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Abstract

In this thesis, we consider some integral inequalities for classical Lebesgue
spaces L, with 0 < p < 1 and weighted variable exponent Lebesgue spaces
Ly With 0 < p(z) < 1. First we obtain some new integral inequalities with
0 < p < 1 under weaker condition than monotonicity via Hardy—Steklov type
operators. Second, some integral inequalities were established for the same op-
erators acting from one weighted variable exponent Lebesgue spaces to another
weighted exponent Lebesgue spaces with 0 < p(z) < 1 for nonnegative quasi-
monotone functions on (0,00). Consequently, some results of A. Senouci et al
and R.A.Bandaliev are deduced as particular cases. Finally, we establish some
new estimates for the Hardy-Steklov operator for the same spaces and the same
functions.

Keywords: Integral inequalities, Hardy-type inequality, Hardy—Steklov opera-
tor, Hardy-Steklov type operators, quasi-monotone functions, weighted variable
exponent Lebesgue spaces.
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Resumé

Dans cette theése, nous considérons quelques inégalités intégrales pour des es-
paces de Lebesgue classiques L, avec 0 < p < 1 et des espaces de Lebesgue
L) pondérés avec 0 < p(z) < 1. Nous obtenons d’abord de nouvelles in¢gal-
ités intégrales avec 0 < p < 1 sous des conditions plus faibles que la monotonie
par I'intermédiaire d’opérateurs de type Hardy-Steklov. Deuxiémement, des
inégalités intégrales ont été établies pour les mémes opérateurs agissant des es-
paces de Lebesgue a un autre aussi pondére avec 0 < p(z) < 1, pour les fonctions
quasi-monotones non négatives sur (0, co0). Par conséquent, certains résultats de
A. Senouci et al et de R.A.Bandaliev sont déduits comme cas particuliers. A la
fin de ce travail, nous établissons de nouvelles estimations pour 1’opérateur de
Hardy-Steklov pour les mémes espaces et les mémes fonctions.

Mots clés: Inégalités integrales, inégalités de type Hardy, opérateurs de Hardy—
Steklov, opérateurs de type Hardy-Steklov, fonctions quasi-monotone, espaces
de Lebesgue a exposant variable avec poids.
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List of abbreviations and symbols

We use the following notations:

Q
1]

p(x)
Lip(a)w
-z
C1(0, 00)

C5°(0,00)

(me,w)

” : ||Lp(1,-),w
a.c

Subset of R™.

Measure of Q2 .

Lebesgue spaces .

Variable Lebesgue spaces.

Weighted variable exponent Lebesgue spaces.
Norm of space E.

The space of functions with continuous derivative.
The space of test functions.

The dual space of L, ).

The norm in Ly, .

Almost every where.
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General Introduction

Inequalities are playing a very important role in different areas of mathe-
matics and present a very active and interesting field of research. As example,
we have the field of integration which is dominated by inequalities involving
the integral operators. Let us cite some famous integral inequalities : the in-
equalities of Holder, Minkowski and Hardy. All these inequalities are based
on the classical Lebesgue spaces. In turn these spaces have important applica-
tions in different branches of mathematics for example Sobolev spaces (see [9]),
integral transformations and others. The variable Lebesgue spaces L, ), are a
generalisation of the classical Lebesgue spaces where the constant exponent p
1s remplaced by a variable exponent function p(z). The spaces L, 1s a special
case of the Musielak-Orlicz spaces ( see [28] and [30]). In this work, we are
interested in the integral inequalities relating to the integral operators of Hardy,
Hardy-Steklov and Hardy-Steklov type acting in the quasi-normed spaces ( clas-
sical and variable Lebesgue spaces with 0 < p < 1 and 0 < p(z) < 1 respectively).
The thesis is structured into three chapters, a conclusion and a bibliography.

1. Chapter one: In this chapter, we introduce some definitions and related
properties to the classical Lebesgue spaces and we recall the Holder and
Minkowski inequalities. In next part of this chapter we consider the classi-
cal weighted Hardy inequalities where the summability parameter is p > 1,
and 0 < p < 1. At the end of the chapter we expose the variable Lebesgue
spaces L), the classical inequalities in L, (Holder’s inequalities, Mink-

owski’s inequalities and Hardy’s inequalities).

2. Chapter two: In the second chapter, we consider the classical weighted
Hardy integral inequalities with parameter 0 < p < 1. We extend the re-
sults of [35] to Hardy—Steklov type operators, the chapter includes a work
already published under the title ”Some estimates for Hardy-Steklov type
operators”(see [18]) and some integral inequalities were established for the
same operators for quasi-monotone functions in weighted variable expo-
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nent Lebesgue spaces L), With 0 < p(z) < 1. This work 1s submitted under
the title ” On Hardy-Steklov-type operators for quasi-monotone functions
in weighted variable exponent Lebesgue spaces ™ (see [16]).

3. Chapter three: In this chapter we obtain some integral inequalities for
Hardy-Steklov operator in weighted variable exponent Lebesgue spaces
for nonnegative quasi-monotone and monotone functions with 0 < p(z) <
1. This work 1s submitted under the title ”Some integral inequalities for

Hardy-Steklov operator for quasi-monotone functions with 0 < p(z) < 17
(see [17]).

We end this thesis with a conclusion and perspectives and a fairly detailed
bibliography.



Chapter 1
Preliminaries

In this chapter, we recall and state some definitions, Lemmas, Corollaries
and Theorems that are useful in this thesis.

1.1 Classical Lebesgue spaces.

Let Q& c R" be a Lebesgue measurable set and f be a Lebesgue measurable func-
tion on (.

1.1.1 Lemmas and theorems.

Lemma 1.1.1 (Fatou’s Lemma [27]). Let fi, fs, f3,... be a sequence of non-
negative, measurable functions on ), and a. e. exists the finite or infinite
lim fo(z) = f(2). Then f(x) = lim f,(z) is measurable and

n—o0

f Jdzr < lim fn( )dx (1.1)

n—oo

in the sense that the finiteness of the right side implies that f is summable.
Proof. See [27] and [§5].

Theorem 1.1.1 (Monotone convergence [27]). Let Vn € N, (f,) be a sequence
of nonnegative measurable functions on ), moreover f.(z) < fri1(x) a.e. on .
Then

lim fn( Ydx = /Q lim f,(x)dx. (1.2)

n—aoo n—aoo

Proof. See [27] and [§].
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Theorem 1.1.2 (Dominated convergence [27]). Let Vn € N, (f,) be a sequence

of measurable functions on ), and the finite lim f,(z)dz exists a.e on Q. If there
n—:o0

exists a summable, nonnegative function G(x) on ) such that

VneN, |f.(x)] <G(2), (1.3)

then Vn € N the functions f, and lim f,(x) = f(x), are summable on Q and

nli_r)noo an(x)dx: /Qf(x)dx (1.4)

Proof. See [27] and [§].

Theorem 1.1.3 (Fubuni’s theorem [27]). Let E and F be measurable sets (E C
R") and (F C R™) and the function f(x, y) summable on E x F. So for almost
every x € E, f(x,y) is summable on F, for almost all y € F, f(x,y) is summable
on E one of two integrals is finite, so the three integrals exist and are equal.

( EXFf(x,y)dxdy> = /E ( /F f(x,y)dy>dx: /F ( /E f(x,y)dx)dy. (1.5)

Proof. See [27] and [§].

Corollary 1.1.1. If f(x,y) is measurable function on E x F and one of two inte-

[E(/F\f(ar,y)’dy) dx,L<é|f(x,y)\dx) dy.

So the three integrals in (1.5) exist and are equal.

grals is finite.

Remark 1.1.1. If f is not summable over E x F, then the iterated integrals may
not exist or may exist and be different.

In the following we recall the definition of Lebesgue spaces.

Definition 1.1.1. Let 0 < p < oo, Q be a measurable subset of R", f: Q2 — C. We
say that f € L,(Q) if:

1. f is measurable on Q.

D=

2. M llepiey = (Jo | Pdx)

Example 1.1.1. Let 0 <p<oo, yER, r >0

< 0oQ.

|z|" € L,(B,) if and only if v > —g,n €N, (1.6)

4



Preliminaries

where B, is the ball with center 0 and radius r > 0.
To prove (1.6), we apply the well-known formula:
Ifr >0, g(p)p"~' is an integrable function on (0,r), then

/7‘9(‘:16’)6&7 =0, /Org(p)pnldp, (1.7)

where o, = nV,, is the surface of the unitary sphere .
By (1.7), we get

el 5, = [ feda
B,

=0, / PP dp
0

__On pptn

vp+n

consequently Hz"llz, 5, < oo if yp+n >0, then v > -2

Definition 1.1.2. Let e C Q such that |e| = 0, then

esssup f(z) = inf sup f(z), (1.8)
z€Q e€Qzeq/e
ess ;Ielsfzf(x) = igg xé%f/ef(x) (1.9)
Definition 1.1.3. We say that f € L..(Q) if f is measurable and
Il o) :esssgg|f(x)| < 0. (1.10)

Remark 1.1.2. 1. By definition we put
| fll 2wy = 0, for |Q| = 0.
2. If f € Loo(Q), we have

|f<x>| < HfHLOO(Q),fOI" a.e. x e

Remark 1.1.3. [. Let 0 < p < oo, since |a + BP < max (1,2°71) (|af? + |8]P),
Va, B € C, then the linear combination (af + Bg) € L,(2), where f,g € L,(Q).
Consequently L,(Q) is a linear space.

2. If p>1, L,(Q) is a normed space.

3. If0<p<1, L,(Q) is a quasi-normed space. !

Theorem 1.1.4 (Riesz’s theorem [27]). Let f be a measurable function, then
Jim (£l = 1z (1.11)

Proof. See [27] and [§].

Yz +yll, @ < c(lzlle,@ + Iylle,@), where ¢ > 1).

5



Preliminaries

1.1.2 The classical inequalities.

Theorem 1.1.5 (Young’s inequalities [27]). For all a,b > 0 and ; + ¢ =1, we
have

1. For 1<p<o0o:

a? bl
b< —+ —. 1.12
a_p q ( )
2. For o0<p<1:
> Y (1.13)
CEY T '
3. For p<0:
a? b
ab > — + —. (1.14)
p q

Proof. See [27] and [§].

Since ; + ; = ;, then ;- + - = 1, and by applying inequality (1.12) with a = 2*

and b = y*, we get the following Corollary.

