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% Dedication 
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% Create a blank figure 
figure; 
axis off; 
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}; 
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text(0.5, 0.5, dedicationText, 'FontSize', 14, 'HorizontalAlignment', 
'center', 'VerticalAlignment', 'middle', 'Color', 'black', 
'FontWeight', 'bold'); 
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In various fields and sectors such as industry, transportation, and energy production, 

rotating machinery plays a significant role in achieving the goals of current technology. 

Consequently, research and studies are currently underway on this type of machinery, aiming 

to increase its lifespan through maintenance technology, enhance its rotation speed, and 

improve its efficiency. 

The monitoring of rotating machinery relies mainly on extracting information 

revealing encountered degradation conditions. In this case, many sources of information have 

been explored and tested in the past, with varying degrees of effectiveness. These include oil 

analysis, temperature analysis, acoustic emissions, and vibration analysis. 

Diagnosis is a technique of non-destructive testing used for the operational condition 

monitoring of rotating machinery. As we know, all machines are subject to vibrational 

phenomena that generally increase as the machine's lifespan increases. If these vibrations 

become undesirable, it is necessary to intervene to discover the cause and attempt to reduce 

them. 

Bearings are critical components in mechanical systems that support rotating shafts 

and reduce friction between moving parts. They play a vital role in ensuring the smooth 

operation of various machines by facilitating rotation and minimizing wear and tear. Bearings 

are used in a wide range of equipment and devices, and they have a broad spectrum of 

applications. These components can sustain significant loads and speeds, making them 

indispensable in machinery ranging from household appliances to industrial equipment. 

As is well known, many machines and pieces of equipment rely on bearings. 

Therefore, a bearing failure can severely impair the operation of a machine or an entire 

system. For this reason, it has been proposed to design an intelligent diagnostic system 

capable of identifying a failure before the machines and equipment break down. 

With the development of microelectronics and information systems, a new 

technological race related to the monitoring of rotating machinery through diagnostics or 

prognostics began among several companies interested in the maintenance of machines and 

components. All competitors in this field rely on artificial intelligence, which has so far 

demonstrated its effectiveness. In our project, we will use machine learning for the purpose of 

classification. But before that, we will go through various signal processing techniques. 

This report for our final year project is divided into four chapters. In the first chapter, 

we will present concepts on maintenance and monitoring, specifically the different types of 

maintenance and monitoring techniques. In the second chapter, we will introduce the main 

faults of rotating machinery and conduct a study on the kinematic frequencies of faults that 
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appear in each component. In the third chapter, we will detail diagnostic techniques. This will 

involve studying various signal processing techniques and examining the development of 

artificial intelligence and its contribution to the field of rotating machinery diagnostics. In the 

final chapter, we will conduct a study on the diagnosis of different faults in rotating 

machinery, including their detection and localization, and we will explain the various 

approaches followed for machine learning, also discussing the results obtained. This report 

concludes with a general conclusion, in which we summarize the work carried out and 

highlight some perspectives that should enable its further development
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I.1 Introduction  

Industrial equipment serves as the cornerstone of various sectors, influencing 

dependability, safety, environmental sustainability, and economic efficiency. Ensuring optimal 

performance and longevity of these assets while managing costs throughout their lifecycle poses 

a significant challenge. 

The maintenance landscape is evolving rapidly, driven by the need for more efficient 

strategies. This chapter delves into the intricacies of maintenance techniques, focusing on 

diagnosing and prognosticating challenges associated with rotating machinery. 

As industries embrace advanced sensor technologies and real-time monitoring systems, 

the traditional reactive maintenance approach is being supplanted by proactive strategies. These 

modern monitoring techniques continuously collect and analyze data, facilitating early anomaly 

detection and predictive maintenance. Consequently, industries can minimize downtime, 

optimize performance, and prolong the lifespan of their machinery. 

I.2 Generalities on maintenance  

I.2.1 Definition of maintenance  

Combination of all technical, administrative and managerial actions during the life cycle 

of an item intended to retain it in, or restore it to, a state in which it can perform the required 

function [1]"excerpt from standard NF-EN 13306." 

I.2.2 Different types of maintenance 

I.2.2.1 Reactive maintenance  

Reactive maintenance, also known as unplanned maintenance, is a conventional approach 

characterized by addressing maintenance issues only after they've become apparent, such as 

defects, breakdowns, or stoppages. This method is typically suitable for facilities with minimal 

machinery and where the plant's operations aren't heavily reliant on the reliability of any single 

machine. Additionally, it might be justified when the failure rate is low and the consequences of 

failure don't entail significant cost or safety implications. This category encompasses breakdown 

or corrective maintenance as well as emergency repairs [2]. 

a. Corrective Maintenance  

Corrective maintenance, as per the standard [NF EN 13306], involves executing 

maintenance operations subsequent to fault recognition, with the objective of restoring an item 

to a functional state capable of performing its intended function [1]. In this type of maintenance, 
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the intervention occurs after the occurrence of the failure. 

b. Emergency Maintenance  

Emergency maintenance, also referred to as breakdown maintenance, is performed when 

machinery requires immediate attention to maintain its operation. This type of maintenance is 

highly disruptive as it interrupts the production process, diverts technicians from their regular 

tasks, and hampers adherence to schedules. In severe instances, emergency maintenance can 

even prevent organizations from meeting their schedules, depending on factors such as the 

extent of damage, repair time, availability of spare parts, and the importance of the affected 

machinery [3]. 

