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 Abstract 

Wheeled mobile robots, which are present in several fields of activities nowadays, are machines 

equipped with perception, reasoning, and action capabilities to navigate autonomously and 

safely in their environments. This autonomous navigation skill requires a combination of 

hardware and software resources to perform basic tasks such as path planning, obstacle 

avoidance, and motion control with respect of the current navigation situation 

Reinforcement learning is one of the intelligent methods adopted to address the challenges of 

autonomous navigation in dynamic environments. It is a technique based on the interaction 

between an agent whose goal is to learn an action policy and its environment. 

In this thesis, this work focuses on integrating artificial intelligence, especially the Q-Learning 

algorithm, into the field of mobile robotics in order to enable robots to make intelligent 

decisions while on the move in environments with obstacles. The goal is to improve the 

autonomy and adaptability of robots by learning from experience, without the need for explicit 

programming for each task 

Keywords: Mobile robotics, Path planning, Obstacle avoidance , Reinforcement learning, 

Autonomous navigation , Dynamic environments , Artificial intelligence , Q learning 

algorithm 

 

 ملخص 

الروبوتات المتنقلة ذات العجلات ، الموجودة في العديد من مجالات الأنشطة في الوقت الحاضر ، هي آلات مجهزة  

وآمن في بيئاتها. تتطلب مهارة التنقل المستقل هذه مزيجا من  بقدرات الإدراك والتفكير والعمل للتنقل بشكل مستقل  

موارد الأجهزة والبرامج لأداء المهام الأساسية مثل تخطيط المسار وتجنب العوائق والتحكم في الحركة فيما يتعلق  

 بحالة التنقل الحالية 

التعلم المعزز هو أحد الأساليب الذكية المعتمدة لمواجهة تحديات الملاحة المستقلة في البيئات الديناميكية. إنها تقنية 

 .تعتمد على التفاعل بين الوكيل الذي يهدف إلى تعلم سياسة العمل وبيئتها

في هذه الأطروحة ، يركز هذا العمل على دمج الذكاء الاصطناعي ، وخاصة خوارزمية كيو التعلم ، في مجال  

الروبوتات المتنقلة من أجل تمكين الروبوتات من اتخاذ قرارات ذكية أثناء التنقل في البيئات ذات العقبات. الهدف  

ل التعلم من التجربة ، دون الحاجة إلى برمجة صريحة  هو تحسين استقلالية الروبوتات وقدرتها على التكيف من خلا

 لكل مهمة 

 

الروبوتات المتنقلة ,تخطيط المسار , تجنب العوائق , التعلم المعزز , الملاحة المستقلة ,   : الكلمات  المفتاحية 

 Q-Learningالبيئات الديناميكية  , الذكاء الاصطناعي , خوارزمية 
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I 

General Introduction 

Artificial intelligence (AI) occupies a prominent place in current technological development, 

in particular in complex fields such as autonomous robotics. Among the most promising 

approaches to AI, Reinforcement Learning (RL) is emerging as a powerful method to allow 

artificial agents to learn to interact with their environment autonomously, based solely on the 

experience gained. Unlike supervised learning, which requires labeled data, reinforcement 

learning is based on the concept of trial-and-error learning. An agent learns to make decisions 

by receiving rewards (or penalties) based on his actions, in order to maximize a long-term 

cumulative reward. 

In the context of mobile robotics, this approach makes it possible to design robots capable 

of learning complex behaviors without being explicitly programmed for each task. Thanks to 

reinforcement learning, robots can adapt to changing environments, improve their autonomy, 

and solve problems based on their own experiences. This ability to adapt is particularly useful 

in areas such as autonomous navigation, object manipulation, exploration of unknown 

environments or human-computer interaction. 

Among the best known and most widely used algorithms in the field of reinforcement 

learning, Q-Learning stands out for its simplicity and efficiency. This is a model-free algorithm 

that is based on learning a function called the Q function. This function evaluates the quality of 

a given action in a given state, thus allowing the agent to select the optimal actions to maximize 

the reward. Q-Learning updates the value of Q iteratively, according to the famous Bellman 

equation, integrating both the immediate reward and the expected future value. This method 

has proven its effectiveness in discrete and deterministic environments, and constitutes a solid 

basis for more complex extensions such as Deep Q-Learning, which combines Q-Learning with 

deep neural networks. 

However, the application of Q-Learning in robotics raises several challenges. Real robotic 

environments are often continuous, noisy, and partially observable, which complicates learning. 

In addition, the space of states and actions can be very vast, making exhaustive exploration 

difficult. Despite these limitations, numerous researches have shown that Q-Learning can be 

adapted and improved to meet the requirements of robotics. Techniques such as state 



    
 

 
 

II 

discretization, guided exploration, or the use of approximation functions make it possible to 

overcome some of these constraints. 

The growing interest in Q-Learning applied to robotics is also motivated by the ease of 

implementation of the algorithm on embedded hardware with low computing power. It is 

particularly well adapted to simulation scenarios, but more and more hybrid approaches today 

make it possible to transfer the skills acquired in simulation to real physical environments. This 

paves the way for concrete applications, ranging from domestic robots to industrial robots, 

including autonomous drones and intelligent vehicles. 

The present thesis is part of this promising context. It aims to explore, design and evaluate 

reinforcement learning strategies for autonomous robots using the Q-Learning algorithm. The 

objective is to demonstrate that this algorithm, despite its theoretical simplicity, can allow a 

robot to learn effective and robust behaviors in complex environments. We will focus on 

modeling problems in order to optimize learning performance, improve convergence speed, and 

extend the capabilities of Q-Learning to more realistic robotic tasks.  In short, reinforcement 

learning, and more particularly Q-Learning, represents an innovative and relevant approach to 

equip robots with adaptive decision-making capabilities. This thesis aims to contribute to the 

advancement of research in this field, by combining theoretical rigor and practical 

experimentation, in order to open new perspectives towards more intelligent, autonomous and 

efficient robots. 

To achieve this objective, the thesis is structured as follows: 

- The first chapter provides a general overview of mobile robotics through a series of 

definitions, its historical development, and the main architectures used. 

- The second chapter is dedicated to machine learning techniques, detailing how they work as 

well as the most common algorithms. 

- The third chapter focuses specifically on reinforcement learning, with particular emphasis on 

the Q-learning algorithm. 

- The fourth and final chapter presents the proposed approach, along with the implementation 

and analysis of the results obtained.
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1 Introduction 

     Mobile robotics is a dynamic field focused on designing, building, and programming 

robots capable of moving and operating autonomously or semi-autonomously in various 

environments. These robots are equipped with sensors, actuators, and advanced algorithms 

to perceive their surroundings, navigate obstacles, and perform tasks. Applications range 

from industrial automation and warehouse logistics to healthcare, agriculture, and space 

exploration. Key technologies include localization, mapping, path planning, and machine 

learning for decision-making. Mobile robotics integrates principles from mechanical 

engineering, computer science, and artificial intelligence. Its ongoing advancements are 

driving innovation, improving efficiency, and enabling robots to tackle complex real-world 

challenges. 

     The word ‘robot’ was first introduced in the real world in 1920 through the play ‘Rossum’s 

Universal Robots’ written by the Czech Karel Capek [1]. Robots become intelligent and 

autonomous after the implications of computer software and cybernetics in the field of 

robotics science [2]. 

2 History Mobile Robotics 

       Artificial intelligence and mobile robotics have always been interconnected. Even 

before the 1956 Dartmouth College Conference, where the term "artificial intelligence" 

was coined, it was recognized that mobile robots could perform interesting tasks and learn. 

William Grey Walter built a pair of mobile robots in the early 1950s that were capable of 

learning tasks such as obstacle avoidance and phototaxis through instrumental 

conditioning, by altering charges in a robot's capacitor, which controlled its behavior 

Early pioneers in artificial intelligence, such as researchers, became interested in robotics 

almost immediately after the 1956 Dartmouth Conference. In the late 1950s, Minsky, 

together with researchers, attempted to build a ping-pong-playing robot. Due to technical 

difficulties with the hardware, they eventually built a robot that could catch a ball using a 

basket instead of the robot's gripper At Stanford, Nils Nilsson developed the mobile robot 

SHAKEY in 1969. This robot featured a visual rangefinder, a camera, and binary tactile 

sensors, and it was connected to a DEC PDP-10 computer via a radio link. SHAKEY's 
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tasks included both obstacle avoidance and object movement within a highly structured 

environment. All obstacles were simple, uniformly colored blocks and wedges. SHAKEY 

a list of formulae representing the objects in its environment and, using a resolution-

maintained theorem prover called "STRIPS," it determined plans of action that it then 

executed. 

Although the reasoning system worked correctly, SHAKEY often encountered problems in 

generating the symbolic information needed for the planner from the raw data obtained from 

its sensors. 