Corollary 1.1.2. Let p,q,s > 1 where | + . = 1, then

Ya,b >0, (ab)’ < Za? + 21, (1.15)
p q
Proof. P
p/s q/s
(xy)s =ab< ¢ + = f;tp + fyq.
p/s q/s D q

Theorem 1.1.6 (Holder’s inequality [27]). Let 0 < p < oo, f € L,(Q) and g €
Ly(Q), where © + - =1, then

I.If 1<p<c

1f9llzi@) < I fllz@llgllz, @- (1.16)

2.If O<p<lorp<OandvVxzeQ,g(x)+#0
1 f9llL, @) > ”fHLp(Q)HgHLp/(Q)- (1.17)

Proof. See [27] and [§].
Corollary 1.1.3. [11] Let s > 0, p < 00, —00 < g < +oo and ! + 1 = 1, then
1. If s<p
1f9llz.) < 1fll,@ll9llzy@), (1.18)

2.If s>p
I fall.) = [ fllz,llgllz,@)- (1.19)

6



Preliminaries

Proof. For theproofof(]. 18) and (1.19) we apply (1.16) and (1.17) respectively,

wzth 1 =1.
q/s

Proposition 1.1.1. Let p; € (1,00),i = 1,2, ..., k, where

fi € L,,(Q), then

k
117
1=1

k
< [ ille,,@- (1.20)
=1

L1(Q)

Proof. By induction.

Theorem 1.1.7 (Minkowski’s inequality[11]). Let 1 < p < oo and f,g € L,(Q2),
then

If + 9l < 1@ + 119l (1.21)
Proof. See [11].

Corollary 1.1.4. Let m e Nand f, € L,(Q) for all k € {1,2,...,m}, then

m

>

k=1

<3 il (1.22)
k=1

Lp(©)

Proof. By induction.

Corollary 1.1.5 (Minkowski’s inequality for infinite sums[11]). Let f; € L,(Q)
for all k € N, where

Z 1 fell 1,0y < o0,
k=1
then

>

k=1

< ZkaHLp(Q)' (1.23)
k=1

Lp()

Proof. See [11].

Theorem 1.1.8. Let0 <p < 1and f,g € L,(Q), then
1f + gllzye) < 207 (1 @ + lgllzy@) - (1.24)
Proof. We use inequality

(a+b)P <c(a”+b), Va,b>0, (1.25)
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where ¢ = max (1,2%‘1) By using this inequality with a = |f| and b = |g|, we

|\f+g||Lp<m:( / \f+g|”d:v> Sc( [ispas+ [ |g|pdx) |

and ¢ = max (1, 2%_1> = 2%_1, then

1f + gl < 277 ((/Q\f]pdx>p + (/Q\g|pdx)p>

1_
<20 (|| flley + N9l @) -

have:

Theorem 1.1.9 (Minkowski’s integral inequality[11]). Let E c R™ and F c R*
measurable sets, f be a measurable function on E x F, then

I.]f 1<p<o0:

| [rema] < [, (1.26)
F LyE)  JF
2.If 0<p<l or p<O0:
‘/f(l“,y)dy > /Ilf(af,y)dylle(m- (1.27)
F g JF

Proof. See [11].
The Minkowski inequality for p < 0 was established and proved in [34].

Proposition 1.1.2. The mapping | : L,(Q) — C defined by
1= [ st g€ L@,

1s a continuous linear functional. The set of linear functionals on L, () 1s denoted
by (L,(2))".

Proof. [. Linearity, we use the properties of Lebesgue integral.

2. Continuity. By applying Hélder s inequality, we get
L) =

/ f(y)g(y)dy‘
Q
< / F@)ll9()Idy

<|Iflle,@llgllz,
<c|| fllL, @)

_ 1,1 _
where ¢ = ||g||1,, ) and 3 + 5 = 1.




Preliminaries

1.2 Hardy’s inequalities.

1.2.1 Hardy’s inequalities in L, spaces (p > 1).

This section presents the classical Hardy inequality, a historical result estab-
lished by G. H. Hardy in 1925, along with its generalization including power
weights, which was also examined by Hardy in 1928.

Theorem 1.2.1 (Discrete Case [20]). Letp > 1, a;, > 0 and
k=n
An = Z Qg
k=1
then , ,
) An D o0 )
; (7) < (p—_ 1) ;ak, (1.28)
where the constant <I%>p is sharp (the best possible).
Proof. 1. See [20)].
2. For sharp constant : see [24].

Theorem 1.2.2 (Continuous Case [20]). Let p > 1, f be a nonnegative measur-
able function on (0,00). The operator H is defined as follows:

1 x
[ s

|, () ae < (ﬁ)p | @y (1.29)

The constant (p%l)p is sharp.

then

Proof. We choose y = zs, we get

(3 [ ) = ([ o)
Using Minkowski's integral inequality (Theorem 1.1.9), gives
([ (o)) = [ ([ rers)
(e
~(2) ([ wera)

9
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Remark 1.2.1. The constant (7%);, in Theorem 1.2.2 is sharp.(see [24]).
The following result originates from G. Hardy’s work in 1927.

Theorem 1.2.3 (weighted Hardy’s inequality [24]). Let p > 1 and f be a non-
negative measurable function on (0,). If a < p — 1, then the inequality

[ (@ne)eas (2 [Copme a0

is valid and if —1 < a < p — 1 the constant <p7p7a>p is sharp.

1

Proof. Choose t = zs, we have

([ ([ r0wY ) ([ (f o) )
:(/0 (/0 f(xs)xids) dl’)p‘

Now, applying Minkowski's integral inequality, we get

([ (/fxxd) @)’ <[ ([ e adx) s
[ (o)
) (e
B —a—1</ I dy)

Remark 1.2.2. If we put o = 0,(p > 1) in Theorem 1.2.3, we obtain inequality
(1.29) of Theorem 1.2.2.

1.2.2 Classical Hardy’s inequalities for 0 < p < 1.

The Hardy inequality for 0 < p < 1 with weight 2%, o € R does not take
place for any function defined on (0, ), on the other hand it is verified with the
additional assumption of monotonicity. This result was established by V. 1. Bu-
renkov 1989 (see [10]) using a discretization technique based on the following
lemma.

Lemma 1.2.1. [/0] Let o € R* then there exist constants cy, c, such that for any
nonnegative monotone function on (0, 00), we have

+oo
1 Z oklatd) £(9k) < / zf(z)dr < ¢y Z ok(atl) £ (k) (1.31)

k=—o00 k=—o0

10
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where

C1 = 2—04—17 Coy = 2¢.

Later V. 1. Burenkov gave another proof where it specified the sharp constant
(see [10]).

Theorem 1.2.4. Let 0 < p < 1.

(@) If —, < a < 11—, then for any nonnegative and nonincreasing functions f
n (0, 00),

R
[Ny < (15 =) 1o @l (132)

(b) If o < =}, then for any nonnegative and nondecreasing functions f on (0, ),

()00 < (08 (0 (5 - a)))’l’ @) 0my (133)

where [(u,v) is beta function.

(¢) If a > -, then for any nonnegative and nonincreasing functions f on (0, c0),

o 1)) g < (pﬁ (e (o= 2))) 1@l (139)
where (H*f) (z) = L [ f(y
We need the following lemma to prove Theorem 1.2.4.
Lemma 1.2.2. /7]

(a) Let —< < a < b < +o0o and assume that the function f is nonnegative and
nonincreasing on the interval (a,b). If 0 < p < 1, then

(/ G dt) <p/ PPt — a)P Lt (1.35)

The inequality holds in the reversed direction if 1 < p < cc.

(b) Let —cc < a < b < +o0o and f be a function that is nonnegative and nonde-
creasing on the interval (a,b). If 0 < p < 1, then

(/ it dt) <p/ )b — (1.36)

The inequality holds in the reversed direction if 1 < p < cc.

11
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(c) The factor p is sharp in these inequalities.
Proof. See [7].

Proof (Proof of Theorem 1.2.4 ). By applying Lemma 1.2.2 with a = 0,b = x
and Fubini's theorem, we obtain

N0 = [ (5 [ s0at) e
:/Ooo gle—bp (/Ow f(t)dt)pdx
< /000 zlebry /Ox tP=LfP(t)dtdx

—p / PP (t) ( / x<al>de) dt,
0 t
since o < 1— 1%, we get
p

/oo 2@ Dp gy — _—1t(0¢—1)p+1’
t (@ —1)p+1

consequently,

L[ ' ap p p—1 £p(1\rap—p
/0 (E/o f(t)dt) x dw<< P 1)/0 tPL P ()PP gt
_ p P (440D
(—ozp—i—p—l)/o froerd.

([ (G [ 0w} omae)” < () ([ o)
finally 1
12 (H ) (@)l 1, 0,00) < (1 - % = a>—p 12 f (@) 1, 0,00) (1.37)

(1.33) and (1.34) are proved similarly by applying (1.36) and (1.35), respec-
tively.

1.2.3 The Hardy-Steklov Operator.

In this section, we assume that the function f is defined on (0, ). Let us start
with an example.

Example 1.2.1. The classical Hardy operator H,, defined as
_ i/ FOdt,  0<z<oo (1.38)
0

it is obviously related to the triangular domain

A:{(x,t); O<t<a:<oo}, (seeFig.01).

12
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Fig. 01
This can be modified by considering the operator 73, defined by

(T f)(x) = /Ob(x) fy)dy, 0 <z < oo,
with boundary function () satisfying the following conditions:
1. b(z) 1s differentiable and increasing functions on (0, cc).

2. 0 < b(r) < ocofor0 <z < ooand b(0) =0, b(cc) = oo.
The operator T; is related to a ’perturbed” triangular domain

A(b) = {(x,t) o 0<z<oo, 0<t< b(x)}, (seeFig.02).

13
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A(b)

NI\

Fig. 02.

Definition 1.2.1 (The Steklov operator[25]). For functions f defined on (—oo, +0)
and for § > 0, the Steklov operator S; is defined as

ssHw = [ (139)

Definition 1.2.2 (The Hardy-Steklov operator). (see [25] for more details).
The Hardy-Steklov operator is defined as

(Tf)(x) = é / j()) f(y)dy, (1.40)
with boundary functions a(z), b(x) satisfying the following conditions:
1. a(x), b(x) are differentiable and increasing functions on (0, 00).
2. 0 <a(z) <b(z) <oofor0 <z < oo, al)=00)=0,and a(x) = b(x) = oo,

where f is a nonnegative measurable function on (0, co).