I.2.2.2 Proactive Maintenance 

In broad terms, proactive maintenance, also known as planned maintenance, encompasses 

a range of activities involving meticulous planning, documentation, and monitoring to uphold a 

plant's maintenance standards at acceptable levels. This approach enhances the efficiency of day-

to-day maintenance operations and ensures that maintenance tasks are anticipated and prepared 

for in advance. Planned maintenance leverages data from past maintenance activities to 

formulate precise time and cost projections, thereby enhancing maintenance efficiency and cost-

effectiveness [3]. This strategy can be categorized into two main types: preventive and predictive 

maintenance. Preventive maintenance includes strategies such as constant interval, age-based, 

and conditional maintenance. Predictive maintenance, on the other hand, involves methodologies 

like Condition Based Maintenance (CBM) and Reliability Centered Maintenance (RCM), which 

anticipate maintenance needs based on equipment conditions and reliability analysis. 

a. Preventive maintenance  

As an alternative to corrective maintenance, Preventive maintenance has been adopted 

for emerging technologies since such systems are generally more complex than those based on 

the use of hand tools. The basic principle of a preventive maintenance system is that it involves 

predetermined maintenance tasks that are derived from machine or equipment functionalities and 

component lifetimes. Accordingly, tasks are planned to change components before they fail and 

are scheduled during machine stoppages or shutdowns [4]. This approach encompasses various 

methodologies such as these [2]: 

 Constant Interval Maintenance: Maintenance tasks are carried out at fixed time intervals, 

with additional maintenance conducted in response to any system failures. The timing of these 

intervals is carefully chosen to balance the risk of potential failures with the costs associated 

with maintenance. 
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 Age-Based Maintenance: This strategy involves performing preventive maintenance only 

after a system has reached a specific age threshold, known as "t." If a system fails before 

reaching this threshold, maintenance is undertaken, and subsequent maintenance is scheduled 

for "t" units of time later. This strategy aims to reduce the frequency of maintenance intervals 

compared to constant interval maintenance by postponing maintenance until a predetermined 

age is reached. 

 Imperfect Maintenance: This approach recognizes that after preventive maintenance, a 

system may not always return to its original condition but may instead remain between optimal 

and failure states. These maintenance strategies take into account the uncertainty surrounding 

the current state of the equipment when planning future maintenance activities, ensuring a 

flexible approach to scheduling. 

b. Predictive maintenance  

Predictive Maintenance (PdM) is a sophisticated maintenance approach that harnesses data 

analytics, machine learning, and predictive modeling to anticipate potential equipment or machinery 

failures. Unlike traditional fixed schedules or reactive responses to deterioration signs, predictive 

maintenance utilizes real-time sensor data, historical performance records, and external factors to forecast 

and avert equipment failures proactively [5]. This strategy can be classified into condition-based 

maintenance and reliability-centered maintenance: 

 Condition-based maintenance (CBM): is a decision-making strategy where maintenance 

actions are determined by assessing the condition of the system and/or its components. This 

evaluation relies on continuously monitored parameters specific to the system or application. 

For example, vibration characteristics or indices are suitable for rotary systems. The advantage 

of this approach is evident as maintenance decisions are based on predictive and corroborative 

data that accurately reflect the system's state. 

 Reliability-centered maintenance (RCM): This method involves leveraging system reliability 

estimates to create a maintenance schedule that optimizes costs. Originally developed within the aircraft 

industry, Reliability-Centered Maintenance (RCM) prioritizes safety and availability alongside cost-

effectiveness, particularly in safety-critical applications like aircraft maintenance. The primary objective 

is to minimize costs and downtime while ensuring failure prevention. RCM combines two main tasks: 

analyzing and categorizing failure modes based on their impact on the system, and evaluating how 

maintenance 

 

Schedules affect reliability. The failure analysis begins with identifying all possible failure 

modes and then categorizing them according to their consequences [2]. 
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FIGURE I.1—Taxonomy of maintenance philosophies [2]. 

I.3 Dependability 

I.3.1 Definition 

Dependability is the ability to deliver service that can justifiably be trusted. This 

definition highlights the importance of trust validation [6]. The alternate, quantitative definition 

that establishes the service's dependability is dependability of a system, which is the ability to 

avoid service failures that are more frequent and more severe than is acceptable to the user(s). 