An example of a typical run for SHAKEY might involve the robot entering a room, locating a 

block, being instructed to move the block onto a platform, pushing a wedge against the 

platform, rolling up the ramp, and pushing the block up. However, SHAKEY never completed 

this sequence as a single operation. Instead, it performed several independent attempts, each 

with a high probability of failure. While it was possible to piece together a movie showing all 

the steps, the process itself was highly unreliable. 

Also at Stanford, John McCarthy began a project in the early 1970s to build a robot capable of 

assembling a color television kit. Again, the hardware proved to be the most challenging part, 

as accurately inserting components into printed circuit boards was difficult. Many researchers 

interested in robotics during the early days of artificial intelligence shifted their focus away 

from the hardware aspects of robotics and concentrated instead on the software and reasoning 

components of control systems.[1] 
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Figure 1:Some important and major events in the field of robotics science in the last 100 years 

3 Definition Mobile Robotics 

3.1 Origin of terms [3]  

         Robot was first used in 1921 by researcher in his play R.U.R. (Rossum Universal Robots), 

the word robot comes from the Czech "robota" which means chore, compulsory work the term 

robotics was first used by Asimov in 1941. 
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3.2 Mobile Robotics 

          An automatic machine equipped with memory and a program, capable of replacing 

humans to perform certain tasks.[2] 

Mobile robots are autonomous or semi-autonomous machines capable of moving 

around.  Unlike industrial robots (which are designed to operate within a fixed workspace), 

mobile robots can freely navigate and move around their environment. 

The branch of robotics that develops robots which move around an environment. These robots 

employ an array of sensors, control mechanisms, and actuators to engage with their 

environment, enabling them to conduct tasks, including exploration, cartography, 

transportation, or service provision. Mobile robots are employed in the industrial, commercial, 

medical, and military sectors, as well as in research and education.[3] 

4 Types of Mobile Robots 

           The classification of robots today aims to provide an understanding of the current state 

of robotics and its potential in the coming years. We can agree that there are three main 

categories of robots: 

4.1 Humanoid Robots 

          This is undoubtedly the most well-known category of robots, largely due to the promotion 

by science fiction. It includes all anthropomorphic robots, those whose form resembles human 

morphology. The resemblance to human beings is sometimes so striking that, in Japan, a 

humanoid robot presented the evening news on June 18, 2014. This type of robot is commonly 

referred to as an Android. 

4.2 Industrial Robots (Manipulators) 

         Most of these robots are stationary. When they are not, they are typically mounted on 

rails. This category includes manipulation robots, such as "Pick and Place" robots, welding 

robots, and painting robots used in the automotive industry. They currently represent the 

majority of robots. 
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4.3 Explorer Robots (Mobile) 

         In general, this category includes both humanoid robots capable of moving within their 

environment and wheeled mobile robots, as well as any other robots capable of locomotion. 

Wheeled mobile robots, known as UGVs (Unmanned Ground Vehicles), include robots 

powered by wheels or tracks. 

They are generally used for exploration, which is why they are also called rovers (wanderers). 

The most famous examples are NASA robots, such as Curiosity and the Mars Rovers. The 

Curiosity robot, for instance, was sent to Mars for exploration and terrain analysis.[4] 

5 General presentation of mobile robots 

        Unlike the industrial robot which is generally fixed, the mobile robot is equipped with 

means that allow it to move in its workspace. Depending on his degree of autonomy or degree 

of intelligence, he can be endowed with means of perception and reasoning. Some are able, 

with reduced human control, to model their workspace and plan a path in an environment that 

they do not necessarily know in advance. 

Currently, the most sophisticated mobile robots are essentially oriented towards 

applications in variable or uncertain environments, often populated by obstacles, requiring 

adaptability to the task. Fig. (1.1) illustrates the structure of such a robot.  

 

Figure 2:Structure of a mobile robot 
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Mobile robots have a special place in robotics. Their interest lies in their mobility which opens 

up applications in many fields. Like manipulator robots, they are intended to assist humans in 

difficult tasks (transport of heavy loads), monotonous or in a hostile environment (nuclear, 

marine, space, firefighting, surveillance ...) [5]. 

The particular aspect of mobility imposes a technological and methodological complexity 

which is generally added to the problems encountered by manipulating robots. Solving these 

problems requires the use of all available resources both at the technological level (sensors, 

motor skills, energy) and that of information processing through the use of artificial intelligence 

techniques or particular processors. The autonomy of a mobile robot is its ability to adapt or 

make decisions in order to carry out a task despite a lack of preliminary or potentially erroneous 

information. In other use cases, such as that of planetary exploration vehicles, autonomy is a 

fundamental point since the remote control is then impossible due to the duration of the 

information transmission time. 

5.1 Advantages of mobile robots 

Here are the advantages of mobile robots:  

✓ Flexible and re-deployable. One major advantage of mobile robots is their flexibility in 

being deployed in various environments and adapted to different jobs. In opposition to 

traditional fixed industrial robots confined to assembly lines, mobile robots can navigate 

freely and reconfigure themselves based on changing needs.  

This lets them handle diverse material handling, delivery, inspection, or cleaning 

operations across multiple facilities. 

✓ Productive and efficiency wins. Mobile robots excel at repetitive, tedious tasks that are 

labor-intensive for humans.  By automating these processes, businesses can 

significantly up productivity while reducing costs associated with manual labor.  

✓ Facing the danger. In industries involving dangerous environments like mining, 

construction, or chemical processing, mobile robots can take over risky operations.  

This minimizes the need for human workers to enter potentially dangerous areas, 

improving safety standards.  
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✓ Mobile robotics = optimization. Mobile robots can optimize material flow, reduce travel 

times, and improve overall operational efficiency. This results in leaner, more cost-

effective operations that drive business growth and competitiveness. 

6 Obstacle Detection and Localization 

      The perception of its environment is the foundation of any autonomous system. Without 

proper understanding and interpretation of its surroundings, a robot cannot make accurate 

decisions. This section describes the various tools available to a robot for detecting surrounding 

obstacles and the methods for localizing itself. The goal is to develop a model, more or less 

simplified, of the interactions between the robot and its environment. This step is crucial for the 

navigation of an autonomous mobile robot.  

To achieve this, a robot is equipped with proprioceptive sensors that provide information about 

itself and exteroceptive sensors that gather information about its surrounding 

6.1 Obstacle Detection and Mapping 

           Sensors providing information about the external environment are categorized into two 

types: passive and active [10]. Passive sensors gather and analyze energy from the environment, 

such as light, while active sensors generate energy and capture its reflection after interacting 

with the external environment. This principle underpins rangefinders, widely used to create 

real-time maps of a robot’s environment. Scanning laser rangefinders are frequently employed 

for indoor navigation due to their high performance. 

The principle of these rangefinders involves calculating the round-trip time of a light pulse. A 

low-power infrared wave emitted by a laser diode is reflected off the first object encountered 

and returns to the sensor's detector. The round-trip time determines the object's distance. A 

motorized rotating mirror scans a range of angles, parallel to the ground plane. These devices 

are precise and resistant to temperature variations, making them valuable for mobile robotics in 

low-to-moderate speed applications. 

Ultrasonic sensors use sound waves at frequencies inaudible to humans (20–200 kHz) and 

measure the round-trip time of waves reflected by obstacles, similar to laser rangefinders. 

Animals like bats and dolphins use this echolocation method. Unlike laser rangefinders, 
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ultrasonic sensors are better at detecting thin elements like chair legs or fences due to their 

unfocused waves. However, they have a shorter range and are less effective in anisotropic media 

like air. One disadvantage of ultrasonic sensors is the significant divergence of the ultrasonic 

beam, resembling a cone rather than a focused beam. This divergence makes obstacle 

localization less precise. These sensors are primarily used for short-distance measurements (a 

few centimeters to a few meters), are sensitive to temperature variations, and their measurement 

frequency depends on the maximum detection range. However, they are less expensive than 

laser rangefinders and are often used indoors in confined navigation spaces. 

Passive sensors, like stereo vision systems, use environmental energy directly. By recognizing 

primitives between two images, they can estimate an object's position and orientation to 

calculate depth. However, this requires at least two cameras, or more, for improved robustness. 

Omnidirectional vision is also highly beneficial in mobile robotics, enabling simultaneous 

monitoring of all surroundings. A camera faces a parabolic or hyperbolic mirror, producing a 

distorted image that complicates distance measurement. However, the panoramic view offers 

advantages for dynamic obstacle avoidance in structured environments. Vertical lines become 

radial, and horizontal lines become arcs. Vision-based systems are widely developed across 

various fields but remain reliant on environmental factors like lighting and contrast. 

6.2. Multi-Sensor Data Fusion and Mapping 

         Mobile robot localization combines data from various exteroceptive and proprioceptive 

sources. Typically, this involves reconciling odometry measurements with absolute localization 

methods, such as: 

✓ Recognizing and calculating distances from known-position beacons. 

✓ Matching real-time maps with preexisting database maps. 

