
Let f be a nonnegative measurable function on (0,∞).

Let
(T1f)(x) =

1

x

∫ b(x)

0

f(y)dy,

with boundary function b(x) satisfying the following conditions:

1. b(x) differentiable and increasing function on (0,∞).

2. 0 < b(x) <∞ for 0 < x <∞, and b(0) = 0, b(∞) = ∞.

Let
(T2f)(x) =

1

x

∫ ∞

a(x)

f(y)dy,

with boundary function a(x) satisfying the following conditions:

1. a(x) differentiable and increasing function on (0,∞).

2. 0 < a(x) <∞ for 0 < x <∞, and a(0) = 0, a(∞) = ∞.

2.3.1 Introduction

We state the following definitions, Lemmas, Corollaries and Theorems that
are useful in the proofs of main results.

Definition 2.3.1. By Lp(x),w(x)(Ω) we denote the set of all measurable function f
on Ω such that

ρp(x),w(x)(f) =

∫
Ω

(|f(x)|w(x))p(x) dx <∞. (2.7)

Note that the expression

‖f‖Lp(x),w(x)(Ω) = ‖f‖Lp,w,Ω
= inf

{
λ > 0;

∫
Ω

(
|f(x)|ω(x)

λ

)p(x)
dx ≤ 1

}
, (2.8)

defines a quasi-norm onLp(x),w(x)(Ω). Lp(x),w(x)(Ω) is a quasi-Banach space equipped
with this quasi-norm (see [33]).

The following definition and statement were introduced in [7].
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Definition 2.3.2. We say that a nonnegative function f is quasi-monotone on
(0,∞), if for some real number α, xαf(x) is a decreasing or an increasing function
of x. More precisely, given β ∈ R we say that f ∈ Qβ if x−βf(x) is nonincreasing
and f ∈ Qβ if x−βf(x) is nondecreasing.

Proposition 2.3.1. (a) Let −∞ < β < +∞ ,f ∈ Qβ, 0 ≤ a < b ≤ ∞ for β > −1

and 0 < a < b ≤ ∞ for β ≤ −1. If 0 < p ≤ 1 and β 6= −1, then( ∫ b

a

f(t)dt

)p
≤ p|β + 1|1−p

∫ b

a

(∣∣tβ+1 − aβ+1
∣∣

tβ

)p−1

f p(t)dt. (2.9)

If 0 < p ≤ 1 and β = −1, then( ∫ b

a

f(t)dt

)p
≤ p

∫ b

a

(
t ln t

a

)p−1

f p(t)dt. (2.10)

The inequalities hold in the reversed direction if 1 ≤ p <∞.

(b) Let −∞ < β < +∞ ,f ∈ Qβ, 0 ≤ a < b ≤ ∞ for β < −1 and 0 ≤ a < b < ∞ for
β ≥ −1. If 0 < p ≤ 1 and β 6= −1, then( ∫ b

a

f(t)dt

)p
≤ p|β + 1|1−p

∫ b

a

(∣∣tβ+1 − bβ+1
∣∣

tβ

)p−1

f p(t)dt. (2.11)

If 0 < p ≤ 1 and β = −1, then( ∫ b

a

f(t)dt

)p
≤ p

∫ b

a

(
t ln b

t

)p−1

f p(t)dt. (2.12)

The inequalities hold in the reversed direction if 1 ≤ p <∞.

(c) The constants in these inequalities are the best possible in all cases.

Remark 2.3.1. 1. If we put a = 0 and b = y in (2.9) and (2.11), we have
respectively

(a) If β > −1, f ∈ Qβ and 0 < y ≤ ∞.( ∫ y

0

f(t)dt

)p
≤ p(β + 1)1−p

∫ y

0

tp−1f p(t)dt. (2.13)

(b) If β > −1, f ∈ Qβ and 0 ≤ y <∞.( ∫ y

0

f(t)dt

)p
≤ p(β + 1)1−p

∫ y

0

[
t−β
(
yβ+1 − tβ+1

)]p−1
f p(t)dt. (2.14)
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2. If we put a = y and b = ∞ in (2.11), we get( ∫ ∞

y

f(t)dt

)p
≤ p|β + 1|1−p

∫ ∞

y

tp−1f p(t)dt, (2.15)

where f ∈ Qβ and β < −1.

The following Corollary, Lemma and Theorems were proved in [2].
Corollary 2.3.1. Let Ω ⊂ Rn be a measurable set and p, q be measurable func-
tions on Ω, 0 < p ≤ p(x) ≤ q(x) ≤ q < ∞ and r(x) = p(x)q(x)

q(x)−p(x) . Suppose that w1 and
w2 are weight functions defined in Ω satisfying the condition∥∥∥∥w1

w2

∥∥∥∥
Lr(x)(Ω)

<∞.

Then the inequality

‖f‖Lp(x),w1
(Ω) ≤

(
A+B + ‖χΩ2‖L∞(Ω)

) 1
p

∥∥∥∥w1

w2

∥∥∥∥
Lr(x)(Ω)

‖f‖Lq(x),w2
(Ω) , (2.16)

holds for every f ∈ Lq(x),w2(x)(Ω), where

Ω1 = {x ∈ Ω : p(x) < q(x)} , Ω2 = {x ∈ Ω : p(x) = q(x)},

A = sup
x∈Ω1

p(x)

q(x)
, B = sup

x∈Ω1

q(x)− p(x)

q(x)
.

If |Ω2| = 0, the constant in (2.16) is sharp. If |Ω2| > 0, then it is not sharp.

Remark 2.3.2. An improvement of the constant in (2.16) was obtained in [12].

‖f‖Lp(x),w1
(Ω) ≤ (1 +M −m)

1
p

∥∥∥∥w1

w2

∥∥∥∥
Lr(x)(Ω)

‖f‖Lq(x),w2
(Ω), (2.17)

where
M = ess sup

x∈Ω

p(x)

q(x)
, m = ess inf

x∈Ω

p(x)

q(x)
, p = ess inf

x∈Ω
p(x).

The constant in (2.17) is sharp for any measurable set Ω.

Lemma 2.3.1. Let Ω1 ⊂ Rn, Ω2 ⊂ Rm be measurable sets, p be a measurable
function on Ω1 and q be a measurable function on Ω2, 1 ≤ p ≤ p(x) ≤ q(y) ≤ q <∞
for all x ∈ Ω1 ⊂ Rn and y ∈ Ω2 ⊂ Rm. If p ∈ C(Ω1), q ∈ C(Ω2), then the inequality∥∥∥‖f‖Lp(x)(Ω1)

∥∥∥
Lq(x)(Ω2)

≤ Cp,q

∥∥∥‖f‖Lq(x)(Ω2)

∥∥∥
Lp(x)(Ω1)

, (2.18)

is valid, where

Cp,q =

(
‖χ∆1‖∞ + ‖χ∆2‖∞ +

p

q
−
p

q

)
(‖χ∆1‖∞ + ‖χ∆2‖∞) , (2.19)

q = ess infΩ2 q(x), q = ess supΩ2
q(x),∆1 = {(x, y) ∈ Ω1 × Ω2; p(x) = q(y)},∆2 =

(Ω1 × Ω2)\∆1, C(Ω1), C(Ω2) are the space of continuous functions in Ω1, Ω2 and
f : Ω1 × Ω2 → R is any measurable function such that

∥∥∥‖f‖Lq(x)(Ω2)

∥∥∥
Lp(x)(Ω1)

<∞.
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Theorem 2.3.1. Let p, q be measurable functions on (0,∞), 0 < p ≤ p(x) ≤ q(x) ≤
q < 1, r(x) =

pp(x)

p(x)−p , for x ∈ (0,∞) and f be a nonnegative and nonincreasing
function defined on (0,∞). Suppose that w1 and w2 are weight functions defined
on (0,∞). Then for any f ∈ Lp(x),w1(0,∞) the inequality

‖H1f‖Lq(x),w2(x)
(0,∞) ≤ p

1
pCpqdp

∥∥∥∥∥∥∥
t

1
p′
∥∥∥w2(x)

x

∥∥∥
Lq(x)(t,∞)

w1(x)

∥∥∥∥∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),w1(x)
(0,∞) , (2.20)

holds, where (H1f) (x) =
1
x

∫ x
0
f(y)dy and

Cp,q =

(
‖χ∆1‖L∞(0,∞) + ‖χ∆2‖L∞(0,∞) + p

(
1

q
− 1

q

))(
‖χS1‖L∞(0,∞) + ‖χS2‖L∞(0,∞)

)
,

S1 = {x ∈ (0,∞) : p(x) = p}, S2 = (0,∞)\S1 and

dp =

(
1 +

p− p

p
+ ‖χS1‖L∞(0,∞)

) 1
p

Theorem 2.3.2. Let p, q be measurable functions on (0,∞), 0 < p ≤ p(x) ≤ q(x) ≤
q < 1, r(x) =

pp(x)

p(x)−p , for x ∈ (0, 1) and f be a nonnegative and nondecreasing
function defined on (0, 1). Suppose that w1 and w2 are weight functions defined
on (0, 1). Then for any f ∈ Lp(x),w1(0,∞) the inequality

‖H1f‖Lq(x),w2(x)
(0,1) ≤

p
1
pCpqdp

∥∥∥∥∥∥
∥∥∥∥∥ [x− t]

1
p′ w2(x)

x

∥∥∥∥∥
Lq(x)(t,1)

1

w1(x)

∥∥∥∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),w1(x)
(0,1) , (2.21)

holds, where Cpq and dp are the constants in Theorem 2.3.1.