I.3.2 Attributes 

Over the last three decades, dependability has evolved into an integrated concept that 

includes the following attributes: 

 Availability: readiness for correct service; 

 Reliability: continuity of correct service; 

 Safety: absence of catastrophic consequences on the user(s) and the environment; 

 Confidentiality: absence of unauthorized disclosure of information; 

 Integrity: absence of improper system alterations; 
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 Maintainability: ability to undergo, modifications, and repairs. 

Security is the concurrent existence of availability for authorized users only, 

confidentiality, and integrity with ‘improper’ meaning ‘unauthorized’  [6] 

The comprehensive taxonomy of dependable computing, detailing various attributes, is visually 

depicted in Figure I.2, illustrating the outlined schema. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE I.2—Dependability tree [6] 

I.4 Monitoring Techniques  

Surveillance is a necessary operation that allows for monitoring the real-time condition of 

the asset. It can be conducted continuously, at predetermined or non-predetermined time 

intervals, measuring either time or the number of units used. This function is ensured through the 

regular recording of degradation or performance indicators to ensure the monitoring of 

machinery and equipment. Various analysis techniques exist (Figure I.3), such as: 

- Vibration analysis. 

- Acoustic emission. 

- Ultrasonic testing. 

- Thermography. 

- Oil and lubricant analysis. 

- Resistance variation in an electrical circuit. 

- etc. 
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FIGURE I.3 — Partition of the different maintenance techniques [7]. 

I.4.1 Vibration analysis 

Even in good condition, machines generate vibrations. Many such vibrations are directly 

linked to periodic events in the machine’s operation, such as rotating shafts, meshing gear teeth, 

rotating electric fields, and so on [8].Vibration analysis of industrial equipment has been widely 

used in preventive maintenance activities and effectively detects most anomalies in rotating 

machines. Defects caused by bearings, worn clearances, or misalignment will manifest as a 

change in the internal forces of the machine, resulting in the appearance of vibrations. According 

to the ISO 2041 standard "Vibrations and shocks - Vocabulary (August 1990)," the concept of 

vibration is defined as follows: "Variation over time of the intensity of a characteristic quantity 

of the motion or position of a mechanical system, when the intensity alternates between greater 

and smaller than a certain average or reference value." [9] 

I.4.2 Infrared Thermography  

Infrared Thermography (IRT) is a science dedicated to the acquisition and processing of 

thermal information from non-contact measurement devices. It is based on infrared radiation 

(below red), a form of electromagnetic radiation with longer wavelengths than those of visible 

light. Any object at a temperature above absolute zero (i.e., T > 0 K) emits infrared radiation. 

The human eye cannot see this type of radiation. Thus, infrared measuring devices are required 

to acquire and process this information [10]. Thermal cameras are commonly used to monitor 

live electrical equipment, heating systems, or certain industrial processes (such as welding and 

rolling). Its application program for monitoring the operating condition of rotating machines is 

not significant. One of the main reasons is that it does not require any obstacles between the 

camera and the object being observed. 
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FIGURE I.4 —Thermal image of a rotating machine [11]. 

I.4.3 Acoustic emission  

Acoustic emission (AE) is the phenomenon of energy release, in the form of transient 

elastic waves, resulting from micro-local displacements within a material subjected to static or 

dynamic stress (standard AFNOR NFA 09350) [12]. When stress is applied, a portion of the 

energy is converted into elastic waves that propagate in various directions within the material, 

reaching its boundaries. By analyzing the vibrations of these elastic waves detected on the 

material's surface, valuable insights can be gathered regarding the underlying events causing 

these vibrations. This technique finds significant application in monitoring rotating machinery, 

where detecting and analyzing AE signals can provide crucial information about the condition 

and potential faults of such equipment. 

I.4.4 Analysis oils and lubricants  

The main function of lubricants is to ensure smooth contact between different 

components of the machine, thereby reducing the risk of wear. They can also perform other 

tasks, such as cooling, rust and corrosion prevention, and non-destructive monitoring of machine 

operating conditions. The lubricant also carries information from the inside to the outside of 

operating machines in the form of wear particles, chemical contaminants, and so on [8]. When a 

machine part fails, examining the physical and chemical characteristics of the lubricant becomes 

crucial, especially in the context of rotating machinery. This analysis offers insights into the 

extent and nature of lubricant degradation, whether originating from the lubricant itself or 

contamination caused by wear debris. Such insights are gathered through routine inspections and 

assessments, encompassing straightforward evaluations like visual checks, odor assessments, 

and monitoring changes in lubricant color. Additionally, more sophisticated laboratory methods 

such as chromatography, photometry, or spectroscopy contribute to a comprehensive 
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understanding of lubricant health. While primarily applicable to circulating oil lubrication 

systems commonly utilized in rotating machinery, some analyses can also be adapted for grease 

lubricants. 

Table I.1— Main Diagnostic Techniques and Their Uses [13]: 

 Main advantages Main limitations 
Field of application 

preferred 

Vibration analysis 

-Early detection of 

early stage 

- Possibility of in-

depth diagnosis 

- Enables continuous 

monitoring. 

- Allows remote 

monitoring of 

equipment (remote 

maintenance). 