1.3 Variable Lebesgue spaces L, ).

For the first time the variable exponent Lebesgue spaces appeared in the lit-
erature already in the thirties of the last century, being introduced by W. Orlicz.

14
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At the beginning these spaces had theoretical interest. Later on the end of the
last century, their first use beyond the function spaces theory itself, was in vari-
ational problems and studies of p(x)-Laplacian, in Zhikov [42], [44], which in
its turn gave an essential impulse for the development of this theory. The ex-
tensive investigation of these spaces was also widely stimulated by applications
to various problems of Applied Mathematics, e.g., in modelling of electrorheo-
logical fluids [32]. Variable Lebesgue spaces appeared as a special case of the
Musielak-Orlicz spaces introduced by H. Nakano and developed by J. Musielak
and W. Orlicz (see [30]). Further developement of this theory was connected
with the theory of modular functions.

1.3.1 Definitions.

Let Q be a measurable subset of R* with || > 0, and let P(Q2) denote the set

of summable functions such that p : @ — [1, +o0].

We set:

Q0 =Qu(p) ={z€Qp(x)=a, ac(l,00)},
in particular:
Q= {z € Q,p(z) =1}, Qo = {z € Q,p(z) = 00},
Qo =Q/(21 UQ),
p=esssupp(x), p=essifp(x), if [Qo] >0,

z€Q

¢p = [Ixa lloo + X lloos

1 1
p=lto o5

where y is the characteristic function of the corresponding sets.

Definition 1.3.1. /28] We denote by L,.)(Q?) the set of measurable functions f
such that:

olf) = / L @Pd o (1.41)

The functional p,(f) : Ly.)(©) — [0,00) 1s called modular of the space L, (<2).
In the following, we cite certain properties of p,(f).

Proposition 1.3.1. /28] Let p(z) € P(Q)
L py(f) = 0,%f € Ly ().
2. p,(f)=01ifand only if f(z) =0 a.e.
15
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3. If pp(=1) = pp(f).Vf € Ly ().

4. p,(f) is convexe.

5. If|f(2)] = |g(x)| a.e., and if p,(f) < oo, then p,(f) = py(g)-

6. If 0 < p,(f) < oo then the mapping \ — p, (L) is continuous and non-
ineacresing on |[1,0).

Proof. (1), and (2) are obtained from the properties of the Lebesgue integral.
(3) Obvious equality.

(4) See [28]

(5) is deduced from a property of the Lebesgue integral.

(6) Let \y > \o > 1 then

1 1
AT A
|f(x)| _ |f(2)]

A A

|f ()] |f ()|
o M /Q Ao

IN

IN

IN

then p,(\1) < py(X2).
For the proof of continuity see [2§].

Definition 1.3.2. /28] We define the following norm on Ly )() :

£l 2,0 @ = inf{)\ >0:  pp (§> < 1}. (1.42)

Remark 1.3.1. If p(z) = p

SO

/If!p < X implies (/!f!p>p <A
{ian > 0, such that p, (i) < 1}

(J150) = sl |

16
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Proposition 1.3.2. Let || =0, then for all s, + < s < oo,

1
P

Proof. Since || =0, and if we set . = )+, then
: . fi
17l =i {3 > 0 p, (T <1}
s\ P(x)
:inf{)\>0:/(|f(§)| > dxﬁl}
Q
sp(x)
:inf{,us>0:/(|f<x)|> d:cgl}
Q K

Lemma 1.3.1. Let f € L,,)(2), then

oo L) <1¥s where 0< 1], @ < oo (1.43)
1Ty

Proof. [. Ifx e Q., (1.43) is obvious.

2. If © ¢ Qo, fix a decreasing sequence {\,} such that {\,} — ||fllL,., >

hence the sequence (‘Ai) is increasing and,
"/ n

\ﬂ) £
(An AT TS

Then by Fatou's lemma and the property (6) of proposition 1.3.1 and the
definition of the modular, we get

p(z) .
/ i dr < lim (m)p( )dxgl.
Q ”fHLp(m)(Q) n—oo JQ) >\n

Finally, we have p, (W) <L
Lp(a) (D)
Corollary 1.3.1. Let f € Ly (), such that 0 < |||, @) < oo
L If | fllzy o < 1 then py(f) < || fllz,. )

2 I [l > 1 then po(f) > 11,0 o
Proof. See [14].

17
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1.3.2  The classical inequalities on L, .

Definition 1.3.3. Lef p(x) € [1,00), then we say that the function q(z) is the con-
jugate of p(x) if:

00 for x €y,
q(x) = 1 for € Q,
pfx()le for x € Q.

Theorem 1.3.1 (Holder’s Inequality[14]). Let p(x),q(x) € P(Q) for all f €
L) (Q) and g € Ly (), fg € L1(Q), then

/ F@g@)ldz < 1l o, @l @ (1.44)

holds, where r, = 1 + 5~ 5 With o

+
112y 2) = inf{A >0:p, <§) < 1} .

Remark 1.3.2. If p(z) = p, q(z) = q then p = p and r, = 1, so we find the Theorem
1.1.6 (inequality (1.16)).

Proof. See [14].

Lemma 1.3.2. [/4] Let 0 < r(z) < p(x) <P < oo, v € Q/Qs, then

HfHL Hfr(x)HL Hf”L for Hf”L > 1, (1-45)

p(r) p(x ) p(Z) p(Z)

r(z)

and

for 1l <1l (1.46)

p(2) (2

< [IFI%

p(2) (2

Iz, @ < 17
r(x)

Proof. See [14].

Proposition 1.3.3. [/4] Let p(z) > 1, q(z) > 1 and r(z) > 1 where 5+ -5 =
and let sup,cq o s(x) < oo, then

119l L@ < CNFNL @9l @) (1.47)

where C = sup ;g% + sup 253

Proof. See [14].
Remark 1.3.3. If s(z) = 1, we find the inequality (1.44) with C = r,.

Remark 1.3.4. If p(z) = p, q(x) = q and s(z) = s, then C = 1 and we get the
Corollary 1.1.3.

18
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We reference an additional standard definition analogous to a standard estab-
lished in the context of Orlicz spaces (see [30]).

Definition 1.3.4. /4] Let [ € L,.)(Q?). We define the following norm on L,,,(2):

IR

IS oy = sup (1.48)

p(z) pq(1h)<1

where 5+ 5 = 1.

q(z)

Proposition 1.3.4 (Minkowski’s inequalities[14]). If f,g € L,.)(2), then

1+ 91D o < IAID o+l (1.49)
Proof.

| (5@ + () vta)aa

1)
f+yg = sup
H ”LP(I)(Q) pa($)<1

f(@)g(x)dx

Q

+ sup
pq(¥)<1

< [ stwyias
pq(¥)<1 Q
:HfHLp y HQHL (o) (2

Lemma 1.3.3. Let n €N, fi(z) € Ly, i = {1,2...,n}, then

zfz

o= |l 11D
<SS o (1.50)
=1

Proof. By induction.
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Chapter 2

Some estimates for Hardy-Steklov
type operators

2.1 Introduction

It is well-known that for L, spaces with 0 < p < 1, the Hardy inequality is

not satisfied for arbitrary nonnegative measurable functions, but is satisfied for
nonnegative monotone functions (see [10]).
In 2013 Rovshan A. Bandaliev et al. established some estimates for Hardy
operators for monotone functions in variable exponent Lebesgue spaces with
0 < p(z) < 1. The aim of this chapter is to establish some new estimates for the
Hardy-Steklov type operator. This chapter is structured into two sections:

1. Section one: The objective of this section is to establish some new integral
inequalities with 0 < p < 1 for nonnegative function under weaker condi-
tion than monotonicity ( see [35] for more details), via Hardy—Steklov-type
operators ( this work is published, see [18]).

2. Section two: The investigations of the Hardy inequality in variable ex-
ponent Lebesgue spaces L,y with 0 < p(z) < 1, are much less known. R.A
Bandaliev and A. Senouci et al. have established some weighted inequali-
ties for the classical Hardy operator acting from one weighted variable ex-
ponent Lebesgue spaces to another weighted variable exponent Lebesgue
spaces with 0 < p(x) < 1 for nonnegative monotone and quasi-monotone
functions defined on (0,00) (see [2] and [36]). In this section we extend
some results of [2] and [36] for the Hardy-Steklov type operators (see [16]).
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2.2 Some estimates for Hardy-Steklov type operators for

monotone functions with 0 < p < 1.

Throughout this section, we will assume that the function f is a Lebesgue
measurable function on (0, o).

2.2.1 Introduction.
The following Lemma and Theorem were proved in [35].

Lemma 2.2.1. Let 0 < p < 1, ¢; > 0 and f be a nonnegative measurable function
on (0; 00), such that for all x > 0,

! p p
;(/ 7y ldy) | 2.1)
Then
T V4 x
( / f(y)dy) < e / fPy)y?dy, (2.2)
0 0
where
o — C?(l—p).

The classical Hardy operators are defined as follows:

(. f) (s /f )y, (Hf) ( / e

Theorem 2.2.1 ([35]). Let 0 <p <1, a <1— 3 and ¢; > 0. If f is nonnegative
measurable function on (0, ) and satisfies (2.1) for all x > 0, then

[ (H1f) (@) Ly 0.00) < esll2®f (@)L, 0.00) (2.3)

where
_ IN—5 1
3 = ¢y p(l—oz——) pr.
p

The constant c; is sharp (the best possible).

Remark 2. 2 1. If f is a nonincreasing function on (0, ), then (2.1) is satisfied
with ¢, = pr. For such functions inequality (2.3) takes the form

o)y < (7 (10 7)) e @l @A)

1

The factor (pp <1 —a— 5))_5 is sharp. Inequality (2.4) was proved earlier (for
more details, see [10]).
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The well-known Hardy—Steklov operator is defined as follows
1 @
(Tf)(x) = — f(y)dy.
T Ja(z)
Where f is a nonnegative measurable function on (0, oo), with the boundary func-
tions a(z), b(z) satistying the following conditions.
1. a(z), b(z) are differentiable and increasing functions on (0, o).

2. 0 < a(z) <b(z) <ocofor0 <z < oo, al0)=5b(0)=0and a() = b(co) = cc.