Theorem 2.3.3. Let p, q be measurable functions on (0,∞), 0 < p ≤ p(x) ≤ q(x) ≤
q < 1, r(x) =

pp(x)

p(x)−p , for x ∈ (0,∞) and f be a nonnegative and nonincreasing
function defined on (0,∞). Suppose that w1 and w2 are weight functions defined
on (0,∞). Then for any f ∈ Lp(x),w1(0,∞) the inequality

‖H2f‖Lq(x),w2(x)
(0,∞) ≤ p

1
pCpqdp

×

∥∥∥∥∥∥
∥∥∥∥∥ [t− x]

1
p′ w2(x)

x

∥∥∥∥∥
Lq(x)(0,t)

1

w1(x)

∥∥∥∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),w1(x)
(0,∞) , (2.22)

holds, where (H2f) (x) = 1
x

∫∞
x
f(y)dy and Cpq , dp are the constants in Theorem

2.3.1.

The following theorems were proved in [36].
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Theorem 2.3.4. Let p, q be measurable functions on (0,∞), 0 < p ≤ p(x) ≤ q(x) ≤
q < 1, r(x) = pp(x)

p(x)−p , for x ∈ (0,∞), β > −1 and f ∈ Qβ. Suppose that w1 and w2 are
weight functions defined on (0,∞). Then for any f ∈ Lp(x),w1(0,∞) the inequality

‖H1f‖Lq(x),w2(x)
(0,∞) ≤

p
1
p (β + 1)

1
p′Cpqdp

∥∥∥∥∥t 1
p′

∥∥∥∥w2(x)

x

∥∥∥∥
Lq(x)(t,∞)

1

w1(x)

∥∥∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),w1(x)
(0,∞) , (2.23)

holds, where Cpq and dp are the constants in Theorem 2.3.1.

Theorem 2.3.5. Let p, q be measurable functions on (0,∞), 0 < p ≤ p(x) ≤ q(x) ≤
q < 1, r(x) = pp(x)

p(x)−p , for x ∈ (0,∞), β < −1 and f ∈ Qβ. Suppose that w1 and w2 are
weight functions defined on (0,∞). Then for any f ∈ Lp(x),w1(0,∞) the inequality

‖H2f‖Lq(x),w2(x)
(0,∞) ≤

p
1
p |β + 1|

1
p′Cpqdp

∥∥∥∥∥t 1
p′

∥∥∥∥w2(x)

x

∥∥∥∥
Lq(x)(0,t)

1

w1(x)

∥∥∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),w1(x)
(0,∞) , (2.24)

holds, where Cpq and dp are the constants in Theorem 2.3.1.

Theorem 2.3.6. Let p, q be measurable functions on (0,∞), 0 < p ≤ p(x) ≤ q(x) ≤
q < 1, r(x) = pp(x)

p(x)−p , for x ∈ (0, 1), β > −1 and f ∈ Qβ. Suppose that w1 and w2 are
weight functions defined on (0, 1). Then for any f ∈ Lp(x),w1(0, 1) the inequality

‖H1f‖Lq(x),w2(x)
(0,1) ≤ p

1
p (β + 1)

1
p′Cpqdp

×

∥∥∥∥∥∥∥
∥∥∥∥∥∥
[
t−β(xβ+1 − tβ+1)

] 1
p′ w2(x)

x

∥∥∥∥∥∥
Lq(x)(t,1)

1

w1(x)

∥∥∥∥∥∥∥
Lr(x)(0,1)

‖f‖Lp(x),w1(x)
(0,1) , (2.25)

holds, where Cpq and dp are the constants in Theorem 2.3.1.

Theorem 2.3.7. Let p, q be measurable functions on (0,∞), 0 < p ≤ p(x) ≤ q(x) ≤
q < 1, r(x) = pp(x)

p(x)−p , for x ∈ (0,∞) and β = −1. Suppose that w1 and w2 are weight
functions defined on (0,∞).

1. If f ∈ Q−1, then the inequality

‖H2f‖Lq(x),w2(x)
(0,∞) ≤

p
1
pCpqdp

∥∥∥∥∥∥∥
∥∥∥[t ln t

x
]
1
p′ w2(x)

x

∥∥∥
Lq(x)(0,t)

w1(x)

∥∥∥∥∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),w1(x)
(0,∞) , (2.26)

holds.
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2. If f ∈ Q−1, then the inequality

‖H1f‖Lq(x),w2(x)
(0,∞) ≤

p
1
pCpqdp

∥∥∥∥∥∥∥
∥∥∥[t ln x

t
]
1
p′ w2(x)

x

∥∥∥
Lq(x)(t,∞)

w1(x)

∥∥∥∥∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),w1(x)
(0,∞) , (2.27)

holds.

Cpq and dp are the constants in Theorem 2.3.1.

2.3.2 Main results

Theorem 2.3.8. Let p, q be measurable functions on (0,∞), 0 < p ≤ p(x) ≤ q(x) ≤
q < 1, r(x) = pp(x)

p(x)−p , for x ∈ (0,∞), β > −1 and f ∈ Qβ. Suppose that w1 and w2 are
weight functions defined on (0,∞). Then for any f ∈ Lp(x),w1(0,∞) the inequality

‖T1f‖Lq(x),w2(x)
(0,∞) ≤Mpqp

1
p (β + 1)

− 1
p′ (1 +M −m)

1
p

×

∥∥∥∥∥t 1
p′

∥∥∥∥w2(b
−1(x))

b−1(x)

∥∥∥∥
Lq(b−1(x))(t,∞)

1

w1(x)

∥∥∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),w1(x)
(0,∞) , (2.28)

holds, where

Mp,q =

(
‖χ∆1‖L∞(0,∞) + ‖χ∆2‖L∞(0,∞) + p

( 1

q1
− 1

q2

))(
‖χS1‖L∞(0,∞) + ‖χS2‖L∞(0,∞)

)
,

and

q1 = ess inf
x∈(0,∞)

q(b−1(x)), q2 = ess sup
x∈(0,∞)

q(b−1(x)), S1 = {x ∈ (0,∞) : p(x) = p}, S2 = (0,∞)/S1.

Proof. Choose y = b(x), hence x = b−1(y) , where b−1(y) is the reciprocal function
of b(y) and by using (2.13), where p = p, we get

‖T1f‖Lq(x),w2(x)
(0,∞) =

∥∥∥∥∥w2(x)

x

∫ b(x)

0

f(t)dt

∥∥∥∥∥
Lq(x)(0,∞)

=

∥∥∥∥w2(b
−1(y))

b−1(y)

∫ y

0

f(t)dt

∥∥∥∥
Lq(b−1(y))(0,∞)

≤ p
1
p (β + 1)

1−p

p

∥∥∥∥∥w2 (b
−1(y))

b−1(y)

(∫ y

0

f p(t)tp−1dt

) 1
p

∥∥∥∥∥
Lq(b−1(y))(0,∞)

= p
1
p (β + 1)

− 1
p′

∥∥∥∥∥w2(b
−1(y))

b−1(y)

(∫ y

0

f p(t)tp−1dt

) 1
p

∥∥∥∥∥
Lq(b−1(y))(0,∞)
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= p
1
p (β + 1)

− 1
p′

∥∥∥∥∥
(∫ y

0

f p(t)

[
w2(b

−1(y))

b−1(y)

]p
tp−1dt

) 1
p

∥∥∥∥∥
Lq(b−1(y))(0,∞)

= p
1
p (β + 1)

− 1
p′

∥∥∥∥∫ y

0

f p(t)

[
w2(b

−1(y))

b−1(y)

]p
tp−1dt

∥∥∥∥ 1
p

L q(b−1(y))
p

(0,∞)

= p
1
p (β + 1)

− 1
p′

∥∥∥∥∫ ∞

0

f p(t)χ(0,y)(t)

[
w2(b

−1(y))

b−1(y)

]p
tp−1dt

∥∥∥∥ 1
p

L q(b−1(y))
p

(0,∞)

= p
1
p (β + 1)

− 1
p′

∥∥∥∥∥
∥∥∥∥f p(t)χ(0,y)(t)

[
w2(b

−1(y))

b−1(y)

]p
tp−1

∥∥∥∥
L1(0,∞)

∥∥∥∥∥
1
p

L q(b−1(y))
p

(0,∞)

.

