
Dissertation
Presented to:

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

in order to obtain the degree of : MASTER

Specialty: software engineering

 With a view to creating a startup

Presented by:

Hatem Fatima Zohra
On the theme:

People’s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research

 IBN KHALDOUN UNIVERSITY OF TIARET

Mr Talbi Omar
Mr
Mr Ouared Abdelkader
Mr Boudaa Boujemaa
Mr Daoud Mohamed Amine
Mr Bendjeloul Mokhtar

MCA UIK
MAA UIK
MCA UIK
MCA UIK
MCB UIK
Professor UIK

President
Supervisor
Co-Supervisor
Examiner
Incubator Representative
Economic Partner Representative

Defended publicly on 15/06 /2025 in Tiaret in front the jury composed of: :

Bekki Khadir

2024-2025

Development of an Emotional and Contextual Chatbot
to Enhance Communication Between Public

Institutions and Citizens

Acknowledgements

Praise be to God, the Almighty who granted me the strength, patience, and clarity of mind
to complete this research. Without His grace and guidance, this work would not have been
completed.

I extend my sincere thanks and gratitude to my esteemed supervisor, Professor Bekki
Khathir, who contributed to the success of this work with his advice and guidance.

I also express my heartfelt thanks to the members of the jury for accepting to evaluate our
work.

3

Dedication

To my father, my greatest support and the best person in my
life.

Thank you for always believing in me, for your endless
encouragement,

and for being my strength in every step of this journey.

To my dear mother, your love, prayers, and patience have
carried me through.

Your presence means everything to me.

To my brothers and sisters, thank you for your constant
support, love,

and for always being there.

To my teachers, your guidance, knowledge, and
encouragement

have been a light throughout this academic path.

And to everyone who believed in me, cheered me on,
or simply reminded me to keep going thank you.

4

Abstract

This thesis presents the design of an emotional and context-aware chatbot to improve commu-
nication between public institutions and citizens. Leveraging natural language processing and
large language models, the chatbot can understand user queries, detect emotional cues, and gen-
erate empathetic responses tailored to the context. By offering more human-like and sensitive
interactions, the system enhances user experience, promotes trust, and supports more effective
public service delivery across various sectors.

Keywords:

Chatbot, Natural Language Processing (NLP), Large Language Models (LLMs), Emotion De-
tection, Context-Aware Systems, Public Services, Human-Computer Interaction, Empathetic
Communication, Citizen Engagement.

5

Résumé

Ce mémoire présente la conception d’un chatbot émotionnel et contextuel visant à améliorer la
communication entre les institutions publiques et les citoyens. Grâce au traitement automatique
du langage naturel et à l’utilisation de modèles de langage avancés, le chatbot est capable de
comprendre les requêtes des utilisateurs, de détecter leurs émotions et de fournir des réponses
empathiques adaptées au contexte. En offrant des interactions plus humaines et sensibles, ce
système renforce la confiance, améliore l’expérience utilisateur et soutient une meilleure qualité
de service public dans divers secteurs.

Mots-clés :

Chatbot, Traitement Automatique du Langage Naturel (TALN), Modèles de Langage de Grande
Taille, Détection des Émotions, Systèmes Contextuels, Services Publics, Interaction Homme-
Machine, Communication Empathique, Engagement Citoyen.

6

Contents

Acknowledgements 3

Dedication 4

Abstract 5

Glossary 12

1 Designing Human-Centered AI Systems : The Role of NLP and LLMs 15
1.1 Introduction . 16
1.2 Natural Language Processing . 16

1.2.1 NLP techniques . 16
1.2.2 Applications of NLP . 17
1.2.3 NLP challenges . 18

1.3 Understanding Large Language Models (LLMs) 18
1.3.1 Open-source vs. Closed-source Models . 18
1.3.2 Large Language Model Families . 19
1.3.3 LLM Open sources framework . 19
1.3.4 LLM Pipeline: From Pre-training to Inference 20
1.3.5 Advanced Techniques: RAG and Prompt Engineering 22

1.4 LLM Capabilities . 24
1.4.1 Basic Capabilities . 24
1.4.2 Emerging Capabilities . 25
1.4.3 Augmented Capabilities . 25

1.5 Considering Human Aspects in Software Design 25
1.5.1 Human aspects . 25
1.5.2 Human-Centered Approaches in Software Engineering 29

1.6 Context and Work Positioning . 30
1.6.1 Toward Human-Centered Digital Interactions in Algeria 30
1.6.2 Challenges . 30
1.6.3 Our Missions . 31
1.6.4 Planned Timeline . 31

1.7 Conclusion . 31

2 Design of Our Solution 32
2.1 Introduction . 33
2.2 Motivation and Challenges . 33

2.2.1 Motivation . 33
2.2.2 Emotion and context awareness . 36
2.2.3 Challenges . 37

2.3 Our Framework . 37
2.3.1 Possible Scenarios for Empathetic System 38

7

CONTENTS 8

2.4 Solution Overview . 42
2.4.1 Why a Hybrid Approach? . 42
2.4.2 Formalization . 43
2.4.3 Architecture Modules . 44
2.4.4 System Architecture . 46

2.5 UX Design of our solution . 47
2.5.1 Push Notifications and Timely Alerts . 48
2.5.2 Chat History Display and Session Persistence 48
2.5.3 Emotion Selection Menu and Emotional State Detection 49
2.5.4 Intent Confirmation and Clear Messaging 49
2.5.5 Personalization and Adaptive Language Style 49
2.5.6 Progressive Disclosure and Guided Conversations 49
2.5.7 Quick Replies, Menu Options, and FAQ Integration 49
2.5.8 Sentiment Analysis and Emotional Intelligence Integration 49

2.6 Instantiation of our framework . 49
2.6.1 First step: Need, Intent, and Emotion . 49
2.6.2 Second step: Response strategy and generation 50
2.6.3 Third step: Delivery, Feedback, and Learning 51

2.7 Conclusion . 51

3 SmartConnect Chatbot : Implementation 52
3.1 Introduction . 53
3.2 Technologies and Tools Used . 53

3.2.1 Programming Languages . 53
3.2.2 Frameworks and Libraries . 53
3.2.3 Dataset Handling . 53
3.2.4 Model Architectures . 53
3.2.5 Justification of Technology Choices . 54
3.2.6 Development Environment . 54

3.3 System Architectures . 54
3.3.1 RULE BASED MODEL . 54
3.3.2 System Architecture(AI MODEL) . 56

3.4 Dataset Preparation . 57
3.4.1 Rule Based model . 57
3.4.2 LLM-Assisted Empathetic Data Creation 58

3.5 Model Implementation . 59
3.5.1 Rule based model . 59

3.6 Model Fine-Tuning . 61
3.6.1 Data Loading and Preprocessing . 61
3.6.2 Tokenizer and Model Initialization . 61
3.6.3 Tokenization of Dataset . 61
3.6.4 Training Setup . 62
3.6.5 Fine-Tuning Procedure . 62
3.6.6 Model Saving . 62

3.7 UI/UX Design . 63
3.7.1 Objective of UI/UX . 63
3.7.2 Tools Used . 63
3.7.3 Wireframes . 63
3.7.4 Admin Dashboard (UI) . 64
3.7.5 User Experience . 64

3.8 Challenges and Solutions . 64
3.8.1 Model Size and Computation Cost . 64

8

CONTENTS 9

3.8.2 Prompt Design for Empathy . 64
3.8.3 Balancing Response Accuracy and Warmth 65

3.9 Test and Evaluation . 65
3.10 Conclusion . 66

General Conclusion 67

Annexes 69

Bibliography 80

9

List of Figures

1.1 NLP pipeline . 16
1.2 Tokenization . 17
1.3 Lemmatization . 17
1.4 LLM Families . 19
1.5 Decision Tree for Selecting an Open-Source Large Language Model Based on User

Preferences, Machine Constraints, and Task . 20
1.6 Overview of Fine Tuning Techniques including Instruction Fine Tuning and Pa-

rameter Efficient Fine Tuning (PEFT) approaches. 22
1.7 Core pipeline of a Large Language Model (LLM) 22
1.8 Combinations of Retrieval and Generation in RAG-based Architectures 23
1.9 Improved structure of prompt engineering components for large language models 23
1.10 LLM Capabilities . 24
1.11 Taxonomy of Human Aspects Relevant to Software Engineering 25
1.12 Visual Protocol of the Think-Aloud Method in Software Engineering/User Studies 30

2.1 Semantic relationships connecting empathy with emotion, context, and intent. . . 36
2.2 General vision . 38
2.3 Example of Input Prompt with Emotional and Contextual Guidance 39
2.4 Example of Output Response Guided by Prompt Engineering 39
2.5 Step-by-step Evolution of the Empathetic Chatbot Solution 39
2.6 Rule-based model . 40
2.7 Alternative Styled Rule-Based Chatbot Interaction Schema 41
2.8 Emotion and Intent Detection with Prompted LLM 41
2.9 Pipeline of an Empathy-Fine-Tuned LLM from User Input to Output 42
2.10 Compact vertical flow of empathetic response generation pipeline. 45
2.11 Response transition scenarios: from automated response to human intervention . 46
2.12 Hybrid model . 47
2.13 Organigram of the chatbot interaction pipeline 47

3.1 System Architecture Diagram of the Empathetic Chatbot 55
3.2 AI Model Data Flow in Development Environment 57
3.3 dataset building . 57
3.4 Intermediate solution between customers and stackholders 63
3.5 Wirframe of our application . 63
3.6 Admin dashbord . 64

10

List of Tables

1.1 Comparison of selected open-source LLMs by task, machine constraints, and plat-
form . 20

1.2 Planned schedule for the master’s project . 31

2.1 Example telecom responses and extracted empathy keywords 37
2.2 UX Design Strategies and Components for a Dedicated Client Chatbot 48
2.3 Chatbot interaction pipeline (Part 1/3): Need, Intent, Emotion, Motivation . . . 50
2.4 Chatbot interaction pipeline (Part 2/3): Response strategy and generation . . . 50
2.5 Chatbot interaction pipeline (Part 3/3): Delivery, Feedback, and Learning 51

3.1 Sample user queries and their associated intents from the dataset. 58
3.2 Test Questions with Expected and Predicted Intents 65
3.3 Empathy Evaluation of Responses . 66

11

Glossary

• AI : Artificial Intelligence

• UI : User Interface

• UX : User eXperience

• ML : Machine Learning

• LLM : Large Language Models

• NLP : Natural Language Processing

• RAG : Retreival Augmented Generation

• JSON : JavaScript Object Notation

• GPT : Generative Pre-trained Transformer

• BERT : Bidirectional Encoder Representations from Transformers

• EI : Emotional Intelligence

12

General Introduction

13

LIST OF TABLES 14

Introduction
Today, companies and organizations face strong competition. To succeed, they must respond
quickly and clearly to clients’ questions and problems. This helps keep clients happy and im-
proves company performance [1]. The idea of using business thinking is also growing in uni-
versities and other service areas [2]. As a result, many organizations now see their clients as
customers who need continuous support and attention [3], [4], [5].

Problem Statement
Companies often deal with many clients asking different questions every day [6], [7]. Employees
must handle these requests quickly and correctly. In large companies, like those in telecom, this
task becomes very difficult and time-consuming. Providing fast and clear answers becomes a
challenge, especially when many questions are repeated.

Chatbots can help solve this problem. These tools use natural language technology to talk
with users and answer their questions automatically [8]. For example, new clients often ask:
“What are the current offers?”, “How do I activate my service?”, or “Who can help me with
billing?”. In financial services, questions like “Am I eligible for a discount?” or “How do I pay
my bill?” are very common.

But giving the right answer depends on many things: who the client is, their personal details,
their service history, and their current situation. If this context is not used, the chatbot may give
the wrong response [9]. Understanding the client’s intent requires combining all this information
in a smart way.

This thesis answers the following research question:

How can we use the client profile, their context, and their questions together to detect their real
needs and give better answers?

Research Contribution
To solve this problem, this thesis proposes a framework for a context-aware chatbot that uses
rules to help company staff, especially in telecom settings. The chatbot combines client profile,
context, and the question being asked. This allows the system to better understand what the
client wants.

The chatbot gives a list of good answers, based on the client’s situation. It works all day,
every day (24/7), helping both clients and employees. A dashboard is also included, so staff can
track common questions and client needs in real time.

This system is tested in a telecom company in Algeria, where workers lose a lot of time
answering repeated questions from clients. With this chatbot, time is saved, support is improved,
and client satisfaction goes up.

14

Chapter 1

Designing Human-Centered AI
Systems : The Role of NLP and
LLMs

15

CHAPTER 1. DESIGNING HUMAN-CENTERED AI SYSTEMS : THE ROLE OF NLP
AND LLMS 16

1.1 Introduction
Natural language processing (NLP) and large language models (LLMs) stand as major mile-
stones in the evolution of artificial intelligence, empowering systems to understand, interpret,
and generate human language with remarkable accuracy and nuance. As these technologies
continue to advance, it becomes increasingly essential to embed human-centered principles into
their design ensuring they serve not only technical goals but also the emotional, cognitive, and
behavioral needs of users.

By merging computational power with a deep understanding of human factors, we pave the
way for developing intelligent, empathetic systems capable of delivering richer, more meaningful
digital experiences. This intersection of technology and human insight opens new possibilities
for creating interactions that are not only functional but also engaging, adaptive, and deeply
human-centered.

1.2 Natural Language Processing
NLP is a branch of AI that tries to process and analyze natural language data. It involves
developing algorithms and models that enable computers to understand, interpret, and generate
human language.

Natural Language Processing is a field of computer science that combines machine learning
and computational linguistics to facilitate effective and seamless communication between humans
and computers. It focuses on enabling machines to comprehend the structure and meaning of
human language, interpret it, and produce relevant responses.

The primary goal of NLP is to develop computer systems capable of performing useful tasks
using natural human-readable language [10].

Figure 1.1: NLP pipeline

1.2.1 NLP techniques

In this section, we present the pipeline of a natural language processing (NLP) system.

Tokenization :

Tokenization is a crucial preprocessing step in NLP. It is the process of parsing a text into
tokens, which can be words, numbers or punctuation marks [11]. Figure 1.3 shows Splitting a
sentence into individual words for NLP processing.

Lemmatization :

Lemmatization is the process of reducing words to their base forms. A Lemma is the base form
of a token.[11] (See Figure 1.3)

16

CHAPTER 1. DESIGNING HUMAN-CENTERED AI SYSTEMS : THE ROLE OF NLP
AND LLMS 17

Figure 1.2: Tokenization

Figure 1.3: Lemmatization

Named Entity Recognition :

Named Entity Recognition is a crucial task in Natural Language Processing. It involves identify-
ing and classifying words or phrases that refer to specific entities within a text. A named entity
represents a real-world object that can be referenced by a proper name. It can be a person,
organization, location or other entities.[12]

1.2.2 Applications of NLP

NLP plays a vital role in transforming how we interact with machines and information. Some
key applications of NLP[10] include:

• Chatbots

• Machine Translation

• Text Categorization

17

CHAPTER 1. DESIGNING HUMAN-CENTERED AI SYSTEMS : THE ROLE OF NLP
AND LLMS 18

• Spam Filtering

• Information Extraction

• Summarization

• Dialogue System

1.2.3 NLP challenges

Natural Language Processing (NLP) faces several complex challenges due to the complexity and
diversity of human language:

• Linguistic Complexity: Natural languages are characterized by intricate structures,
subtle nuances, and diverse interpretations. Effectively understanding and processing these
complexities presents a significant challenge in NLP.

• Dialectal Variations: Language differences across regions and social groups lead to
various dialects, which NLP models must account for to facilitate effective communication.