The objective of this section is to extend the results of [35] to Hardy-Steklov
type operators 7; and 75 defined as follows:

1 @)
M@ =< [ fwady

0

with boundary function b(z) satisfying the following conditions:
1. b(x) 1s differentiable and increasing function on (0, co).
2. 0 < b(z) < oo for 0 < z < oo and b(0) = 0, b(oo) = oo.
1 o0
(T2f)(z) = - f(y)dy,
T Ja(z)
with boundary function a(x) satisfying the following conditions:

1. a(z) 1s differentiable and increasing function on (0, oo).

2. 0<a(z) <oofor0 <z < ooand a(0) =0, a(cc) = oo.

2.2.2 Main results

Throughout this section, we will assume that the function f is a nonnegative
measurable function on (0, co).

Theorem 2.2.2. Let 0 < p <1, a < 1—, and , + ., = 1. If f is a nonnegative
measurable function on (0, 00) and satisfies (2.1) for all x > 0, then

o (07N(2))" 7 f(2)

(T @)l 000) < €4

Lp(0,00)

where

1

Cy = c%fp((l —a)p — 1)_p.
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Proof. Choose t = b(z), hence x = b=1(t), where b=1(t) is the reciprocal function
of b(t). Applying (2.2) and Fubini’s Theorem, we get

|2 (T )@ 000 = ( [t ( /Obm f(y)dy>pdx>’l’
) (/Oo (b~ ) ( / t f(y)dy)p (b—w))'dt);
o (/ o </ Fwy 1d?/) (1) dt)l

(/ Py (/OO (b‘l(t))'(b—l(t))(a1>pdt) dy)p.

Since a < 1— - and b~'(c0) = oo, we have

'U\»—‘

/yoo (b*l(t))’ (bfl(t))(a—l)p dt = m [bfl(yﬂ(a—l)m—l ’

consequently,

yp=p) 1
Hﬂf“(Tlf)(ﬂf)HLp(o,oo)é( ) ) [ o o) ]

( )

-c
| —|
O\
/N
~~
—~
<
SN—
Ny
T
.
—
<
—
—~
<
S~—
—_
8
|
=
+
s |
~
S
QL
<
| I
S

L

o (b71(2)™7 f(x)

Lp(0,00)

We get the desired inequality.

Remark 2.2.2. If f is a nonincreasing function on (0, oo), we obtain the following
inequality:

[z (T ) (@)1, 0,00) < (#) E

Choosing b(z) = Bz in Theorem 2.2.2, where 8 > 0, we have the following result.

Lp(0,00)

Corollary 2.2.1. Let f satisfy the assumptions of Theorem 2.2.2 and

Bx
(s =1 [ f)dy, forz >0

0

then .
1\ 7
ISy < (5) etk Tl
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Remark 2.2.3. Taking 3 = 1 in the above corollary, we get Theorem 2.2.1.

For the next results we need the following

Lemma 2.2.2. Let 0 < p < 1. Suppose that a nonnegative function f satisfies the
condition: there is a positive constant cs such that for all x > 0,

@) <2( [ ) (2:3)
then . ) o
( / f(y)dy) <eo [Py (2.6)
where
el

Proof. Note that
fl@) = (f(x)a) " fre)er,
Using (2.5), we have
2 fP(z) < c5 (/ fp(y)yp‘ldy> :

therefore,
1
-1

ey < (7 o)
Multiplying by f?(x)z~! and putting 0 < t < z, we get
0 %—1
s < ([T raan) e,
t

consequently

00 0o %—1 00
[ < ([Crowa) [T et
0o %*1 00
=P (/t fp(:v)xp_ldx> /t fP(z)aPdx
— P (/too fp(x)xp_ldx) ’ .

Theorem 2.2.3. Let 0 < p <1, a > 1~ .. If f is a nonnegative and measurable
function on (0,00) and satisfies (2.5) for all x > 0, then

o7 (a7 (@)Y f()

)

L,(0,00)

2 (7o) (@)1 0.) < 7|

where

-

cr = cé_p((a —p+1) ».
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Proof. Putt = a(z), then a='(t), where a~'(t) is the reciprocal function of a(t)
Applying inequality (2.6) and Fubini’s Theorem, we get

|22 T2f) (@) |2y 0.00) = ( / R ( ® s y)”dx)’l’
([ e W(/f w) o))’
<@ ([ ([ o) woya)
(/ooo Flol™ 1(/0 (@' @) (1) ”dt) d )

Since a > 11—+ and a~'(0) = 0, we have

/Oy (a_l(t))/ (a—l(t))(afl)p dt — (; [a—l(y)] (a—1)p+1 ’

a—1p+1

hSAl

<(cg)

consequently,

Cp(l—p) a—1)p+1 >
|’$Q(T2f)(x)HLp(o,oo)§< p—i—l) [/ ()P [a! )]( )p+ dy}

— (a1 | / (fs ™ )] ") ]
o7 (a_l(x))a_if(x) :

207

Ly(0,00)

Choosing a(z) = Az in Theorem 2.2.3, where A > 0, we obtain the following
result.

Corollary 2.2.2. Let f satisfy the assumptions of Theorem 2.2.3 and

(Szf)(if):é A fy)dy for x>0.

Then the inequality.

1\ ¥
oSy < (5) T

holds.
Remark 2.2.4. Taking \ = 1, we get

||$a(H2f)($)”Lp(o,oo) < ¢r Hxaf(x)HLp(O,oo) :

Now, we have obtained the analogue of Theorem 2.2.1 for H, which is the dual
of Hardy averaging operator H,.
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2.3 On Hardy-Steklov type operators for quasi-monotone

functions in weighted variable Lebesgue exponent spaces.

The objective of this section is to extend the results of [36] and [2] to Hardy-
Steklov type operators 7, and 75 defined as follows :( Submitted work see [16]).
Let f be a nonnegative measurable function on (0, co).

Let
1 b(x)

(Th@) == [ Fwdy,
0
with boundary function b(x) satisfying the following conditions:
1. b(z) differentiable and increasing function on (0, ).

2. 0<b(z) < oo for0 <z < oo, and b(0) = 0, b(oo) = co.

Let
(Tof)(x / F(y)dy,

with boundary function a(x) satisfying the following conditions:
1. a(z) differentiable and increasing function on (0, cc).

2. 0<a(z) <oofor0 <z < oo, and a(0) =0, a(cc) = oo.

2.3.1 Introduction

We state the following definitions, Lemmas, Corollaries and Theorems that
are useful in the proofs of main results.

Definition 2.3.1. By L, .)(2) we denote the set of all measurable function f
on Q such that

PmMMﬁ:AWWW@W@W<W- 2.7)

Note that the expression

p(z)
P um%miﬁ%>m40ﬂ%ﬁ% dmu} (2.8)

defines a quasi-norm on Ly(y) .(x)(Q). Lp).w@) () i a quasi-Banach space equipped
with this quasi-norm (see [33]).

The following definition and statement were introduced in [7].

26



Some estimates for Hardy-Steklov type operators

Definition 2.3.2. We say that a nonnegative function f is quasi-monotone on
(0, 00), if for some real number o, z° f(z) is a decreasing or an increasing function
of . More precisely, given 3 € R we say that f € Qs if x7° f(x) is nonincreasing
and f € Q° if 7P f(x) is nondecreasing.

Proposition 2.3.1. (a) Let —oco < 8 < 400 ,f € Qs 0<a<b< ocoforp> -1
and0<a<b<oofor<-1.If0<p<1andp+# —1, then

( / bf(t)dt)pﬁplﬁJrlllp / (W*t—_ﬂﬁ*}> pod (29)

Ifo<p<1landpB=-1, then

</abf(t)dt>p <p /ab <tln é)p_l @)t 2.10)

The inequalities hold in the reversed direction if 1 < p < .

(b) Let —0o < < +00,fe@f, 0<a<b<ccforB<—-land0<a<b<ocofor
B>-1.If0<p<1landpB+ —1, then

( / b f(t)dt>p <wpip [ b <W*t—_ﬁbﬁ*!>l pod @1

Ifo<p<1landpB=-1, then

(/abf(t)dt)p <p /ab (tln %’)p_lfp(t)dt‘ (2.12)

The inequalities hold in the reversed direction if 1 < p < cc.

(c) The constants in these inequalities are the best possible in all cases.

Remark 2.3.1. [. If weputa = 0 and b = y in (2.9) and (2.11), we have
respectively

(@) If 3> -1, feQzand 0 < y < occ.
( / ’ f(t)dt)p < p(B+ 1)t / " (. (2.13)
0 0
(b) If 3> —1, fe QP and 0 <y < oo

(/Oy f(t)dt)p <p(B+1)'7 /y (8 (P — )P prdr. (2.14)

0
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2. Ifweputa=yandb=ocoin (2.11), we get
o] p [e’e]
([ rwa) <psea [Topoa (2.15)
Yy )

where f € Q° and 3 < —1.
The following Corollary, Lemma and Theorems were proved in [2].
Corollary 2.3.1. Let Q c R" be a measurable set and p,q be measurable func-

tions on Q, 0 < p < p(z) < q(z) < g < oo and r(x) = ’(’w)—p Suppose that w, and

wo are weight functions defined in ) satisfying the condition

112y @) < (A + B+ X0l o)

wq

wWa

< 0.

Then the inequality

w1

SAC

HfHL : (2.16)

q(z),w

holds for every f € Ly uw,)($2), where

O ={zeQ: plx)<qlx)}, Qy={z€Q: plx)=q(x)},

A:sup]E B:supM.

e Q(x) 7 ze Q(x)
If || = 0, the constant in (2.16) is sharp. If || > 0, then it is not sharp.

Remark 2.3.2. An improvement of the constant in (2.16) was obtained in [12].

w1

1
1Lz, ) < (L4 M —m)2 s o [T (2.17)
where @) @)
p\x . D\T .
M = esssup —=, m = ess inf —=, p = ess inf p(x).
o P 22 g(z) 2 = o8 P

The constant in (2.17) is sharp for any measurable set ().