Let p(x) = 1, q(x) = q(b−1(x))
p

, in Lemma 2.3.1 (Inequality (2.18)), thus

Mpq =

‖χ∆1‖L∞(0,∞) + ‖χ∆2‖L∞(0,∞) +
1(

q(b−1(x))
p

) − 1(
q(b−1(x))

p

)
(‖χS1‖L∞(0,∞) + ‖χS2‖L∞(0,∞)

)

=

(
‖χ∆1‖L∞(0,∞) + ‖χ∆2‖L∞(0,∞) +

(
p

q(b−1(x))
−

p

q(b−1(x))

))(
‖χS1‖L∞(0,∞) + ‖χS2‖L∞(0,∞)

)
=

(
‖χ∆1‖L∞(0,∞) + ‖χ∆2‖L∞(0,∞) + p

(
1

q(b−1(x))
− 1

q(b−1(x))

))(
‖χS1‖L∞(0,∞) + ‖χS2‖L∞(0,∞)

)
=

(
‖χ∆1‖L∞(0,∞) + ‖χ∆2‖L∞(0,∞) + p

(
1

q1
− 1

q2

))(
‖χS1‖L∞(0,∞) + ‖χS2‖L∞(0,∞)

)
.

Now applying Lemma 2.3.1, we obtain∥∥∥∥∥
∥∥∥∥f p(t)χ(0,y)(t)

[
w2(b

−1(y))

b−1(y)

]p
tp−1

∥∥∥∥
L1(0,∞)

∥∥∥∥∥
1
p

L q(b−1(y))
p

(0,∞)

≤Mpq

∥∥∥∥∥∥∥
∥∥∥∥f p(t)χ(0,y)(t)

[
w2(b

−1(y))

b−1(y)

]p
tp−1

∥∥∥∥
L q(b−1(y))

p

(0,∞)

∥∥∥∥∥∥∥
1
p

L1(0,∞)

=Mpq

∫ ∞

0

∥∥∥∥f p(t)χ(0,y)(t)

[
w2(b

−1(y))

b−1(y)

]p
tp−1

∥∥∥∥
L q(b−1(y))

p

(0,∞)

dt


1
p

=Mpq

∫ ∞

0

f p(t)tp−1

∥∥∥∥χ(0,y)(t)

[
w2(b

−1(y))

b−1(y)

]p∥∥∥∥
L q(b−1(y))

p

(0,∞)

dt


1
p

.
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The Fubini Theorem gives∫ ∞

0

f p(t)tp−1

∥∥∥∥χ(0,y)(t)

[
w2(b

−1(y))

b−1(y)

]p∥∥∥∥
L q(b−1(y))

p

(0,∞)

dt


1
p

=

∫ ∞

0

f p(t)tp−1

∥∥∥∥[w2(b
−1(y))

b−1(y)

]p∥∥∥∥
L q(b−1(y))

p

(t,∞)

dt


1
p

=

(∫ ∞

0

f p(t)tp−1

∥∥∥∥w2(b
−1(y))

b−1(y)

∥∥∥∥p
Lq(b−1(y))(t,∞)

dt

) 1
p

=

(∫ ∞

0

(
f(t)t

1
p′

∥∥∥∥w2(b
−1(y))

b−1(y)

∥∥∥∥
Lq(b−1(y))(t,∞)

)p

dt

) 1
p

=

∥∥∥∥∥f(t)t 1
p′

∥∥∥∥w2(b
−1(y))

b−1(y)

∥∥∥∥
Lq(b−1(y))(t,∞)

∥∥∥∥∥
Lp(0,∞)

.

Finally, from Remark 2.3.2, follows that∥∥∥∥∥f(t)t 1
p′

∥∥∥∥w2(b
−1(y))

b−1(y)

∥∥∥∥
Lq(b−1(y))(t,∞)

∥∥∥∥∥
Lp(0,∞)

≤ (1 +M −m)
1
p

∥∥∥∥∥t 1
p′

∥∥∥∥w2(b
−1(y))

b−1(y)

∥∥∥∥
Lq(b−1(y))(t,∞)

1

w1(y)

∥∥∥∥∥
Lr(y)(0,∞)

‖f‖Lp(y),w1(x)
(0,∞) ,

therefore
‖T1f‖Lq(x),w2(x)

(0,∞) ≤Mpqp
1
p (β + 1)

− 1
p′ (1 +M −m)

1
p

×

∥∥∥∥∥t 1
p′

∥∥∥∥w2(b
−1(x))

b−1(x)

∥∥∥∥
Lq(b−1(x))(t,∞)

1

w1(x)

∥∥∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),w1(x)
(0,∞) .

The following Theorem is proved analogously by applying remark 2.3.1 (in-
equality (2.14)).

Theorem 2.3.9. Let p, q be measurable functions on (0, 1), 0 < p ≤ p(x) ≤ q(x) ≤
q < 1, r(x) = pp(x)

p(x)−p , for x ∈ (0, 1), β > −1 and f ∈ Qβ. Suppose that w1 and w2 are
weight functions defined on (0, 1). Then for any f ∈ Lp(x),w1(0, 1) the inequality

‖T1f‖Lq(x),w2(x)
(0,1) ≤Mpqp

1
p (β + 1)

− 1
p′ (1 +M −m)

1
p

×

∥∥∥∥∥∥∥
∥∥∥∥∥∥
[
t−β(xβ+1 − tβ+1)

] 1
p′ w2(b

−1(x))

b−1(x)

∥∥∥∥∥∥
Lq(b−1(x))(t,b(1))

1

w1(x)

∥∥∥∥∥∥∥
Lr(x)(0,b(1))

‖f‖Lp(x),w1(x)
(0,b(1)) ,

(2.29)
holds, where Mpq, M and m are the constants in Theorem 2.3.8.
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Remark 2.3.3. If we put b(x) = x in Theorem 2.3.8 and Theorem 2.3.9, we get
Theorem 2.3.4 and Theorem 2.3.6 respectively, where dp is replaced by improved
constants (see remark 2.3.2) .

If we put β = 0 in Theorem 2.3.8 and Theorem 2.3.9, we get the following
Corollaries respectively.

Corollary 2.3.2. Let x ∈ (0,∞), 0 < p ≤ p(x) ≤ q(x) ≤ q < 1, r(x) = pp(x)

p(x)−p and f
be a nonnegative and nonincreasing function defined on (0,∞). Suppose that w1

and w2 are weight functions defined on (0,∞). Then for any f ∈ Lp(x),w1(0,∞) the
inequality

‖T1f‖Lq(x),w2(x)
(0,∞) ≤Mpqp

1
p (1 +M −m)

1
p

×

∥∥∥∥∥t 1
p′

∥∥∥∥w2(b
−1(x))

b−1(x)

∥∥∥∥
Lq(b−1(x))(t,∞)

1

w1(x)

∥∥∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),w1(x)
(0,∞) , (2.30)

holds, where Mpq, M and m are the constants in Theorem 2.3.8.

Corollary 2.3.3. Let 0 < p ≤ p(x) ≤ q(x) ≤ q < 1, r(x) = pp(x)

p(x)−p and f be a nonneg-
ative and nondecreasing function defined on (0, 1). Suppose that w1 and w2 are
weight functions defined on (0, 1). Then for any f ∈ Lp(x),w1(0, 1) the inequality

‖T1f‖Lq(x),w2(x)
(0,1) ≤Mpqp

1
p
(
1 +M −m

) 1
p

×

∥∥∥∥∥
∥∥∥∥(x− t)

1
p′

[
w2(b

−1(x))

b−1(x)

]∥∥∥∥
Lq(b−1(x))(t,b(1))

1

w1(x)

∥∥∥∥∥
Lr(x)(0,b(1))

‖f‖Lp(x),w1(x)
(0,b(1)), (2.31)

holds, where Mpq, M and m are the constants in Theorem 2.3.8.