✓ External robot localization via environmental sensors (e.g., GPS). 

The simplest approach is to periodically recalibrate the robot’s position using absolute 

localization data to correct the odometer-based state. However, this method does not utilize all 

measurements simultaneously and ignores uncertainties in both odometry and absolute 

localization. 
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Measurement uncertainties, inherent to all technologies, arise from the measurement principle 

or technological imperfections. For example, laser rangefinders exhibit systematic errors 

averaging 15 mm and statistical errors around 5 mm. Combining multiple measurement 

methods involves weighted averaging based on the confidence level of each source. 

For static obstacles, recurring measurements at a specific acquisition frequency improve 

precision through Kalman filtering. This statistical filter reduces un certainties with each new 

measurement and is widely used in robotics for obstacle-relative localization [11]. 

To plan a robot's movements, it is essential to model the environment using relative obstacle 

positions. This modeling involves creating local maps of navigable and non-navigable spaces, 

assuming the robot's absolute position is known. Two primary types of local environment 

representation are: 

• Geometric maps, constructed from rangefinder data to recognize simple shapes (walls, 

corners). 

• Occupancy grids, which discretize the environment into grid cells marked as accessible 

or inaccessible. 

6.3 Localization 

         Localization tools fall into two categories: dead reckoning and absolute localization 

[10]. Dead reckoning involves integrating velocity or acceleration data from proprioceptive 

sensors (odometers, inertial units). These methods are independent of the environment but 

suffer from precision issues due to temporal drift. Errors accumulate over time, degrading 

accuracy. 

The simplest and most commonly used dead reckoning method is odometry, which estimates 

relative positions by integrating instantaneous displacements based on wheel rotations. 

Although simple and widespread, odometry is quickly imprecise due to wheel slippage and 

terrain quality, leading to significant errors over long distances without regular recalibration. 

For challenging terrains, like Mars exploration, traditional odometry is infeasible. Alternative 

methods like visual odometry evaluate movement using distinctive image points captured by 

onboard cameras, improving relative localization accuracy. 
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Absolute localization relies on identifiable elements in the environment (beacons) with known 

positions. These beacons may be: 

✓ Passive, reflecting robot-emitted signals (e.g., laser, infrared). 

✓ Active, emitting detectable signals.  

GPS systems offer meter-level precision for outdoor navigation, enhanced by differential GPS 

for higher accuracy in fixed-base and mobile setups. However, GPS efficacy diminishes in 

urban or forested areas due to signal obstruction by structures. 

Vision-based methods complement GPS for urban environments, as demonstrated by Cappelle's 

3D model matching or Yang's visual odometry algorithms [12]. 

 

 

7 Conclusion 

         Mobile robotics represents a constantly evolving field, at the crossroads of artificial 

intelligence, mechanics and computer science. This chapter made it possible to explore the 

historical foundations, the key definitions, the types of mobile robots as well as their distinctive 

characteristics. Unlike stationary industrial robots, mobile robots are distinguished by their 

ability to dynamically interact with often uncertain or changing environments, thanks to a 

variety of sensors, location algorithms, obstacle detection and data fusion. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

            

 

CHAPTER II 

 
AUTONOMOUS NAVIGATION 

USING ARTIFICIAL INTELLIGENCE 
TECHNIQUES 

 
 

 

 

 

 

 

 

 

 

 



CHAPTER II                                    AUTONOMOUS NAVIGATION USING IA TECHNIQUES 

 

 
12 

 

 1 Introduction  

    Autonomous navigation using artificial intelligence (AI) techniques represents a major 

advance in many fields, including autonomous vehicles, drones, and maritime or aerial systems. 

Thanks to AI, these systems can perceive their environment, make decisions in real time, and 

adapt to changing conditions without human intervention. This ability to learn and improve 

independently makes it possible to increase safety, efficiency and reduce human errors. 

2 Artificial intelligence (AI) 

         Artificial intelligence (AI) was born in the 50s when computer pioneers explored whether 

computers could "think". This field aims to automate human intellectual tasks and encompasses 

various approaches, including machine learning, but also methods without learning, such as 

predefined rules. Initially, symbolic AI, based on explicit rules, dominated and was effective 

for well-defined logical problems, such as chess. However, it has shown limits in the face of 

more complex challenges, such as image recognition or translation, leading to the development 

of new approaches 

2.1 Defining 

   Artificial intelligence (AI) refers to the simulation of human intelligence in machines 

designed to perform tasks that typically require human cognition, such as learning, reasoning, 

problem-solving, and perception. It encompasses a wide range of techniques, including 

machine learning, deep learning, and rule-based systems. AI systems can be trained to recognize 

patterns, make decisions, and improve over time with data. While some AI relies on predefined 

rules, others learn autonomously from experience. Ultimately, AI aims to create systems 

capable of performing complex tasks efficiently and adaptively. Marvin Lee Minsky  [2] defines 

artificial intelligence as “the construction of computer programs that perform tasks that are, for 

the time being, more satisfactorily accomplished by human beings, because they require high-

level mental processes such as perceptual learning, memory organization, and critical 

reasoning”.  
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Figure 3:The different applications of artificial intelligence 

2.2 Artificial intelligence techniques 

A. Machine learning 

       Machine learning (or Machine Learning, ML) is a branch of artificial intelligence that 

allows systems to learn from data to perform tasks without being explicitly programmed. It is 

based on algorithms that identify patterns in the data and improve with experience, the main 

concepts and techniques are as follows: 

1 Supervised Learning  

         The model learns from labeled data, where inputs and outputs are known, with the aim of 

predicting results for new data. For example, in classification, it predicts categories (such as 

spam detection), while in regression, it predicts continuous values (such as price prediction). 

Commonly used algorithms include linear regression, decision trees, support vector machines 

(SVM) and neural networks. 

2 Unsupervised Learning  

        The model works with unlabeled data to discover hidden structures or patterns, in order to 

explore and organize the data. For example, clustering groups similar data (such as customer 

segmentation), while downsizing simplifies the data while retaining its essence (such as 
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principal component analysis, ACP). Commonly used algorithms include K-means, DBSCAN 

and autoencoders. 

3 Reinforcement Learning  

        The model learns by interacting with an environment and receiving rewards or penalties, 

with the objective of maximizing long-term rewards. This approach is used in various fields 

such as video games, autonomous robots and trading systems. Commonly used algorithms 

include Q-learning and Deep Q-Networks (DQN) 

4 Semi-Supervised Learning  

       This technique combines labeled and unlabeled data to improve model performance, which 

is especially useful when labeling the data is expensive or difficult to achieve. 

B. Distinction between artificial intelligence, automatic machine deep  

1 Learning Artificial Intelligence (AI)  

       Artificial intelligence (AI) is the broadest field, aimed at creating systems capable of 

performing tasks that require human intelligence, such as reasoning, learning and perception. It 

includes all techniques, whether they are based on rules, algorithms or learning models. 

Examples of applications include expert systems, robots and virtual assistants. 

2 Automatic Learning (Machine Learning, ML)  

      Machine Learning (ML) is a subfield of AI that focuses on the creation of models capable 

of learning from data to make predictions or decisions. It uses algorithms to identify patterns in 

the data and improve with experience. Examples of applications include classification, 

regression and clustering. 

3 Deep Learning 

     Deep Learning (DL) is a subfield of Machine Learning that uses artificial neural     networks 

with several layers, hence the term "deep". It specializes in the processing of complex data, 

such as images, text and sounds, and requires large amounts of data as well as significant 

computing power. Examples of applications include image recognition, machine translation and 

self-driving cars. 

 

 

 

 



CHAPTER II                                    AUTONOMOUS NAVIGATION USING IA TECHNIQUES 

 

 
15 

 

 

Figure 4:The relation between IA, ML and Deep Learning 

 

 

C. AI Techniques in Robot Navigation 

        Several AI techniques can be used in robot navigation, including particle swarm 

optimization (PSO), ant colony optimization (ACO), genetic algorithm (GA), neural networks 

(NNs), fuzzy logic system, and deep reinforcement learning (DRL). 

Fuzzy Logic Technique: Eight rule-based fuzzy controllers can be used for path following and 

obstacle avoidance for mobile robots, while gradient method-based Takagi Sugeon fuzzy 

controllers can tune various membership function parameters to acquire the optimal result for 

robot navigation. 

Similarly, the Khepera simulator with fuzzy logic-based agents can be employed to control 

robots. The behavior of every agent, including sensor value, robot position, and heading angle, 

can be controlled by defining the sets of fuzzy rules. A memory system can be included to 

further increase the system's efficiency by enabling the robot to identify alternative routes when 

it gets trappedA fuzzy logic controller can be used for path following depending on the 

orientation and position errors. The control of two wheels independently using the controller 

can provide longitudinal and lateral control of the robot. Fuzzy logic controllers can also be 

utilized for sensor-based mobile robot navigation in indoor environments. Fuzzy controllers can 

be optimized by combining the RL and GA methods. Fuzzy logic with visual landmark 

recognition can be used for obstacle avoidance. The path following and control problem of 
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autonomous mobile robots can be solved using an ultrasonic range finder by combining GA 

and fuzzy controller.  