Lemma 2.3.1. Let Q; ¢ R, Q, C R™ be measurable sets, p be a measurable
function on Q. and q be a measurable function on Q,, 1 < p < p(z) < q(y) <7< o0
forallz e Qy CcR"and y € Qy CR™ If p e C(), ¢ € C(Q), then the inequality

| [E P , (2.18)

p(z) (Ql)

<C
q(z) (92) P

p(z) HfHLq(T) 92)

is valid, where
Cra (HXmHoo sl + 2 - 5) Dol + Ixa)s (2,19

q = essinfq, q(7),q = €sSsupg, q(z), A1 = {(7,y) € U x Qy; p(x) = q(y)}, D =
(1 x Q2)\A1, C(), C(Qy) are the space of continuous functions in Q,, Q, and

< OQ.

[ x Qy — R is any measurable function such that H|| Fllzy ) (©2) )
! Lp)($h
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Theorem 2.3.1. Let p, ¢ be measurable functions on (0,00), 0 < p < p(z) < q(z) <
g<1,r( = p%ig )p, for x € (0,00) and f be a nonnegative and nonincreasing

function defined on (0, c0). Suppose that w, and w, are weight functions defined
n (0,00). Then for any f € Ly, (0,00) the inequality

I 1=
C)
%Q.

L (2 (t,00)
a(x) 112, ) 000y (2:20)

Lr(z) (0700)

HHlfHLq(x),wz(x)(ouoo) S p

holds, where (H.f) (z) = X [ f(y)dy and

1 1
¢ q (1180 Nl oo (0.00) + X2 | Lo (0,00 )

S1={xe(0,00): p(x) =p}, S2=(0,00)\5; and

caq=:(HXAJuw«mm-+nxAJuwmp@—%p

I3 =

p—p
dp: (1+ p +HX31HLOO Ooo>

Theorem 2.3.2. Let p, ¢ be measurable functions on (0,00), 0 < p < p(z) < q(z) <
7g<1r(x)= p’(’i g 2 for z € (0,1) and f be a nonnegative and nondecreasing
function defined on (0,1). Suppose that w, and w, are weight functions defined

n (0,1). Then for any f € Ly, (0,00) the inequality

IH1f 0,1) <

q(ft)7w2(w)( )

1

wy ()
Lq(z) (t’l) Lr(z) (0,00)

holds, where C,, and d, are the constants in Theorem 2.3.1.

[z — )7 ws()

SAE

p2Cpqdy £l (2.21)

p(2),wy (2)(0:1) 7

T

Theorem 2.3.3. Let p, ¢ be measurable functions on (0,00), 0 < p < p(z) < gq(z) <
7<= 055 ©) for z € (0,00) and f be a nonnegative and nonincreasing

function defined on (0, ). Suppose that w, and w, are weight functions defined
n (0,00). Then for any f € L), (0,00) the inequality

1
!Hﬁﬂhwmw@mm)ﬁﬂﬂ%ﬂ%

[t — 2]7 ws(z) 1
x Tl Wi @2
LQ(x)(O’t) Lr(z)(oroo)
holds, where (H,f) (z) = % [* f(y)dy and C,, , d, are the constants in Theorem

2.3.1.

The following theorems were proved in [36].
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Some estimates for Hardy-Steklov type operators

Theorem 2.3.4. Let p, ¢ be measurable functions on (0,0), 0 < p < p(z) < q(z) <
g<1,r(z) =22
weight functzons defined on (0,00). Then for any f € Ly, (0,00) the inequality

for z € (0,00), 8> —1and f € Q. Suppose that w, and w, are

I1H S 0,00) <

a(@),wa ()

1

Ly(z)(t,00) b (x)

wa(x)

\’d\»—‘

<ﬁ+ ]‘) ,Cpqdp tr

ey om: (223)

L'r(a:) (0,00)

holds, where C,, and d, are the constants in Theorem 2.3.1.

Theorem 2.3.5. Let p, ¢ be measurable functions on (0,00), 0 < p < p(z) < q(z) <
g<1,r(x) =22
weight functlons def ned on (0,00). Then for any f € L., (0,00) the inequality

, for z € (0,00), B < —1 and f € Q°. Suppose that w, and w, are

||H2f H Lq(J,),wz("L) (0700) S

1

Ly (0,t) W1 (x)

1 |lwy(x)

p* |5 + 1| " Cpqty ||f||Lp(I )y () (0,00) 2 (2.24)

LT(T) (0,00)

holds, where C,, and d, are the constants in Theorem 2.3.1.

Theorem 2.3.6. Let p, ¢ be measurablefunctions on (0,00), 0 < p < p(z) < q(z) <
g<1,r(x)= B”( ) 1), B> —1and f € Q°. Suppose that w, and w, are
wezghtfunctlons defned on (O 1). Then for any f € Ly, (0,1) the inequality

||H1f”Lq<z>,w2(m>(0,1) < Bi B+ 1)70pqdp

1
|:t_6<335+1 _ tﬂ-"l)] 7 /UJQ(.T) 1
x wy ()
Lq(x)(tJ) Lr(z)(0>1)

X

Wl o (2:25)

holds, where C,, and d, are the constants in Theorem 2.3.1.

Theorem 2. 3 7 Let p, ¢ be measurable functions on (0,00), 0 < p < p(z) < ¢(x) <
g<1,r(x)= p(z for z € (0,00) and = —1. Suppose that w, and w, are weight
functions defi ned on (0, 00).

1. If f € Q_,, then the inequality

x

[1¢10 )7 2t

L, 2)(0,t)
q(z) ||f”Lp<;L»)’w1(:L')(O7OO) ) (2.26)

LT(T) (0700)

holds.
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Some estimates for Hardy-Steklov type operators

2. If f € Q7Y then the inequality

xT

H [tn % % 2(2)

Ly () (t,00)
a(a) 171l oy (00) (2.27)

Lr(w) (0,00)

wy ()

holds.

C,, and d, are the constants in Theorem 2.3.1.

2.3.2 Main results

Theorem 2.3.8. Let p, ¢ be measurable functions on (0,00), 0 < p < p(z) < q(z) <
g<1,r(z)= ”p(”” oo Jor x € (0,00), B> ~1and f € Qp. Suppose that w, and w, are
wezghtfunctlons defned on (0,00). Then for any f € Ly, (0,00) the inequality

IS =

1 _1
||T1fHLq(a:),w2(ac)(Ovoo) S MPQBB (ﬁ + 1) 7 (1 + M - m)

5 || w267 () !
x 7 || =2 171 (2.28)
—1 L (z),w (1)(0700) ’
b7 ) Loo=1(ay (:20) i Ly (2(0,00) o
holds, where
1 1
Mg = (s o) + oo +2( - = ) ) (Isilliwooe) + Isallaco)).

and

@ =ess inf q(b~'(z)),qe=ess sup q(b~'(x)), 51 = {z € (0,00) : p(x) = p}, S = (0,00)/51.

x€(0,00) x€(0,00)
Proof. Choose y = b(z), hence v = b=*(y) , where b=1(y) is the reciprocal function
of b(y) and by using (2.13), where p = p, we get

ws () b(z)

TNy sy (000) = ft)dt

x 0

Lq(T) (0700)

w2<b_1(y)) /~y f(t)dt

—1
b= (y) Lo(6=1(y))(0,00)

)T “’2[)“1;(1;)5‘/)) (/Oy fp(t)tp—ldt)

—pE(B 4 1) I‘)Qb{bl—(ly()y)) (/Oy fp(t)tp—ldt>

[ =

Lo(p=1(4))(0:00)

IS 1=

Lg(b=1(y)) (0:20)
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Some estimates for Hardy-Steklov type operators

. R e ) IPEPRY:

=pr(B+1)77 ( p(t)[ = } & dt)
/0v b 1<y) Lq<b_1(y))(0»00)

. R wz(b_l(’y))r -1 ‘;
=pr(B+1) 7 E(t i

pr(B+1) 7 ( ){ b~ (y) L o149 (0:0)
e | [ e el W H]i

pr(B+1) i (t)xm,y)(t){ b 1(y) | t tL s (05)

. ) p—1 p 3 é
=2 | o) ||

_ a(b"'(z))
P

Let p(z) =1, q(x)

L g1y (0,)
p

, in Lemma 2.3.1 (Inequality (2.18)), thus

Mpg = | X2l Lec000) F X2 [ Lc(0,00) + <q(b11(x))> - (q(bll(w))) (s lzwt000) + X5 [l 0.0
L P
= | X2l 2o (0.00) + [[X2s [ Lo (0,00) + ( _B S ) (sl oo 0.00) + 155 | e (0,00) )
q(b~'(x))  q(b~'(x))
= | Ixa: 2o (0.00) + X2 | (0,00) + P ( _1 - ;>> (I Nl oo 0.00) + XS] Loo (0,50))
“\a (=) g (2))

1
= (”XA1||L00(0700) + ||XA2||LOO(O7OO) +Z_7 (a _ —

Now applying Lemma 2.3.1, we obtain

1
” (s 1 zoe000) + X8| s (0,50)) -

wa (b~ (y)) 1% - 2
H T2 x 04 (1) {Qb—lT =1
Yy L1(0,00) Ly (0:50)
wo (b~ (yN 12 . -
< M, H P2t v (?) {M] -1
() L 4b=1(y)) (0:20)
P L1(0,00)
1
o wy (b1 Y e B
= My, / ”(t)X(o,y)(t){ Qb(_l ( »1 ! dt
’ ) L g1y (0:)
> _ wo (b~ (y)) 12 :
- Mpq fg(t)tg ! X(O,y)(t) [ 2<_1 ( ))} dt
0 b~ (y)

L go=1(yy) (0,:00)
p
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Some estimates for Hardy-Steklov type operators

The Fubini Theorem gives

| e
- [ roe

([ e
wy (b~ (y))

-/ (f ")

wy (b~ (y))
b='(y)

Finally, from Remark 2.3.2, follows that
wa (b1 (y))
)

(Sl

dt
L gp=1(y)) (0,0)
P

w2(bl(y)>r
b= (y)
dt

{w2(b1(y)) ] =
) L y@—1(y) (£:0)

P
dt
Lgo=1(y))(£:00)

P
Lg(6=1(y)) (t:20)

Lgo=1() (t:20)

X(0) (1) {

(Sl

(SAl

wy (b~ (y))
b=1(y)

IS =

Fy

Lg(O,oo)

Hf(t)tpl’

b*l
(y Lq(b_1(y))(t,oo) Lp(0.00)
1 p—1 1
<(1+M-—m)z|t7 w2b(_l((§J)) - 1l o
J Lyo-1yy) (t:00) V1Y Lyy)(0,00)
therefore

1 1
T 1 2y g oy (0:00) < Mpgp® (B+1)77 (1 + M —m)e

1, [[w2 (b7 (2)) 1

<& b=1(x) w (v HfHLp(x) wy (2)(0,00) *
Ly(p=1ay (t:00) 1

Lr(:c)(o’oo)
The following Theorem is proved analogously by applying remark 2.3.1 (in-
equality (2.14)).