Remark 2.3.4. If we set b(x) = x in Corollary 2.3.2 and Corollary 2.3.3, we get
Theorem 2.3.1 and Theorem 2.3.2 respectively, where dp is replaced by improved
constants (see remark 2.3.2).

Theorem 2.3.10. Let p, q be measurable functions on (0,∞), 0 < p ≤ p(x) ≤
q(x) ≤ q < 1, r(x) =

pp(x)

p(x)−p , for x ∈ (0,∞), β < −1 and f ∈ Qβ. Suppose that w1

and w2 are weight functions defined on (0,∞). Then for any f ∈ Lp(x),w1(0,∞) the
inequality

‖T2f‖Lq(x),w2(x)
(0,∞) ≤ p

1
p |β + 1|−

1
p′Npq

(
1 +M −m

) 1
p

×

∥∥∥∥∥t 1
p′

∥∥∥∥w2(a
−1(x))

a−1(x)

∥∥∥∥
Lq(a−1(x))(0,t)

1

w1(x)

∥∥∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),w1(x)
(0,∞) , (2.32)

holds, where M and m are the constants in Theorem 2.3.8 and
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Np,q =

(
‖χ∆1‖L∞(0,∞) + ‖χ∆2‖L∞(0,∞) + p

(
1

q3
− 1

q4

))(
‖χS1‖L∞(0,∞) + ‖χS2‖L∞(0,∞)

)
,

and

q3 = ess inf
x∈(0,∞)

q(a−1(x)), q4 = ess sup
x∈(0,∞)

q(a−1(x)), S1 = {x ∈ (0,∞) : p(x) = p}, S2 = (0,∞)/S1.

Proof. Choose y = a(x), hence x = a−1(y) , where a−1(y) is the reciprocal function
of a(y) and by using (2.15) where p = p, we get

‖T2f‖Lq(x),w2(x)
(0,∞) =

∥∥∥∥w2(x)

x

∫ ∞

a(x)

f(t)dt

∥∥∥∥
Lq(x)(0,∞)

=

∥∥∥∥w2(a
−1(y))

a−1(y)

∫ ∞

y

f(t)dt

∥∥∥∥
Lq(a−1(y))(0,∞)

≤ p
1
p |β + 1|

1−p

p

∥∥∥∥∥w2(a
−1(y))

a−1(y)

(∫ ∞

y

f p(t)tp−1dt

) 1
p

∥∥∥∥∥
Lq(a−1(y))(0,∞)

= p
1
p |β + 1|−

1
p′

∥∥∥∥∥
(∫ ∞

y

f p(t)

[
w2(a

−1(y))

a−1(y)

]p
tp−1dt

) 1
p

∥∥∥∥∥
Lq(a−1(y))(0,∞)

= p
1
p |β + 1|−

1
p′

∥∥∥∥∫ ∞

y

f p(t)

[
w2(a

−1(y))

a−1(y)

]p
tp−1dt

∥∥∥∥ 1
p

L q(a−1(y))
p

(0,∞)

= p
1
p |β + 1|−

1
p′

∥∥∥∥∫ ∞

0

f p(t)χ(y,∞)(t)

[
w2(a

−1(y))

a−1(y)

]p
tp−1dt

∥∥∥∥ 1
p

L q(a−1(y))
p

(0,∞)

= p
1
p |β + 1|−

1
p′

∥∥∥∥∥
∥∥∥∥f p(t)χ(y,∞)(t)

[
w2(a

−1(y))

a−1(y)

]p
tp−1

∥∥∥∥
L1(0,∞)

∥∥∥∥∥
1
p

L q(a−1(y))
p

(0,∞)

.

The rest is similar to the proof of Theorem 2.3.8.

Theorem 2.3.11. Let x ∈ (0,∞), 0 < p ≤ p(x) ≤ q(x) ≤ q < 1, r(x) = pp(x)

p(x)−p and f
be a nonnegative and nonincreasing function defined on (0,∞). Suppose that w1

and w2 are weight functions defined on (0,∞). Then for any f ∈ Lp(x),w1(0,∞) the
inequality

‖T2f‖Lq(x),w2(x)
(0,∞) ≤ Npqp

1
p (1 +M −m)

1
p

×

∥∥∥∥∥∥
∥∥∥∥∥(t− x)

1
p′w2(a

−1(x))

a−1(x)

∥∥∥∥∥
Lq(a−1(x))(0,t)

1

w1(x)

∥∥∥∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),w1(x)
(0,∞), (2.33)

holds, where Npq, M and m are the constants in Theorem 2.3.10.
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Proof. Let a = y, b = ∞ and β = 0 in (2.9), then∫ ∞

y

f(t)dt ≤ p
1
p

( ∫ ∞

y

(t− y)p−1f p(t)dt

) 1
p

. (2.34)

We apply inequality (2.34) with p = p and the rest is similar to the proof of
Theorem 2.3.8.

Remark 2.3.5. If we put a(x) = x in Theorem 2.3.10 and Theorem 2.3.11, we get
Theorem 2.3.5 and Theorem 2.3.3 respectively, where dp is replaced by improved
constants (see remark 2.3.2).

Now we consider the case β = −1.

Theorem 2.3.12. Let p, q be measurable functions on (0,∞), 0 < p ≤ p(x) ≤
q(x) ≤ q < 1, r(x) = pp(x)

p(x)−p for x ∈ (0,∞) and β = −1. Suppose that w1 and w2 are
weight functions defined on (0,∞).

1. If f ∈ Q−1, then the inequality

‖T2f‖Lq(x),w2(x)
(0,∞) ≤ Npqp

1
p (1 +M −m)

1
p

×

∥∥∥∥∥∥∥
∥∥∥∥∥∥
(
t ln t

x

) 1
p′ w2(a

−1(x))

a−1(x)

∥∥∥∥∥∥
Lq(a−1(x))(0,t)

1

w1(x)

∥∥∥∥∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),w1(x)
(0,∞) , (2.35)

holds , where Npq, M and m are the constants in Theorem 2.3.10.

2. If f ∈ Q−1, then the inequality

‖T1f‖Lq(x),w2(x)
(0,∞) ≤Mpqp

1
p (1 +M −m)

1
p

×

∥∥∥∥∥∥∥
∥∥∥∥∥∥
(
t ln x

t

) 1
p′ w2(b

−1(x))

b−1(x)

∥∥∥∥∥∥
Lq(b−1(x))(t,∞)

1

w1(x)

∥∥∥∥∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),w1(x)
(0,∞) , (2.36)

holds, where Mpq, M and m are the constants in Theorem 2.3.8.

Proof. 1. Let a = y and b = ∞ in (2.10), then

∫ ∞

y

f(t)dt ≤ p
1
p

( ∫ ∞

y

(
t ln t

y

)p−1

f p(t)dt

) 1
p

(2.37)

Choose y = a(x), hence x = a−1(y), where a−1(y) is the reciprocal function
of a(y) and by using (2.37), where p = p, we get
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‖T2f‖Lq(x),w2(x)
(0,∞) =

∥∥∥∥w2(x)

x

∫ ∞

a(x)

f(t)dt

∥∥∥∥
Lq(x)(0,∞)

=

∥∥∥∥w2(a
−1(y))

a−1(y)

∫ ∞

y

f(t)dt

∥∥∥∥
Lq(a−1(y))(0,∞)

≤ p
1
p

∥∥∥∥∥∥w2(a
−1(y))

a−1(y)

(∫ ∞

y

f p(t)

(
t ln t

y

)p−1

dt

) 1
p

∥∥∥∥∥∥
Lq(a−1(y))(0,∞)

= p
1
p

∥∥∥∥∥∥
(∫ ∞

y

f p(t)

[
w2(a

−1(y))

a−1(y)

]p(
t ln t

y

)p−1

dt

) 1
p

∥∥∥∥∥∥
Lq(a−1(y))(0,∞)

= p
1
p

∥∥∥∥∥
∫ ∞

y

f p(t)

[
w2(a

−1(y))

a−1(y)

]p(
t ln t

y

)p−1

dt

∥∥∥∥∥
1
p

L q(a−1(y))
p

(0,∞)

= p
1
p

∥∥∥∥∥
∫ ∞

0

f p(t)χ(y,∞)(t)

[
w2(a

−1(y))

a−1(y)

]p(
t ln t

y

)p−1

dt

∥∥∥∥∥
1
p

L q(a−1(y))
p

(0,∞)

= p
1
p

∥∥∥∥∥∥
∥∥∥∥∥f p(t)χ(y,∞)(t)

[
w2(a

−1(y))

a−1(y)

]p(
t ln t

y

)p−1
∥∥∥∥∥
L1(0,∞)

∥∥∥∥∥∥
1
p

L q(a−1(y))
p

(0,∞)

.