• Ambiguity and Misinterpretation: Ambiguous words, phrases, and meanings that
depend on context can result in misinterpretations in NLP systems, necessitating a deeper,
context-aware understanding.

• Considering Human Aspects: Capturing emotional tone, user intent, and socio-cultural
context remains a key challenge for making NLP systems more empathetic and user-
aligned.

1.3 Understanding Large Language Models (LLMs)
Large Language Models (LLMs) are advanced AI systems designed to understand and gener-
ate human language. Trained on massive amounts of textual data, these models utilize deep
learning techniques, particularly transformer architecture, enabling them to recognize patterns
and structures of language. These models can perform a wide range of tasks, including machine
translation, text generation, and summarization. Fine-tuning LLMs on specific tasks enhances
their performance. As a result, LLMs have become essential in numerous artificial intelligence
applications, such as virtual assistants and chatbots.[13]

1.3.1 Open-source vs. Closed-source Models

Large Language Models (LLMs) can be broadly categorized into open-source models, such as
LLaMA and Falcon, and closed-source models, like GPT-4 and Claude. Open-source models
provide transparency, flexibility, and allow researchers and developers to fine-tune and adapt the
models to specific domains or languages. Closed-source models, on the other hand, are typically
backed by extensive resources, large proprietary datasets, and robust commercial support, often
achieving state-of-the-art results but without offering access to their underlying architectures or
training data.

Recent evaluations, such as the one conducted in the Natural Language Processing Journal
(Volume 10, March 2025), have compared the performance of open and closed-source LLMs in
low-resource languages using zero-shot, few-shot, and chain-of-thought prompting techniques.
The findings highlight that while closed-source models often outperform in general benchmarks,
open-source models demonstrate competitive results when carefully fine-tuned or enhanced
through advanced prompting strategies. This indicates that, despite resource constraints, open-
source models hold significant potential for innovation and democratization in language tech-
nologies, especially in regions and languages underrepresented in mainstream AI research [14].

18

CHAPTER 1. DESIGNING HUMAN-CENTERED AI SYSTEMS : THE ROLE OF NLP
AND LLMS 19

1.3.2 Large Language Model Families

Large language models refer to transformer-based neural language models that consist of tens to
hundreds of billions of parameters. which are pre-trained on massive text data. These models
are divided into three main families: GPT, Llama, and Palm.[13]

1. The GPT Family: Generative Pre-trained Transformers (GPT) are decoder-only, Transformer-
based language models developed by OpenAI. This family consists of GPT-1, GPT-2,
GPT-3, Instruct GPT, Chat GPT, GPT-4, CODEX, and Web GPT. Although earlier
models like GPT-1 and GPT-2 are open-source, the more recent versions, including GPT-
3 and GPT-4, are closed-source and available only through APIs.

2. The Llama Family: LLaMA is a collection of foundation language models released by
Meta. These open-source models are growing rapidly in popularity, as many research
groups use them to develop enhanced open-source LLMs and create task-specific LLMs for
mission-critical applications.

3. The Palm Family : PaLM (Pathways Language Model) is a family of large language
models developed by Google, designed with a transformer-based architecture that opti-
mizes scale and efficiency. The first model, announced in April 2022, features 540 billion
parameters and is pre-trained on a vast corpus of 780 billion tokens. Utilizing 6,144 TPU v4
chips, PaLM achieves state-of-the-art results in few-shot learning and multi-step reasoning
tasks. Its successor, PaLM-2, offers improved multilingual capabilities and efficiency. Addi-
tionally, Med-PaLM is a domain-specific model fine-tuned for medical inquiries, achieving
notable performance in healthcare tasks. Overall, these models demonstrate significant
advancements in language understanding and generation.

Figure 1.4: LLM Families

1.3.3 LLM Open sources framework

We conducted a survey on LLM ranking sites and recent strategies concerning 555 LLMs spe-
cialized in various domains, including the most used, the best performing, and those adapted
to specific tasks. This analysis allowed us to identify key trends and develop a decision support
model to help developers choose the most suitable LLM for their needs.

By analyzing the Hugging Face community1 and recommendations from LLM AI forums, we
have elaborated a decision tree that guides developers to choose the open-source LLM according
to machine constraints, training requirements, user preferences, and addressed tasks.

1https://huggingface.co

19

https://huggingface.co

CHAPTER 1. DESIGNING HUMAN-CENTERED AI SYSTEMS : THE ROLE OF NLP
AND LLMS 20

Choose Open-Source LLM

User Preference: Model Size

Small (low resources)

Machine Constraints: RAM < 8GB Recommend: GPT-Neo 125M

RAM ≥ 8GB Recommend: GPT-J 6B

Medium (balance)

Machine Constraints: GPU available Recommend: GPT-J 6B

No GPU Recommend: DistilGPT

Large (high performance)

Machine Constraints: High-end GPU + 32GB+ RAM Recommend: LLaMA 13B or Falcon 7B

Otherwise Recommend: Use cloud services

User Preference: Domain Specific

Yes Recommend: Finetuned models or specialized open-source variants

No Follow Model Size branch

Task: LLM Use Case

Text Generation Recommend: GPT-Neo

Code Generation Recommend: Codex alternatives like CodeGen

Chatbot / Conversational AI Recommend: Chat-oriented models like LLaMA 13B

Data Analysis / Summarization Recommend: BART

Figure 1.5: Decision Tree for Selecting an Open-Source Large Language Model Based on User
Preferences, Machine Constraints, and Task

Table 1.1: Comparison of selected open-source LLMs by task, machine constraints, and platform

LLM Suitable Tasks Machine Constraints Platform Notes
GPT-Neo 125M Text gen., NLP Low RAM (< 8GB), CPU-friendly Hugging Face Lightweight, easy to deploy
GPT-J 6B Text gen., code Medium RAM (≥ 16GB), GPU recommended Hugging Face Good balance between size and performance
LLaMA 7B Chatbot, conversational AI High RAM (≥ 32GB), GPU required Meta AI release State-of-the-art open weights
Falcon 7B Text gen., summarization High RAM (≥ 32GB), GPU required Hugging Face Fast and efficient inference
CodeGen Code generation Medium RAM (≥ 16GB), GPU recommended Hugging Face Specialized for coding tasks

1.3.4 LLM Pipeline: From Pre-training to Inference

LLM pipeline typically begins with data preprocessing, which includes tokenization, normaliza-
tion, and cleaning to prepare textual inputs [15], [16]. This is followed by model training phases,
where large language models are pretrained on massive datasets to learn language patterns [17],
[18]. After pretraining, models may be fine-tuned on specific downstream tasks using labeled
data to improve task-specific performance [19]. Finally, the inference step involves using the
trained model to generate predictions or responses in real applications [20].

Pre-training Phase

In the pre-training phase, the LLM is exposed to extremely large corpora of unannotated text,
often sourced from the web, books, or other large-scale text datasets. The goal is to learn statis-
tical patterns, grammar, syntax, semantics, and broad world knowledge through self-supervised
learning tasks. Common pre-training objectives include masked language modeling (as used in
BERT) or autoregressive language modeling (as used in GPT) [17], [18].

Tokenization plays a critical role in preparing text for large language models. One commonly
used method is:

BPE (Byte Pair Encoding)
Algorithm based on the frequency of character pairs.
Compresses the vocabulary by merging the most frequent pairs of characters or subwords.
Used by GPT, BERT, and other Transformer models.

20

CHAPTER 1. DESIGNING HUMAN-CENTERED AI SYSTEMS : THE ROLE OF NLP
AND LLMS 21

Fine-tuning Phase

Fine-tuning is the process of adapting a large pre-trained language model, such as LLaMA,
to a specific task by continuing its training on a smaller, task-relevant dataset. This process
slightly adjusts the model’s parameters, enabling it to improve performance on new objectives
while retaining the general knowledge acquired during pre-training. Fine-tuning enhances task-
specific performance efficiently, without the need to train the model from scratch, making it a
practical and widely used approach for applying large language models to various NLP tasks.[21].

The fine-tuning process (Figure 1) iteratively adjusts a pretrained language model on labeled
data to adapt it to a specific task or domain.

Algorithm 1 Simplified Fine-Tuning of a Large Language Model
Require: Pretrained model M0, dataset D, learning rate η, epochs E
Ensure: Fine-tuned model Mft

1: for e← 1 to E do
2: for all batch (x, y) ∈ D do
3: ŷ ←M0(x) ▷ Forward pass
4: Compute loss L(y, ŷ)
5: Update model: θ ← θ − η∇θL
6: end for
7: end for
8: return Mft

Fine Tuning Techniques

Fine-tuning adapts large language models (LLMs) to specific tasks or domains, improving effi-
ciency and performance. It includes Instruction Fine-Tuning for task alignment via instruc-
tions, and Parameter-Efficient Fine-Tuning (PEFT) to minimize trainable parameters
while preserving effectiveness.

• Instruction Fine Tuning

– Single Task: Tuning for a single, specific task.
– Multitask: Tuning the model simultaneously on multiple tasks.
– Selective: Tuning only a subset of the language model.

• Parameter Efficient Fine Tuning (PEFT)

– Reparameterization: Reducing the number of trainable parameters using methods
such as LoRA and QLoRA.

– Additive Approaches
∗ Adapters: Small modules inserted within the model layers to adjust behavior

without changing the base weights.
∗ Soft Prompts: Learnable embeddings prepended to input sequences to guide

model behavior.

Figure 1.6 presents a taxonomy of fine-tuning techniques for large language models. It cate-
gorizes approaches into Instruction, Fine Tuning and Parameter Efficient Fine Tuning (PEFT),
each with distinct strategies.

21

CHAPTER 1. DESIGNING HUMAN-CENTERED AI SYSTEMS : THE ROLE OF NLP
AND LLMS 22

Fine Tuning Techniques

Instruction
Fine Tuning

Parameter Efficient Fine
Tuning (PEFT)

Single Task:
Tuning for single task

Multitask:
Tuning for multiple tasks

Selective:
Tuning a subset of LLM

Reparameterization:
Reducing parameters using

techniques like LORA and QLORA
Additive

Adapters Soft Prompts

Figure 1.6: Overview of Fine Tuning Techniques including Instruction Fine Tuning and Param-
eter Efficient Fine Tuning (PEFT) approaches.

Inference Phase

Inference refers to the deployment and use of the trained model to generate outputs in real-world
scenarios. During inference, the LLM takes user inputs (prompts) and generates predictions or
responses without further parameter updates. Efficiency during inference is crucial, especially for
large-scale applications, due to the high computational and memory demands of large models.
Techniques such as quantization, pruning, and model distillation are often applied to reduce
latency and resource consumption [21].

Deployment and Monitoring

Once the LLM is ready for production, it is integrated into applications via APIs or embedded
systems. Continuous monitoring is essential to ensure stable performance, fairness, and safety.
Issues such as model drift, unintended biases, or hallucinated outputs must be detected and
addressed. Updating models periodically with new data or through continued fine-tuning helps
maintain relevance and quality over time [13].

Figure 1.7 illustrates the core pipeline of a Large Language Model (LLM), starting from user
input to output generation through tokenization, embedding, and transformer layers.

User Input
Raw Prompt

Tokenization
Text → Token IDs

Embedding
Tokens → Vectors

n Transformer Layers Output
Generated Tokens

Figure 1.7: Core pipeline of a Large Language Model (LLM)

1.3.5 Advanced Techniques: RAG and Prompt Engineering

This section presents RAG and prompt engineering as strategies to improve the relevance and
accuracy of LLM outputs.

Retrieval-Augmented Generation (RAG)

Retrieval-Augmented Generation (RAG) enhances Large Language Models (LLMs) by integrat-
ing external knowledge sources during inference. This approach addresses limitations such as
hallucinations and outdated information inherent in standalone LLMs. Gao et al. (2023) cat-
egorize RAG into three paradigms: Naive RAG, which retrieves and appends documents to
prompts; Advanced RAG, which incorporates sophisticated retrieval mechanisms; and Modular
RAG, which decouples retrieval and generation components for flexibility and scalability [22].

22

CHAPTER 1. DESIGNING HUMAN-CENTERED AI SYSTEMS : THE ROLE OF NLP
AND LLMS 23

Figure 1.8 illustrates key RAG scenarios, including retrieval before generation, after gen-
eration, and in iterative loops. These strategies improve the contextual relevance and factual
grounding of generated outputs.

User Query

Retriever Generator Final Output

Pre-Retrieval

Generator Retriever Final Output

Post-Retrieval

Retriever Generator Retriever (Refine) Final Generator

Iterative Retrieval

Generator Final Output

Direct Generation (No Retrieval)

Figure 1.8: Combinations of Retrieval and Generation in RAG-based Architectures

Prompt Engineering

Prompt Engineering involves crafting input prompts to guide LLMs toward desired outputs
without modifying model parameters. Sahoo et al. (2024) provide a systematic survey of
prompt engineering techniques, highlighting methods like zero-shot, few-shot, and chain-of-
thought prompting. These techniques enable LLMs to perform diverse tasks by leveraging
contextual cues within prompts [23]. Additionally, Debnath et al. (2024) emphasize the role
of prompt engineering in optimizing LLM performance across various applications, noting its
significance in enhancing coherence, accuracy, and task alignment [24].

Task Definition
Define the main objective

Context Information
Provide roles, back-
ground, constraints

Instructions
Specify format,

tone, and structure

Demonstrations
(optional)

Input/output samples

Constructed Prompt
Final composed

prompt given to LLM

LLM Output
Generated re-

sponse or result

Figure 1.9: Improved structure of prompt engineering components for large language models

For example, enhancing context and instructions allows prompts to reflect emotions and user
roles, making LLM responses more empathetic and user-centered.

23

CHAPTER 1. DESIGNING HUMAN-CENTERED AI SYSTEMS : THE ROLE OF NLP
AND LLMS 24

Task Definition: Provide emotional support and practical advice to users expressing frustra-
tion with a software tool.

Context Information: The user is a non-technical adult who is feeling overwhelmed and
frustrated by repeated software errors. They need clear, empathetic, and encouraging guidance.

Instructions: Use a warm and understanding tone. Avoid technical jargon. Break solutions
into small, manageable steps. Acknowledge the user’s feelings and provide reassurance.

Demonstration (optional):

• User: “I keep getting this stupid error and I’m about to give up!”

• Assistant: “I completely understand how frustrating that must be. Let’s take it step by
step, I’m here to help. Can you tell me exactly what the error message says?”

Constructed Prompt: You are a helpful and empathetic assistant. A user is experiencing
frustration with a software error. Respond with kindness, avoid technical language, and guide
them step-by-step. First, ask for the specific error message and reassure them that you’re here
to help.

1.4 LLM Capabilities
Large Language Models (LLMs) have a wide range of abilities. These capabilities can be grouped
into three main categories: Basic, Emerging, and Augmented. Each category supports
different tasks depending on the model’s training and context. As we can see in 1.10

Figure 1.10: LLM Capabilities

1.4.1 Basic Capabilities

These are the fundamental tasks LLMs can perform, such as understanding, translating, or
simple coding.

• Comprehension: Includes summarization, simplification, and answering multiple choice
or true/false questions.

• Multilingual: Translation between languages, handling cross-lingual questions and tasks.

• World Knowledge: Using external facts, like Wikipedia, to answer questions.

24

CHAPTER 1. DESIGNING HUMAN-CENTERED AI SYSTEMS : THE ROLE OF NLP
AND LLMS 25

• Coding: Performing simple programming tasks like function calling and using APIs.

1.4.2 Emerging Capabilities

These abilities reflect more advanced behaviors developed through improved training.

• Instruction Following: Completing tasks by following natural language instructions in
few-shot or turn-based formats.

• In-Context Learning: Learning from examples given in the input without extra training.

• Reasoning: Applying logical and symbolic thinking, doing arithmetic, and using common
sense to solve problems.