NNs: NNs can be used to solve several robot navigation problems, including defining schedules 

and identifying the shortest route for traveling. For instance, multilayer feed-forward artificial 

NN can be combined with the Q reinforcement method for effective path planning. 

Similarly, a multilayer NN controller and proportional integral derivative (PID) can be utilized 

to design an Arduino microcontroller-based direct current (DC) motor for controlling speed in 

robots. NN architecture can also be used for designing an automatic steering controller for an 

autonomous mobile robot, and to develop a collision-free path in a dynamic environment. 

A biologically inspired NN can be employed to develop a wall following robot, while a hybrid 

NN can be used for efficient robot navigation. Goal-seeking and obstacle-avoidance behaviors 

can be realized in robots using NN. 

The trajectory tracking problem in robot navigation can be solved using the adaptive NN PID 

controller, while a combination of the first-order Sugeno-fuzzy inference model and adaptive 

neuro-fuzzy inference system (ANFIS) can be utilized for coordinating several robots and path 

planning. 

Two different NN controllers can be employed for path following and controlling robots. 

Additionally, Hopfield NN can be used for path planning and obstacle avoidance in complex 

environments. Multilayered NN and recurrent neural network (RNN) can be utilized for 

designing intelligent navigation systems for mobile robots and solving path following and 

localization problems, respectively. The RNN assists the robot in autonomously navigating an 

unknown environment. 

Moreover, a type-2 fuzzy neural network (IT2FNN) can be employed to effectively address the 

obstacle avoidance and orientation stabilization of wheeled robots. IT2FNN possesses three 

layers, including the output, hidden, and input layer, and four inputs. Angular and linear 

velocities of the robot are the outputs of the robot. Dynamic nonholonomic robots can be 

controlled using NN. 
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GA: GAs can be used to solve path planning problems in both dynamic and static environments. 

The navigation path length of robots in a cluttered space can be optimized using the Petri-GA 

technique. 

A fuzzy controller combined with GAs can be used for the guidance of robots in a static and 

dynamic environment and for optimizing the navigation path length. GA can be utilized to 

select the most suitable membership function parameters from a fuzzy inference system to 

control a robot’s steering angle in a partially unknown environment. 

The optimal path for a robot can be identified using GA and fuzzy logic, while effective path 

planning of several robots can be achieved using an improved GA, which can guide robots 

efficiently from the origin to the destination without any collision. 

Motion control can be realized by implementing a genetic-fuzzy controller (GA-FLC) for 

tuning and optimizing the Gaussian membership function parameters. Additionally, multiple 

objective genetic algorithm (MOGA) and single fitness-based GA can be employed for path 

optimization of the robot and avoiding navigation problems in the dynamic environment, 

respectively. 

PSO: The motion planning problem of a robot can be solved using multi-objective PSO, while 

the velocities of the left motor and right motor of the differential drive robot can be determined 

using a PSO-based optimal fuzzy controller. 

The parallel met heuristic PSO (PPSO) algorithm can be used to address the global path-

planning problem of robots. Moreover, an evolutionary-group-based PSO (EGPSO) for 

automatic learning of fuzzy systems can be utilized for wall following control and robot 

navigation. 

DRL: Uncertainty-aware RL, double deep Q network (DDQN), asynchronous deep 

deterministic policy gradient (DDPG), fast recurrent DPG, and successor feature RL can be 

utilized for local obstacle avoidance. 

Long short-term memory (LSTM) + DRL, asynchronous advantage actor-critic (A3C) + LSTM, 

and LSTM + proximal policy optimization (PPO) can be utilized for indoor navigation. 
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Additionally, PPO, parallel DDPG, parallel PPO, and collision avoidance with DRL can be 

employed for multi-robot navigation. 

D. Autonomous navigation of mobile robots 

        Mobile robots are machines capable of moving around in their environment, often using 

wheels, paws, or other means of locomotion. They can be equipped with sensors to perceive 

their environment, navigation systems to move safely, and control systems to make decisions 

and perform tasks. Mobile robotics is a constantly evolving field, with applications more and 

more diverse and more and more advanced technology. It has the potential to transform the way 

humans interact with their environment and solve many practical problems that they face in 

everyday life. She concerns the design, construction and use of mobile robots have many 

practical applications, such as monitoring, maintenance, exploration, parcel delivery, security, 

and logistics. They can be used in various environments, such as factories, warehouses, 

construction sites of construction, agricultural fields, and outdoor spaces. Technological 

advances in the matter of sensors, data processing, control, and mechanics have made it possible 

to develop mobile robots that are increasingly autonomous and capable of adapting to varied 

situations. 

Autonomous navigation of a mobile robot refers to the ability of a robot to move and to navigate 

in its environment without human intervention or assistance. This includes tasks such as 

planning a ride, obstacle avoidance, and the adjustment of the movement according to the inputs 

of the sensors. Autonomous navigation requires a combination of hardware and software, such 

as sensors to perceive the environment, a processing power to make decisions based on this 

perception, and actuators to execute the movement. This is a fundamental ability for the 

majority of the mob 

 The navigation of a mobile robot consists of determining an optimal trajectory enabling the 

robot to move from a starting point (an initial point) pi to a destination point (an endpoint) pf 

to reach a desired goal. It also involves seeking to move freely in the configuration space 

without colliding autonomously with obstacles close to the robot. There are two approaches to 

navigation techniques: 

A- Planning of movement in the environment (workspace) and execution by servo-controlling 

the robot's movement to follow the desired instructions (planning-execution diagram); 
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B- Navigation by decomposition into a set of more reactive primitives. This corresponds to 

executing a series of sub-tasks (following a wall, avoiding an obstacle) to divide the overall 

task into a sequence of primitives. To achieve autonomous navigation, a mobile robot must 

implement several missions, the main functionalities of which are:  [15] 

• Motion planning  

• Localization  

• Path following  

• Obstacle avoidance 

• Parking  

 

 

Figure 5:Autonomous navigation of mobile robots 

 

 

 

3 Conclusion 

        In conclusion, although autonomous navigation based on artificial intelligence has the 

potential to transform many sectors, it remains necessary to continue developing robust 

technologies and to put in place appropriate regulatory frameworks to guarantee a smooth and 

secure transition toward a future where these autonomous systems will become commonplace. 
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1 Introduction  

      Reinforcement learning is a method that enables an agent (such as a robot) to learn, 

through trial and error, the optimal action to take in each perceived situation in order to 

maximize a reward. 

We will begin by introducing the core principles of reinforcement learning. Next, we will 

define the developmental approach to learning that we aim to apply in robotics. Finally, we 

will provide a brief overview of relevant theoretical tools. 

2 Principles of reinforcement learning  

          A commonly used solution for implementing reinforcement learning involves an agent 

operating within an environment, making decisions based on its current state. The agent 

interacts with the environment by taking actions, and the environment provides feedback in 

the form of rewards (positive, negative, or zero). 

More formally, reinforcement learning is a class of machine learning problems where the goal 

is to learn—through experimentation—how to act in different situations to maximize a 

numerical reward over time. The agent strives to optimize its cumulative rewards by exploring 

different actions and strategies (e.g., exploration, policy monitoring, etc.) within the 

environment. The nature and selection of these actions at any given stage of learning depend 

on the chosen algorithm. [17] 

3 Definitions and concepts  

3.1 Definitions  

       Reinforcement learning is generally operated in an interaction framework, illustrated in 

Figure (3.1); the learning agent interacts with an initially unknown environment and receives 

a representation of the state and an immediate reward in return. The environment produces an 

Sᵢ state at each stage t by receiving the current state sᵢ the agent reacts with an action Aᵢ that 

he then calculates and executes. The agent acts according to a policy π (aᵢꟾ sᵢ), which represents 

the probability of taking an action aᵢ when he is in the state sᵢ (in a deterministic environment,  

π (s ᵢ) = aᵢ), this action leads to a transition of the environment to a new state. The environment 

provides the new state t 1 sᵢ₊₁ as well as a reward rᵢ, which indicates how good the new state 

is. The agent receives the new representation and the corresponding reward, and the whole 

process repeats. The agent's goal is to maximize the cumulative reward: max ∑rᵢ (the rewards 

are often weighted to avoid exploding sums). The accumulated reward sum is called return Rᵢ 
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Figure 6:Interaction, agent-environnent 

 

The reinforcement learning environment is usually formulated as a Markovian Decision 

Process (MDP), and the objective is to learn a control strategy to maximize the total reward 

that represents a long-term goal. [17] 

3.2 Objectives of reinforcement learning  

      The goal of reinforcement learning is to find an optimal policy π* that associates states or 

observations with actions in order to maximize the expected return J, which corresponds to 

the expected cumulative reward. In a finite horizon model, we only seek to maximize the 

expected reward for the horizon H, that is to say for the next H steps (over time) h: 

𝐽 = 𝔼 {∑ 𝑅ₕ

𝐻

ℎ=0

} 

This setting can also be applied to model problems where we know how many steps remain. 