The rest is similar to the proof of Theorem 2.3.8.

2. Let a = 0 and b = y in (2.12), then∫ y

0

f(t)dt ≤ p
1
p

( ∫ y

0

(
t ln y

t

)p−1

f p(t)dt

) 1
p

. (2.38)

Finally we apply (2.38) with p = p and the rest is similar to the proof of
Theorem 2.3.8.

Remark 2.3.6. If we put a(x) = x and b(x) = x in (3.35) and (3.36), we get in-
equalities (2.26) and (2.27) of Theorem 2.3.7, respectively, where dp is replaced
by improved constants (see remark 2.3.2).
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Chapter 3

Some integral inequalities for
Hardy-Steklov operator for
quasi-monotone functions with
0 < p(x) < 1

3.1 Introduction

In this chapter, we study the Hardy–Steklov operator in variable exponent
Lebesgue Lp(x) with 0 < p(x) < 1. The key idea is to obtain analogues of Lemma
2.1 and Proposition 5.1 of [7] where a and b are constants to boundary functions
a(x) and b(x). Consequently by applying these results, we get some new integral
inequalities for Hardy-Steklov operator in weighted variable exponent Lebesgue
spaces, for nonnegative quasi-monotone andmonotone functions with 0 < p(x) <

1. (Submitted work (see [17])).

The following Corollary and Lemma were established in [2].

Corollary 3.1.1. Let Ω ⊂ Rn be a measurable set and p, q be measurable func-
tions on Ω, 0 < p ≤ p(x) ≤ q(x) ≤ q < ∞ and r(x) = p(x)q(x)

q(x)−p(x) . Suppose that w1 and
w2 are weight functions defined in Ω satisfying the condition∥∥∥∥w1

w2

∥∥∥∥
Lr(x)(Ω)

<∞.

Then the inequality

‖f‖Lp(x),w1
(Ω) ≤

(
A+B + ‖χΩ2‖L∞(Ω)

) 1
p

∥∥∥∥w1

w2

∥∥∥∥
Lr(x)(Ω)

‖f‖Lq(x),w2
(Ω) , (3.1)

38



Some integral inequalities for Hardy-Steklov operator for quasi-monotone
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holds for every f ∈ Lq(x),w2(x)(Ω), where

Ω1 = {x ∈ Ω : p(x) < q(x)} , Ω2 = {x ∈ Ω : p(x) = q(x)},

A = sup
x∈Ω1

p(x)

q(x)
, B = sup

x∈Ω1

q(x)− p(x)

q(x)
.

If |Ω2| = 0, the constant in (3.1) is sharp. If |Ω2| > 0, then it is not sharp.

Remark 3.1.1. The improvement of the constant in (3.1) was obtained in [12].

‖f‖Lp(x),w1
(Ω) ≤ (1 +M −m)

1
p

∥∥∥∥w1

w2

∥∥∥∥
Lr(x)(Ω)

‖f‖Lq(x),w2
(Ω), (3.2)

where
M = ess sup

x∈Ω

p(x)

q(x)
, m = ess inf

x∈Ω

p(x)

q(x)
, p = ess inf

x∈Ω
p(x).

The constant in (3.2) is sharp for any measurable set Ω.

Lemma 3.1.1. Let Ω1 ⊂ Rn, Ω2 ⊂ Rm be measurable sets, p be a measurable
function on Ω1 and q be a measurable function on Ω2, 1 ≤ p ≤ p(x) ≤ q(y) ≤ q <∞
for all x ∈ Ω1 ⊂ Rn and y ∈ Ω2 ⊂ Rm. If p ∈ C(Ω1), q ∈ C(Ω2), then the inequality∥∥∥‖f‖Lp(x)(Ω1)

∥∥∥
Lq(x)(Ω2)

≤ Cp,q

∥∥∥‖f‖Lq(x)(Ω2)

∥∥∥
Lp(x)(Ω1)

, (3.3)

is valid, where

Cp,q =

(
‖χ∆1‖∞ + ‖χ∆2‖∞ +

p

q
−
p

q

)
(‖χ∆1‖∞ + ‖χ∆2‖∞) , (3.4)

q = ess infΩ2 q(x), q = ess supΩ2
q(x),∆1 = {(x, y) ∈ Ω1 × Ω2; p(x) = q(y)},∆2 = (Ω1 ×

Ω2)\∆1, C(Ω1), C(Ω2) are the spaces of all continuous functions in Ω1, Ω2, respec-
tively and f : Ω1×Ω2 → R is anymeasurable function such that

∥∥∥‖f‖Lq(x)(Ω2)

∥∥∥
Lp(x)(Ω1)

<

∞.

Both the definition and the statement that are presented below were given in [7].

Definition 3.1.1. We say that a nonnegative function f is quasi-monotone on
(0,∞), if for some real number α, xαf(x) is a decreasing or an increasing function
of x. More precisely, given β ∈ R we say that f ∈ Qβ if x−βf(x) is nonincreasing
and f ∈ Qβ if x−βf(x) is nondecreasing (see [7]).

Lemma 3.1.2. (a) Let −∞ < a < b ≤ +∞ and assume that the function f is
nonnegative and nonincreasing on the interval (a, b). If 0 < p ≤ 1, then( ∫ b

a

f(t)dt

)p
≤ p

∫ b

a

f p(t)(t− a)p−1dt. (3.5)
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(b) Let −∞ < a < b ≤ +∞ and f be a function that is nonnegative and nonde-
creasing on the interval (a, b). If 0 < p ≤ 1, then( ∫ b

a

f(t)dt

)p
≤ p

∫ b

a

f p(t)(b− t)p−1dt. (3.6)

(c) The constant p is sharp in these inequalities.

Proposition 3.1.1. (a) Let −∞ < β < +∞ ,f ∈ Qβ, 0 ≤ a < b ≤ ∞ for β > −1

and 0 < a < b ≤ ∞ for β ≤ −1. If 0 < p ≤ 1 and β 6= −1, then( ∫ b

a

f(t)dt

)p
≤ p|β + 1|1−p

∫ b

a

(
|tβ+1 − aβ+1|

tβ

)p−1

f p(t)dt. (3.7)

If 0 < p ≤ 1 and β = −1, then( ∫ b

a

f(t)dt

)p
≤ p

∫ b

a

(
t ln t

a

)p−1

f p(t)dt. (3.8)

The inequalities hold in the reversed direction if 1 ≤ p <∞.

(b) Let −∞ < β < +∞ ,f ∈ Qβ, 0 ≤ a < b ≤ ∞ for β < −1 and 0 ≤ a < b < ∞ for
β ≥ −1. For 0 < p ≤ 1 and β 6= −1, the following is valid:( ∫ b

a

f(t)dt

)p
≤ p|β + 1|1−p

∫ b

a

(
|tβ+1 − bβ+1|

tβ

)p−1

f p(t)dt. (3.9)

Assuming that β = −1 and 0 < p ≤ 1, the following is obtained:( ∫ b

a

f(t)dt

)p
≤ p

∫ b

a

(
t ln b

t

)p−1

f p(t)dt. (3.10)

The inequalities hold in the reversed direction if 1 ≤ p <∞.

(c) The constants in these inequalities are the best possible in all cases.

3.2 Main results

The Hardy-Steklov operator (see [25] for more details) is defined as

(Tf)(x) =
1

x

∫ b(x)

a(x)

f(y)dy,

where f is a nonnegative measurable function defined on the interval (0,∞), with
boundary functions a(x) and b(x) that satisfy the following condition.
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1. a(x), b(x) are differentiable and increasing functions on (0,∞).

2. 0 < a(x) < b(x) <∞ for 0 < x <∞ and a(0) = b(0) = 0, a(∞) = b(∞) = ∞.

We assume that the functions a(x) and b(x) in Lemmas 3.2.1 and 3.2.2 satisfy
the above conditions.
If we replace in Lemma 3.1.2 the constant a and b by a(x) and b(x) respectively,
we get the following Lemma.