1.4.3 Augmented Capabilities

These are advanced features where LLMs interact with tools, people, or improve themselves.

• Interacting with Users: Engaging in physical or virtual actions and personalized re-
sponses.

• Tool Utilization: Planning and using external tools to solve tasks or gather knowledge.

• Self-Improvement: Reflecting on their actions to self-correct and refine over time.

This structured view shows how LLMs grow from basic understanding to interactive and
intelligent agents.

1.5 Considering Human Aspects in Software Design
This section highlights the role of human-centered principles in software design.

1.5.1 Human aspects

Figure 1.11shows four key human aspects in software engineering: Emotional, Cognitive, Social,
and Well-being, each with related factors like Emotion, Motivation, Communication, and Stress.
It highlights important human elements affecting software teams and work.

Emotional Aspects

Emotion Empathy Emotional Regulation

Cognitive Aspects

Motivation Focus / Attention Mental Load

Social Aspects

Communication Team Cohesion Trust

Well-being Aspects

Stress Burnout Risk Work-life Balance

Figure 1.11: Taxonomy of Human Aspects Relevant to Software Engineering

In the next sections, we discuss some human aspects.

Empathy

Empathy is the capacity to understand, share, and appropriately respond to the emotions and
perspectives of others. In human psychology, it involves both affective empathy (feeling what
another person feels) and cognitive empathy (understanding another’s emotional state) [25].

When applied to artificial intelligence (AI) and human-computer interaction (HCI), empa-
thy refers to the system’s ability to detect emotional cues, interpret the user’s emotional or
psychological state, and generate responses that are emotionally aware and supportive [26].

25

CHAPTER 1. DESIGNING HUMAN-CENTERED AI SYSTEMS : THE ROLE OF NLP
AND LLMS 26

Empathetic AI aims not just to deliver correct answers, but to engage users in a human-
like, emotionally intelligent way that builds trust, reduces frustration, and enhances user
satisfaction.

Example: In medical chatbots, empathetic responses can significantly improve patient ex-
perience. For instance, when a patient expresses fear or uncertainty before a procedure, an
empathetic bot might respond:

“I understand you’re feeling worried that’s completely normal. Let me explain the steps so
you feel more comfortable.”

This emotional acknowledgment helps reduce anxiety and increases trust in the system.

Motivation

Motivation in AI refers to a system’s capacity to stimulate and sustain user engagement through
tailored feedback, goal-setting mechanisms, and positive reinforcement [27]. Unlike human mo-
tivation, AI-driven motivation operates algorithmically, leveraging behavioral psychology prin-
ciples such as rewards, progress tracking, and nudges to guide users toward desired actions.

In educational contexts, AI-powered systems have been developed to personalize learning
experiences. For instance, the Artificial Intelligence Intelligent Assistant (AIIA) framework
offers personalized and adaptive learning in higher education by understanding and responding
to student inquiries, generating quizzes, and offering tailored learning pathways [28]. Similarly,
generative AI models, like large language models, are being integrated into Intelligent Tutoring
Systems (ITS) to enhance personalized education through dynamic content generation and real-
time feedback [29].

Such systems enhance user persistence by combining progress visibility (e.g., analytics dash-
boards), positive reinforcement (e.g., praise), and goal personalization. The theoretical founda-
tion behind this lies in Self-Determination Theory (SDT), which distinguishes between intrinsic
and extrinsic motivation and guides AI reward system design [27]. Recent studies highlight the
potential of AI-driven personalized learning to align with modern educational goals, emphasiz-
ing the need for systems that support cognitive engagement and the development of general
competencies [30].

Furthermore, comprehensive analyses of personalized learning in smart education underscore
the importance of student modeling and personalized recommendations. These approaches aim
to meet individual learner needs and enhance their abilities by providing tailored educational
experiences [31].

Personality and Personalization in AI

Personality in AI: Crafting Human-Like Engagement
Personality in AI refers to the deliberately designed behavioral traits (e.g., warmth, humor,
formality) that shape user perceptions of trust, competence, and relatability. Research indicates
that aligning a robot’s appearance and behavior with its intended task can enhance human-robot
cooperation [32].

Example: A healthcare chatbot adopts an empathetic, reassuring tone: “I notice you’ve been
logging more headaches this week. Let’s talk about what might help. ” Conversely, a finance
chatbot employs a formal, data-driven personality: “Your Q2 savings grew by 12%. Recommend
reallocating 15% to bonds. [View Analysis]”

Personalization in AI: Beyond One-Size-Fits-All
Personalization involves tailoring interactions based on user data (preferences, behavior, context)
to deliver adaptive, uniquely relevant experiences. Unlike static personality traits, personaliza-
tion evolves with the user, adjusting in real time [33].

Why It Works: Behavioral triggers such as time-based nudges (“You usually study Span-
ish at 9 PM. Ready for today’s lesson?”) and dynamic tone adjustments (softer feedback for

26

CHAPTER 1. DESIGNING HUMAN-CENTERED AI SYSTEMS : THE ROLE OF NLP
AND LLMS 27

stressed users vs. challenge-focused feedback for confident users) enhance user engagement and
satisfaction.

Example: Duolingo’s AI adjusts encouragement intensity (“Nice try!” vs. “You’re unstop-
pable! ”) based on user error patterns, leading to improved user motivation and retention.

Age

Age refers to the number of years a person has lived, but in the context of AI interaction, it rep-
resents more than just a number. Age influences cognitive abilities, sensory perception, memory
retention, and preferred interaction styles. Younger users may be more familiar with fast-paced,
playful, and visually rich interfaces, while older adults often appreciate clearer layouts, slower
interaction speeds, and simplified language.

Example: An empathetic healthcare chatbot might use cheerful, casual language with
younger users: “Hey there! Want to check your health stats today? ” but switch to a more
formal, reassuring tone with older adults: “Good afternoon. Let’s review your recent health
reports together.”

Educational Level

Educational level refers to the highest degree or level of schooling a person has completed. This
factor shapes a user’s vocabulary, conceptual understanding, and problem-solving approaches.
A well-designed AI system adapts its explanations, feedback, and recommendations according
to the user’s educational background, ensuring that interactions are neither too simplistic nor
too complex.

Example: An educational chatbot teaching programming might explain a concept to a
beginner as “A variable is like a box where you store a number or a word.” Whereas for an
advanced user, it could say “Variables act as references to memory locations, supporting dynamic
type assignment.”

Emotional Intelligence

Emotional Intelligence (EI) is defined as the ability to monitor one’s own and others’ feelings
and emotions, to discriminate among them, and to use this information to guide one’s thinking
and actions. This concept, introduced by Salovey and Mayer in 1990 [34], encompasses a set of
skills that contribute to the accurate appraisal and expression of emotion, effective regulation
of emotion in self and others, and the use of feelings to motivate, plan, and achieve in one’s life.

Example: In a project-based learning environment, an intelligent system detects that most
students feel frustration. It responds by activating a supportive agent that rephrases instructions
and offers targeted help.

When the dominant emotion shifts to pride (e.g., after completing a task), the system sug-
gests peer-to-peer praise to boost group cohesion and engagement.

Adapting to dominant emotions helps sustain motivation throughout collaborative activities.
This algorithm selects a motivational strategy based on the dominant emotion detected each

day. It personalizes encouragement by mapping emotions to appropriate supportive actions.
Example: Consider a scenario where a user expresses frustration with a technical issue. An

emotionally intelligent AI assistant might respond: "I understand this can be frustrating. Let’s
work through this together step by step."

Such responses demonstrate the AI’s capacity to perceive emotional states and adapt its
interactions accordingly, thereby improving user satisfaction and trust.

Importance in Empathetic AI Design Incorporating EI into AI systems is crucial
for creating more natural and effective human-computer interactions. By understanding and
appropriately responding to users’ emotional states, AI can provide support that is not only

27

CHAPTER 1. DESIGNING HUMAN-CENTERED AI SYSTEMS : THE ROLE OF NLP
AND LLMS 28

Algorithm 2 Motivate Based on Dominant Emotion
1: Input: emotionLog[]
2: Output: motivationPlan[]
3: for each day in emotionLog do
4: emotion ← GetDominantEmotion(day)
5: if emotion in emotionToStrategy then
6: strategy ← emotionToStrategy[emotion]
7: else
8: strategy ← “Stay positive”
9: end if

10: motivationPlan.append((day, strategy))
11: end for
12: return motivationPlan

functional but also emotionally resonant, leading to improved engagement and outcomes in
various applications, from customer service to mental health support.

Active Listening

Active listening is the process of fully focusing on, understanding and thoughtfully responding
to what another person is saying. Originally introduced by Rogers and Farson (1957), active
listening goes beyond simply hearing words; it involves paying attention to both the explicit
content and the underlying emotions, reflecting back understanding, and showing the speaker
that they are truly heard and valued.

Example: In the telecommunications field, customers often reach out to report issues such
as poor network coverage, billing errors, or service interruptions. An empathetic AI chatbot
equipped with active listening capabilities would handle such complaints by:

• Acknowledging the issue empathetically, e.g., "I understand how frustrating this must be
for you."

• Clarifying the problem with follow-up questions to ensure accurate understanding.

• Offering helpful steps or escalating the issue while maintaining a supportive tone.

• Acknowledging the complaint: Instead of jumping directly to solutions, the chatbot
first paraphrases the user’s message to show understanding. For example, if a customer
writes, “I’ve been experiencing dropped calls all day, and I’m really frustrated!” the
chatbot might respond, “I understand you’ve been facing repeated call drops today and
it’s causing a lot of frustration. I’m really sorry for this inconvenience.”

• Clarifying details if needed: The chatbot may ask gentle follow-up questions to ensure
it fully understands the problem, e.g., “Can you tell me if this issue happens in a specific
location or everywhere you make calls?”

• Offering solutions only after understanding: Once the user feels heard, the chatbot
moves to provide practical help: “Thank you for clarifying. Let me run a quick check on
the network in your area. Meanwhile, I can also guide you through a few steps to improve
the connection.”

By actively listening, the chatbot not only addresses the technical issue but also helps reduce
customer frustration, building trust and improving the user experience.

28

CHAPTER 1. DESIGNING HUMAN-CENTERED AI SYSTEMS : THE ROLE OF NLP
AND LLMS 29

1.5.2 Human-Centered Approaches in Software Engineering

User-Centered Design (UCD)

UCD is a design approach that focuses on putting the needs, goals, and experiences of users
at the center of the software development process. This means the focus is not only on the
technical aspects of a system but also on making it easy to use, helpful, and engaging for the
users. The approach involves including users throughout all stages of design and development,
using methods like interviews, prototype testing, and gathering feedback. By doing this, software
systems can be created that increase user satisfaction and improve how people interact with the
system. When designing systems aimed at enhancing emotional intelligence and empathy, using
UCD principles helps ensure that both the emotional and mental needs of users are carefully
addressed, leading to more meaningful and human-centered experiences.[35]

Empathy-Driven Design (EDD)

EDD is a design approach that goes beyond usability and functionality by focusing deeply on
understanding the emotional states, motivations, frustrations, and desires of users. It involves
stepping into the users’ shoes to design solutions that truly resonate with their feelings and
create meaningful, human-centered experiences. EDD often uses tools like empathy mapping,
storytelling, and user journey mapping to uncover the emotional context behind user behaviors,
ensuring that the final product supports not only what users do but also how they feel.[36]

Personalization and adaptivity

Personalization and adaptivity are fundamental principles within the user-centered approach
in software engineering, aiming to enhance system usability, relevance, and user satisfaction.
Personalization refers to the system’s ability to tailor its behavior, content, and interface to
align with the individual characteristics, preferences, and past interactions of the user, thereby
creating a more meaningful and efficient experience. Adaptivity complements this by enabling
the system to dynamically adjust its responses and functionalities in real time, based on contex-
tual factors such as the user’s current goals, behavior, or environmental conditions. Together,
personalization and adaptivity transform static software systems into responsive, intelligent so-
lutions capable of evolving alongside users’ changing needs. By integrating these principles,
software products can achieve higher engagement, foster long-term user trust, and deliver more
impactful, human-centered digital interactions.[37], [38]

Design thinking

Design Thinking is a user-centered, iterative approach to problem-solving that emphasizes deep
empathy with users, collaborative ideation, rapid prototyping, and continuous testing. In soft-
ware engineering, it serves as a framework to align product development closely with users’ real
needs and behaviors, ensuring that solutions are both usable and meaningful. By focusing on
understanding the user context and involving stakeholders early and often, Design Thinking
fosters innovation and reduces the risk of developing features that fail to deliver value. This ap-
proach complements personalization and adaptivity strategies by prioritizing human experiences
and promoting flexible solutions that can evolve with user feedback.[39]

Think Aloud

The think-aloud protocol is a qualitative usability evaluation technique in which users verbalize
their thoughts, perceptions, intentions, and decision-making processes while interacting with
a system or interface. Beyond simply identifying usability problems, the think-aloud method
provides designers with rich, real-time insights into how users mentally model the system, where

29

CHAPTER 1. DESIGNING HUMAN-CENTERED AI SYSTEMS : THE ROLE OF NLP
AND LLMS 30

they encounter friction or confusion, and what aspects of the interface enhance or hinder en-
gagement. By capturing this immediate cognitive feedback, teams can iteratively refine designs
to improve not only task completion but also to optimize for fluidity, intuitiveness, and overall
user satisfaction. Think-aloud thus plays a critical role in shaping software systems that are not
only functional but also emotionally engaging and aesthetically appealing.[40]

By integrating these human-centered approaches including UCD, empathy-driven design,
personalization, design thinking, and think-aloud evaluation software systems can be designed
to go beyond mere functionality, creating interactions that feel intuitive, engaging, and emo-
tionally meaningful. This foundation paves the way for solutions that not only meet technical
requirements but also resonate deeply with users on a human level, setting the stage for ad-
vanced, emotionally aware digital experiences.

Preparation
Select task, define

goals, prepare
environment

Instructions
Explain think-aloud

to participant

Session Recording
Participant per-
forms task while

verbalizing thoughts

Observation
Facilitator notes
behaviors, tim-
ing, hesitations

Data Analysis
Transcribe, code,

and identify patterns
or difficulties

Reporting
Summarize in-
sights and rec-
ommendations

Figure 1.12: Visual Protocol of the Think-Aloud Method in Software Engineering/User Studies

1.6 Context and Work Positioning

1.6.1 Toward Human-Centered Digital Interactions in Algeria

The ongoing digital transformation is reshaping how individuals, institutions, and governments
interact with technology worldwide. In Algeria, this shift is accelerating, with the rapid adop-
tion of digital services, virtual assistants, and AI-driven tools across various sectors. As citizens
increasingly rely on digital platforms to communicate, access services, and express concerns, en-
suring that these interactions remain meaningful, empathetic, and human-centered interactions
becomes crucial.

However, despite technological advancements, many digital solutions both globally and lo-
cally struggle to incorporate human aspects such as emotional intelligence, empathy, and cultural
sensitivity. This oversight is particularly visible in the Algerian context, where digital products
often prioritize technical performance and scalability over user experience that accounts for local
social and emotional nuances. This creates a gap between citizens and institutions, reducing
trust, satisfaction, and long-term engagement.

1.6.2 Challenges

Several challenges emerge within this context:

• A scarcity of localized datasets that reflect Algerian dialects, emotional expressions, and
cultural communication styles.

• Limited adoption of user-centered design principles in the development of local digital
services.

• Technical constraints in adapting large language models to recognize and respond appro-
priately to the emotional and cultural context of Algerian users.