Alternatively, future rewards can be discounted with a discount factor γ (with 0 ≤ γ <1) [17] 

 

𝐽 = 𝔼 {∑ γ ͪ𝑅ₕ

𝐻

ℎ=0

} 
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3.3 Markovian Decision-making Processes  

      A Markovian Decision Process 

describes a sequential decision-making 

problem in which an agent must choose 

the sequence of actions that maximizes 

an optimization criterion based on a 

reward Formally, a MDP is a set M = { 

S,A,T,r,γ } where :  

 

                                                                                    

𝑆 = {𝑠₁, . . . . , 𝑠ₙ } is a finite set of N states that represents the dynamic environment,  

𝐴 = {ɑ₁, . . . , ɑₖ } k is a set of k actions that can be executed by an agent,  

𝑇 ∶  𝑆 × 𝐴 × 𝑆 → [0,1] is a transition probability function, or a transition model, where T (s 

,a,s') represents the probability of state transition during the application of the action a∈A to 

the state  s∈S leading to the state   s' ∈ S , that is , 𝑇 (𝑠, 𝑎, 𝑠′)  =  𝑃 (𝑠′ꟾ𝑠, 𝑎 ),  

𝑟 ∶ 𝑆 × 𝐴 → 𝑅 is a reward function whose absolute value is bounded by Rmax or r (s,a) , 

represents the immediate reward obtained during the execution of the action a∈A in the state 

s∈S  , 

𝛾 ∈ [0,1] is a discount factor (discount or devaluation). 

Given a MDP M, the agent-environment interaction in Figure (3.2) proceeds as follows: 

either t∈ N is the current time, or s∈ S and aₜ∈ A represent the random state of the 

environment and the action chosen by the agent at time t, respectively. Once the action is 

selected, it is sent to the system, which performs a transition: (sₜ₊₁, rₜ₊₁) P (.ꟾSₜ,Aₜ ) 

 

 

 

Figure 7:Example of MDP 
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                                  Figure 8:Diagram of a Markov Decision Model (MDP) 

In particular, sₜ₊₁ is random and 𝑃 (𝑠ₜ₊₁ = 𝑠′ꟾ 𝑠ₜ = 𝑠 , 𝑎ₜ = 𝑎) = 𝑇 (𝑠, 𝑎, 𝑠′) is true for all s, 

s'∈ S and a∈ A. Moreover [𝑟ₜ₊₁/𝑠ₜ, 𝑎ₜ\] = 𝑟(𝑠ₜ, 𝑎ₜ)] . The agent then observes the next 

state Sₜ₊₁, and the reward rₜ₊₁, chooses a new action a∈∈A and the process is repeated. 

An important property of a MDP is that the process is Markovian, that is, the optimal action 

to be taken for a particular state does not depend on the history of actions and states that the 

agent has previously visited. The current state provides all the information the agent needs to 

act. 

The Markov hypothesis implies that the sequence of state-action pairs specifies the transition 

model T: 

𝑷 (𝑺ₜ₊₁ꟾ 𝑺ₜ, 𝑨ₜ, . . . . . . , 𝑺₀, 𝑨₀) =  𝑷 (𝑺ₜ₊₁ꟾ 𝑺ₜ, 𝑨ₜ) 

The state transition can be deterministic or stochastic. In the deterministic case, taking a given 

action in a given state always gives the same next state, while in the stochastic case, the next 

state is a random variable. The objective of the learning agent is to determine a theory of 

choice of actions to maximize the expected discounted total reward: 

𝑹 =  𝑹ₜ₊₁ 

If γ<1, then the rewards received far in the future have an exponentially smaller value than 

those received at the first stage [17] 
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3.4 Markov's property 

Assuming that the current state and the current return depend only on the previous state and 

the action that has just been issued. This is a fundamental property, and must be respected 

by all PDM. It is the Markov property (we also say that the environment is Markovian). 

There is then no need for memory to make decisions at best: only knowledge of the current 

state is useful. The only trace of memory resides in the behavior learning performed by the 

agent [18] 

3.5 Policy  

The behavior of the agent is defined by a policy π:{S, A}→[1,0], which guides the agent 

probabilistically by specifying, for each state s , the probability of carrying out the action a 

(therefore π (s) = a ). The goal is to find the optimal policy π * maximizing the long-term 

reward, we note it 

(𝑠, 𝑎)  → 𝜋 (𝑠, 𝑎) = 𝑃𝑟 [𝑎ₜ = 𝑎ꟾ𝑠ₜ = 𝑠]. We therefore seek to solve an optimal control 

problem, where reinforcement learning is not defined by a certain class of algorithms, but by 

the problem it seeks to solve. That of the optimal control. The return received by the agent 

from time t is defined by the following sum:   𝑹ₜ = 𝒓ₜ + 𝒓ₜ₊₁ + ⋯ . . +𝒓ₜ₊ₖ₋₁ 

 

 

                                       Figure 9:Decision network of a finite MDP 
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  3.6 Other models  

         From the Markov model, variants are defined that serve both in pattern recognition and 

in planning (such as MDPs). The general goal is to guess the present or future state of a 

system. Here are some derived Markovian models: 

- HMM In a Hidden Markov Model, the state of the system is not known. On the other hand, 

we have an observation that is linked by probabilistic laws to the states. We cannot be sure of 

a state with a perception of the outside world, but a series of perceptions can refine a judgment. 

It is the main pattern recognition tool derived from Markov models. 

- PDM (see their detailed presentation in this report) 

- MMDPS (Multiple CDMS) are a variant of MDPs adapted to the case of multi-agent 

systems, as are DEC-CDMS (decentralized CDMS)and Markov games. These three models 

are presented in the appendix. 

- SMDP The so-called Semi-Markovian model aims to improve time management, 

considering that the passage in a state can be of variable duration (according to stochastic 

laws). 

- POMDP is a mixture of HMMs and MDPs, these Partially Observable MDPs add the idea 

that an agent only has a partial perception of his environment, so that he only knows an 

observation and not a complete state [23] 

 

 

 

 

              

 

 

 

 

 

 

 

                                           Figure 10:The family of MDP 
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4 Tabular methods  

      The first methods presented are the tabular methods where the CDM is finite and the 

dimensions of the state and action spaces are small, that is to say that the value function and 

the Q function can be represented in the form of tables (Table (3.1) and Table (3.2)). 

The objective of tabular methods is to fill these tables, because once they are known [17] 

state value 

s₀ 15 

s₁ 20 

… … 

sₙ ... 

                                                  Table 1: Value function 

 

     Actions   

high bottom left  right 

 s₀ -1 1

2 

0 15 

State s₁ 3 2

0 

4 14 

 … … … … … 

 sₙ … … … … 

 

Table 2: Function Q 

We can divide the tabular methods into 3 categories: dynamic programming, Monte Carlo 

methods ,time difference reinforcement learning and TD learning. 
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Classification of the main reinforcement learning algorithms 

SAC 

V-Learning 

Dynamic Programming 

Q-Learning 

 

SARSA 

Q-Learning 

NPG 

REINFORCE 

SQL 

DDQN 

DQN 

RDPG 

TRPO 

PPO 

Policy itération 

Value iteration 

DPG 

A3C 

RL Algorithme 

Fonction Approximation 
Approximation 

Tablar méthodes 

Actor critique 

Value based 

Policy Optimisation 

Temporal Différence 

Monte Carlo 
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4.1 Dynamic Programming  

           The term dynamic programming (DP) refers to a collection of algorithms that can be 

used to compute optimal policies given a perfect model of the environment as a Markov 

decision process (MDP). Classical DP algorithms are of limited utility in reinforcement 

learning both because of their assumption of a perfect model and because of their great 

computational expense, but they are still important theoretically. DP provides an essential 

foundation for the understanding of the methods presented in the rest of this book. In fact, all 

of these methods can be viewed as attempts to achieve much the same effect as DP, only with 

less computation and without assuming a perfect model of the environment. [19] 

4.2 Monte Carlo Methods 

           Monte Carlo methods are ways of solving the reinforcement learning problem based 

on averaging sample returns. To ensure that well-defined returns are available, here we define 

Monte Carlo methods only for episodic tasks. That is, we assume experience is divided into 

episodes, and that all episodes eventually terminate no matter what actions are selected. Only 

on the completion of an episode are value estimates and policies changed. Monte Carlo 

methods can thus be incremental in an episode-by-episode sense, but not in a step-by-step 

(online) sense. The term “Monte Carlo” is often used more broadly for any estimation method 

whose operation involves a significant random component. Here we use it specifically for 

methods based on averaging complete returns [19] 