- Spectra are 

sometimes difficult to 

interpret. 

- In the case of 

continuous 

monitoring, relatively 

expensive 

installations. 

- Detection of faults in 

all kinematic machine 

components 

(unbalance, 

misalignment, play, 

etc.) and in the 

machine structure.  

Oil analysis 

- Detection of 

abnormal lubricant 

pollution before it 

leads to wear or 

overheating. 

- The origin of the anomaly can be identified by 

particle analysis. 

- Cannot pinpoint 

fault location 

- Requires careful 

sampling. 

- Control of lubricant 

physico-chemical 

properties, detection 

of lack of lubrication, 

analysis of wear 

elements, analysis of 

process contamination 

(sealing), etc 

IR Thermography 

- Enables quick 

system system. 

- Results are often 

results. 

- Fault detection at 

earlier stage than 

vibration analysis 

- Control limited to 

what the camera can 

"see" (surface surface 

heating). 

- Does not diagnosis. 

in-depth 

- Detection of all 

faults causing 

overheating (lack of 

lubrication in 

particular). 
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Acoustics analysis 

- Allows detection of 

audible faults 

- Allows continuous 

monitoring. 

- Sensitivity to 

ambient noise. 

- Diagnosis often 

difficult to perform. 

- Measurement 

repeatability 

problems. 

- Detection of unusual 

noise that can then be 

analyzed by vibration 

analysis. 

I.5 Sensors and Monitoring Devices  

In the realm of rotating machinery surveillance and maintenance, sensors and monitoring 

devices serve as indispensable tools, continuously collecting critical data to ensure optimal 

performance and longevity. To further understand the landscape of rotating machinery 

surveillance and maintenance, it's essential to examine the primary types of sensors employed in 

this context. These include: 

 Vibration Sensors. 

 Microphones. 

 Infrared (IR) Cameras. 

I.5.1 Vibration Sensors 

Vibration is characterized by three fundamental kinematics: displacement, velocity, and 

acceleration, expressed respectively in µm, [mm/s], and [m/s²]. The process of capturing 

vibration data begins with the conversion of mechanical oscillations generated by machinery into 

electrical signals, a task entrusted to vibration sensors. Among the widely adopted sensors for 

this purpose are proximity probes, velocimeters, and accelerometers, each 

specializing in measuring a specific aspect of vibration dynamics—displacement, velocity, and 

acceleration, respectively. Manufacturers implement various physical principles to design these 

sensors, resulting in different types such as eddy current sensors, displacement sensors with 

capacitive or inductive probes, Doppler effect velocimeters, and piezoelectric accelerometers. 

Notably, piezoelectric technology stands out across these sensors for its exceptional metrological 

qualities, compatibility, and ease of use. 

I.5.1.1 Proximity sensors  

A proximity sensor is a device capable of detecting nearby objects without the need for 

physical contact. There are various types of proximity sensors, including: 

 Inductive: These sensors detect nearby metallic objects by creating an electromagnetic field 

around themselves or on a sensing surface. 
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 Capacitive: Utilized for detecting both metallic and non-metallic objects. 

 Photoelectric: These sensors detect objects using a light source and receiver as their main 

components. 

 Magnetic: Operating based on the presence of permanent magnets in a sensing area, these 

sensors use an electrical switch to detect objects [14]. 

 

Figure 1.5—Proximity Sensors [15]. 

I.5.1.2 Velocimetery  

Velocimeters, also known as speed sensors, play a critical role in vibration monitoring 

systems. They consist of a seismic probe that establishes contact with the machine component 

under observation to measure its absolute movement. The key points regarding velocimeters are: 

1. Design: Velocimeters typically feature a design comprising a seismic mass connected to 

housing via a spring. This mass is attached to a coil, which moves within a permanent 

magnetic field generated by a magnetized rod. 

2. Functionality: As the machine component vibrates, inducing motion in the sensor, the 

coil's movement within the magnetic field produces an electrical voltage. This voltage is 

directly proportional to the speed of the coil's movement and, consequently, to the 

velocity of the machine's vibration. 

3. Resonance Frequency: The resonance frequency of velocimeters generally falls within 

the range of 8 to 15 Hz. 

4. Dynamic Range: Velocimeters have a dynamic range that extends from 10 to 2000 Hz, 

making them suitable for monitoring a wide range of machinery and detecting variations 

in vibration speed across different operational frequencies. 
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Figure I.6—Longitudinal section of a velocimeter [9] 

I.5.1.3 Accelerometers  

Accelerometers come in various types, including analog and digital variants. Analog 

accelerometers require the signal to be digitized by the microcontroller's ADC, with the 

developer responsible for enforcing measurement laws. On the other hand, digital accelerometers 

feature built-in ADCs, managing measurement laws independently. Communication with digital 

accelerometers often follows a specific protocol [9]. 

 Analog accelerometers: Analog accelerometers, like the piezoelectric accelerometer 

(Figure), consist of a disc made of piezoelectric material (such as Quartz). This disc acts as a 

spring upon which a preloaded seismic mass rests. 