Lemma 3.2.1. (a) Let 0 < p ≤ 1, 0 ≤ a(x) < b(x) ≤ +∞ and f be a nonnegative
and nonincreasing function defined on

(
a(x), b(x)

)
, then( ∫ b(x)

a(x)

f(t)dt

)p

≤ p

∫ b(x)

a(x)

(t− a(x))p−1f p(t)dt. (3.11)

(b) Let 0 < p ≤ 1,0 ≤ a(x) < b(x) < +∞ and f be a nonnegative and nondecreas-
ing function defined on

(
a(x), b(x)

)
, then( ∫ b(x)

a(x)

f(t)dt

)p

≤ p

∫ b(x)

a(x)

(b(x)− t)p−1f p(t)dt. (3.12)

Lemma 3.2.2. (a) Let −∞ < β < +∞ ,f ∈ Qβ, 0 ≤ a(x) < b(x) ≤ ∞ for β > −1

and 0 < a(x) < b(x) ≤ ∞ for β ≤ −1. If 0 < p ≤ 1 and β 6= −1, then
( ∫ b(x)

a(x)

f(y)dy

)p

≤ p|β + 1|1−p
∫ b(x)

a(x)


∣∣∣yβ+1 −

(
a(x)

)β+1
∣∣∣

yβ

p−1

f p(y)dy. (3.13)

If 0 < p ≤ 1 and β = −1, then( ∫ b(x)

a(x)

f(y)dy

)p

≤ p

∫ b(x)

a(x)

(
y ln

[
y

a(x)

])p−1

f p(y)dy. (3.14)

(b) Let −∞ < β < +∞ ,f ∈ Qβ, 0 ≤ a(x) < b(x) ≤ ∞ for β < −1 and 0 ≤ a(x) <

b(x) <∞ for β ≥ −1. If 0 < p ≤ 1 and β 6= −1, then
( ∫ b(x)

a(x)

f(y)dy

)p

≤ p|β + 1|1−p
∫ b(x)

a(x)


∣∣∣yβ+1 −

(
b(x)

)β+1
∣∣∣

yβ

p−1

f p(y)dy. (3.15)

If 0 < p ≤ 1 and β = −1, then( ∫ b(x)

a(x)

f(y)dy

)p

≤ p

∫ b(x)

a(x)

(
y ln

[
b(x)

y

])p−1

f p(y)dy. (3.16)

Proof. (a) Let 0 < p ≤ 1, f ∈ Qβ and h(y) = y−βf(y).
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(1) If β > −1 and 0 ≤ a(x) < b(x) ≤ ∞.
Choose t = yβ+1, hence y = t

1
β+1 and t ∈

(
[a(x)]β+1, [b(x)]β+1

)
.( ∫ b(x)

a(x)

f(y)dy

)p

=

( ∫ b(x)

a(x)

yβh(y)dy

)p

=

( ∫ [b(x)]β+1

[a(x)]β+1

h
(
t

1
β+1

) dt

(β + 1)

)p

= (β + 1)−p

( ∫ [b(x)]β+1

[a(x)]β+1

h
(
t

1
β+1

)
dt

)p

.

Since f ∈ Qβ and β > −1, then h
(
t

1
β+1

)
is nonincreasing. By applying

Lemma 3.2.1 (a), we get( ∫ [b(x)]β+1

[a(x)]β+1

h
(
t

1
β+1

)
dt

)p

≤ p

∫ [b(x)]β+1

[a(x)]β+1

(
t− [a(x)]β+1

)p−1
hp
(
t

1
β+1

)
dt

= p

∫ b(x)

a(x)

(
yβ+1 − [a(x)]β+1

)p−1
hp(y)(β + 1)yβdy

= p(β + 1)

∫ b(x)

a(x)

(
yβ+1 − [a(x)]β+1

)p−1
y−βpf p(y)yβdy

= p(β + 1)

∫ b(x)

a(x)

(
yβ+1 − [a(x)]β+1

)p−1 (
y−β
)p−1

f p(y)dy

= p(β + 1)

∫ b(x)

a(x)

(
yβ+1 − [a(x)]β+1

yβ

)p−1

f p(y)dy.

Finally, we find inequality (3.13).
(2) If β < −1, 0 < a(x) < b(x) ≤ ∞ and f ∈ Qβ, then h

(
t

1
β+1

)
is nondecreas-

ing. By applying Lemma 3.2.1 (b), we get inequality (3.13). The proof
is similar to that of the case (a)(1).

(3) If β = −1, 0 < a(x) < b(x) ≤ ∞. Choose t = ln y, hence y = et and
t ∈
(

ln[a(x)], ln[b(x)]
)
, then( ∫ b(x)

a(x)

f(y)dy

)p

=

( ∫ b(x)

a(x)

h(y)
dy

y

)p

=

( ∫ ln[b(x)]

ln[a(x)]
h(et)dt

)p

.

Since f ∈ Q−1 then h(et) is nonincreasing. By using Lemma 3.2.1 (a),
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we get ( ∫ b(x)

a(x)

f(y)dy

)p

=

( ∫ ln[b(x)]

ln[a(x)]
h(et)dt

)p

≤ p

∫ ln[b(x)]

ln[a(x)]
(t− ln[a(x)])p−1 hp(et)dt

= p

∫ b(x)

a(x)

(ln y − ln[a(x)])p−1 hp(y)
dy

y

= p

∫ b(x)

a(x)

(
ln
[

y

a(x)

])p−1

yp−1f p(y)dy

= p

∫ b(x)

a(x)

(
y ln

[
y

a(x)

])p−1

f p(y)dy.

(b) Let 0 < p ≤ 1, f ∈ Qβ and h(y) = y−βf(y).

(1) If β < −1 and 0 ≤ a(x) < b(x) ≤ ∞ .
Choose t = yβ+1, hence y = t

1
β+1 and t ∈

(
[b(x)]β+1, [a(x)]β+1

)
.( ∫ b(x)

a(x)

f(y)dy

)p

=

( ∫ b(x)

a(x)

yβh(y)dy

)p

=

( ∫ [a(x)]β+1

[b(x)]β+1

h
(
t

1
β+1

) dt

|β + 1|

)p

= |β + 1|−p
( ∫ [a(x)]β+1

[b(x)]β+1

h
(
t

1
β+1

)
dt

)p

.

Since f ∈ Qβ and β < −1, then h
(
t

1
β+1

)
is nonincreasing. By appling

Lemma 3.2.1 (a), we get( ∫ [a(x)]β+1

[b(x)]β+1

h
(
t

1
β+1

)
dt

)p

≤ p

∫ [a(x)]β+1

[b(x)]β+1

(
t− [b(x)]β+1

)p−1
hp
(
t

1
β+1

)
dt.

Choose y = t
1

β+1 , hence t = yβ+1 and y ∈
(
a(x), b(x)

)
.( ∫ [a(x)]β+1

[b(x)]β+1

h(t
1

β+1 )dt

)p

≤ p

∫ [a(x)]β+1

[b(x)]β+1

(
t− [b(x)]β+1

)p−1
hp
(
t

1
β+1

)
dt

= p

∫ b(x)

a(x)

(
yβ+1 − [b(x)]β+1

)p−1
hp(y)yβ|β + 1|dy

= p|β + 1|
∫ b(x)

a(x)

(
yβ+1 − [b(x)]β+1

)p−1
y−βpf p(y)yβdy

= p|β + 1|
∫ b(x)

a(x)

(
yβ+1 − [b(x)]β+1

)p−1 (
y−β
)p−1

f p(y)dy

= p|β + 1|
∫ b(x)

a(x)

(
yβ+1 − [b(x)]β+1

yβ

)p−1

f p(y)dy.
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Finally( ∫ b(x)

a(x)

f(y)dy

)p

≤ p|β + 1|1−p
∫ b(x)

a(x)

(∣∣yβ+1 − [b(x)]β+1
∣∣

yβ

)p−1

f p(y)dy.

(2) If β > −1 and 0 ≤ a(x) < b(x) < ∞. Since f ∈ Qβ and β > −1, then
h
(
t

1
β+1

)
is nondecreasing. By applying Lemma 3.2.1 (b). The rest

is similar to that of the case (a) (2), consequently we get inequality
(3.15).

(3) If β = −1, 0 ≤ a(x) < b(x) < ∞, similarly to that of the case (a)(3), by
applying Lemma 3.2.1(b), we get inequality (3.16).