This project is positioned within this landscape, addressing the need for digital solutions
that go beyond basic functionality to embrace human aspects. By considering the realities of
Algeria’s digital transition, the mass use of virtual assistants, and the importance of emotion
management, the work aims to design a framework that integrates advanced natural language
processing with empathetic, user-centered interaction. The next chapter will present the design
and conceptual foundation of this framework, showing how it seeks to bridge the gap between
citizens and institutions through emotionally aware conversational systems.

30

CHAPTER 1. DESIGNING HUMAN-CENTERED AI SYSTEMS : THE ROLE OF NLP
AND LLMS 31

1.6.3 Our Missions

Our mission is to develop an AI-based assistant tool designed to support citizens through a
chatbot that considers human aspects, starting with sensitivity to context and emotions. This
chatbot is capable of generating both typical and empathetic responses that can influence the
psychological state of users. It aims to provide meaningful assistance to citizens who interact
with the digital solution for their informational needs, inquiries, and expressions.

1.6.4 Planned Timeline

The following table presents the preliminary schedule for the master’s project, covering the
period from November 2024 to May 2025:

Project Phase Time Period
Problem analysis and literature re-
view

November – December 2024

Dataset creation and data collection December 2024 – January 2025
Language model development January – February 2025
UX design and interface develop-
ment

February – March 2025

Testing and validation phase March – April 2025
Writing the master’s thesis April – May 2025

Table 1.2: Planned schedule for the master’s project

1.7 Conclusion
In this chapter, we explored the fundamentals of natural language processing and large language
models, emphasizing the importance of incorporating human-centered aspects in their design.
We examined user-centered design approaches that focus on understanding users’ emotional and
behavioral needs to create more intuitive and empathetic interactions. These concepts highlight
how integrating human factors can lead to more meaningful and effective digital experiences.
Building on this theoretical foundation, the next chapter will present the context and positioning
of this work, setting the stage for the design and development of a comprehensive framework
for emotionally intelligent chatbot systems.

31

Chapter 2

Design of Our Solution

32

CHAPTER 2. DESIGN OF OUR SOLUTION 33

2.1 Introduction
In this chapter, we present the foundations of our empathetic chatbot framework, designed to
enhance user interaction through emotional and contextual awareness. We begin by discussing
the motivation for building more human-centric conversational agents and the challenges that
arise in detecting user emotions, interpreting intent, and delivering appropriate responses.

We then introduce our proposed framework, which integrates rule-based techniques and
machine learning models to manage complex dialogue situations. A step-by-step overview of
our solution is provided, illustrating the evolution from a basic system to a more advanced
architecture that incorporates user experience (UX) design components. Through this approach,
we aim to demonstrate how empathetic interaction can be technically realized and practically
deployed in real-world scenarios.

2.2 Motivation and Challenges

2.2.1 Motivation

In recent years, the integration of human-centric qualities such as empathy into human-computer
interaction has emerged as a critical research direction especially in the realm of conversational
agents and chatbots.

Scientific Gap: While existing systems are effective in delivering factual or transactional
responses, they often fail to consider emotional and contextual cues, which limits their ability
to simulate human-like interaction.

Scientific Importance: Bridging this gap pushes the boundaries of natural language
processing (NLP) and large language models (LLMs) toward more nuanced, context-aware,
and empathetic systems. The capacity to simulate empathy in AI improves:

• User trust

• User engagement

• Satisfaction with digital services

Practical Impact: In customer service, empathetic chatbots reduce pressure on human
agents by handling routine or emotionally sensitive cases. This results in:

• Cost reduction

• Operational efficiency

• Stronger user loyalty

Social Relevance: Context-aware systems using retrieval-augmented generation (RAG)
or rule-based intent detection can respond more appropriately across diverse user popula-
tions.

Example: In countries like Algeria, where many companies still lack basic chatbot infras-
tructure, an empathetic chatbot serves as a digital bridge, enhancing communication between
citizens and institutions.

Novel Contribution: Unlike traditional models that focus solely on information delivery,
our solution integrates:

• User emotion

• User motivation

• Adaptive response generation

33

CHAPTER 2. DESIGN OF OUR SOLUTION 34

This enables both a richer user experience and deeper insight into user sentiment and evolving
needs.

Example: In a telecom company in Algeria:

• 30 employees each answer 20 repetitive questions/day.

• Each answer takes 2 min.

Daily loss: 30× 20× 2 = 1200 min = 20 hours.
Cost: 20× 700 DZD = 14 000 DZD/day ⇒ 308 000 DZD/month.

Deploying a chatbot can reduce this recurring loss significantly.

First Motivating Example

Imagine Amina, a young woman traveling alone for the very first time. She arrives at the airport
with a mix of nervousness and excitement, clutching her ticket and documents tightly. This trip
is more than a journey it’s a dream coming true, an opportunity to explore a new place and
create unforgettable memories.

Suddenly, Amina’s heart sinks: her flight has been delayed, or worse, she’s misunderstood the
boarding gate instructions and just watched the plane take off without her. A wave of panic
crashes over her. She feels confused, scared, and overwhelmed in this vast, unfamiliar
airport. Her mind races with questions: “What do I do now? Where can I get help? Am I going
to be stuck here?”

Desperate, Amina reaches for her phone to call customer service but the line is busy. She
heads to the service counter, only to find a long queue and tired, overworked staff who barely
meet her gaze. The mounting anxiety turns into frustration and a growing sense of isolation.

Now, imagine a different scenario: Amina opens the airport’s virtual assistant app on her
phone.

• If the chatbot responds with cold facts: “The flight has departed. Please check the
next available flight.”
Amina feels dismissed and alone, her distress ignored. The message offers no comfort or
guidance, deepening her despair.

• But if the chatbot is emotionally intelligent and empathetic:
“Amina, I understand how frightening and overwhelming this must feel, especially on your
first solo trip. Take a deep breath I’m here to help you.”

“Let me guide you through your options. You can rebook on the next flight at counter A5,
and I’ll send you a clear step-by-step guide on what to do next.”
“If you need special assistance or just want someone to talk to, I can connect you with an
airport agent immediately. You’re not alone in this.”

Impact identified

For Amina (the user):
She feels genuinely heard, understood, and supported.
Her overwhelming anxiety eases as she regains a sense of control and direction.
Her trust in the airline and airport’s digital services grows, increasing her loyalty.
For the Airport/Company:
Emotional support reduces the strain on human agents, allowing them to focus on critical

cases.
Enhanced customer satisfaction leads to positive reviews and stronger brand reputation.

34

CHAPTER 2. DESIGN OF OUR SOLUTION 35

The collection of emotional and contextual data helps the airport improve future services
and crisis handling.

This example demonstrates how an empathetic chatbot can transform a stressful, confusing
situation into a manageable, reassuring experience. For citizens like Amina, such emotionally
aware technology offers not just information, but genuine care building trust and loyalty in a
way cold facts never could.

Second Motivating Example

Imagine a customer named Samir, who relies heavily on his mobile phone for work and staying
connected with family. One day, he suddenly loses network coverage in his area due to a technical
issue. He tries to make urgent calls but can’t get through. Frustration quickly turns to anxiety
and worry especially because he was expecting an important call.

Samir immediately contacts the telecom company’s customer service through their app.
If the chatbot responds factually:
“There is a network outage in your area. We are working on it. No estimated time for

resolution.”
Samir feels ignored and more stressed. He has no idea when the problem will be fixed and

feels helpless. His frustration grows, increasing the chance he might switch providers or complain
publicly.

If the chatbot is empathetic and emotionally aware:
“Hi Samir, I completely understand how upsetting it is to lose your connection when you

need it most. We are really sorry for the inconvenience this outage is causing you.”
“Our technicians are working hard to fix the issue as quickly as possible. Based on the latest

update, service should be restored within the next 2 hours.”
“Meanwhile, if there’s anything urgent, I can help you find alternative ways to stay connected

or assist with compensation requests.”
“Thank you for your patience I’m here with you every step of the way.”

Impact identified

For Samir (the user):

• Feels understood and valued despite the disruption.

• Experiences reduced anxiety knowing the expected resolution time.

• More likely to stay loyal to the telecom provider.

• Gains trust that the company cares about his experience.

For the Telecom Company:

• Decreased volume of angry calls or complaints to live agents.

• Improved customer satisfaction and brand reputation.

• Ability to collect emotional feedback and use it to improve service.

• Potentially higher customer retention during outages.

35

CHAPTER 2. DESIGN OF OUR SOLUTION 36

2.2.2 Emotion and context awareness

Emotion and context awareness are central to designing conversational agents that go beyond
transactional efficiency to deliver truly human-centered interactions. Emotion awareness enables
the system to detect, interpret, and respond to the user’s emotional state whether it’s frustration
over a service issue or satisfaction with a solution allowing the chatbot to act not just as a tool,
but as a responsive companion. This is particularly powerful in domains like telecom customer
service, where an emotionally-aware chatbot can identify when a user is upset about recurring
network failures and offer an empathetic acknowledgment before proceeding with troubleshooting
steps. Such responsiveness builds trust and reduces perceived coldness in machine interactions.

Context awareness complements this by allowing the system to adapt its behavior based
on situational cues such as user history, current activity, time, or location. Together, emotion
and context awareness shift chatbots from reactive tools to proactive, intelligent assistants. In
environments like Algeria where digital support systems are often limited or impersonal this
dual awareness helps bridge the gap between citizens and institutions by delivering relevant,
sensitive, and culturally adaptive communication. It also empowers companies to better under-
stand evolving user sentiment, improving both service quality and customer relationships. By
embedding these capabilities, AI systems become more empathetic, accessible, and aligned with
real human needs.

We express the relationships between empathy and three key constructs emotion, context,
and intent using semantic operators inspired by formal modeling.

1. Empathy depends on Emotion
Formal relation: Empathy⇐ Emotion
Empathy arises from the recognition and internal simulation of emotional states. Emo-
tional awareness is a prerequisite for empathic engagement.

2. Empathy requires Context
Formal relation: Empathy |⇒ Context
Empathy requires contextual grounding to be accurate and ethically appropriate. Without
context, emotional cues may be misread.

3. Empathy informs Intent
Formal relation: Empathy⇒ Intent
Empathy plays a generative role in shaping communicative or behavioral intent, aligning
actions with the perceived emotional and situational needs of others.

Emotion

EmpathyContext Intent

depends on

requires informs

Figure 2.1: Semantic relationships connecting empathy with emotion, context, and intent.

This table (2.1) presents example telecom customer responses alongside the extracted empathy-
related keywords or phrases. It highlights how emotional understanding is embedded in typical
service communications.

36

CHAPTER 2. DESIGN OF OUR SOLUTION 37

Telecom Response Empathy Keywords Extracted
We understand your frustration with the
slow internet speed and sincerely apologize
for the inconvenience caused. Our team is
committed to resolving this issue as quickly
as possible to restore your service.

understand, frustration, sincerely apologize,
inconvenience, committed, resolving

Thank you for your patience during this
outage. We realize how important your
connection is, and we’re working hard to fix
the problem promptly.

patience, realize, important, working hard,
fix, promptly

We truly regret the disruption you are facing
and appreciate your understanding as we
investigate the root cause. Please rest
assured we are doing everything to assist
you.

truly regret, appreciate, understanding, rest
assured, assist

Table 2.1: Example telecom responses and extracted empathy keywords

2.2.3 Challenges

Based on the discussion, this paper takes a first step toward designing emotionally and contex-
tually aware conversational agents to enhance user experience in service disruptions. It identifies
three key challenges:

C1. How to accurately detect and interpret users’ emotions for empathetic responses?

C2. How to incorporate context (user history, situation, culture) for personalized guidance?

C3. How to balance automated support with human intervention to maintain trust and satis-
faction?

2.3 Our Framework
In this section, we introduce our proposed solution: an empathetic, context-aware and emotion-
ally intelligent chatbot framework designed to enhance communication between citizens and vari-
ous institutions, including telecommunications, healthcare, education, finance, and e-government
sectors.See Figure2.2

The key idea behind this framework is to provide a flexible and modular system that can be
tailored to the specific context of each deployment. Depending on the available data, the target
sector and operational needs. The framework supports multiple implementation scenarios, each
exploring different strategies for embedding empathy in chatbot interactions.

• User Input: A citizen or customer sends a message to the chatbot.

• Empathetic System: This is the core component that processes the input and generate
an empathetic response.

• Output: The chatbot delivers an empathetic and contextually relevant response back to
the user.

• User Feedback: The user can provide feedback on the chatbot’s response.

37

CHAPTER 2. DESIGN OF OUR SOLUTION 38

• Admin Interaction: Administrators have access to the conversation logs and may inter-
vene by responding directly to users when necessary.

• Bias Detection and Reformulation: The empathetic system monitors admin responses
for cognitive biases and can reformulate messages to maintain empathy before delivering
them to the user.

Figure 2.2: General vision

2.3.1 Possible Scenarios for Empathetic System

To adapt the empathetic chatbot framework to different needs and technical capacities, we
outline several possible scenarios for embedding empathy. These scenarios illustrate distinct
strategies for generating emotionally intelligent responses using Large Language Models (LLMs),
ranging from basic usage to more sophisticated techniques.

Base Model

The base model scenario refers to using a pre-trained Large Language Model (LLM) directly,
without any additional adaptation or customization. This model such as OpenAI’s GPT or
Google’s Gemini is trained on a broad corpus of general data and provides out-of-the-box capa-
bilities for natural language understanding and generation.

While base models offer a powerful starting point, they typically lack contextual sensitivity
and domain-specific alignment. As a result, their responses may appear generic or misaligned
with the user’s emotional state or the institutional context. This often leads to less effective
communication, especially in scenarios that require nuanced understanding and empathetic in-
teraction.

Input

User’s query or prompt, e.g., a question or statement.

Output

Response generated by the base model, which is often generic, lacking contextual sensi-
tivity or domain-specific alignment.

38

CHAPTER 2. DESIGN OF OUR SOLUTION 39

Prompt Engineering

In this scenario, empathy is introduced through carefully crafted prompts that guide the LLM’s
response style and emotional tone. Prompt engineering allows developers to simulate empathy
by incorporating emotional cues, context, and intent directly into the model’s input.

This method enhances the model’s ability to generate more emotionally aligned and human-
like responses without requiring retraining. However, it comes with limitations. If prompts
become too lengthy, the response time may increase significantly. Additionally, prompt en-
gineering cannot fully correct underlying model biases or ensure deep contextual adaptation
especially in sensitive domains where emotional nuance and domain accuracy are critical.

Input

A carefully designed prompt embedding
emotional cues, context, and intent to
guide the model’s empathetic response.

Figure 2.3: Example of Input Prompt with
Emotional and Contextual Guidance

Output

A model-generated response that aligns
emotionally and contextually with the in-
put prompt, producing more human-like
and empathetic answers.

Figure 2.4: Example of Output Response
Guided by Prompt Engineering

In order to achieve our solution, we proceeded in an interactive and incremental way, starting
from a basic approach and progressively integrating new dimensions to improve it, as shown in
Figure 2.5.

Rule-Based
Approach

Emotion & Intent Detection
+ Prompted LLM

Fine-Tuning LLM
for Empathetic Responses

Fine-Tuned LLM
(Improved Response Style)

Fine-Tuned LLM +
Retrieval-Augmented Generation (RAG)

Figure 2.5: Step-by-step Evolution of the Empathetic Chatbot Solution

39

CHAPTER 2. DESIGN OF OUR SOLUTION 40

Rule-Based Approach

In this scenario, the system generates empathetic responses using a set of predefined rules,
without relying on real-time emotion detection. When the user input is received, the system
performs intent classification to identify the user’s purpose or query. Based on the recognized
intent, it retrieves an appropriate response from a curated dataset that contains pre-written
replies crafted to appear empathetic.

Although the responses are emotionally toned, they are not dynamically adapted to the
user’s actual emotional state. As a result, the empathy expressed is generic rather than person-
alized. This approach is lightweight, interpretable, and useful in scenarios where common intents
are well-understood. However, it may fall short in handling nuanced or emotionally sensitive
situations where deeper understanding is needed.