 
Figure I.7—Piezoelectric accelerometer [9]. 

 Digital accelerometers: Digital accelerometers are accelerometers with integrated 

electronics. They possess built-in or integrated charge conditioning to deliver a voltage 

proportional to the acceleration. 

 

 



CHAPTER I                MAINTENANCE AND MONITORING STRATEGIES 

 

16 
 

I.5.2 The infrared thermographic camera 

The thermal imaging camera features a sensor in its structure that records radiation within 

the 3-5 μm and 8-12 μm thresholds. Ideal conditions for measuring thermal radiation are 

achieved when all radiation emitted by the object is captured and recorded by the camera, 

without considering possible disruptive factors such as the atmosphere or material emissivity. In 

the case of measurements at short distances from the object (a few meters), atmospheric 

absorption is not taken into account [16]. 

 

Figure I.8— Components of an Infrared Thermographic Camera [17]. 

I.5.3 Microphones 

The primary function of a microphone is to capture sound waves and transform them 

into an electrical signal called an audio signal. In other words, a microphone is an energy 

transducer that converts acoustic energy into electrical energy. There are several types of 

microphones (electret, condenser, ribbon, moving coil, dynamic, etc.), and the system used for 

energy conversion is generally specified by the microphone's name. The choice of microphone 

depends on various factors, such as the sound source (instrument, solo voice, etc.), the recording 

location (studio, multipurpose hall, outdoor, etc.), and the microphone's placement relative to the 

source, among others. In summary, microphones are fundamental tools in monitoring devices, 

enabling the effective capture of sound for surveillance, recording, and analysis across diverse 

applications and environments. 

I.6 Vibration Diagnosis 

Vibration diagnosis is a maintenance tool that has gained significant recognition due to 

advancements in computer science and signal processing. This technique involves utilizing a 

system that integrates vibration measurement, typically through accelerometers, to analyze the 
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dynamic behavior of rotating machinery. By doing so, it facilitates the establishment of a 

diagnosis regarding the operating condition of the machinery. 

I.6.1 Principle of diagnosis and vocabulary 

The diagnosis of rotating machines follows a logical sequence for fault localization, 

evaluation of its severity, and decision-making at the end, as shown in Figure 1.8, the steps for 

implementing a diagnostic system 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE I.9 — Steps for implementing a diagnostic system [18]. 

 System Analysis: This is a crucial step that involves defining an objective for the system to 

be implemented. In order to do so, it is necessary to investigate the system's characteristics (such 

as the number of gear teeth to monitor), the defect and the symptoms of the defect to identify, 

etc. It is this step that led to the selection of the method to be implemented, specifically the 

signal processing method to be used. 

 Instrumentation and measurement: This step involves choosing the type of sensor to use 

(accelerometer, current sensor, microphone, etc.) based on the measurement conditions (contact 

surface, machine type, etc.), as well as the technical characteristics of the sensor (permissible 

frequency range, sensitivity, etc.). The second point is the choice of the acquisition card, which 

depends on the types of faults to be monitored. This allows for the definition of the acquisition 

frequency, the type of recording (continuous, periodic, etc.). 

Analysis of the Faults Symptoms Instrumentation and 

Measurement System 

Instrumentation and Measurement 

Surveillance and Detection 

Decision 

Diagnosis 

Operate in degraded 

mode 
System shutdown 
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 Monitoring and detection: Once the sensor is installed and the acquisition begins, the 

monitoring operation consists of extracting statistical indicators from the acquired signals that 

reflect the state of the machine. The indicators used are generally "simple" and are usually only 

used for detection purposes, for example, to indicate when the indicator exceeds a certain 

threshold, which indicates an abnormal state of the machine. These thresholds are usually 

determined by empirical or statistical signal processing methods. Many signal processing 

methods are better suited for "detection" 

 Diagnostic: The diagnostic process involves determining the faulty part of a complex system. 

The term "must be isolated" is often used by Anglo-Saxons. This is where signal processing can 

play its biggest role. It involves extracting from the signal, with knowledge of the system and 

the symptoms of the faults, the parameter(s) related to these symptoms. In addition to signal 

processing methods, this step can use "decision" methods, such as pattern recognition.  

 Decision:This is the final step in the diagnostic procedure. In an industrial environment, it 

involves determining the actions to be taken, initiating maintenance operations, stopping the 

machine, etc. 

I.7 Prognostics 

Compared to diagnostics, prognostics literature is significantly less extensive. In 

machine prognostics, two primary prediction methodologies are employed. The prevalent 

approach involves forecasting the remaining operational time before a failure, considering the 

current machine state and historical operational patterns. This remaining operational time is 

commonly termed as the remaining useful life. Conversely, in critical scenarios where a fault or 

failure could lead to substantial consequences, predicting the likelihood of uninterrupted 

machine operation without faults or failures until a future point, such as the next inspection 

interval, becomes more favorable. Evaluating the probability of fault-free operation until the 

subsequent inspection or condition monitoring interval can serve as a valuable guide for 

maintenance personnel in assessing the adequacy of the inspection schedule [19]. Furthermore, 

machine prognostics offer the advantage of proactive maintenance planning, which can lead to 

significant cost savings and operational efficiencies, particularly in the realm of rotating 

machinery components. This proactive approach allows organizations to: 

 Accurately predict the remaining useful life or the likelihood of fault-free operation for 

components such as bearings, gears, and shafts. 