4.3 Temporal-Difference Learning  

          The Temporal Difference TD methods are a combination of Monte Carlo methods and 

dynamic programming methods. Unlike Monte Carlo methods, TD methods do not need to 

wait until a return estimate is available (i.e. at the end of an episode) to update the value 

function. Instead, they use time errors and have to wait until the next time step. The temporal 

error is the difference between the old estimate and a new estimate of the value function, 

taking into account the reward received in the current example. These updates are carried out 

iteratively and, unlike dynamic programming methods, only take into account the sampled 

successor states rather than the complete distributions on the successor states. Like the Monte 

Carlo methods, these methods are model-free, since they do not use a model of the transition 

function to determine the value function and can learn directly from the raw experience 
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without a model of the dynamics of the environment. In this context, the value function cannot 

be calculated analytically but must be estimated from the sampled transitions in the MDP 

5 Fundamental algorithms: 

The TD algorithm (0) 

The elementary reinforcement learning algorithm, called the "time difference" algorithm, is 

called TD. We note it here TD (0) for reasons that will appear when we present the eligibility 

traces. This algorithm is based on a comparison between the reward that we actually receive 

and the reward that we expect to receive based on the estimates constructed previously. If the 

estimates of the value functions in the states sₜ and sₜ₊₁, denoted V (sₜ) and V (sₜ₊₁), were 

accurate, we would have 

𝑉 (𝑠ₜ)  =  𝑟ₜ +  𝑦𝑟ₜ₊₁ +  𝑦2𝑟ₜ₊₂ +  𝑦3𝑟ₜ₊₃+. . . . . .. 

   𝑉 (𝑠ₜ₊₁)  =  𝑟ₜ₊₁ +  𝛾 𝑟₂₂ +  𝛾2 𝑟ₜ₊₃ + ⋯ … … … 

So we would have: 𝑉 (𝑠𝑡)  =  𝑟ₜ +  𝑦𝑉 (𝑠ₜ₊₁)                                                                           

It can be seen that the time difference error δₖ measures the error between the effective values 

of the estimates V (s) and the values that they should have. The temporal difference method 

consists in correcting this error little by little by modifying the value of V (sₜ)according to a 

Windrow-Hoff type equation, which is used in the field of neural networks:  

𝑉 (𝑠ₜ) ←  𝑉 (𝑠ₜ) +  𝛼[𝑟ₜ + 𝛾 𝑉 (𝑠ₜ₊₁) −  𝑉 (𝑠ₜ)] 

This update equation makes it possible to immediately understand how the temporal 

difference algorithms combine the properties of dynamic programming with those of Monte 

Carlo methods. Indeed, it reveals the following two characteristics: 

✓ As in dynamic programming algorithms, the estimated value of V (sₜ)is updated as a 

function of the estimated value of V (sₜ₊₁), there is therefore propagation of the 

estimated value to the current state from the estimated values of the successor states. 

✓ As in the Monte-Carlo methods, each of these values results from a local estimation 

of the immediate rewards which is based on the experience accumulated by the agent 

over his interactions with his environment.   

      It can therefore be seen that the temporal difference methods and, in particular, TD (0), 

are based on two coupled convergence processes, the first estimating more and more precisely 

the immediate reward received in each of the states and the second approaching better and 

better the value function resulting from these estimates by propagating them step by step. 
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In the case of TD (0), the updates are made locally each time the agent makes a transition in 

his environment, based on information limited to his current state STₜ, the successor state Sₜ₊₁ 

and the reward Rₜ received following this transition. A proof of convergence of the algorithm 

has been proposed by Dayan and Sejnowski. 

      On the other hand, it should be noted that, as TD (0) estimates the value function of each 

of the states of a problem, in the absence of a model of the transitions between the states, the 

agent is unable to deduce which policy to follow, because he cannot take a step forward to 

determine which action will allow him to reach the next state of greater value. This point 

explains that we prefer to resort to algorithms that work on a value function associated with 

state-action pairs rather than the state alone. [21] 

The Sarsa algorithm  

        The form of the Bellman equation V = LV is not satisfactory to derive directly an 

adaptive resolution algorithm. For this, Watkins introduced the value function Q, whose data 

is equivalent to that of V when we know the transition function p. [6] 

The SARSA algorithm is similar to the TD (0) algorithm except that it works on the values of 

the pairs (s,a) rather than on the value of the states. Its update equation is identical to that of 

TD (0) by replacing the value function by the action value function : 

𝑸 = (𝒔ₙ, 𝒂ₙ)⃪𝑸(𝒔ₙ, 𝒂ₙ) + 𝒂[𝒓ₙ + 𝒚𝑸(𝒔ₙ₊₁, 𝒂ₙ₊₁) − 𝑸(𝒔ₙ, 𝒂ₙ)]. . . . . . 𝟏. 𝟏 

The information necessary to carry out such an update while the agent is carrying out a 

transition is the quintuple (sₙ,a a,r,, s a, a a) from which the name of the algorithm derives 

Carrying out these updates implies that the agent determines with a step of looking forward 

what is the next action that he will perform during the next time step, when the action n a in 

the state s l will have led him to the state sₙ ₊ ₁ 

As a result of this implication, there is a close dependence between the question of learning 

and the question of determining the optimal policy. In such a framework, there is only one 

policy that must take into account both exploration and exploitation concerns and the agent is 

required to carry out this learning only on the basis of the policy that he actually follows. An 

algorithm such as SARSA is said to be in politics. The dependence that this induces between 

exploration and learning considerably complicates the development of proofs of convergences 

for these algorithms, which explains why such proofs of convergence appeared much later 

than for so-called out-of-policy algorithms such as Q-Learning, which we will now see [21] 
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Q-Learning in Reinforcement Learning (detailed approach) 

Q-learning is a model-free reinforcement learning algorithm used to train agents (computer 

programs) to make optimal decisions by interacting with an environment. It helps the agent 

explore different actions and learn which ones lead to better outcomes. The agent uses trial 

and error to determine which actions result in rewards (good outcomes) or penalties (bad 

outcomes). 

Over time, it improves its decision-making by updating a Q-table, which stores Q-

values representing the expected rewards for taking particular actions in given states. 

Key Components of Q-learning 

1. Q-Values or Action-Values 

Q-values represent the expected rewards for taking an action in a specific state. These values 

are updated over time using the Temporal Difference (TD) update rule. 

2. Rewards and Episodes 

The agent moves through different states by taking actions and receiving rewards. The process 

continues until the agent reaches a terminal state, which ends the episode. 

3. Temporal Difference or TD-Update 

The agent updates Q-values using the formula: 

𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝛼(𝑅 + 𝛾𝑄(𝑆’, 𝐴’)– 𝑄(𝑆, 𝐴)) 

Where, 

• S is the current state. 

• A is the action taken by the agent. 

• S’ is the next state the agent moves to. 

• A’ is the best next action in state S’. 

• R is the reward received for taking action A in state S. 

• γ (Gamma) is the discount factor, which balances immediate rewards with future 

rewards. 

• α (Alpha) is the learning rate, determining how much new information affects 

the old Q-values. 

4. ϵ-greedy Policy (Exploration vs. Exploitation) 

The ϵ-greedy policy helps the agent decide which action to take based on the current Q-value 

estimates: 



CHAPTERIII                                                                  REINFORCEMENT LEARNING  

 

 
33 

 

• Exploitation: The agent picks the action with the highest Q-value with probability 1–ϵ. This 

means the agent uses its current knowledge to maximize rewards. 

• Exploration: With probability ϵ, the agent picks a random action, exploring new possibilities 

to learn if there are better ways to get rewards. This allows the agent to discover new strategies 

and improve its decision-making over time. 

How does Q-Learning Works? 

Q-learning models follow an iterative process, where different components work 

together to train the agent: 

1. Agent: The entity that makes decisions and takes actions within the environment. 

2. States: The variables that define the agent’s current position in the environment. 

3. Actions: The operations the agent performs when in a specific state. 

4. Rewards: The feedback the agent receives after taking an action. 

5. Episodes: A sequence of actions that ends when the agent reaches a terminal state. 

6. Q-values: The estimated rewards for each state-action pair. 

Steps of Q-learning: 

1. Initialization: The agent starts with an initial Q-table, where Q-values are 

typically initialized to zero. 

2. Exploration: The agent chooses an action based on the ϵ-greedy policy (either 

exploring or exploiting). 

3. Action and Update: The agent takes the action, observes the next state, and 

receives a reward. The Q-value for the state-action pair is updated using the TD update 

rule. 

4. Iteration: The process repeats for multiple episodes until the agent learns the 

optimal policy. 

Methods for Determining Q-values 

1. Temporal Difference (TD): 

Temporal Difference is calculated by comparing the current state and action values with the previous 

ones. It provides a way to learn directly from experience, without needing a model of the environment. 