Figure 2.6: Rule-based model

In the rule-based approach, the user interacts in an iterative manner, following the decision
flow represented in the tree structure shown in Figure 2.7.

Emotion and Intent Detection with Prompted LLM

In this scenario, the system integrates both emotion detection and intent classification to refine
its understanding of the user’s input. A pretrained language model is first used to identify the
user’s emotional state, while a separate classification language model determines the underlying
intent.

Once both emotion and intent are detected, the system selects a relevant response aligned
with the conversational context. Rather than delivering this response directly, it is reformulated
using a prompt-engineered LLM. The prompt includes empathy-driven linguistic markers and
contextual cues tailored to the user’s emotional state and intent. This enables the system to pro-
duce a message that demonstrates emotional intelligence, contextual sensitivity, and supportive
tone.2.8

This approach offers a balance between structure and adaptability: it leverages a modular
pipeline while utilizing the expressive capabilities of prompt engineering to dynamically adjust
the chatbot’s tone, enhancing the overall user experience and making interactions feel more
human-centered.

40

CHAPTER 2. DESIGN OF OUR SOLUTION 41

Start Interaction

Is the user’s intent recognized?
(Rule match?)

Yes

Does it require context?

Yes
→ Retrieve context and generate response

(using predefined rules)

No
→ Send predefined response

(Rule-matched reply)

No
→ Escalate to human agent

or fallback response

Figure 2.7: Alternative Styled Rule-Based Chatbot Interaction Schema

Figure 2.8: Emotion and Intent Detection with Prompted LLM

Fine-Tuning LLM for Empathetic Responses

In this scenario, the system leverages a Large Language Model (LLM) that has been fine-tuned on
empathetic dialogue datasets. The fine-tuning process enables the model to generate responses
that naturally convey empathy, adapting its language style and tone to the emotional nuances
found in the training data.

However, while the fine-tuned LLM improves the quality and emotional resonance of re-
sponses, it may still lack dynamic contextual awareness of the specific user or real-time inter-

41

CHAPTER 2. DESIGN OF OUR SOLUTION 42

action details. To address this limitation, additional components such as context integration
layers or retrieval-augmented generation (RAG) can be incorporated to supply up-to-date and
domain-relevant information.

This scenario offers a balance between enhanced empathy through fine-tuning and the po-
tential need for external context modules to ensure relevance and personalization in chatbot
interactions.

As shown in Figure 2.9, the fine-tuning process enhances the LLM’s ability to produce
empathetic and emotionally nuanced responses.

Input User query or prompt Fine-Tuned LLM Empathy-trained model Empathetic Response

Figure 2.9: Pipeline of an Empathy-Fine-Tuned LLM from User Input to Output

Fine-Tuned LLM for Empathetic Responses

In this scenario, a Large Language Model (LLM) is fine-tuned on domain-specific and empathetic
dialogue datasets. This adaptation enables the model to generate responses that naturally reflect
empathy and emotional intelligence tailored to the target sector. The fine-tuned model improves
the chatbot’s ability to communicate in a more human-like and emotionally aware manner.

However, this approach may still lack real-time access to updated contextual information or
user-specific data, potentially limiting response relevance.

Fine-Tuned LLM with Retrieval-Augmented Generation (RAG)

Building upon the fine-tuned LLM scenario, this approach integrates Retrieval-Augmented Gen-
eration (RAG) to enhance contextual awareness. Here, the fine-tuned model accesses an external
knowledge base or domain-specific documents during interaction, retrieving up-to-date, relevant
information.

The combination of a fine-tuned empathetic model and RAG ensures that responses are
not only emotionally intelligent but also factually accurate and contextually grounded, further
improving user satisfaction and trust in the chatbot.

2.4 Solution Overview
Our proposed solution is a hybrid framework that integrates rule-based logic with advanced
AI components to generate emotionally appropriate and contextually relevant responses. This
architecture is designed to dynamically adapt based on the complexity of the user’s input, the
emotional tone, and the system’s confidence in understanding the user’s intent.

2.4.1 Why a Hybrid Approach?

This hybrid design addresses both technical challenges and user experience expectations:

• Rule-based modules provide fast, explainable, and controllable behavior for simpler or
well-defined queries.

• Prompt engineering allows us to use powerful pre-trained LLMs efficiently for lightweight
yet emotionally enriched generation.

• Fine-tuned LLMs and Retrieval-Augmented Generation (RAG) enable deep understanding
and contextual relevance in complex or knowledge-driven conversations.

42

CHAPTER 2. DESIGN OF OUR SOLUTION 43

2.4.2 Formalization

We formally define the chatbot system and its core semantic-affective components queries, in-
tents, emotions, context, empathy, and response functions as follows:

Definition 3.1. Chatbot System A chatbot is defined as a tuple:

C = ⟨Q, R, I, E, C, Em, M,F⟩

where:

• Q: Set of user queries/questions.

• R: Set of system responses.

• I: Set of detected user intents.

• E: Set of user emotional states.

• C: Set of context factors (temporal, social, cultural).

• Em: Empathy function over E, I, C.

• F : Response generation function (rule-based or ML-based).

Definition 3.2. User Dataset Let D = {(qi, ri)}ni=1 ⊂ Q × R be the dataset of question-
response pairs used to train or evaluate the chatbot system.

Definition 3.3. Intent (I) A communicative goal inferred from a user’s query. Each i ∈ I
represents the user’s intention, such as requesting, informing, or complaining. Formally:

fI : Q→ I

Definition 3.4. Emotion (E) A subjective affective state extracted from the user’s message
or tone. Each e ∈ E may reflect sadness, anger, joy, etc. Formally:

fE : Q→ E

Definition 3.5. Context (C) A set of external or situational factors C = {c1, c2, ..., ck} that
influence how intents and emotions are interpreted. These include temporal, historical, and
socio-cultural attributes.

Definition 3.6. Empathy (Em) The capability to simulate or respond appropriately to a
user’s internal state. We model empathy as a function:

Em : E × I × C → R

where the output reflects an empathy score or degree of empathic engagement that can be
used to inform response generation or motivation inference.

43

CHAPTER 2. DESIGN OF OUR SOLUTION 44

Definition 3.7. Response Generation (Rule-Based) A handcrafted rule dictionary:

R : I × E → R

maps intent-emotion pairs to appropriate responses.

Definition 3.8. Response Generation (ML-Based) A data-driven model:

FML : Q→ R

learned from D, directly mapping queries to responses.

2.4.3 Architecture Modules

The solution operates via two main processing pathways, selected based on interaction complex-
ity and confidence in detected intent.

Rule-based + Prompted LLM Pipeline

Used in real-time, lightweight interactions.

1. User Input: Received through the mobile interface.

2. Emotion Detection: A pre-trained LLM (e.g., Maslowe) classifies the user’s emotional
state.

3. Intent Detection: A lightweight model (e.g., BERT) detects the user’s intent.

4. Response Retrieval: An empathetic response is selected from a curated knowledge base
based on intent.

5. Prompt Construction: The retrieved response is enriched with emotional and linguistic
cues tailored to the user profile.

6. Prompted LLM Generation: The prompt is passed to a general-purpose LLM for final
response generation or refinement.

Fine-tuned AI Model + Retrieval-Augmented Generation (RAG)

Used for deeper conversations and complex user needs.

1. Fine-tuned Empathetic LLM: A domain-specific LLM trained on empathetic dialogue
and custom data is queried.

2. Contextual Retrieval (RAG): External up-to-date information is retrieved based on
the user’s query and injected into the LLM’s context window.

3. Emotionally-Aware Generation: The LLM generates a personalized response informed
by both retrieved context and emotional state.

44

CHAPTER 2. DESIGN OF OUR SOLUTION 45

User InputReceived through the mobile interface

Emotion DetectionPre-trained LLM (e.g., Maslowe) classifies emotional state

Intent DetectionLightweight model (e.g., BERT) detects intent

Response RetrievalSelect response from knowledge base

Prompt ConstructionEnrich response with emotional/linguistic cues

Prompted LLM GenerationPass prompt to general LLM for final response

Figure 2.10: Compact vertical flow of empathetic response generation pipeline.

User Profiling and Personalization Layer

To deliver user-centric interactions, a dynamic profile is maintained for each user, containing:

• Interaction history (frequent intents, emotions, feedback).

• Communication preferences (tone, formality, verbosity).

• Specific needs (e.g., anxiety-prone, prefers reassurance or concise responses).

This profile is used in multiple modules to ensure personalization:

• Emotion & Intent Detection: Classifiers take into account the user’s prior emotional
patterns and known expressions.

• Prompt Construction: Prompts are adjusted based on preferred tone, phrasing, and
sensitivity thresholds.

• RAG Retrieval: Retrieved content is filtered based on user interests or relevance history.

• Final Generation: Output is tailored linguistically and emotionally to fit the user’s
communication style and psychological needs.

Human-in-the-loop and Bias Management

To ensure quality assurance, ethical oversight, and system adaptability:

• Users may rate or comment on responses to provide direct feedback.

• A dashboard enables human admins to review flagged interactions and provide or adjust
responses.

• To prevent biased or inappropriate human replies, the system integrates an empathetic
system-bias-aware to do post-processing reformulation. This step ensures that any manual
input is emotionally calibrated before reaching the user.

45

CHAPTER 2. DESIGN OF OUR SOLUTION 46

Use Case Scenarios

Three response strategies are used: LLM prompting, fine-tuned AI with retrieval, and admin
intervention for unresolved queries.

• Scenario 1 – Prompted LLM: When the user’s request is clear but emotionally sensi-
tive, the system retrieves a base response and enriches it via emotion-aware prompting.

• Scenario 2 – Fine-tuned AI with RAG: For complex, ambiguous, or information-
seeking queries, the system uses fine-tuned models and external retrieval to generate deep,
context-aware replies.

• Scenario 3 – Admin Intervention: When feedback indicates dissatisfaction, the ad-
min can intervene and provide a revised response, which is then reprocessed through the
empathy layer to ensure consistency.

Figure 2.11 shows the system’s adaptive response flow from automated to human interven-
tion.

Scenario 1Prompted LLMEmotion-aware enrichment

Scenario 2Fine-tuned AI + RAGContextual reply generation

Scenario 3Admin InterventionHuman revision + empathy layer

Unclear or complex request

Negative feedback

Figure 2.11: Response transition scenarios: from automated response to human intervention

2.4.4 System Architecture

In this section, we present the System Architecture of our chatbot.

Conceptual Overview

Our system follows a modular, hybrid architecture designed to process emotional and intent-
driven user queries in real time. It integrates both lightweight rule-based pipelines and fine-
tuned AI models, depending on the complexity of the interaction. The system is accessed
through a Flutter mobile application, with a Python-based backend and external LLM
services.

Data Flow Summary

We summarize the data flow as shown in Figure 2.13.

1. User sends input via mobile app

2. Access through API:

• Detects emotion

46

CHAPTER 2. DESIGN OF OUR SOLUTION 47

Figure 2.12: Hybrid model

• Detects intent

3. If input is simple:

• Retrieves prewritten empathetic response
• Constructs enriched prompt
• Sends to LLM

4. If input is complex: Sends to fine-tuned TinyLLaMA + RAG

5. Output is personalized using user profile

6. Response is returned to mobile app

User inputvia Flutter app

Flask API:Detect Emotion & Intent

Is input simple? Retrieve empatheticresponse and enrich prompt

Send to LLM

Send toTinyLLaMA + RAG

Personalize usinguser profile

Return responseto mobile app

YesNo

Figure 2.13: Organigram of the chatbot interaction pipeline

2.5 UX Design of our solution
In this section, we discuss the UX design of our solution, which can also be used to enhance user
interaction with our system.

47

CHAPTER 2. DESIGN OF OUR SOLUTION 48

This table (2.2) summarizes common UX challenges in dedicated client chatbots, along with
effective strategies to address them. It highlights key design components and principles such
as push notifications, emotion menus, and conversation history that enhance user engagement
and emotional connection. These elements collectively improve usability, trust, and interaction
quality in chatbot systems.

Problem / UX
Challenge

Strategies Used UX Design Components /
Principles

Limited User En-
gagement

Use push events (notifica-
tions/prompts) to proac-
tively guide users

Push Notifications, Timely
Alerts, Context Awareness,
User Attention Management

Users Forget Previ-
ous Interactions

Maintain conversation his-
tory accessible

Chat History Display, Session
Persistence, Context Reten-
tion, Easy Navigation

Emotionally Flat In-
teraction

Integrate emotion menu for
users to express feelings

Emotion Selection Menu,
Emotional State Detection,
Personalization, Empathy
Design

Users Confused by
Response

Provide clear intent feed-
back and confirmation

Intent Confirmation, Feed-
back Prompts, Clear Messag-
ing, Error Handling

Low Trust or Con-
nection

Use personalized messages
and adaptive tone

Personalization, Adaptive
Language Style, Trust-
building UX, Consistency

User Overload or
Frustration

Break tasks into smaller
steps, offer suggestions

Progressive Disclosure,
Guided Conversations, Sug-
gestion Buttons, Minimalist
Design

Difficulty in Express-
ing Needs

Offer quick-reply buttons
and FAQs

Quick Replies, Menu Options,
FAQ Integration, Ease of Use

Lack of Emotional
Awareness

Detect sentiment and
adapt chatbot responses
accordingly

Sentiment Analysis, Context-
aware Response, Emotional
Intelligence Integration

Table 2.2: UX Design Strategies and Components for a Dedicated Client Chatbot

2.5.1 Push Notifications and Timely Alerts

Push notifications attract user attention at the right moment → increase engagement → reduce
abandonment.

The chatbot sends a notification: "Hello! It looks like you need help completing your order.
May I assist you?"
Targeted notification → encourages user return → improves conversion.

2.5.2 Chat History Display and Session Persistence

Displaying conversation history → improves continuity → increases contextual understanding
→ reduces frustration.

The user can review previous product inquiries → facilitates decision making → improves
satisfaction.

48

CHAPTER 2. DESIGN OF OUR SOLUTION 49

2.5.3 Emotion Selection Menu and Emotional State Detection

An emotion menu → encourages user expression → strengthens emotional connection → im-
proves response personalization.

The chatbot asks: "How are you feeling today?" with options like Happy, Confused, Frustrated
→ tone adaptation → increased empathy.

2.5.4 Intent Confirmation and Clear Messaging

Confirming user intent → reduces errors → increases trust → improves communication clarity.
The chatbot asks: "You want details on ‘Wireless Headphones,’ correct?"

Confirmation → avoids misunderstandings → improves conversation efficiency.

2.5.5 Personalization and Adaptive Language Style

Personalized messages→ create a sense of attention→ strengthen trust→ increase engagement.
The chatbot greets: "Welcome back, Sarah! Would you like to continue browsing the head-

phones you viewed last time?"
Personalization → loyalty → better user experience.

2.5.6 Progressive Disclosure and Guided Conversations

Breaking complex tasks into steps → reduces cognitive overload → effectively guides the user
→ improves task completion.

The chatbot asks: "What is your delivery address?" then "Do you prefer standard or express
shipping?"
Clear steps → simplification → higher success rate.

2.5.7 Quick Replies, Menu Options, and FAQ Integration

Quick reply buttons → speed up interaction → reduce user effort → improve conversation flow.
The chatbot offers: Track my order, Return an item, Contact support → quick options

→ reduced response time.

2.5.8 Sentiment Analysis and Emotional Intelligence Integration

Sentiment analysis → mood detection → empathetic response adaptation → strengthened user-
chatbot bond.