Theorem 3.2.1. Let p, q be measurable functions on (0,∞), 0 < p ≤ p(x) ≤ q(x) ≤
q < 1, r(x) = pp(x)

p(x)−p , for x ∈ (0,∞), β > −1 and f ∈ Qβ. Suppose that w1 and w2 are
weight functions defined on (0,∞). Then for any f ∈ Lp(x),w1(0,∞) the inequality

‖Tf‖Lq(x),w2(x)
(0,∞) ≤ p

1
p (β + 1)

1
p′ cpq

(
1 +M −m

) 1
p

×

∥∥∥∥∥∥∥
∥∥∥∥∥∥
[
t−β(tβ+1 − (a(x))β+1)

] 1
p′ w2(x)

x

∥∥∥∥∥∥
Lq(x)(b

−1(t) , a−1(t))

1

w1(x)

∥∥∥∥∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),w1(x)
(0,∞) ,

(3.17)
holds, where p′ is the conjugate of p,

cp,q =

(
‖χ∆1‖L∞(0,∞) + ‖χ∆2‖L∞(0,∞) + p

(
1

q
− 1

q

))(
‖χS1‖L∞(0,∞) + ‖χS2‖L∞(0,∞)

)
,

and
S1 = {x ∈ (0,∞) : p(x) = p}, S2 = (0,∞)\S1,

M = ess sup
x∈Ω

p(x)

q(x)
, m = ess inf

x∈Ω

p(x)

q(x)
, p = ess inf

x∈Ω
p(x).

Proof. By applying Lemma 3.2.2 (a) (inequality (3.13) with p = p ), we have

‖Tf‖Lq(x),w2(x)
(0,∞) = ‖w2(x)(Tf)(x)‖Lq(x)(0,∞)

=

∥∥∥∥∥w2(x)

x

∫ b(x)

a(x)

f(t)dt

∥∥∥∥∥
Lq(x)(0,∞)

≤ p
1
p (β + 1)

1−p

p

∥∥∥∥∥∥w2(x)

x

(∫ b(x)

a(x)

[
t−β
(
tβ+1 − (a(x))β+1

)]p−1
f p(t)dt

) 1
p

∥∥∥∥∥∥
Lq(x)(0,∞)
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= p
1
p (β + 1)

− 1
p′

∥∥∥∥∥∥
(∫ b(x)

a(x)

[
w2(x)

x

]p [
t−β
(
tβ+1 − (a(x))β+1

)]p−1
f p(t)dt

) 1
p

∥∥∥∥∥∥
Lq(x)(0,∞)

= p
1
p (β + 1)

− 1
p′

∥∥∥∥∥
∫ b(x)

a(x)

[
w2(x)

x

]p [
t−β
(
tβ+1 − (a(x))β+1

)]p−1
f p(t)dt

∥∥∥∥∥
1
p

L q(x)
p

(0,∞)

= p
1
p (β + 1)

− 1
p′

∥∥∥∥∫ ∞

0

f p(t)χ(a(x) , b(x))(t)

[
w2(x)

x

]p [
t−β
(
tβ+1 − (a(x))β+1

)]p−1
dt

∥∥∥∥ 1
p

L q(x)
p

(0,∞)

= p
1
p (β + 1)

− 1
p′

∥∥∥∥∥
∥∥∥∥f p(t)χ(a(x) , b(x))(t)

[
w2(x)

x

]p [
t−β
(
tβ+1 − (a(x))β+1

)]p−1

∥∥∥∥
L1(0,∞)

∥∥∥∥∥
1
p

L q(x)
p

(0,∞)

.

Now by using Lemma 3.1.1, we get∥∥∥∥∥
∥∥∥∥f p(t)χ(a(x) , b(x))(t)

[
w2(x)

x

]p [
t−β
(
tβ+1 − (a(x))β+1

)]p−1

∥∥∥∥
L1(0,∞)

∥∥∥∥∥
1
p

L q(x)
p

(0,∞)

≤ cpq

∥∥∥∥∥∥∥
∥∥∥∥f p(t)χ(a(x) , b(x))(t)

[
w2(x)

x

]p [
t−β
(
tβ+1 − (a(x))β+1

)]p−1

∥∥∥∥
L q(x)

p

(0,∞)

∥∥∥∥∥∥∥
1
p

L1(0,∞)

= cpq

∫ ∞

0

∥∥∥∥f p(t)χ(a(x) , b(x))(t)

[
w2(x)

x

]p [
t−β
(
tβ+1 − (a(x))β+1

)]p−1

∥∥∥∥
L q(x)

p

(0,∞)

dt


1
p

= cpq

∫ ∞

0

f p(t)

∥∥∥∥[t−β(tβ+1 − (a(x))β+1
)]p−1

χ(a(x) , b(x))(t)

[
w2(x)

x

]p∥∥∥∥
L q(x)

p

(0,∞)

dt


1
p

.

Since a(x) ≤ t ≤ b(x), thus b−1(t) ≤ x ≤ a−1(t), where a−1(t) and b−1(t) are the in-
verses to the boundary functions a(t) and b(t), respectively. By applying Fubini’s
theorem (see [25] ), we get∫ ∞

0

f p(t)

∥∥∥∥[t−β(tβ+1 − (a(x))β+1
)]p−1

χ(a(x) , b(x))(t)

[
w2(x)

x

]p∥∥∥∥
L q(x)

p

(0,∞)

dt


1
p

=

∫ ∞

0

f p(t)

∥∥∥∥[t−β(tβ+1 − (a(x))β+1
)]p−1

[
w2(x)

x

]p∥∥∥∥
L q(x)

p

(b−1(t) , a−1(t))

dt


1
p
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=

∫ ∞

0

f p(t)

∥∥∥∥([t−β(tβ+1 − (a(x))β+1
)] p−1

p

[
w2(x)

x

])p∥∥∥∥
L q(x)

p

(b−1(t) , a−1(t))

dt


1
p

=

(∫ ∞

0

f p(t)

∥∥∥∥[t−β(tβ+1 − (a(x))β+1
)] 1

p′

[
w2(x)

x

]∥∥∥∥p
Lq(x)(b

−1(t) , a−1(t))

dt

) 1
p

=

(∫ ∞

0

(
f(t)

∥∥∥∥[t−β(tβ+1 − (a(x))β+1
)] 1

p′

[
w2(x)

x

]∥∥∥∥
Lq(x)(b

−1(t) , a−1(t))

)p

dt

) 1
p

=

∥∥∥∥∥f(t)
∥∥∥∥[t−β(tβ+1 − (a(x))β+1

)] 1
p′

[
w2(x)

x

]∥∥∥∥
Lq(x)(b

−1(t) , a−1(t))

∥∥∥∥∥
Lp(0,∞)

.

Finally, from Remark 3.1.1, it follows∥∥∥∥∥f(t)
∥∥∥∥[t−β(tβ+1 − (a(x))β+1

)] 1
p′

[
w2(x)

x

]∥∥∥∥
Lq(x)(b

−1(t) , a−1(t))

∥∥∥∥∥
Lp(0,∞)

≤
(
1 +M −m

) 1
p

×

∥∥∥∥∥
∥∥∥∥[t−β(tβ+1 − (a(x))β+1

)] 1
p′

[
w2(x)

x

]∥∥∥∥
Lq(x)(b

−1(t) , a−1(t))

1

w1(x)

∥∥∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),w1(x)
(0,∞) .

Thus
‖Tf‖Lq(x),w2(x)

(0,∞) ≤ p
1
p (β + 1)

1
p′ cpq

(
1 +M −m

) 1
p

×

∥∥∥∥∥∥
∥∥∥∥∥ [t−β(tβ+1 − (a(x))β+1)]

1
p′w2(x)

x

∥∥∥∥∥
Lq(x)(b

−1(t) , a−1(t))

1

w1(x)

∥∥∥∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),w1(x)
(0,∞).

Theorem 3.2.2. Let p, q be measurable functions on (0,∞), 0 < p ≤ p(x) ≤ q(x) ≤
q < 1, r(x) = pp(x)

p(x)−p , for x ∈ (0,∞), β < −1 and f ∈ Qβ. Suppose that w1 and w2 are
weight functions defined on (0,∞). Then for any f ∈ Lp(x),w1(0,∞) the inequality

‖Tf‖Lq(x),w2(x)
(0,∞) ≤ p

1
p |β + 1|−

1
p′ cpq

(
1 +M −m

) 1
p

×

∥∥∥∥∥∥
∥∥∥∥∥ [t−β(tβ+1 − (b(x))β+1)]

1
p′w2(x)

x

∥∥∥∥∥
Lq(x)(b

−1(t) , a−1(t))

1

w1(x)

∥∥∥∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),w1(x)
(0,∞),

(3.18)
holds, where cpq, M and m are the constants defined in Theorem 3.2.1.