2. Bellman’s Equation: 

Bellman’s Equation is a recursive formula used to calculate the value of a given state and determine 

the optimal action. It is fundamental in the context of Q-learning and is expressed as: 

https://www.geeksforgeeks.org/bellman-equation/
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𝑸(𝒔, 𝒂) = 𝑹(𝒔, 𝒂) + 𝜸𝑚𝑎𝑥𝒂𝑸(𝒔′, 𝒂) 

Where: 

• Q(s, a) is the Q-value for a given state-action pair. 

• R(s, a) is the immediate reward for taking action a in state s. 

• γ is the discount factor, representing the importance of future rewards. 

• 𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎)  is the maximum Q-value for the next state s’ and all possible actions. 

What is a Q-table? 

The Q-table is essentially a memory structure where the agent stores information about which 

actions yield the best rewards in each state. It is a table of Q-values representing the agent’s 

understanding of the environment. As the agent explores and learns from its interactions with the 

environment, it updates the Q-table. The Q-table helps the agent make informed decisions by showing 

which actions are likely to lead to better rewards. 

Structure of a Q-table: 

• Rows represent the states. 

• Columns represent the possible actions. 

• Each entry in the table corresponds to the Q-value for a state-action pair. 

Over time, as the agent learns and refines its Q-values through exploration and exploitation, the Q-

table evolves to reflect the best actions for each state, leading to optimal decision-making. 

Implementation of Q-Learning 

Here, we implement basic Q-learning algorithm where agent learns the optimal action-selection 

strategy to reach a goal state in a grid-like environment. 

Step 1: Define the Environment 

Set up the environment parameters including the number of states and actions and initialize the Q-

table. In this each state represents a position and actions move the agent within this environment. 

Step 2: Set Hyperparameters 

Define the parameters for the Q-learning algorithm which include the learning rate, discount factor, 

exploration probability and the number of training epochs. 

Step 3: Implement the Q-Learning Algorithm 

Perform the Q-learning algorithm over multiple epochs. Each epoch involves selecting actions based 

on an epsilon-greedy strategy updating Q-values based on rewards received and transitioning to the 

next state. 
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Step 4: Output the Learned Q-Table 

After training, print the Q-table to examine the learned Q-values which represent the expected 

rewards for taking specific actions in each state. 

Advantages of Q-learning 

• Trial and Error Learning: Q-learning improves over time by trying different actions and learning 

from experience. 

• Self-Improvement: Mistakes lead to learning, helping the agent avoid repeating them. 

• Better Decision-Making: Stores successful actions to avoid bad choices in future situations. 

• Autonomous Learning: It learns without external supervision, purely through exploration. 

Disadvantages of Q-learning 

• Slow Learning: Requires many examples, making it time-consuming for complex problems. 

• Expensive in Some Environments: In robotics, testing actions can be costly due to physical 

limitations. 

• Curse of Dimensionality: Large state and action spaces make the Q-table too large to handle 

efficiently. 

• Limited to Discrete Actions: It struggles with continuous actions like adjusting speed, making it 

less suitable for real-world applications involving continuous decisions. 

Applications of Q-learning 

Applications for Q-learning, a reinforcement learning algorithm, can be found in many different 

fields. Here are a few noteworthy instances: 

1. Atari Games: Classic Atari 2600 games can now be played with Q-learning. In games like Space 

Invaders and Breakout, Deep Q Networks (DQN), an extension of Q-learning that makes use of deep 

neural networks, has demonstrated superhuman performance. 

2. Robot Control: Q-learning is used in robotics to perform tasks like navigation and robot control. 

With Q-learning algorithms, robots can learn to navigate through environments, avoid obstacles, and 

maximise their movements. 

3. Traffic Management: Autonomous vehicle traffic management systems use Q-learning. It lessens 

congestion and enhances traffic flow overall by optimising route planning and traffic signal timings. 

4. Algorithmic Trading: The use of Q-learning to make trading decisions has been investigated in 

algorithmic trading. It makes it possible for automated agents to pick up the best strategies from past 

market data and adjust to shifting market conditions. 
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5 Personalized Treatment Plans: To make treatment plans more unique, Q-learning is used in the medical 

field. Through the use of patient data, agents are able to recommend personalized interventions that account 

for individual responses to various treatments. 

5.2 The difference between SARSA and Q-Learning  

      The essential difference between SARSA and Q-Learning is at the level of the definition 

of the error term. The term 𝑄(𝑠ₜ₊₁, 𝑎ₜ₊₁) appearing in equation (1.1) has been replaced by the 

term 𝑚𝑎𝑥ₐ(𝑠ₜ₊₁, 𝑎) in equation (1.2). This could seem equivalent if the policy followed was 

gluttonous (we would then have 𝑎ₜ₊₁ = 𝐴𝑟𝑔𝑚𝑎𝑥ₐ𝑞 (𝑠ₜ₊₁, 𝑎). However, given the need to 

achieve a compromise between exploration and exploitation, this is usually not the case. It 

therefore appears that the SARSA algorithm performs the updates according to the actions 

actually chosen while the Q-Learning algorithm performs the updates according to the optimal 

actions even if it is not these optimal actions that the agent performs, which is simpler. [21] 

 

Figure 11:The backup diagrams for Q-learning and Expected Sarsa 

 

 

5.3 The TD( ), Sarsa( ) and Q(  ) algorithms 

       The TD(0), SARSA and Q-Learning algorithms have the defect of updating only one 

value per time step, namely the value of the state that the agent is currently visiting. As it 

appears in Figure (3 .7), this update procedure is particularly slow. Indeed, for an agent having 

no a priori information on the structure of the value function, at least n successive experiments 

are required for the immediate reward received in a given state to be propagated to a state 

remote from the first of n transitions. While waiting for the result of this propagation, as long 

as all the values are identically zero, the behavior of the agent is a random walk 
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Figure 12:Navigation of an agent in a parts environment using the Q-Learning algorithm 

         

 

                Being initially zero, the propagation of non-zero values take place only once the 

agent has found the reward source for the first time and progresses only one step with each 

try of the agent. 

One way of improving this state of affairs consists in providing the algorithm with a memory 

of the transitions carried out during an experiment in order to carry out all the possible 

propagations at the end of this experiment. This memory of the transitions carried out 

previously is called an eligibility trace. Thus, Sutton and Barto have proposed a class of 

algorithms called "TD()" which generalize the TD(0) algorithm in the case where the agent 

has a memory of the transitions. Later, the SARSA and Q-Learning algorithms were 

generalized to SARSA( ) and Q ( ), the second having been generalized in two different 

ways by two different authors. [21] 

6 Conclusion 

In this chapter, we have presented an overview of the deep learning algorithms, several 

techniques are used for solving the problem of reinforcement learning and the acquisition of 

optimal behavior in an environment Because of all these characteristics reinforcement 

learning is a method particularly suitable for robotics. This thesis therefore focuses on 

reinforcement learning for solve some problems of autonomous navigation of a mobile robot. 
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 Introduction 

In this chapter, we present the implementation of the robot model developed within the 

framework of this project, as well as the results obtained through different simulations. The 

main objective is to demonstrate the effectiveness of the reinforcement learning algorithm, in 

particular Q-learning, in the autonomous navigation of a robot in an environment containing 

obstacles. We first describe the robot components and the sensors used, before detailing the 

simulation scenarios, the development environment, as well as the Python libraries used. 

Finally, an analysis of the results from the different phases of exploration and exploitation is 

carried out, making it possible to evaluate the performance and the convergence of learning. 

1 Simulation Environment 

           Visual Studio Code, often referred to as VS Code, is a free source code editor developed 

by Microsoft. It supports writing, editing, and running code in various programming languages 

such as Python, JavaScript, C++, HTML/CSS, and many more. It is known for being 

lightweight, highly customizable through extensions, and widely adopted by developers due to 

its powerful features like autocompletion, debugging, and project management. 

In our project, we used VS Code to program the simulation using Python. 

Python is a simple yet powerful interpreted programming language created in the late 1980s. 

Its clean and readable syntax makes it easy to learn, even for beginners. Python is widely used 

in various fields such as web development, data science, artificial intelligence (AI), automation, 

and more. One of its major strengths is its large community and the availability of numerous 

libraries. 

In our case, we used it for AI-based learning with libraries that support this domain. Libraries 

used: 

✓ Pygame: 

Pygame is a Python library designed for developing 2D video games and multimedia 

applications. It allows the display of images and shapes, playing sounds and music, handling 

keyboard, mouse, and joystick events, and creating smooth animations. It is commonly used in 

educational projects as it does not require advanced graphics knowledge. 
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✓ sys: The sys library in Python interacts with the Python interpreter and the operating 

system to control the program’s behavior. Common use include: 

✓ sys.argv: reading command-line arguments 

✓ sys.exit(): manually exiting a program 

✓ sys.path: managing module import paths 

✓ sys.version: checking the Python version being used in short, sys is a practical library 

for managing program execution and system parameters. 