Theorem 2.3.9. Let p, ¢ be measurable functions on (0,1), 0 < p < p(z) < g(z) <
i<1,r(x)= p”) o Jor x € (0,1), B> —1and f € Q°. Suppose that w, and w, are
wezghtfunctlons defned on (0,1). Then for any f € Ly, (0,1) the inequality

1 1 1
||T1f||Lq(z),w2(z)(071) < Mpqﬂg(ﬁ +1) v (1+ M —m)r

[t78 (2P — tﬂﬂ)]f’ wo (b7 (z))

. b1 (x)

L1 oy (1) Loy (05(1)

(2.29)
holds, where M,,, M and m are the constants in Theorem 2.3.8.
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Some estimates for Hardy-Steklov type operators

Remark 2.3.3. If we put b(z) = = in Theorem 2.3.8 and Theorem 2.3.9, we get
Theorem 2.3.4 and Theorem 2.3.6 respectively, where d, is replaced by improved
constants (see remark 2.3.2) .

If we put 3 = 0 in Theorem 2.3.8 and Theorem 2.3.9, we get the following
Corollaries respectively.

Corollary 2.3.2. Let z € (0,00), 0 < p < p(x) < q(z) <g < 1, r(z) = plzigi)p and f
be a nonnegative and nonincreasing function defined on (0, ). Suppose that w,
and w, are weight functions defined on (0,00). Then for any f € Ly, (0,0) the

inequality

IS =

< Mygp? (1+M —m
(0.00)

a(x),wo (z)(0,00) =
1
(t,00) w1 ()

173/l

ws(b™ (x))
b= ()

1
7

X ||tP

Hf”Lp(T),wl(I)(O,OO) Y (2'30)

L'r(a:) (0,00)

Lyw—1())

holds, where M,,, M and m are the constants in Theorem 2.3.8.

Corollary 2.3.3. Let 0 < p < p(z) < q(z) <g <1, r(z) = p’ngw) and f be a nonneg-

ative and nondecreasing function defined on (0,1). Suppose that w, and w, are
weight functions defined on (0,1). Then for any f € Ly, (0,1) the inequality

I3 =

1Ty f|z 0,1) < ]\Izaqf_jE (1 + M — m)

1 bt
@y [ 5 170ty 231)
L;(2)(0,b(1))

holds, where M,,, M and m are the constants in Theorem 2.3.8.

q(a),wa (a) (

1
X

L1 (a) (t:0(1)) wi ()

Remark 2.3.4. If we set b(z) = z in Corollary 2.3.2 and Corollary 2.3.3, we get
Theorem 2.3.1 and Theorem 2.3.2 respectively, where d, is replaced by improved
constants (see remark 2.3.2).

Theorem 2.3.10. Let p, ¢ be measurable functions on (0,00), 0 < p < p(z) <
qz) <G < 1, r(z) = Ep(x) =, Jor x € (0,00), 8 < —1 and f € Q°. Suppose that w,
and w, are weight functzons defined on (0,0c). Then for any f € Ly, (0,00) the
inequality

IS =

1 _1
1T f1| Ly gy 0.00) < PEIB 1|77 Ny (1 + M —m)

wa(a” ()

a~'(z)

1
0,t) W1 (z)

1

t7

(2.32)

X

171

Lr(z) (0700)

p(z), wl(z) 00)

Lya=1(ay)(

holds, where M and m are the constants in Theorem 2.3.8 and
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1 1

zwg=:Quaﬁuw@m>+Hmﬁmmmmy+g(g~—i))(Wamuwma»+nxﬁmmm@»,

and

g3 =ess inf q(a™'(2)),qs=ess sup g¢(a”'(x)),5 = {z € (0,00) : p(z) = p}, S> = (0,00)/S1.

x€(0,00) 2€(0,00)

Proof. Choose y = a(z), hence » = a~(y) , where a~*(y) is the reciprocal function
of a(y) and by using (2.15) where p = p, we get

ws ()

f()

I

|’T2fHLq(z),w2(z)(07oo) = H

wga
= () dt
- /
(a 1( ( : )
fp tp dt
1(3/ / Lg(a=1(y))(0:00)
1 1 o0 -1 P P
=£ﬂﬁ+1|w‘(/‘f%w[@§%é?q =)
Yy

[ o[

I3 =

S

Lg(a=1(y))(0:2)

IS 1=

1
—pr|B+17

~

aa=Ly)) (0:2°)
o

1 -4 wa(a v
=pr[B+1¥ / FEOX oo (1) { 2(5 (ZS/))} 2 dt
P ota— i (0,00)
1 wo(a Yy po P
= ot 1177 || Pt | e
Yy L1(0,00) L y(a=1(y (0:0)
The rest is similar to the proof of Theorem 2.3.8. []

Theorem 2.3.11. Let z € (0,00), 0 < p < p(z) < q(x) <7< 1, r(z) = p%;gi)p
be a nonnegative and nonincreasing function defined on (0, ). Suppose that w,
and w, are weight functions defined on (0,00). Then for any f € L., (0,00) the

inequality

1

) = Npqﬂi(l"‘M_m)

IS =

IT2f11

(t — )7 wy(a=(2))
a1 (x)

q(z),wa (x) (0,00
1

wy(x)

07t)

X

HfHLp(z)7w1(I)(07oo)7 (2.33)

L'r(z) (0700)

holds, where N,,, M and m are the constants in Theorem 2.3.10.

Lg(a=1(ay)(
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Proof. Leta =y, b=o0ocand 3 =0in (2.9), then

/y Cstar <ot / Ce—artpo)” (2.34)

We apply inequality (2.34) with p = p and the rest is similar to the proof of
Theorem 2.3.8.

Remark 2.3.5. If we put a(z) = x in Theorem 2.3.10 and Theorem 2.3.11, we get
Theorem 2.3.5 and Theorem 2.3.3 respectively, where d, is replaced by improved
constants (see remark 2.3.2).

Now we consider the case g = —1.

Theorem 2.3.12. Let p, ¢ be measurable functions on (0,00), 0 < p < p(z) <

q(z) <g< 1, r(z) = p%igz_)g

weight functions defined on (0, ).

for xz € (0,00) and 3 = —1. Suppose that w, and w, are

1. If f € Q_4, then the inequality

I3 =

1
HT2fHLq(],‘),u72(J(I)(O’OO) S Npq]_jg(]‘ + M - m)

'd\‘»—t

1
ws ()

Loa=1(ay (0:1) Ly (0,00)

t
" (tlnx)

" wy(a” (x))

(ZE) ||f||Lp(m),w1(w)(0,OO) ) (235)

a

holds , where N,,, M and m are the constants in Theorem 2.3.10.

2. If f € Q7Y then the inequality

1

||T1f||Lq(z)7w2(z>(0,oo) S Mpqu(l + M — m)

(S

1
wy ()

La=1ay (o) Loy (0,00)

11l 000y (2.36)

p(2),wy (@) (

holds, where M,,, M and m are the constants in Theorem 2.3.8.

Proof. [. Leta=yandb=ccin (2.10), then

/yoo Ft)dt < pr (/yoo (tln g)pl fp(t)dt>; (2.37)

Choose y = a(x), hence x = a~(y), where a~1(y) is the reciprocal function
of a(y) and by using (2.37), where p = p, we get
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17211,

/aoo o)
al / ()

(a '(y))

a~(y)

q(@),wa () (0,00)

t)dt

!

Lyt ) (0:50)
(/yoo 2(8) (t In é)pldt
([ o [ (m )"
[ [ (ong
[ ronem o]

JE() X (y,00)

(S

IA
I3
P 1=

)

IS
7S I

I3
7 I

p—1
) i

U)Q(a_l(y))
a~(y)

I3
P I

I3
S I

The rest is similar to the proof of Theorem 2.3.8.

2. Leta=0andb=yin (2.12), then

/Oyf(t)dt < pr (/Oy <t1n %)pl fp(t)dt);.

i)

(SAl

~

[SSHEI

1
P

L1(0,00)

a=1(y) (0:2)

L g(a=1(y))(0,)
L ga=1(y)) (0:0)
p

P \2!
] (t In —) dt
Y

L ga=1(y)) (0:00)

1
P

L g(a=1(y)) (0:%)
p

(2.38)

Finally we apply (2.38) with p = p and the rest is similar to the proof of

Theorem 2.3.8.

Remark 2.3.6. If we put a(z) = z and b(x

) =z in (3.35) and (3.36), we get in-

equalities (2.26) and (2.27) of Theorem 2.3.7, respectively, where d, is replaced

by improved constants (see remark 2.3.2).

37



Chapter 3

Some integral inequalities for
Hardy-Steklov operator for
quasi-monotone functions with
0<plx) <1

3.1 Introduction

In this chapter, we study the Hardy—Steklov operator in variable exponent
Lebesgue L, with 0 < p(z) < 1. The key 1dea 1s to obtain analogues of Lemma
2.1 and Proposition 5.1 of [7] where a and b are constants to boundary functions
a(x) and b(z). Consequently by applying these results, we get some new integral
inequalities for Hardy-Steklov operator in weighted variable exponent Lebesgue
spaces, for nonnegative quasi-monotone and monotone functions with 0 < p(z) <
1. (Submitted work (see [17])).

The following Corollary and Lemma were established in [2].

Corollary 3.1.1. Let Q c R™ be a measurable set and p,q be measurable func-
tions on Q, 0 < p < p(z) < q(z) < g < oo and r(x) = qug)f;g) Suppose that w, and
wy are weight functions defined in Q satisfying the condition

wq

Wa

< 0.

Then the inequality

. 1l G

2 Lr(:l:) (Q)

1
1112y @ < (A+ B+ [Ix0s ) ®
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holds for every f € Ly)w ) (2), where

={ze€Q: px)<q@)}, D={reQ: plx)=q)},

A= sup P& gy @) —P)
e Q(x) z€eN Q(‘T)
If || = 0, the constant in (3.1) is sharp. If || > 0, then it is not sharp.