When frustration is detected, the chatbot responds: "I’m sorry you’re having difficulties.
Let’s see how I can help you quickly."
Empathetic response → satisfaction improvement → increased loyalty.

2.6 Instantiation of our framework
In this section, we present an instantiation of our proposed chatbot through three main steps:
(i) First step: Need, Intent, and Emotion; (ii) Second step: Response Strategy and Generation;
and (iii) Third step: Delivery, Feedback, and Learning.

2.6.1 First step: Need, Intent, and Emotion

The step-by-step pipeline begins with understanding the user’s information need, as shown
in Table 2.3. This part focuses on identifying the customer’s request, detecting their intent using
rule-based or language model methods, and analyzing their emotional state. For example, if a

49

CHAPTER 2. DESIGN OF OUR SOLUTION 50

user expresses frustration about internet speed, the system detects both the intent (e.g., com-
plaint) and the emotion (e.g., anger). This combination helps the system infer user motivation
and urgency, allowing it to prepare for an appropriate response.

N° Step Name Example
1 Information Need A customer needs to ask the chatbot why their

internet speed is suddenly very slow.

2 Intent Identification If the intent matches a known category (e.g.,
network issues, billing), a rule-based approach is
used. Otherwise, a language model like BERT
is used to detect the intent (e.g., "complaint").

3 Emotion Detection The chatbot detects that the customer is angry:
"This internet is useless! I can’t do anything!"
It classifies the emotion as "anger".

4 Motivation Inference The combination of anger and the complaint in-
tent implies urgency and the need for immediate
support or compensation.

Table 2.3: Chatbot interaction pipeline (Part 1/3): Need, Intent, Emotion, Motivation

2.6.2 Second step: Response strategy and generation

Table 2.4 illustrates how the chatbot proceeds with response planning and generation.
Based on the detected intent and emotion, the system decides whether to offer a predefined
answer, generate a new one, or escalate the issue. The response is enriched to reflect the
customer’s emotional state for instance, calming language for angry users. Then, a tailored
prompt is constructed for the language model (LLM), which generates a personalized message
aimed at addressing the customer’s concern effectively.

N° Step Name Example
5 Response Type Selec-

tion
The system determines whether to give a prede-
fined answer, generate a custom one, or forward
the user to a human agent.

6 Response Enrichment The chatbot adjusts tone accordingly: for anger,
it uses a respectful and calming tone: "We un-
derstand your frustration. Let’s try to solve this
together."

7 Prompt Construction A prompt is composed for the LLM: “The cus-
tomer is angry and wants to understand why the
internet is slow.”

8 LLM Generation The language model generates a contextual re-
sponse: “I’m truly sorry for the inconvenience.
I’ll guide you through a quick check to improve
your connection.”

Table 2.4: Chatbot interaction pipeline (Part 2/3): Response strategy and generation

50

CHAPTER 2. DESIGN OF OUR SOLUTION 51

2.6.3 Third step: Delivery, Feedback, and Learning

Finally, Table 2.5 shows how the chatbot delivers the response and manages learning. The
message is sent through the appropriate interface, and user feedback is captured and analyzed.
If the user confirms that the issue is resolved, this information is stored, and the full session
(including intent, emotion, response, and feedback) is logged. This data becomes part of the
system’s learning process, helping improve future interactions and make the chatbot smarter
over time.

N° Step Name Example
9 Response Delivery The response is delivered via the chatbot inter-

face on the telecom provider’s app or website.

10 Feedback Capture The customer replies: “Thanks, it’s better now,”
which is saved for future analysis.

11 Session Logging All elements of the interaction (intent, emotion,
response, feedback) are logged for future analyt-
ics.

12 Learning The session is added to the training data to fine-
tune the system’s future behavior.

Table 2.5: Chatbot interaction pipeline (Part 3/3): Delivery, Feedback, and Learning

2.7 Conclusion
In this chapter, we introduced the foundations of our empathetic chatbot framework by pre-
senting the underlying motivations, key challenges, and the importance of emotion and context
awareness. We proposed a hybrid approach combining rule-based and machine learning tech-
niques, detailed its architectural components, and emphasized user-centered UX design strate-
gies. This comprehensive foundation paves the way for instantiating and validating our frame-
work in real-world scenarios.

51

Chapter 3

SmartConnect Chatbot :
Implementation

52

CHAPTER 3. SMARTCONNECT CHATBOT : IMPLEMENTATION 53

3.1 Introduction
This chapter presents the implementation of SmartConnect, an empathetic chatbot designed to
enhance communication between public institutions and citizens. The system combines large
language models (LLMs), rule-based logic, and modern AI frameworks to deliver context-aware
and emotionally intelligent interactions. Throughout development, we adopted user-centered
approaches to ensure that the chatbot reflects real user needs, motivations, and emotional cues.
This chapter outlines the tools, technologies, and system architecture used, followed by the
development steps, interface design,

3.2 Technologies and Tools Used
This section describes the main technologies, programming languages, frameworks, and libraries
employed in the development of the intent-based empathetic chatbot system.

3.2.1 Programming Languages

• Python: The entire backend logic and model training were developed in Python, chosen
for its rich support in machine learning and natural language processing (NLP).1

3.2.2 Frameworks and Libraries

• Transformers (Hugging Face): Used to load and fine-tune pre-trained language models
like BERT and FLAN-T5 for intent classification and empathetic response generation, also
used to fine-tune the TinyLlama-1.1B-Chat-v1.0 model on a custom empathy dataset.2

• PyTorch: The deep learning framework used for model training and inference.3

• scikit-learn: Employed for traditional ML preprocessing tasks such as label encoding and
data splitting.4

3.2.3 Dataset Handling

Data processing and handling were facilitated by the Pandas library, which provides easy-to-use
data structures and tools for reading, manipulating, and preparing the textual intent dataset for
model consumption. Additionally, the Hugging Face Datasets library was employed to load, pre-
process, and format the custom empathetic dialogue dataset used for fine-tuning the TinyLlama
model.

3.2.4 Model Architectures

• BERT (Bidirectional Encoder Representations from Transformers): A transformer-
based model widely used for natural language understanding tasks. The base BERT model
was fine-tuned for intent classification to detect user intents from input queries.

• RoBERTa (Robustly optimized BERT approach): Employed in the emotion de-
tection module, the RoBERTa model fine-tuned on the GoEmotions dataset was used to
classify the emotional tone of the user’s input.

1https://www.python.org/
2https://huggingface.co/transformers
3https://pytorch.org/
4https://scikit-learn.org/

53

https://www.python.org/
https://huggingface.co/transformers
https://pytorch.org/
https://scikit-learn.org/

CHAPTER 3. SMARTCONNECT CHATBOT : IMPLEMENTATION 54

• FLAN-T5 (Text-to-Text Transfer Transformer): This sequence-to-sequence model
was used as a response enhancer to rewrite base chatbot replies empathetically according
to the detected emotion, using linguistic markers of empathy and motivation.

• TinyLlama (via Hugging Face Transformers): Used as the main language model fine-
tuned on a custom empathetic dataset. This replaced the previous multi-model approach
with a single large language model capable of generating empathetic responses.5

3.2.5 Justification of Technology Choices

The selection of models, frameworks, and tools was guided by several important factors to ensure
both performance and maintainability of the chatbot system:

• Open-source and Active Community: We choose models like BERT, RoBERTa, and
TinyLlama primarily because they are open-source and supported by vibrant communities.
This allows us to benefit from ongoing research improvements, shared knowledge, and
troubleshooting support.

• Robustness and Accuracy: BERT and RoBERTa are proven state-of-the-art architec-
tures for intent and emotion classification, respectively, providing robust understanding of
natural language inputs.

• Ease of Integration and Deployment: Libraries like Hugging Face Transformers fa-
cilitate seamless integration and deployment of models.

• Flexibility for Future Development: The chosen tools provide extensibility for future
model updates, data expansion, and feature addition without extensive re-engineering.

Overall, this technology stack balances innovation, practicality, and scalability, aligning with
project requirements and constraints.

3.2.6 Development Environment

• IDE: The code was developed using Visual Studio Code (VSCode), providing a versa-
tile environment with debugging, Git integration, and extensions supporting Python and
machine learning development.

3.3 System Architectures

3.3.1 RULE BASED MODEL

This section presents the overall architecture of the intent-based empathetic chatbot system. It
describes the key components, their interactions, and how the system processes user input to
generate context-aware, empathetic responses.

Overview

The system is designed as a modular pipeline composed of three main components:

• Intent Recognition Module: Classifies the user input into predefined intent categories.

• Emotion Detection Module: Analyzes the emotional tone of the user’s input to identify
their current feelings.

5https://huggingface.co

54

https://huggingface.co

CHAPTER 3. SMARTCONNECT CHATBOT : IMPLEMENTATION 55

• Response Generation and Enhancement Module: Produces an initial response
based on the detected intent and then refines it to match the user’s emotion, creating
an empathetic and natural reply.

Data flow

Figure 3.1: System Architecture Diagram of the Empathetic Chatbot

The processing flow is as follows:

1. The user inputs a text query through the chatbot interface.

2. The input text is passed to the Intent Recognition Module, which uses a fine-tuned
BERT model to classify the intent.

3. Simultaneously, the input is processed by the Emotion Detection Module utilizing a
RoBERTa-based model fine-tuned on emotion-labeled data to identify the emotional state
of the user.

4. Based on the detected intent, a base response is selected from a predefined set of intent-
specific replies.

5. The base response, user input, and detected emotion are fed into the Response Enhance-
ment Module, which employs a FLAN-T5 model to rewrite the response empathetically,
adapting the tone and style to the user’s emotional state.

6. The final enhanced response is then delivered back to the user via the chatbot interface.

Illustrative Example

User Query: “I’ve been trying to recharge my line for two days but it’s not working. I’m really
frustrated.”

• Intent Detected: Recharge issue

• Emotion Detected (planned): Frustration

55

CHAPTER 3. SMARTCONNECT CHATBOT : IMPLEMENTATION 56

• Generated Response: “I’m really sorry you’ve been experiencing this issue for so long.
I understand how frustrating that must be. Let me help you fix it right away.”

This example demonstrates how the system recognizes both the intent and emotional state,
and tailors the response accordingly to maintain user trust and satisfaction.

Advantages of the Architecture

• Modularity: Each component can be developed, tested, and improved independently,
enabling scalability and maintainability.

• Flexibility: The architecture allows easy integration of new models or replacement of
existing components without affecting the overall system.

• Empathy-Driven Interaction: By combining intent detection with emotion analysis
and response enhancement, the chatbot delivers more human-like and emotionally aware
interactions, improving user satisfaction.

3.3.2 System Architecture(AI MODEL)

Overview

The core AI component of the system is a fine-tuned large language model specialized in em-
pathetic response generation. The model is based on TinyLlama-1.1B-Chat, a lightweight
transformer optimized for conversational tasks. The training data consisted of 644 user-emotion-
response triples, each containing a user message, a labeled emotional state (e.g., overwhelmed,
appreciative, etc.), and a corresponding empathetic response.

After training, the model demonstrated strong capability in generating emotionally aware
and contextually appropriate responses to diverse user inputs. The final model will be integrated
into the chatbot system to ensure real-time, emotionally aligned interactions with users.

Data Flow Pipeline

The architecture of the empathetic AI model follows a straightforward and efficient data pro-
cessing pipeline.

Once the user message is entered, it is formatted into a prompt template that includes a
system role and emotion annotation, such as:

<|system|> You are an empathetic assistant. <|user|> I’m feeling exhausted
and stressed. (feeling: exhausted)

This prompt is then passed to the fine-tuned TinyLlama-1.1B-Chat-v1.0 model, which gen-
erates an empathetic response conditioned on both the user message and the emotion embedded
within the prompt.

The model internally infers the emotional context and generates a contextually appropriate
response in a single step. This design simplifies the architecture and leverages the model’s
instruction-tuning capabilities to perform multi-role reasoning (understanding and responding)
simultaneously.

The overall data flow can be illustrated as shown in Figure 3.2.

56

CHAPTER 3. SMARTCONNECT CHATBOT : IMPLEMENTATION 57

User Message

Prompt Formatting

TinyLlama Fine-Tuned Model

Empathetic Response

Figure 3.2: AI Model Data Flow in Development Environment

3.4 Dataset Preparation

3.4.1 Rule Based model

In this sectoin we wil dive deeper into the dataset preparation process see Figure3.3

Figure 3.3: dataset building

Data Collection

The dataset used for intent detection was collected through extensive effort, as no publicly
available datasets exist for telecommunication FAQs with empathetic responses, especially in
the Algerian context. We gathered frequently asked questions primarily from social media
platforms, where responses were not available. To complement this, we extracted additional
data from official telecommunication websites.

The collected data was compiled into a data.csv file containing user queries (text) and their
corresponding intent labels. The dataset includes 17 distinct intents, with a total of 423 labeled
examples, balanced across intents. Data Examples : 3.1 shows some examples from the
dataset, including user queries and their corresponding intent labels.

57

CHAPTER 3. SMARTCONNECT CHATBOT : IMPLEMENTATION 58

User Query Intent
What is you number phone ? support.contact number
which internet plans do you offer? offers.view all
why route is not working network.modem issues
Worst experience ever complaints

Table 3.1: Sample user queries and their associated intents from the dataset.

Empathetic Response Generation

To generate empathetic responses for each identified intent, we leveraged advanced large lan-
guage models including Gemini, DeepSeek, and ChatGPT. Using prompt engineering techniques,
we carefully crafted prompts incorporating role prompting, chain-of-thought reasoning, and illus-
trative examples. This approach guided the models to produce responses that reflected empathy
and understanding appropriate to the user’s input.

Each intent was paired with a corresponding empathetic response generated by the models.
These responses were then reviewed by a psychologist with expertise in human emotions to
assess the authenticity and quality of the empathetic aspects.

This expert validation ensured that the generated responses were not only syntactically
correct but also genuinely conveyed human empathy, which is essential for enhancing user en-
gagement and satisfaction in our system.

Data Preprocessing and Labeling

The dataset was preprocessed using tokenization and label encoding techniques to prepare for
model training. We implemented a custom PyTorch Dataset class for efficient data handling,
applying the BERT tokenizer with padding and truncation to a fixed maximum length.

Label encoding was performed to convert textual intent labels into numerical format. The
data was split into training and validation sets with an 80/20 ratio.

Labeling was manual and carefully verified to ensure quality and consistency.

3.4.2 LLM-Assisted Empathetic Data Creation

As described in the Rule-Based Model section (see Figure 3.3), we created a dataset by combining
user messages, emotions, and empathetic responses. Since no publicly available empathetic
dataset exists for the Algerian telecom context, we designed a semi-automated data generation
pipeline using large language models (LLMs) such as ChatGPT, Gemini, and DeepSeek.

Prompt Design for Dataset Generation

To generate high-quality data suitable for fine-tuning, we crafted a system prompt that in-
structed the LLM to simulate realistic telecom user queries, label them with appropriate emo-
tions, and respond empathetically.

Prompt Template:

58

CHAPTER 3. SMARTCONNECT CHATBOT : IMPLEMENTATION 59

LLM Prompt for Empathetic Dataset Generation

Generate a fine-tuning dataset for a large language model (LLM) specialized
in responding empathetically to telecommunications users.
Each dataset example must have three fields:
"user_message": a realistic message from a telecom user.
"emotion": the user’s dominant emotion (choose from: neutral, happy,
curious, confused, frustrated, angry, sad, anxious, hopeful, appreciative).
"empathetic_response": an empathetic, motivational, and supportive reply.
Requirements: - Simulate a variety of emotional intensities (low, medium,
high). - Messages must be natural and typical for telecom users. -
Responses must validate the user’s emotions and show genuine empathy. -
Integrate motivational theories where appropriate: * Maslow’s Hierarchy of
Needs (belonging, esteem, security) * Self-Determination Theory (autonomy,
competence, relatedness) * Herzberg’s Two-Factor Theory (satisfiers
and hygiene factors) - Responses must maintain clarity, warmth, and
professionalism. - Encourage positive emotional outcomes (hope, trust,
belonging).
Output format: Generate as a list of JSON objects:

{
"user_message": "string",
"emotion": "neutral | happy | curious | confused | frustrated | angry | sad |
anxious | hopeful | appreciative",
"empathetic_response": "string"

}

Generate at least 100 examples with a diverse emotional distribution.