✓ random: 

The random library is a standard Python module used to generate random numbers and 

make random choices. 

✓ Numpy as np: 

NumPy is a popular Python library for scientific and numerical computing. It allows 

for efficient manipulation of large numerical datasets, especially through arrays (also 

known as matrices). 

✓ matplotlib.pyplot: 

Used to create graphs and data visualizations, matplotlib.pyplot is an essential tool for 

analyzing and presenting results in Python-based simulations.  

 

 



            CHAPTER IV                              IMPLEMENTATION RESULTS AND DISCUSSION 

 

 

 
41 

 

 
Figure 13:Visual Studio Code Welcome Visual Studio Interface Description 

          

2 Implemented Algorithms: 

2.1 Q-learning 

Q-learning is a model-free reinforcement learning algorithm used to learn the value of an action 

in a particular state. 

It finds the action-value function Q by interacting with the environment. 

Once the Q function is determined, we can achieve the optimal policy by selecting the action 

that provides the maximum expected utility (reward). 

This is done by storing the rewards received in a two-dimensional table (Q-table), where in our 

case, there are 4 actions and 100 states. 

State: 

❖ grid width: environment width // grid size 

❖ grid height: environment height // grid size 
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❖ state: grid width * grid height 

Action: 

❖ Right 

❖ Left 

❖ Up 

❖ Down 

 

                                                              Figure 14:Form of Q table                                               

Algorithm execution: 

Initialize Q-table with zeros   

Set learning rate (α), discount factor (γ), and exploration rate (ε)   

While (Q-table not converged) {   

    Reset environment to a random initial state   

    For each episode (until goal state is reached) {   

        While current state ≠ goal state:   

            1. Choose action (a) for current state (s):   

               - With probability ε: Select random action (exploration)   
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                       Figure 15:Q-Learning Flowchart 

               - Else: Select action with max Q-value (exploitation)   

            2. Execute action (a), observe reward (r) and next state (s')   

            3. Update Q-table:   

               Q (s, a) ← Q (s, a) + α * [r + γ * max (Q (s', a')) - Q (s, a)]   

            4. Transition to next state:   

               s ← s'   

    }   

}   
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3 PRSENTATION OF THE REBOT MODEL  

3.1 Sensors and Kinematics: 

         First, the robot gathers information through its sensors for navigation: 

1. Front sensor 

2. Rear sensor 

3. Right sensor 

4. Left sensor 

Additionally, the robot moves from one state to another with a rotation angle of 90 degrees. 

 

Figure 16:Robot Paths 

                                                                          

The robot starts at its initial position and determines its current state (position in the grid). 

It chooses an action based on the value of -ε-: 

✓ If random-unity < ε is exploration (random action) 

✓ If random-unity> ε: exploitation (choosing the best move according to the Q-table) 

▪ It receives a reward: 

✓ +100 if it reaches the target 

✓ -100 if it collides 
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✓ -1 for each normal step 

4 Environment modeling 

4.1 Obstacles 

        There are two types of obstacles in this simulation: 

✓ Circle 

✓ Square 

 

Figure 17:Type of obstacles 

 

4.2 The interface description 

In our program we have a main menu this menu have tow button 

✓ Button one normal Learning 

✓ Button tow Learning with episode 



            CHAPTER IV                              IMPLEMENTATION RESULTS AND DISCUSSION 

 

 

 
46 

 

 

                                                                                        Figure 18:Main menu                                              

When you press in the button (normal learning) one It shows you this interface 

 

                                                  Figure 19:Interface of normal learning                                   
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✓ Button Robot: to place the robot 

✓ Button Obstacle: to place the obstacle 

✓ Button Target: to place the target 

✓ Button Clear: to clear all environment 

✓ Button Exploit: so that the robot just does the exploitation 

✓ Button Shape: to change the form of obstacle 

✓ Button Save: to save environment 

✓ Button Load: to load environment 

4.3 Simulation Scenarios 

4.3.1 Exploration with Exploitation 

The robot and obstacles are placed, then the goal is set. The robot starts navigating to reach the 

goal: 

 

Figure 20:Before placing the goal 
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Figure 21:After placing the goal 

                                          

4.3.2  Exploitation 

a. Simple Exploitation 

To do this, we perform at least one exploration phase first. Then, we apply exploitation, which 

can be repeated multiple times in the same environment (same obstacle and target positions) 

until the shortest path is found (maximum reward). 

Below is the sequence of steps: 
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Figure 22:First exploitation after exploration 

 

                                                                       Figure 23:After a few trials (around 4 to 5)) 
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                                       Figure 24:The shortest path (25 steps or more) is repeated 

b. Exploitation with Episodes 

We run a trial of 1000 episodes, which takes place in the background. Only the final state is 

shown when the goal is reached, along with a graph displaying the reward per episode. 

 

Figure 25:Determine the environment 
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Figure 26:Reach the goal 

                                                                       

 

Figure 27:Graph of reward 
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In this graph, we observe the rewards over the episodes. We can see that the rewards are 

initially negative and tend to approach zero, which indicates that the robot’s learning improves 

from one episode to another until it becomes approximately constant. This reflects the robot’s 

convergence to the best path toward the target, with the highest possible reward. 

On the program we before display the Q-table each time choosing an environment 

 

                                            Figure 28:Q-table for an environment of our choices 

                

 

   5 The Q-learning process on the environment 

 

            We have chosen a specific placement of the robot, obstacles, and the target (as shown 

in the image above) to explain the execution of the navigation algorithm (Q-learning). 
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                                               Figure 29:Navigation using the Q-Learning algorithm 

                                  

             

  In this case, the robot has two options. The robot makes a decision using epsilon (ε)-greedy strategy. 

In the application, ε = 0.8. This value is compared with a random number generated using a uniform 

distribution (between 0 and 1), resulting in: 

 

• Exploration (80%): The agent tries new actions to discover better long-term strategies (takes 

random actions). 

• Exploitation (20%): The agent uses its current knowledge (the Q-table) to make what it 

believes is the best choice. 
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                              robot navigation flowchart with Q-learning 

Beginning 

The robot reached 

the target 

Current state 

Determine exploration 

or exploitation 

Exploitation Exploration 

Choose action 

Calculate next position 

Valid position and 

collision-free 

Rewards= 100 

Update Q-table 

Finish 

Rewards= -1 

Update Q-table 

Movement to new position 

Rewards= -100 

Update Q-table 

Yes 

Yes 

No 

No 

ε 1- ε 
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6 Conclusion 

 

         This chapter highlighted the capabilities of a robot to learn to navigate effectively in 

an environment full of obstacles thanks to the Q-learning algorithm. The various simulations 

have demonstrated a progressive improvement in the robot's strategy, visible in particular by 

the optimization of the path taken and the increase in rewards. The use of adapted Python 

libraries, combined with a user-friendly development environment such as Visual Studio Code, 

facilitated the implementation and visualization of the results. This work thus confirms the 

relevance of reinforcement learning in autonomous navigation systems, while paving the way 

for future improvements such as the integration of more complex algorithms or adaptation to 

dynamic environments. 
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General Conclusion 

            At the end of this study, we demonstrated the relevance and potential of reinforcement 

learning, in particular Q-Learning, in the field of autonomous robotics. This approach, based 

on the principle of learning by interaction with the environment, allows robots to acquire 

optimal behaviors without explicit supervision, by maximizing a reward function through 

experience. 

Our work has highlighted the advantages of Q-Learning, in particular its simplicity of 

implementation, its robustness in discrete environments, as well as its ability to generate 

effective action policies from autonomous exploration. We have applied this method to concrete 

robotic scenarios, thus demonstrating that a robot can, through progressive learning, learn to 

solve complex tasks such as navigation, obstacle avoidance or decision-making in a dynamic 

environment. 

However, this research has also revealed several inherent limitations of Q-Learning when 

applied to continuous, noisy or large-dimensional environments. The size of the space of states 

and actions, the compromise between exploration and exploitation, as well as the speed of 

convergence represent as many challenges that had to be overcome, in particular through 

techniques such as discretization, the use of intelligent exploration strategies, or the use of 

approximation functions. 

Despite these obstacles, our experimental results confirm that Q-Learning can be a powerful 

tool for developing autonomous behaviors in robots, provided that its implementation is 

intelligently adapted to the specific robotic context. In addition, this research paves the way for 

promising prospects: Deep Q-Learning, which combines Q-Learning and neural networks, 

would make it possible to significantly expand learning capabilities in more complex and more 

realistic environments. 
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Finally, this thesis contributes to the efforts of the scientific community to bring the theory of 

machine learning and robotic practice closer together. By integrating the Q-Learning algorithm 

into real robotic systems, we are participating in the creation of more intelligent machines, 

capable of adapting, learning and evolving without constant human intervention. This work 

thus marks an important step towards more autonomous, adaptive and collaborative robots, 

which in the future will be able to integrate harmoniously into our daily lives, our industries, 

and even our living spaces. 
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