Proof. By applying Lemma 3.2.2 (b) ( inequality (3.15) with p = p), we have

‖Tf‖Lq(x),w2(x)
(0,∞) =

∥∥∥∥∥w2(x)

x

∫ b(x)

a(x)

f(t)dt

∥∥∥∥∥
Lq(x)(0,∞)
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≤ p
1
p |β + 1|

1−p

p

∥∥∥∥∥∥w2(x)

x

(∫ b(x)

a(x)

[
t−β
(
tβ+1 − (b(x))β+1

)]p−1
f p(t)dt

) 1
p

∥∥∥∥∥∥
Lq(x)(0,∞)

= p
1
p |β + 1|−

1
p′

∥∥∥∥∥∥
(∫ b(x)

a(x)

[
w2(x)

x

]p [
t−β
(
tβ+1 − (b(x))β+1

)]p−1
f p(t)dt

) 1
p

∥∥∥∥∥∥
Lq(x)(0,∞)

= p
1
p |β + 1|−

1
p′

∥∥∥∥∥
∫ b(x)

a(x)

[
w2(x)

x

]p [
t−β
(
tβ+1 − (b(x))β+1

)]p−1
f p(t)dt

∥∥∥∥∥
1
p

L q(x)
p

(0,∞)

= p
1
p |β + 1|−

1
p′

∥∥∥∥∫ ∞

0

f p(t)χ(a(x) , b(x))(t)

[
w2(x)

x

]p [
t−β
(
tβ+1 − (b(x))β+1

)]p−1
dt

∥∥∥∥ 1
p

L q(x)
p

(0,∞)

= p
1
p |β + 1|−

1
p′

∥∥∥∥∥
∥∥∥∥f p(t)χ(a(x) , b(x))(t)

[
w2(x)

x

]p [
t−β
(
tβ+1 − (b(x))β+1

)]p−1

∥∥∥∥
L1(0,∞)

∥∥∥∥∥
1
p

L q(x)
p

(0,∞)

.

The rest is similar to the proof of Theorem 3.2.1.

The following Theorem is proved analogously by applying Lemma 3.2.2 (b)
(inequality (3.15) with p = p).

Theorem 3.2.3. Let p, q be measurable functions on (0, 1), 0 < p ≤ p(x) ≤ q(x) ≤
q < 1, r(x) = pp(x)

p(x)−p , for x ∈ (0, 1), β > −1 and f ∈ Qβ. Suppose that w1 and w2 are
weight functions defined on (0, 1). Then for any f ∈ Lp(x),w1(0, 1) the inequality

‖Tf‖Lq(x),w2(x)
(0,1) ≤ p

1
p (β + 1)

− 1
p′ cpq

(
1 +M −m

) 1
p

×

∥∥∥∥∥∥∥
∥∥∥∥∥∥
[
t−β(tβ+1 − (b(x))β+1)

] 1
p′ w2(x)

x

∥∥∥∥∥∥
Lq(x)(b

−1(t) , a−1(t))

1

w1(x)

∥∥∥∥∥∥∥
Lr(x)(0,1)

‖f‖Lp(x),w1(x)
(0,1) ,

(3.19)
holds, where cpq, M and m are the constants defined in Theorem 3.2.1.

By putting β = 0 in Theorem 3.2.1 and Theorem 3.2.3, we obtain the following
Corollary.

Corollary 3.2.1. Let p, q be measurable functions on (0,∞), 0 < p ≤ p(x) ≤ q(x) ≤
q < 1, r(x) = pp(x)

p(x)−p .

1. Suppose that f is nonnegative and nonincreasing function defined on (0,∞)

andw1, w2 areweight functions defined on (0,∞). Then for any f ∈ Lp(x),w1(0,∞)

the inequality
‖Tf‖Lq(x),w2(x)

(0,∞) ≤ p
1
p cpq

(
1 +M −m

) 1
p

47



Some integral inequalities for Hardy-Steklov operator for quasi-monotone
functions with 0 < p(x) < 1

×

∥∥∥∥∥∥
∥∥∥∥∥(t− a(x))

1
p′w2(x)

x

∥∥∥∥∥
Lq(x)(b

−1(t) , a−1(t))

1

w1(x)

∥∥∥∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),w1(x)
(0,∞), (3.20)

holds.

2. Suppose that f is nonnegative and nondecreasing function defined on (0, 1)

andw1, w2 areweight functions defined on (0, 1). Then for any f ∈ Lp(x),w1(0, 1)

the inequality
‖Tf‖Lq(x),w2(x)

(0,1) ≤ p
1
p cpq

(
1 +M −m

) 1
p

×

∥∥∥∥∥∥
∥∥∥∥∥(t− b(x))

1
p′w2(x)

x

∥∥∥∥∥
Lq(x)

(
b−1(t) , a−1(t)

) 1

w1(x)

∥∥∥∥∥∥
Lr(x)(0,1)

‖f‖Lp(x),w1(x)
(0,1), (3.21)

holds.

Where cpq, M and m are the constants defined in Theorem 3.2.1.

Now we consider the case β = −1.

Theorem 3.2.4. Let p, q be measurable functions on (0,∞), 0 < p ≤ p(x) ≤ q(x) ≤
q < 1, r(x) = pp(x)

p(x)−p for x ∈ (0,∞) and β = −1. Suppose that w1 and w2 are weight
functions defined on (0,∞).

1. If f ∈ Q−1 and 0 ≤ a(x) < b(x) <∞, then the inequality

‖Tf‖Lq(x),w2(x)
(0,1) ≤ p

1
p cpq

(
1 +M −m

) 1
p

×

∥∥∥∥∥∥∥∥∥
t

1
p′

∥∥∥∥w2(x)
x

[
ln
( b(x)

t

)] 1
p′
∥∥∥∥
Lq(x)(b

−1(t) , a−1(t))

w1(x)

∥∥∥∥∥∥∥∥∥
Lr(x)(0,1)

‖f‖Lp(x),w1(x)
(0,1), (3.22)

holds.

2. If f ∈ Q−1and 0 < a(x) < b(x) ≤ ∞, then the inequality

‖Tf‖Lq(x),w2(x)
(0,∞) ≤ p

1
p cpq

(
1 +M −m

) 1
p

×

∥∥∥∥∥∥∥∥∥
t

1
p′

∥∥∥∥w2(x)
x

[
ln
(

t
a(x)

)] 1
p′
∥∥∥∥
Lq(x)(b

−1(t) , a−1(t))

w1(x)

∥∥∥∥∥∥∥∥∥
Lr(x)(0,∞)

‖f‖Lp(x),w1(x)
(0,∞) , (3.23)

holds.

Where cpq, M and m are the constants defined in Theorem 3.2.1.
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Proof. 1. By applying Lemma 3.2.2 (b) (inequality (3.16) with p = p), we have

‖Tf‖Lq(x),w2(x)
(0,1) = ‖w2(x)(Tf)(x)‖Lq(x)(0,1)

=

∥∥∥∥∥w2(x)

x

∫ b(x)

a(x)

f(t)dt

∥∥∥∥∥
Lq(x)(0,1)

≤ p
1
p

∥∥∥∥∥∥w2(x)

x

(∫ b(x)

a(x)

[
t ln
(
b(x)

t

)]p−1

f p(t)dt

) 1
p

∥∥∥∥∥∥
Lq(x)(0,1)

= p
1
p

∥∥∥∥∥∥
(∫ b(x)

a(x)

[
w2(x)

x

]p [
t ln
(
b(x)

t

)]p−1

f p(t)dt

) 1
p

∥∥∥∥∥∥
Lq(x)(0,1)

= p
1
p

∥∥∥∥∥
∫ 1

0

f p(t)χ(a(x) , b(x))(t)

[
w2(x)

x

]p [
t ln
(
b(x)

t

)]p−1

dt

∥∥∥∥∥
1
p

L q(x)
p

(0,1)

= p
1
p

∥∥∥∥∥∥
∥∥∥∥∥f p(t)χ(a(x) , b(x))(t)

[
w2(x)

x

]p [
t ln
(
b(x)

t

)]p−1
∥∥∥∥∥
L1(0,1)

∥∥∥∥∥∥
1
p

L q(x)
p

(0,1)

.

The rest is similar to the proof of Theorem 3.2.1.

2. We apply Lemma 3.2.2 (a) (inequality (3.14) with p = p) and the rest is
similar to the proof of Theorem 3.2.1.
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Conclusion

The objective of this work is to extend some integral inequalities involv-
ing usual Hardy operators to the Hardy-Steklov and Hardy-Steklov type opera-
tors for quasi-monotone functions in classical and weighted variable Lebesgue
spaces. When looking at inequalities that are associated with these operators,
it is possible to use other spaces, such as Morrey spaces, Marcinkiewicz spaces
and Orlicz spaces, as a method of perspective.
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