Expert Review and Filtering

Generated examples were reviewed by a psychologist specialized in emotional communication.
The expert filtered out emotionally inconsistent or generic responses and ensured psychological
appropriateness and authenticity.

Use in the LLM Fine-Tuning

The dataset was used for supervised fine-tuning of TinyLlama, a lightweight open-source LLM.
Each (user_message, emotion, empathetic_response) tuple trained the model to recognize emo-
tional cues and respond supportively. This helped the model generalize across a range of telecom
user experiences and emotional intensities.

3.5 Model Implementation

3.5.1 Rule based model

This section describes the development and implementation of the core components of our chat-
bot system, which include the intent detection model, the planned emotion detection module,
and the response enhancer module used for empathetic reply generation.

Dataset Loading and Preprocessing

The dataset used was stored in a data.csv file containing two columns: text (user queries) and
intent (corresponding intent labels). We first loaded the dataset using the pandas library. The
intent labels were converted to numeric values using LabelEncoder. We then split the dataset
into training and validation sets in an 80/20 ratio to prepare for model training.

59

CHAPTER 3. SMARTCONNECT CHATBOT : IMPLEMENTATION 60

Model Selection

We used the bert-base-uncased model from Hugging Face’s transformers library, which is
pre-trained and well-suited for sequence classification tasks. The model was fine-tuned on our
dataset with the number of output classes set to 17, corresponding to the number of unique
intents.

Custom Dataset Class

A custom PyTorch Dataset class was implemented to handle the input preparation. Each
text sample was tokenized using the BertTokenizer, with padding and truncation applied to
a maximum length of 64 tokens. The dataset returns input IDs, attention masks, and encoded
labels.

Training Setup

The training was conducted using Hugging Face’s Trainer API, which simplifies the process of
fine-tuning transformer models. Training arguments included the output directory, batch sizes
of 8, number of epochs set to 5, and an evaluation strategy based on epoch intervals. Logging
and model checkpoints were also handled by the API.

Model Saving

After training, the model was saved to disk along with the tokenizer and the label encoder to
facilitate future inference.
model. save_pretrained ("model/ classifier ")
tokenizer . save_pretrained ("model/ tokenizer ")
with open("model/ label_encoder .pkl", "wb") as f:

import pickle
pickle .dump(le , f)

Listing 3.1: Model Training and Saving

Emotion Detection Module

While our system was initially centered on intent detection, we have successfully integrated an
emotion detection module to further enhance the empathy and relevance of chatbot responses.
This module leverages a transformer-based model currently implemented using RoBERTa-base
fine-tuned on emotion classification datasets to identify the user’s underlying emotional state.

It processes user inputs to detect emotions such as anger, frustration, sadness, or confusion.
The identified emotion is then used to influence both the tone and content of the chatbot’s
reply. By incorporating this emotional layer, our system ensures that responses are not only
contextually accurate but also emotionally attuned to the user’s state, thereby delivering a more
human-like and supportive interaction experience.

Response Enhancer Module

To enhance the quality of responses, especially in terms of empathy, we utilized large language
models (LLMs) such as Gemini, DeepSeek, and ChatGPT. We applied prompt engineering
techniques to generate empathetic replies for each intent in our dataset.

Our prompt design strategy included:

• Role prompting: Assigning the LLM the role of a helpful telecom assistant.

• Chain-of-thought reasoning: Guiding the model to reflect on the user’s possible emo-
tional state.

60

CHAPTER 3. SMARTCONNECT CHATBOT : IMPLEMENTATION 61

• Few-shot examples: Including sample queries and responses to enhance consistency.

Each intent was paired with a corresponding empathetic response. To ensure psychological
validity, these responses were reviewed by a psychological expert who evaluated whether the
replies contained essential human aspects like empathy and understanding. Additionally, feed-
back was provided regarding the potential impact of these responses on user satisfaction and
emotional well-being.

3.6 Model Fine-Tuning
For the task of developing an empathetic chatbot, we fine-tuned the TinyLlama/TinyLlama-1.1B-Chat-v1.0
model. This model is used to handle emotional responses.

3.6.1 Data Loading and Preprocessing

We began by loading our conversational dataset, stored in JSON format, which contains user
messages along with the associated emotional labels and empathetic assistant responses.
with open("data/ empathetic_data .json", "r", encoding ="utf -8") as f:

raw_data = json.load(f)

Listing 3.2: Loading raw data from JSON file

Each example was then formatted to match the expected prompt-response structure of the
TinyLlama chat model. Specifically, the data was wrapped using special tokens indicating the
system, user, and assistant messages, as shown below:
def format_example (example):

return {
"text": f" <| system |>\ nYou are an empathetic assistant .\n<| user |>\n{

example [’ user_message ’]} (feeling : { example [’ emotion ’]})\n<| assistant |>\n{
example [’ empathetic_response ’]}"
}

Listing 3.3: Formatting data to prompt style

3.6.2 Tokenizer and Model Initialization

The pretrained tokenizer and model were loaded from the HuggingFace model hub. The to-
kenizer’s padding token was set to the end-of-sequence token to maintain consistency during
training.
model_name = " TinyLlama /TinyLlama -1.1B-Chat -v1.0"
tokenizer = AutoTokenizer . from_pretrained (model_name)
tokenizer . pad_token = tokenizer . eos_token

model = AutoModelForCausalLM . from_pretrained (model_name)

Listing 3.4: Loading pretrained tokenizer and model

3.6.3 Tokenization of Dataset

The formatted dataset was tokenized with truncation and padding to a maximum sequence
length of 512 tokens. This process converts textual data into token IDs and attention masks
required for model training.
def tokenize (example):

return tokenizer (example ["text"], truncation =True , padding =" max_length ",
max_length =512)

61

CHAPTER 3. SMARTCONNECT CHATBOT : IMPLEMENTATION 62

tokenized_dataset = dataset .map(tokenize , batched =True)
tokenized_dataset . set_format (type="torch", columns =[" input_ids ", " attention_mask

"])

Listing 3.5: Tokenizing dataset examples

3.6.4 Training Setup

Training parameters were configured using HuggingFace’s TrainingArguments. Due to hard-
ware constraints, a batch size of 1 was used. The model was trained for 3 epochs, with logging
and checkpoint saving enabled for monitoring progress.
training_args = TrainingArguments (

output_dir ="tinyllama - finetuned ",
per_device_train_batch_size =1,
num_train_epochs =3,
logging_steps =10,
save_steps =100 ,
save_total_limit =2,
fp16=False ,
logging_dir ="./ logs",
report_to ="none",
remove_unused_columns =False

)

Listing 3.6: Configuring training arguments

3.6.5 Fine-Tuning Procedure

The HuggingFace Trainer API was used to streamline the fine-tuning process, handling batch-
ing, optimization, and checkpointing.
trainer = Trainer (

model=model ,
args= training_args ,
train_dataset = tokenized_dataset ,
tokenizer =tokenizer ,
data_collator = DataCollatorForLanguageModeling (tokenizer , mlm=False)

)

trainer .train ()

Listing 3.7: Training the model using HuggingFace Trainer

3.6.6 Model Saving

After training completed, the fine-tuned model and tokenizer were saved locally for future in-
ference and deployment.
trainer . save_model ("tinyllama - finetuned ")
tokenizer . save_pretrained ("tinyllama - finetuned ")

Listing 3.8: Saving the fine-tuned model and tokenizer

This section describes the core implementation steps taken to adapt the TinyLlama chat
model to an empathetic conversational agent via supervised fine-tuning on domain-specific data.

62

CHAPTER 3. SMARTCONNECT CHATBOT : IMPLEMENTATION 63

3.7 UI/UX Design

3.7.1 Objective of UI/UX

The UI/UX design aims to provide a smooth, intuitive, and empathetic experience. It focuses
on clarity, simplicity, and personalized interactions for users, while giving administrators easy
access to analytics and essential tools.

Figure 3.4: Intermediate solution between customers and stackholders

3.7.2 Tools Used

The interfaces were designed using FIGMA6

3.7.3 Wireframes

Below are some of the wireframes that illustrate the early-stage design of the application.

Figure 3.5: Wirframe of our application

6https://www.figma.com/

63

CHAPTER 3. SMARTCONNECT CHATBOT : IMPLEMENTATION 64

3.7.4 Admin Dashboard (UI)

The admin dashboard is designed to allow administrators to monitor key analytics and manage
content efficiently.

Figure 3.6: Admin dashbord

3.7.5 User Experience

The user experience was designed with empathy and personalization at its core. This is reflected
in the interface’s simplicity, fluidity, and intuitive structure, allowing users to interact effortlessly.
Beyond clear and instant chatbot communication, the app includes thoughtful features such as
emoji-based satisfaction feedback, easy complaint/report submission, motivational messages,
and real-time tracking of submitted complaints all contributing to a transparent and supportive
experience.

The application also fosters a strong sense of community. Users are not alone, they can
participate in shared quizzes, earn bonuses, and view messages from others reinforcing that
they’re part of a connected and encouraging environment.

3.8 Challenges and Solutions

3.8.1 Model Size and Computation Cost

Transformers like BERT and RoBERTa are computationally expensive, especially during fine-
tuning.

3.8.2 Prompt Design for Empathy

.Crafting prompts that consistently generate empathetic responses across various LLMs required
extensive experimentation. We found that few-shot prompting combined with role-setting sig-
nificantly improved the quality of responses.

64

CHAPTER 3. SMARTCONNECT CHATBOT : IMPLEMENTATION 65

3.8.3 Balancing Response Accuracy and Warmth

In some cases, model-generated responses were technically correct but emotionally cold. We
solved this by post-processing responses and incorporating expert review to ensure alignment
with empathetic standards.

In this chapter, we detailed the implementation of the core components of our empathetic
chatbot system:

• Fine-tuned a BERT model for intent classification on a domain-specific dataset.

• Designed an (upcoming) emotion detection module based on transformer models to capture
user sentiment.

• Integrated large language models with tailored prompts to enhance chatbot responses.

• Ensured psychological quality of responses through expert evaluation.

This implementation lays the foundation for the system’s evaluation, which we discuss in
the following chapter.

3.9 Test and Evaluation
We tested the chatbot’s performance in two key areas: intent recognition and empathetic re-
sponse.

Table 3.2 shows test questions used to assess the chatbot’s ability to understand user intents.
Each row includes:

Test Question Expected Intent Predicted Intent Correct (/)
Hello there! greeting greeting 1
Bye, see you later goodbye goodbye 1
Thank you for the help thanks thanks 1
When will fiber be available? ask.fiber ask.fiber 1
I want to pay my outstanding balance im-
mediately. What are my payment options
and steps?

billing.payments billing.payments 1

My internet keeps disconnecting every
hour, I want to file a complaint and get
support.

complaints network.connectionissues 0

Please provide a detailed list of all cur-
rent internet offers including data limits,
prices, and validity periods.

offers.viewall offers.viewall 1

Why is my internet speed so slow even
though my plan is unlimited? What can I
do?

network.connectionissues network.connectionissues 1

Can you tell me the process and con-
tact information to escalate my unresolved
technical issues to a human agent?

escalation support.contactinfo 0

Table 3.2: Test Questions with Expected and Predicted Intents

Result :

• Test Question: The user’s input.

• Expected Intent: What the chatbot should identify.

• Predicted Intent: What the chatbot actually identified.

65

CHAPTER 3. SMARTCONNECT CHATBOT : IMPLEMENTATION 66

• Correct (/): Whether the chatbot was correct.

Key points:

• The chatbot correctly identified most off all intents in these test cases.

• It works well with different types of questions, from simple greetings to detailed payment
or complaint requests.

• This shows the chatbot is reliable for handling common customer questions.

User Question Response Empathy Score (1-5)
My internet is not working and
I need it urgently for a meeting.
Please help!

Sorry for the inconvenience. Please restart
your router and if the issue continues give
me more details.

2

I’ve already tried restarting the
router twice. It’s still not work-
ing.

I’m sorry to hear that. Please restart the
router and if the problem persists, provide
more details and let’s solve it together.

3

Why do I pay every month if this
service keeps failing?

I understand how frustrating this can be.
Please be sure that we are doing our best for
a better experience. Share more about your
problem and we’ll find a solution together.

4

You guys never fix anything. I’m
tired of complaining.

I understand how frustrating this can be.
Please be sure that we are doing our best for
a better experience.

3

I am so happy by the new offers!

Stay connected and empowered with these
amazing internet offers! IDOOM 4G LTE:
Get 150 GB for just 4500 DA – perfect
for streaming, studying, or working online!
(Valid for 30 days)

2

Table 3.3: Empathy Evaluation of Responses

To evaluate the empathetic quality of chatbot responses, we designed a second test using
emotionally charged user questions including urgency, frustration, and satisfaction. We then
analyzed the chatbot’s responses to see how well they acknowledged user emotions and needs.

Using ChatGPT’s advanced language capabilities, we assigned an empathy score from 1
(low empathy) to 5 (high empathy) to each response. These scores helped us identify whether
the chatbot can respond in a human-like and emotionally aware manner, which is critical for
enhancing user satisfaction and trust.3.3

3.10 Conclusion
This chapter presented the complete implementation process of the application. It covered the
selection of appropriate technologies and frameworks, the integration of the language model, and
the development of key features using Flutter. The UI/UX design and wireframes were carefully
created to deliver a fluid and user-friendly experience. Additionally, a simple chatbot interface
and an admin dashboard for analytics were implemented. This phase established a strong and
functional base for the application,ready to support future enhancements.

66

General Conclusion

67

CHAPTER 3. SMARTCONNECT CHATBOT : IMPLEMENTATION 68

Conclusion
This thesis presented a rule-based, context-aware chatbot designed to improve how companies,
especially in the telecom sector, handle client questions. By combining the client’s profile, the
context of the request, and the question itself, the system is able to better understand the user’s
intent and give more accurate and helpful answers.

The chatbot works automatically and continuously (24/7), helping both clients and staff. It
reduces the time employees spend on repeated questions and improves overall client satisfaction.
A dashboard also helps staff monitor and learn from real interactions, giving insight into common
issues and needs.

The solution was tested in a real telecom company in Algeria and showed good results in
saving time, improving support quality, and enhancing the client experience.

Future Work
This work opens the door to several future improvements:

• Natural Language Understanding (NLU): The current chatbot is rule-based. In the
future, machine learning or deep learning techniques can be added to help understand
more complex questions.

• Personalization: Future versions can make responses even more personalized by learning
from past interactions and user feedback.

• Multilingual Support: Adding support for other languages, such as Tamazight or En-
glish, can help the chatbot serve a wider range of users.

• Voice Interaction: Integrating voice-based communication would make the chatbot more
accessible and user-friendly.

• Integration with Other Systems: The chatbot can be connected to other company
services (CRM, billing, etc.) to provide more complete and dynamic answers.

These improvements can make the chatbot smarter, more flexible, and more useful in different
real-world situations.