Remark 3.1.1. The improvement of the constant in (3.1) was obtained in [12].

1 wl
1+ M—m)e||— 3.2
Mt < QA =0 [ (3.2)
where @) @)
p\T .o P\T .
M = esssup —=, m = ess inf —=, p = ess inf p(x).
R o) 8 gla) LT 0 )

The constant in (3.2) is sharp for any measurable set (.

Lemma 3.1.1. Let Q;, ¢ R, Q, C R™ be measurable sets, p be a measurable
Sfunction on Q, and q be a measurable function on Q,, 1 < p < p(z) < q(y) <7< 0
forall z € 0y cR*and y € Oy, CR™ If p e C(Q), q € C(Q), then the inequality

[P

< Cpyq

p(z) q z)(ﬂ2) HfHLq(:c) 92) Lp(z)(Ql) )

is valid, where

P
Coo (nmnm sl + 2 - 5) (s lloo + aaloo) (3.4)

q = essinfq, q(x),q = esssupg, ¢(z), Ar = {(z,y) € U x Q25 p(z) = q(y)}, A2 = (1 X
W)\A, C(), C(Q) are the spaces of all continuous functions in ), Q,, respec-

tively and f : Q1 xQy — Ris any measurable function such that H I fllz

q(z Q2)
Q.

Both the definition and the statement that are presented below were given in [7].

Definition 3.1.1. We say that a nonnegative function f is quasi-monotone on
(0, 00), if for some real number o, x* f(x) is a decreasing or an increasing function
of x. More precisely, given 3 € R we say that f € Qg if 277 f(z) is nonincreasing

and f € QP if 7P f(x) is nondecreasing (see [7]).

Lemma 3.1.2. (a) Let —co < a < b < +oo and assume that the function f is

nonnegative and nonincreasing on the interval (a,b). If 0 < p < 1, then

(/ f(t dt> <p/ fP)(t — a)Ptdt. (3.5)

(3.3)

Lp(a:) (Ql)

<
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(b) Let —cc < a < b < +oo and f be a function that is nonnegative and nonde-
creasing on the interval (a,b). If 0 < p < 1, then

(/abf(t)dt)p ., /abfp(t)(b—t)p_ldt' (3.6)

(c) The constant p is sharp in these inequalities.

Proposition 3.1.1. (a) Let —co < 8 < +o0,f € Qs 0 <a<b<ooforp > —1
and0<a<b<ooforB<-1.If0<p<1andp+# —1, then

( / bf(t)dt>p < plB+ 1 / b (W) pod. ()

If0o<p<1landp=-1, then

(/abf(t)dt>p <p /ab (tln é)pl F(t)dt (3.8)

The inequalities hold in the reversed direction if 1 < p < .

(b) Let —0o < B <+o0,fe@0<a<b<ocoforf<—-1land0<a<b< oo for
B>—1. For0<p<1andp+# —1, the following is valid:

(/abf(t)dt)p < plB+1] /ab (W)H pwd (3.9)

Assuming that 3 = —1 and 0 < p < 1, the following is obtained:

(/abf(t)dt)p <p /ab (tln ?)plfp(t)dt. (3.10)

The inequalities hold in the reversed direction if 1 < p < .

(c) The constants in these inequalities are the best possible in all cases.

3.2 Main results

The Hardy-Steklov operator (see [25] for more details) is defined as

1 @
(Tf)(x) =~ f(y)dy,

T Ja(z)

where f is a nonnegative measurable function defined on the interval (0, o), with
boundary functions a(z) and b(x) that satisfy the following condition.
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1. a(z), b(z) are differentiable and increasing functions on (0, 0o).
2. 0 <a(z) < b(z) < oo for0 <z < ooand a(0) = b(0) =0, a(co) = b(co) = oco.

We assume that the functions a(z) and b(z) in Lemmas 3.2.1 and 3.2.2 satisfy
the above conditions.
If we replace in Lemma 3.1.2 the constant « and b by a(x) and b(x) respectively,
we get the following Lemma.

Lemma 3.2.1. (a) Let0<p<1,0<a(z) <blz) <+oo and f be a nonnegative
and nonincreasing function defined on (a(z),b(z)), then

b(z) p b(z)
( f(t)dt> <p / (t —a(2))P~" fo(t)dt. (3.11)

a(z) (=)

(b) Let0 < p<1,0<a(x)<blxr) <+ocand f be a nonnegative and nondecreas-
ing function defined on (a(z),b(z)), then

b(z) P b(z)
( f(t)dt> <p [0 -1 e (3.12)
a(x) a(x)

Lemma 3.2.2. (a) Let —c < 3 < +oo,f € Qp, 0 < a(z) < b(z) < oo for B > —1
and 0 < a(z) < b(z) <oofor < —1. If0<p<1andp +# —1, then

p—1
b(x) P b(gj) y6+1 _ (a(ﬂf))ﬁ—i_l
(/ f(y)dy> <p|B+1'7 / (‘ 5 fP(y)dy. (3.13)
a(x) a(x) Yy

Ifo<p<1landp=-1, then

( a(bj)ﬂy)dy)p <p / j()) <y1n [%DH P (3.14)

(b) Let —c < B < +oo,f € Q°, 0 < a(z) <blr) <ccforB<—1and0 <a(z) <
b(r) <o for B> —1. If0<p<1landp+# —1, then

p—1
b(z) P o) [ |y — ()"
</ f(y)dy> Splﬁﬂll_”/ ( 3 fP(y)dy. (3.15)
a(x) a(z) Yy

If0<p<1landp=-1, then

( b(x)f(y)dy>p§p [ ([N w0

a(x) (z) Yy

Proof. (a) Let0<p<1, feQpandh(y) =y "f(y).
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(1) If 3> —1and 0 < a(z) < b(x) < oo.
Choose t = y**, hence y =t

/[bm]ﬁ“ , (tﬁ%> at )"
[a(z)]f+1 (B+1)
[b(z)]F+1 ) P
=(B+1)"F / h tﬁ) dt | .
fa(x))6+1

Since f € Qs and 3 > —1, then h (tﬁ) is nonincreasing. By applying
Lemma 3.2.1 (a), we get

[b(z)]P+1 ) P [b(z)]P T o1 1
/ h (tm) dt| <p / (t = [a(2)]"TH)" " nP (tﬁ) dt
[a(a)] P+ [a(a)] P+

b(a) -
- / @) )+ oy
b(x)

— (1) / ) (1P — Ja(@)) "y (g )Py
b(z)

—p(B+1) / . (v = [a@)]P) ™ (v ) () dy

b(x) B+ _ [q(x)1BPH1
pipy [ (2l

Finally, we find inequality (3.13).

(2) If B<—1,0<a(z) <bx) <ooand f € Qg then h (tﬁ> is nondecreas-
ing. By applying Lemma 3.2.1 (b), we get inequality (3.13). The proof
is similar to that of the case (a)(1).

(3) If B = -1, 0 < a(z) < b(z) < co. Choose t = Iny, hence y = ¢' and
t € (Infa(z)],In[b(z)]), then

b(z) p b(z) d P
( f(y)dy> = (/ h(y)—y>
a(z) a(x) Yy
In[b()] P
_ / h(eydt |
Infa(=)]

Since f € Q_, then h(e') is nonincreasing. By using Lemma 3.2.1 (a),

) )y,
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we get

b(z) P @) P
fly)dy | = / h(e")dt
a(z) In[a(z)]

In[b(a)]
<p / (t — Infa(x)])" " hP(e)dt

nfa(z)]
b(x) d
_ y
- / (g = Dnfa@) )

L)
[ ]

(b) Let0<p<1, feQ"andh(y) =y f(y).

(1) If < —1and 0 < a(x) < b(xr) <o
Choose t = y**1, hence y = t71 a

b(z)
< / f(y)dy>
a(x)

dt € ([b(x))7*, [a(x)]*1).
([ )
””B“ dr\"
< )]+ (¢ )\5+1|>
[a(x)] P+ ) P
18 + h(t7)dt | .
([ 1))

Since f € Q° and 8 < —1, then h (tﬁ) is nonincreasing. By appling
Lemma 3.2.1 (a), we get

[a(x)]B+1 ) P [a(x)]P 11 o1 1
/ h (tﬁ) dt] <p / (t = b)) )" hr (tﬁ) dt.
[b(x)]P+ [b(x)]P+1
Choose y = t7+1, hence t = y*+' and y € (a(z),b(z)).
[a(x)]f+1 ) P [a(z)]P+ o1 1
/ h(tF)dt | <p / (t = [b(x)]"™)" mP (tm) dt
[b(z)]P+1 [b(x)]P+1

b(z) 1
—p / L BEP T R 8 + Uy

o) 1 1\p—1
B+ 1] / B
b(x) . b1 b1
DB+ 1] / B ) Py

b() /. B+l _ B+1\ PL
=plB+1] /() (y (=) ) fP(y)dy.

yP

43



Some integral inequalities for Hardy-Steklov operator for quasi-monotone
functions with 0 < p(z) < 1

Finally

b() p G ‘y,6’+1 _ [b(x)]ﬁ+1‘ p—1
d 1=p P(y)dy.
( 1w y) <plB+1] /a(x) ( - 7(y)dy

(2) If B > —1and 0 < a(x) < b(x) < co. Since f € QF and 3 > —1, then
h (tﬁ> is nondecreasing. By applying Lemma 3.2.1 (b). The rest
is similar to that of the case (a) (2), consequently we get inequality
(3.15).

(3) If 3= -1, 0 < a(r) < b(x) < oo, similarly to that of the case (a)(3), by
applying Lemma 3.2.1(b), we get inequality (3.16).