 Schedule maintenance activities in advance, minimizing unplanned downtime and reducing 

the risk of unexpected failures. 

 Allocate resources more effectively and optimize equipment performance. 
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 Extend the lifespan of critical rotating machinery. 

Additionally, machine prognostics facilitates condition-based maintenance strategies 

specific to rotating components. This includes: 

 Triggering maintenance interventions based on the actual condition of rotating components 

rather than predetermined schedules. 

 Reducing unnecessary maintenance tasks and improving operational efficiency. 

 Lowering maintenance costs over time while ensuring the reliability and longevity of rotating 

machinery systems. 

I.8 Conclusion  

In conclusion, this chapter has provided a thorough examination of maintenance 

practices and challenges pertaining to rotating machinery. From the introductory discussion 

highlighting the significance of industrial equipment in various sectors to the detailed 

exploration of maintenance philosophies like preventive and predictive maintenance, we've 

underscored the importance of adopting proactive strategies to ensure optimal performance and 

longevity of machinery. 

Furthermore, we delved into the realm of monitoring techniques, including vibration 

analysis, infrared thermography, acoustic emission, and analysis of oils and lubricants. These 

techniques serve as invaluable tools for early fault detection and informed decision-making in 

maintenance activities. 

The role of sensors and monitoring devices was also emphasized, showcasing their 

indispensable nature in continuously collecting critical data to uphold machinery performance 

and reliability. From vibration sensors to infrared thermographic cameras, these devices play a 

crucial role in ensuring the efficient operation of rotating machinery. 

Lastly, we discussed prognostics and its significance in assessing the remaining 

operational time before a failure and predicting fault-free operation. By evaluating the 

probability of uninterrupted machine operation, maintenance personnel can optimize inspection 

schedules and plan maintenance activities effectively. 

In essence, this chapter highlights the necessity of proactive maintenance strategies and 

advanced monitoring techniques in ensuring the reliability, efficiency, and longevity of rotating 

machinery across industrial sectors. 

As we transition to the subsequent chapter, which delves deeper into technical diagnosis 

and the identification of primary faults afflicting rotating machinery, the foundational 

understanding established here serves as a springboard for dissecting specific fault scenarios and 

implementing targeted diagnostic methodologies. 
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II.1 Introduction 

"A machine is an assembly of mechanical, hydraulic, or electrical parts contributing to 

exert one or more specific functions, and in particular, the application of a modulated or 

unmodulated force, intended to overcome resistance or to ensure movement with or without 

force transmission" [20]. 

Rotating machines absorb energy and convert the absorbed energy into another form 

of energy through rotation, which may or may not have the same properties. For example, an 

electric motor absorbs electrical energy, which is converted into mechanical energy. In 

another example, when translation and rotation change, this can result in elevators, saws, 

belts, etc. An alternator is a rotating electrical machine that converts mechanical energy, 

thermal energy, wind energy, nuclear energy, or hydraulic energy into electrical energy. 

Experience gained from rotating machines has led to numerous faults, including static or 

dynamic rotor imbalance, misalignment, bearing failure such as deterioration of the cage, 

tightening failure, coupling failure, not to mention faults that appear in gears, etc. 

In this chapter, we first present the main mechanical faults of rotating machines by discussing 

how to calculate the kinematic frequencies of some failure modes. 

II.2 Main mechanical failures of a rotating machine 

In general, mechanical faults are the most common faults among all faults of rotating 

machines. 

II.2.1 Imbalance faults 

This is the most common cause of vibration. This phenomenon occurs at the rotation 

speed and can be caused by the poor spatial distribution of mass in the structure, causing the 

center of gravity to move off the geometric axis of the rotor of the rotating machine. 

Imbalance is generally caused by material defects, design errors, manufacturing errors, or 

defects occurring during use. 

Among the faults that occur during use, we mention 

• Erosion or corrosion of the rotor, 

• Accumulation of material on the propellers, 

• Thermal deformation of fans of hot gas exhaust ducts, 

• Blade fracturing on turbine rotors, 

• Wear of grinding wheels, 

• Displacement of rotor parts caused by centrifugal force, 
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• General wear. 

• Etc. 

II.2.1.1 Static Imbalance 

This type of imbalance occurs when the principal axis of inertia and the axis of 

rotation are parallel but not coincident (Figure II.1). 

 

Figure II.1 — Static imbalance [21]. 