68

Annexes

69

CHAPTER 3. SMARTCONNECT CHATBOT : IMPLEMENTATION 70

70

CHAPTER 3. SMARTCONNECT CHATBOT : IMPLEMENTATION 71

71

CHAPTER 3. SMARTCONNECT CHATBOT : IMPLEMENTATION 72

72

CHAPTER 3. SMARTCONNECT CHATBOT : IMPLEMENTATION 73

73

CHAPTER 3. SMARTCONNECT CHATBOT : IMPLEMENTATION 74

74

CHAPTER 3. SMARTCONNECT CHATBOT : IMPLEMENTATION 75

75

CHAPTER 3. SMARTCONNECT CHATBOT : IMPLEMENTATION 76

76

CHAPTER 3. SMARTCONNECT CHATBOT : IMPLEMENTATION 77

77

CHAPTER 3. SMARTCONNECT CHATBOT : IMPLEMENTATION 78

78

CHAPTER 3. SMARTCONNECT CHATBOT : IMPLEMENTATION 79

79

Bibliography

80

Bibliography

[1] C. Waghmare and C. Waghmare, “Deploy chatbots in your business,” Introducing Azure
Bot Service: Building Bots for Business, pp. 31–60, 2019 (cit. on p. 14).

[2] M. D. Delis, I. Hasan, and M. Iosifidi, “On the effect of business and economic university
education on political ideology: An empirical note,” Journal of Business Ethics, vol. 155,
pp. 809–822, 2019 (cit. on p. 14).

[3] M. Gunarto, P. Purwanto, D. Amanah, and D. A. Harahap, “Creating student loyalty
through the value of context-based customer education,” Management Scientific Journa,
vol. 12, no. 1, pp. 14–30, 2022 (cit. on p. 14).

[4] S. Henne, V. Mehlin, E. Schmid, and S. Schacht, “Components of digital assistants in
higher education environments,” in 2022 IEEE 28th International Conference on Engi-
neering, Technology and Innovation (ICE/ITMC) & 31st International Association For
Management of Technology (IAMOT) Joint Conference, IEEE, 2022, pp. 1–8 (cit. on
p. 14).

[5] K. Sevnarayan, “The implementation of telegram as a pedagogical tool to enhance student
motivation and interaction,” Journal of Education Technology, vol. 7, no. 1, 2023 (cit. on
p. 14).

[6] O. Talbi and A. Ouared, “Goal-oriented student motivation in learning analytics: How can
a requirements-driven approach help?” Education and Information Technologies, vol. 27,
no. 9, pp. 12 083–12 121, 2022 (cit. on p. 14).

[7] A. Ouared, M. Amrani, and P.-Y. Schobbens, “Learning analytics solution for monitoring
and analyzing the students’ behavior in sql lab work,” 2023 (cit. on p. 14).

[8] A. Shevat, Designing bots: Creating conversational experiences. " O’Reilly Media, Inc.",
2017 (cit. on p. 14).

[9] J.-B. Aujogue and A. Aussem, “Hierarchical recurrent attention networks for context-
aware education chatbots,” in 2019 International Joint Conference on Neural Networks
(IJCNN), IEEE, 2019, pp. 1–8 (cit. on p. 14).

[10] D. Khurana, A. Koli, K. Khatter, and S. Singh, “Natural language processing: State of
the art, current trends and challenges,” Multimedia tools and applications, vol. 82, no. 3,
pp. 3713–3744, 2023 (cit. on pp. 16, 17).

[11] Y. Vasiliev, Natural Language Processing with Python and spaCy: A Practical Introduction.
No Starch Press, 2020 (cit. on p. 16).

[12] R. Sharnagat, “Named entity recognition: A literature survey,” Center For Indian Lan-
guage Technology, vol. 1, p. 1, 2014 (cit. on p. 17).

[13] S. Minaee, T. Mikolov, N. Nikzad, M. Chenaghlu, et al., “Large language models: A sur-
vey,” arXiv preprint arXiv:2402.06196, 2024. [Online]. Available: https://arxiv.org/
abs/2402.06196 (cit. on pp. 18, 19, 22).

81

https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2402.06196

BIBLIOGRAPHY 82

[14] Anonymous, “Evaluation of open and closed-source llms for low-resource language with
zero-shot, few-shot, and chain-of-thought prompting,” Natural Language Processing Jour-
nal, vol. 10, p. 100 124, 2025 (cit. on p. 18).

[15] D. R. Vasiliev, Transformers for Natural Language Processing: Build and Train State-
of-the-Art Natural Language Processing Models Using Transformer’s Architecture. Packt
Publishing, 2020 (cit. on p. 20).

[16] M. Wisdom, Understanding the ml pipeline for nlp tasks, Accessed: 2025-06-22, 2022. [On-
line]. Available: https://medium.com/@asjad_ali/understanding-the-nlp-pipeline-
a-comprehensive-guide-828b2b3cd4e2 (cit. on p. 20).

[17] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirec-
tional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018
(cit. on p. 20).

[18] T. B. Brown et al., “Language models are few-shot learners,” arXiv preprint arXiv:2005.14165,
2020 (cit. on p. 20).

[19] S. Minaee, N. Kalchbrenner, H. Ali, et al., “Transfer learning for natural language pro-
cessing: A survey,” arXiv preprint arXiv:2401.00001, 2024 (cit. on p. 20).

[20] A. Khurana, A. Patel, and D. Shah, “Llms in production: Architectures and use cases,”
arXiv preprint arXiv:2307.00001, 2023 (cit. on p. 20).

[21] H. Touvron et al., Llama: Open and efficient foundation language models, arXiv:2302.13971
[cs.CL], 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2302.13971 (cit.
on pp. 21, 22).

[22] Y. Gao et al., “Retrieval-augmented generation for large language models: A survey,”
arXiv preprint arXiv:2312.10997, 2023. [Online]. Available: https://arxiv.org/abs/
2312.10997 (cit. on p. 22).

[23] P. Sahoo, A. K. Singh, S. Saha, V. Jain, S. Mondal, and A. Chadha, “A systematic survey of
prompt engineering in large language models: Techniques and applications,” arXiv preprint
arXiv:2402.07927, 2024. [Online]. Available: https://arxiv.org/abs/2402.07927 (cit.
on p. 23).

[24] T. Debnath, M. N. A. Siddiky, M. E. Rahman, P. Das, and A. K. Guha, “A comprehen-
sive survey of prompt engineering techniques in large language models,” TechRxiv, 2024.
[Online]. Available: https://www.techrxiv.org/users/898487/articles/1274333-a-
comprehensive-survey-of-prompt-engineering-techniques-in-large-language-
models (cit. on p. 23).

[25] J. Decety and P. L. Jackson, “The functional architecture of human empathy,” Behavioral
and Cognitive Neuroscience Reviews, vol. 3, no. 2, pp. 71–100, 2004 (cit. on p. 25).

[26] Y. Luo and et al., “Assessing empathy in large language models with real-world physician-
patient interactions,” medRxiv, 2024. [Online]. Available: https://arxiv.org/abs/2405.
16402v1 (cit. on p. 25).

[27] E. L. Deci and R. M. Ryan, “The “what” and “why” of goal pursuits: Human needs and the
self-determination of behavior,” Psychological Inquiry, vol. 11, no. 4, pp. 227–268, 2000.
doi: 10.1207/S15327965PLI1104_01 (cit. on p. 26).

[28] R. Sajja, Y. Sermet, M. Cikmaz, D. Cwiertny, and I. Demir, “Artificial intelligence-enabled
intelligent assistant for personalized and adaptive learning in higher education,” 2023.
[Online]. Available: https://arxiv.org/abs/2309.10892 (cit. on p. 26).

[29] S. Maity and A. Deroy, “Generative ai and its impact on personalized intelligent tutoring
systems,” 2024. [Online]. Available: https://arxiv.org/abs/2410.10650 (cit. on p. 26).

82

https://medium.com/@asjad_ali/understanding-the-nlp-pipeline-a-comprehensive-guide-828b2b3cd4e2
https://medium.com/@asjad_ali/understanding-the-nlp-pipeline-a-comprehensive-guide-828b2b3cd4e2
https://doi.org/10.48550/arXiv.2302.13971
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2402.07927
https://www.techrxiv.org/users/898487/articles/1274333-a-comprehensive-survey-of-prompt-engineering-techniques-in-large-language-models
https://www.techrxiv.org/users/898487/articles/1274333-a-comprehensive-survey-of-prompt-engineering-techniques-in-large-language-models
https://www.techrxiv.org/users/898487/articles/1274333-a-comprehensive-survey-of-prompt-engineering-techniques-in-large-language-models
https://arxiv.org/abs/2405.16402v1
https://arxiv.org/abs/2405.16402v1
https://doi.org/10.1207/S15327965PLI1104_01
https://arxiv.org/abs/2309.10892
https://arxiv.org/abs/2410.10650

BIBLIOGRAPHY 83

[30] K.-J. Laak and J. Aru, “Ai and personalized learning: Bridging the gap with modern
educational goals,” 2024. [Online]. Available: https://arxiv.org/abs/2404.02798 (cit.
on p. 26).

[31] S. Wu et al., “A comprehensive exploration of personalized learning in smart educa-
tion: From student modeling to personalized recommendations,” 2024. [Online]. Available:
https://arxiv.org/abs/2402.01666 (cit. on p. 26).

[32] J. Goetz, S. Kiesler, and A. Powers, “Matching robot appearance and behavior to tasks to
improve human-robot cooperation,” in Proceedings of the IEEE International Workshop
on Robot and Human Interactive Communication (ROMAN), IEEE, 2003, pp. 55–60. doi:
10.1109/ROMAN.2003.1251796 (cit. on p. 26).

[33] A. Kobsa, “Privacy-enhanced web personalization,” in The Adaptive Web, P. Brusilovsky,
A. Kobsa, and W. Nejdl, Eds., Springer, 2007, pp. 628–670. doi: 10.1007/978-3-540-
72079-9_21 (cit. on p. 26).

[34] P. Salovey and J. D. Mayer, “Emotional intelligence,” Imagination, Cognition and Per-
sonality, vol. 9, no. 3, pp. 185–211, 1990 (cit. on p. 27).

[35] GeeksforGeeks, Introduction to ucd (user centered design), Accessed: 2025-06-01, 2022.
[Online]. Available: https://www.geeksforgeeks.org/introduction-to-ucd-user-
centered-design/ (cit. on p. 29).

[36] F. A. Tellez and J. Gonzalez-Tobon, “Empathic design as a framework for creating mean-
ingful experiences,” Conference Proceedings of the Academy for Design Innovation Man-
agement, vol. 2, no. 1, pp. 909–919, 2019, Accessed: 2025-06-01. [Online]. Available: https:
/ / libres . uncg . edu / ir / asu / f / Tellez _ Fabio _ and % 20Gonzalez - Tobon _ 2019 _
Empathic%20Design.pdf (cit. on p. 29).

[37] Y. Zhou, M. Zhou, J. Luo, and A. Zhao, “From prompting to partnering: Personalization
features for human-llm interactions,” arXiv preprint arXiv:2503.00681, 2025. [Online].
Available: https://arxiv.org/abs/2503.00681 (cit. on p. 29).

[38] J. Chen, D. Santos, M. Tran, and S. Lee, “Designing adaptive user interfaces for mhealth
applications targeting chronic disease: A user-centered approach,” arXiv preprint arXiv:2405.08302,
2024. [Online]. Available: https://arxiv.org/abs/2405.08302 (cit. on p. 29).

[39] Y. Zhou, M. Zhou, J. Luo, and A. Zhao, “From prompting to partnering: Personalization
features for human-llm interactions,” arXiv preprint arXiv:2503.00681, 2025. [Online].
Available: https://arxiv.org/abs/2503.00681 (cit. on p. 29).

[40] Y. Fan, Y. Shi, and K. N. Truong, “Practices and challenges of using think-aloud protocols
in industry: An international survey,” Journal of Usability Studies, vol. 15, no. 2, pp. 55–
77, Feb. 2020. [Online]. Available: https://uxpajournal.org/wp-content/uploads/
sites/7/pdf/JUS_Fan_Feb2020.pdf (cit. on p. 30).

83

https://arxiv.org/abs/2404.02798
https://arxiv.org/abs/2402.01666
https://doi.org/10.1109/ROMAN.2003.1251796
https://doi.org/10.1007/978-3-540-72079-9_21
https://doi.org/10.1007/978-3-540-72079-9_21
https://www.geeksforgeeks.org/introduction-to-ucd-user-centered-design/
https://www.geeksforgeeks.org/introduction-to-ucd-user-centered-design/
https://libres.uncg.edu/ir/asu/f/Tellez_Fabio_and%20Gonzalez-Tobon_2019_Empathic%20Design.pdf
https://libres.uncg.edu/ir/asu/f/Tellez_Fabio_and%20Gonzalez-Tobon_2019_Empathic%20Design.pdf
https://libres.uncg.edu/ir/asu/f/Tellez_Fabio_and%20Gonzalez-Tobon_2019_Empathic%20Design.pdf
https://arxiv.org/abs/2503.00681
https://arxiv.org/abs/2405.08302
https://arxiv.org/abs/2503.00681
https://uxpajournal.org/wp-content/uploads/sites/7/pdf/JUS_Fan_Feb2020.pdf
https://uxpajournal.org/wp-content/uploads/sites/7/pdf/JUS_Fan_Feb2020.pdf

	Acknowledgements
	Dedication
	Abstract
	Glossary
	Designing Human-Centered AI Systems : The Role of NLP and LLMs
	Introduction
	Natural Language Processing
	NLP techniques
	Applications of NLP
	NLP challenges

	Understanding Large Language Models (LLMs)
	Open-source vs. Closed-source Models
	Large Language Model Families
	LLM Open sources framework
	LLM Pipeline: From Pre-training to Inference
	Advanced Techniques: RAG and Prompt Engineering

	LLM Capabilities
	Basic Capabilities
	Emerging Capabilities
	Augmented Capabilities

	Considering Human Aspects in Software Design
	Human aspects
	Human-Centered Approaches in Software Engineering

	Context and Work Positioning
	Toward Human-Centered Digital Interactions in Algeria
	Challenges
	Our Missions
	Planned Timeline

	Conclusion

	Design of Our Solution
	Introduction
	Motivation and Challenges
	Motivation
	Emotion and context awareness
	Challenges

	Our Framework
	Possible Scenarios for Empathetic System

	Solution Overview
	Why a Hybrid Approach?
	Formalization
	Architecture Modules
	System Architecture

	UX Design of our solution
	Push Notifications and Timely Alerts
	Chat History Display and Session Persistence
	Emotion Selection Menu and Emotional State Detection
	Intent Confirmation and Clear Messaging
	Personalization and Adaptive Language Style
	Progressive Disclosure and Guided Conversations
	Quick Replies, Menu Options, and FAQ Integration
	Sentiment Analysis and Emotional Intelligence Integration

	Instantiation of our framework
	First step: Need, Intent, and Emotion
	Second step: Response strategy and generation
	Third step: Delivery, Feedback, and Learning

	Conclusion

	SmartConnect Chatbot : Implementation
	Introduction
	Technologies and Tools Used
	Programming Languages
	Frameworks and Libraries
	Dataset Handling
	Model Architectures
	Justification of Technology Choices
	Development Environment

	System Architectures
	RULE BASED MODEL
	System Architecture(AI MODEL)

	Dataset Preparation
	Rule Based model
	LLM-Assisted Empathetic Data Creation

	Model Implementation
	Rule based model

	Model Fine-Tuning
	Data Loading and Preprocessing
	Tokenizer and Model Initialization
	Tokenization of Dataset
	Training Setup
	Fine-Tuning Procedure
	Model Saving

	UI/UX Design
	Objective of UI/UX
	Tools Used
	Wireframes
	Admin Dashboard (UI)
	User Experience

	Challenges and Solutions
	Model Size and Computation Cost
	Prompt Design for Empathy
	Balancing Response Accuracy and Warmth

	Test and Evaluation
	Conclusion

	General Conclusion
	Annexes
	Bibliography