Theorem 3.2.1. Let p, ¢ be measurable functions on (0,00), 0 < p < p(z) < q(z) <

g<1,r(z)= p’(”;gx) for z € (0,0), 8> —1and f € Qz. Suppose that w, and w, are

wezghtfunctzons defined on (0,0¢). Then for any f € Ly, (0,00) the inequality

1 1 1
1T AN 2 g 0.00) < PE(B + D)7 g (1 + M —m) 2
1
(7 = (a(2)” )] wa(x) 1
X o e AN Ly 0y 01000
L@ (0=1(1) » a=1(1)) Ly (2)(0,00)

(3.17)

holds, where p' is the conjugate of p,

1 1
Cpq = ||XA1 ||L<>o(0,oo) + ||XA2||L<>O(0,OO) +]_9 5 - 5 (||XS1||LOO(0,oo) + ||X5'2||Loo(0,oo)) ,

and
S ={r € (0,00): p(x) =p}, S»=(0,00)\5,

(
M m = ess in @
(@) 85 (0 2

Proof. By applying Lemma 3.2.2 (a) (inequality (3.13) with p = p ), we have

M = esssup

= ess inf p(x).
zeN 4 xggp( )

Qx/fdt

q(z) (0,00)

S
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B+1)7 (/(::) [w27(1’)

1 b(z) wa (T L 1 +1\7p—1
gy | [ e — @y o

I3 =

p

IS =

p

[tfﬁ (tBJrl _ (a(gc))ﬁﬂ)]gﬂ fp(t)dt)

Lg(a)(0,00)

IS =

p

(SAl

p

(B+1)7 /Ooo FE)X otz , b)) (T) {W(x)r (2 (t741 — (a(2))™)]" dtH

X

[~

U

(SAl
3|

(B+1)"

fg(t)X(a(a:) , b(x))(t) {u&(x)} [t—ﬁ (t6+1 . (a(x))ﬁﬂﬂgﬂ

p
B T

Now by using Lemma 3.1.1, we get

< Cpg

IS =

T2 X (a(@) , b)) (1) {wz)(x)]p [t78 (5% — (a(x))?+1)]2

X

L1(0,00) L y(a) (0,00)
“p

IS =

B(t)X(a(:p) , b(;,;))(t) |:1U2(.1')} [t—ﬁ (t/3+1 _ (a(l,))ﬁ-f—l)}ﬂ—l

T
(0@
= Cpq /
0

= | [0 [l @) ] )| 27|

T

L 4(z) (0,00)
2 L1(0,00)

I3 =

dt

Lo (0,00)
P

fg(t)X(a(x) , b(x)) (t) |:w2(jlj‘):| [t_ﬁ (tﬁ-i-l o (a(x))ﬁ+1)]g—1

X

S

dt

Lq(.r) (O’OO)
p

Since a(x) <t < b(x), thus b=1(t) < z < a~'(t), where a=*(t) and b~'(t) are the in-
verses to the boundary functions a(t) and b(t), respectively. By applying Fubini'’s
theorem (see [25] ), we get

Sal

/OOO o H [P (7 = (a(@)™ ™)) Xatw) o (0) {%(w)r

L 4(z) (0,00)
P

1
P

dt
L) (071(t) , a= (1))
P

— /OOO fE(¢) H [t—ﬁ (tBJrl _ (a(x»ﬁﬂ”g—l {wg(;,;)r
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= /OOO TE(t) ([t‘ﬁ (P! — (a(x))ﬁﬂ)]%l {wa)DP
i (fom 0 |70 ) |7

([T () [t—ﬁ(tﬁﬂ_(a(m))ﬁﬂ)ﬁ w23<:$>_
I ==

- Hf(t) 172 — ooy [ 2]

IS =

dt
Ly 071(¢) , a=1(2))
P

dt>
Lq(w)(bil(t) ) ail(t))

Lg(z)(071(t) a‘l(t)))

(Sl

(bS]
IS
~
N—
I3 =

T

LP(OroO)
Finally, from Remark 3.1.1, it follows
1 1
) H [Pt = (a(@)*)]7 {—wz(x)} (1+M—m)>
x Lq(z)(b_l(t) ’ a_l(t)) L,(O’OO)
_ 3 [ws(x) 1
y H 8 (5 — (a(a))P )] {_} e 17112 0y 00
Lo @710 5 a=1@) TRl L (0,00)
Thus
1 1 1
||Tf||Lqm)w2(z)(00<> p£(5+1)i/cpq(1+M_m)£
1
2@ = (a@)1)]7 wa(e) ! £
T ) o wi(x) Frio o (05
Lq(z)(b 1(t) ) @ 1(t)) L,,(L) (0700)

Theorem 3.2.2. Let p, ¢ be measurable functions on (0,00), 0 < p < p(z) < q(z) <
g<1r(r)= pp(‘r o Jor x € (0,00), 8 < —1and f € Q°. Suppose that w, and w, are
weight functlons def ned on (0,00). Then for any f € L., (0,00) the inequality

[kSAl

1 _1
HTf||Lq(x),w2<m>(0,oo) <pr|B+17 cpq(l + M — m)

[P — (b(2))P+1)]7 ws ()

X

1
wy(x)

X ||f||Lp(z),w1(z)(Oroo)’

Lq(a:)(bil(t) ’ ail(t)) Lr(z)(0,00)

(3.18)
holds, where c,,, M and m are the constants defined in Theorem 3.2.1.

Proof. By applying Lemma 3.2.2 (b) (‘inequality (3.15) with p = p), we have

/fdt

”TfHL (2),wo () (0,00) =

q(a:) (O’OO)
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1y (@) v
<prlB+1T “’—”( / [0 (7 = (b() )] 1fp(t)dt>
a() Lq(m>(0,oo)
1 _1 b@) Ly ()2 p—1 :
=p2|B+ 1|7 ( / . {T] [P (7 — (b(x))Pt)]* fp(t)dt>
Lg(a)(0,00)
5 o | Twa(2)]” —B(18+1 B+1)\1P—1 Z
=pr|B+ 177 / { " } [P (7 — (b(x)"* 1) ]5 T f2(t)dt
a(z) L g(a) (0,00)
— pH 41 / 20Xt . o (1) {wz(x)r[t—ﬁ(tml—(b(m))ﬂ“)}”1 dth
L a(a) (0,)
:£§|@+1|*$ F2() X (aa) . b)) () {wix)}[t—ﬁ(tﬁﬂ_(b(x))ﬁﬂﬂp—l -
L1009l () (0,00)

The rest is similar to the proof of Theorem 3.2.1.

The following Theorem is proved analogously by applying Lemma 3.2.2 (b)
(inequality (3.15) with p = p).

Theorem 3.2.3. Let p, ¢ be measurable functions on (0,1), 0 < p < p(z) < q(z) <
g<1,r(r)= ppx) o Jorz € (0,1), 8> —~1and f € Q°. Suppose that w, and w, are
wezghtfunctlons defned on (0,1). Then for any f € Ly, (0,1) the inequality

IS =

= _1
||Tf||Lq(z)7w2(z)(U,l) S BE (/6 + ]-) = Cpq(l + M — m)

—B(4B+1 7))P+1 ? wy(x
(271 — (b(@)* )] 7 ws(x) wf(x) P

Lq(f>(b_l(t) ’ a_l(t)) Lr(w)(ovl)

X

(3.19)
holds, where c,,, M and m are the constants defined in Theorem 3.2.1.

By putting 3 = 0 in Theorem 3.2.1 and Theorem 3.2.3, we obtain the following
Corollary.
Corollary 3.2.1. Let p, ¢ be measurable functions on (0,00), 0 < p < p(x) < q(z) <

pp(z)
p(z)—p

g<1,r(x)=

1. Suppose that f is nonnegative and nonincreasing function defined on (0, cc)
and wy, wy are weight functions defined on (0, 00). Then forany f € Ly, (0, 00)
the inequality

\'ﬁ\»—t
(S

||Tf||Lq(z),w2(z)(Ovoo) p (1 + M - m)
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b
wy ()

L@y (0=1(1) , a=1(1)) Ly ()(0,00)

(t — a(2))7 wy(x)

X

N2 00y 0.0 (3.20)

holds.

2. Suppose that f is nonnegative and nondecreasing function defined on (0, 1)
and w., w, are weight functions defined on (0,1). Then for any f € Ly, (0,1)

the inequality
1
(t — b)) wy(x) 1
X ||f||Lp<z),w1(z)(0?1)’ (321)
z (1) a1) 1)
Lo (5710 . a7 (1) Lp(a) (0,1)
holds.

Where c,,, M and m are the constants defined in Theorem 3.2.1.
Now we consider the case = —1.

Theorem 3.2.4. Let p, ¢ be measurable functions on (0,00), 0 < p < p(z) < gq(z) <
7<1,r(x)= %for x € (0,00) and 8 = —1. Suppose that w, and w, are weight
functions defined on (0, ).

1. If fe Q' and 0 < a(z) < b(z) < oo, then the inequality

IS =

1
ITfllz o1y <P Cpq(l + M — m)ﬂ

a(@),wa (=) (
vt 1y (11) |

1
t?
T

Lg(ay(b=1(t) , a=1(t))
. wy () HfHLp(I),wm)(og), (3.22)

Lr(cv) (Oal)

holds.

2. If feQ 1and 0 < a(x) < b(x) < oo, then the inequality

1 1
HTfHLq(Qt)7w2(w)(O7OO) S Bgcpq(l + M - m)ﬂ
1 =
(22 I (55)]7
Ly (b1(t) , a71(1))
8 w1 (l’) ||fHLp(m),w1(ac)(Ovoo) ) (3'23)
Lr(z)(ovoo)
holds.

Where c,,, M and m are the constants defined in Theorem 3.2.1.
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Proof. 1. Byapplying Lemma 3.2.2 (b) (inequality (3.16) with p = p), we have

1
1 b(z) p—1 P
< pi w2(55> (/ [tln (M)] p(t)dt)
- x a(x) t
Lg(a)(0,1)
1
1 b(z) P p—1 »
=p* / {wz(x)} {tln (@)1 2(t)dt
- a(w) T t
Lg((0,1)
1
» ' wo ()" b()\1271 ||z
:]_QB f*(t)X(a(x) b(x))(t)|: 2( )] {tln <Q> dt
0 €T t
Lw(o,l)
3 we(z) ]2 b(z)\ 12" e
=p* 2(t)X (a(x) b(m))(t)|: 2;5 )] [tln (%)]
L1(0,1) Ly (0.1)

The rest is similar to the proof of Theorem 3.2.1.

2. We apply Lemma 3.2.2 (a) (inequality (3.14) with p = p) and the rest is
similar to the proof of Theorem 3.2.1.
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Conclusion

The objective of this work is to extend some integral inequalities involv-
ing usual Hardy operators to the Hardy-Steklov and Hardy-Steklov type opera-
tors for quasi-monotone functions in classical and weighted variable Lebesgue
spaces. When looking at inequalities that are associated with these operators,
it 1s possible to use other spaces, such as Morrey spaces, Marcinkiewicz spaces
and Orlicz spaces, as a method of perspective.
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