II.2.1.2 Imbalance Couple 

This couple is generated when the principal axis of inertia forms a non-zero angle with 

respect to the axis of rotation, and their intersection coincides with the center of mass. (Figure 

II.2) 

 

Figure II.2 — Imbalance couple [21]. 

II.2.1.3 Dynamic Imbalance 

This represents the combination of static imbalance and imbalance couple. This type 

of imbalance occurs when the principal axis of inertia forms a non-zero angle with the axis of 

rotation, and their intersection does not coincide with the center of mass. (Figure II.3) 
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Figure II.3 — Dynamic imbalance [21]. 

II.2.2 Misalignment 

Misalignment is a well-known issue in rotating machinery. Despite the use of self-

aligning bearings and flexible couplings, aligning the two shafts and their bearings to ensure 

there are no forces that could cause vibrations can be challenging. 

This misalignment can lead to vibrations at the rotation frequency and shaft harmonics 2, 3 

(and sometimes even4) of the rotation frequency. 

There are three types of misalignment (parallel, angular, and mixed), which are well 

illustrated in figures II.4, II.5, and II.6. 

II.2.2.1 Parallel Misalignment 

This occurs when the shaft axes have the same orientation angle but are separated 

vertically, horizontally, or both from each other. 

 

Figure II.4 — Parallel misalignment [22]. 

II.2.2.2 Angular Misalignment 

In this type of misalignment, the two shaft axes form an angle, which can be in the 

vertical plane, horizontal plane, or in two planes. 

 

Figure II.5 — Angular misalignment [22]. 
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II.2.2.3 Mixed Misalignment 

This is the most common type of misalignment problem. It occurs when the shafts are 

not parallel (i.e., angular) and offset at the same time. 

 

Figure II.6 — Mixed misalignment [22]. 

II.2.3 Gear Faults 

Gear transmission is a widely used elementary mechanism for transmitting motion. It 

consists of two toothed wheels mobile around axes of rotation, with one driving the other 

through the action of teeth successively in contact. 

Depending on the arrangement of the shafts, there are three different types of gears, namely 

(Figure II.7): 

 

Figure II.7 — Different types of gears [23]. 
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Apart from manufacturing and assembly faults, two main categories of faults that can affect 

gear mesh are distinguished, generalized and localized faults [24]. 

II.2.3.1 Generalized Faults 

• Abrasive Wear: This type of wear is caused by the presence of abrasive particles in the 

lubricant. When there is significant sliding between the two friction surfaces, the abrasive 

removes material. Additionally, when the lubricant contains corrosive substances, this 

phenomenon becomes more pronounced. 

• Pitting: These are more or less deep holes that affect all teeth. They mainly occur on 

relatively hard construction steel gears. These damages can occur due to slight misalignment 

of the shaft (for example, due to local overpressure). Generalized defects are illustrated in 

Figure II.8. 

 

Figure II.8 — Generalized Gear Faults [23]. 

II.2.3.2 Localized Faults 

• Flaking: The number of holes here is lower than that of pits, but deeper and more extensive, 

with more damage due to fatigue of the sublayer at the point of maximum shear. This 

phenomenon generally evolves rapidly towards failure without going through the wear phase.  

• Cracking: Will progress with each load, starting from the almost always at the base of the 

tooth. It appears notably on fine steels hardened by heat treatment, very sensitive to stress 

concentration. These cracks occur because the stress at the base of the tooth exceeds the 

material's fatigue limit, and the stress is generally located on the side of the tooth subjected to 

traction. 
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• Seizure: The sudden destruction of the oil film or friction under load is a direct consequence 

of the temperature rise. Seizure is mainly favored by high speed, large modules, and few teeth 

in contact. 

Flaking, seizure, and cracking of gears are illustrated in Figure II.9. 

 

 Figure II.9 — Localized faults in gears (a.Spalling b.Cracking c.Seizure) [24] 

II.2.4 Bearing Faults 

Generally, many machines are equipped with bearing housings for rotational guidance, 

as they provide a better solution to withstand the friction of rotating machine parts. Bearings 

consist of four essential elements (Figure II.10): 

• The outer ring. 

• The inner ring. 

• The cage. 

• The rolling elements (balls, cones, etc.). 
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Figure II.10 — Ball Bearing Parts [25]. 

Depending on their applications and the criticality of the machines on which they are 

mounted, bearings require monitoring and preventive maintenance to avoid deterioration, 

which often manifests as more or less significant material removal [26]. These deteriorations 

are described as follows (Figure II.11): 

• Flaking: Characterized by traces of cracking and material removal, 

• Contact corrosion: Red or black discoloration on the bearing contact surfaces, in the bore,  

and on the outer diameter. 

• Rolling element imprints due to abrasion: Impressions corresponding to the rolling 

element spacing or not. Material removal due to wear from vibrations experienced by the 

stationary bearing. 

• Cage deterioration: Manifested in various forms: deformation, wear, or breakage of the 

cages, 

• Pits and grooves: Sharp-edged pits or a series of narrow parallel bands, related to the 

passage of electrical current. 

• Impacts, cracks, fractures: Violent impacts, surface material removal, cracks, ring 

fractures, 

• Seizure: Removal of the material's dull area, brown heat marks, rolling element 

deformation, micro-fusion, and metal rolling. 

• Generalized wear: Appearing on rolling elements, tracks, and cages (gray tint), due to the 

intrusion of an abrasive particle. 
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Figure II.11 — Some failures affecting the bearings: a- Generalized wear b- Deteriorated 

cage c- Corrosion d- Presence of craters e- Flaking f- Cracking and breakage g- Seizure h- 

Trace marks [27]. 

II.2.5 Belt Fault 

The belt is indeed the heart of the system and is considered an essential component. 

Belts drive many different components, and even if one of them fails, it can lead to a 

dangerous situation. Once the engine is running, the belt is always functional. The high 

temperature under the hood and constant bending has taken their toll. Over time, even the best 

belts will wear out and need to be replaced. 

Belt drive can be prone to many failures, such as: misalignment of pulleys or an eccentric 

pulley, localized deterioration (part torn off see Figure II.12, separation of ribs and joint 

defect), and belts that are too loose. 

 

Figure II.12 — Belt Fault (Pull-Out) [26]. 

II.2.6 Loosening Faults 

 Mechanical loosening (Figure II.13) is one of the main causes of fault in rotating 

machinery. The sources of these causes are numerous, including: 

• Shocks and vibrations. 

• Compression. 

• Temperature variations. 

• Corrosion. 
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Figure II.13 — Improper mechanical tightening [21]. 

II.3 Electrical Faults 

  In some cases, electrical faults can lead to machine shutdown. Generally, electrical 

faults can be localized in the rotor, stator, transformer, etc. However, most electrical faults 

occur in the rotor and stator circuits [28] (Figure II.14). 

II.3.1 Rotor Faults 

The most common faults localized in the rotor can be defined as follows: 

• Breakage or rupture of the rotor bar. 

• Rupture of a portion of the ring. 

• Opening of the electrical circuit. 

• Static or dynamic rotor eccentricity. 

II.3.2 Stator Faults 

The most common faults found in the stator can be defined as follows: 

• Insulation fault  in a winding. 

• Short circuit between turns. 

• Short circuit between phase-frame. 

• Short circuit phase-frame. 

 

Figure II.14 — Percentage of occurrence of electrical faults in machinery [28]. 

 

 



CHAPTER II                             MAIN FAULTS IN ROTATING MACHINERY 

 

30 

 

II.4 Kinematic frequencies (characteristics) of rotating machines  

Table II.1 shows the different characteristic frequencies of some failure modes in a 

rotating machine. 

Table II.1—Characteristic frequencies of the main failures affecting rotating machines [29] 

Faults  Characteristic Frequencies and Formulas 

Imbalance Rotation frequency  fr 

Fixing fault Harmonics of rotational speed: 
1

2
 fr,  fr and several of their harmonics 

Misalignment fr,  2 fr Generally, 2 fr is higher than fr , and axial vibrations are higher than 

radial vibrations. 

 

 

 

Bearing 

Defects 

Frequencies corresponding to the passages of rolling elements given by the 

following equations:  

Outer Race: f outer = 
𝑓𝑟

2
×𝑁 (1− 

𝑑

𝐷
 cos𝛼)   

Inner Race: f inner = 
𝑓𝑟

2
×𝑁 (1+ 

𝑑

𝐷
 cos𝛼)   

Cage: f𝑐 = 
𝑓𝑟

2
×(1− 

𝑑

𝐷
 cos𝛼)   

Ball: 𝑓ball = 
𝑓𝑟

2
× 

𝑑

𝐷
 (1−( 

𝑑

𝐷
 cos𝛼) 2)   

Where: 𝑁 : Number of rolling elements; 

d : Diameter of rolling elements;  

D : Pitch diameter of the bearing;  

α : Contact angle. 

Gears Given by:  

f gear =𝑍 × fr ± 𝑘 × fr  

Where: 𝑍 = Number of teeth, 𝑘: 0, 1, 2, 3, ... 

 

 

Belts 

The rotation frequency of the belt is given by: 

 𝑓𝑐𝑟=
𝜋𝐷1

𝐿
× f1 = 

𝜋𝐷2

𝐿
× f1  

For the case of wear in toothed belts:  

𝑓𝑐𝑟𝑐=𝑁 × fr ±𝑘 × fr  

Where: 𝐷1 : Diameter of pulley 1  

𝐷2 : Diameter of pulley 2, 𝐿 : Belt length  

 : Number of teeth on the pulley, 𝑘= 0, 1, 2, 3, ... 

Oil Whirl 40-50 % of fr 

 

Cavitation N× fr extended spectrum to frequencies above 2000 Hz 
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Electrical 

Faults 

fr and higher-order harmonics: magnetic imbalance f𝑒𝑙 Fixed field fault: 2× 

𝑓𝑒𝑙 

fr ± 2g × fel, fel × {k(
1−𝑝

𝑔
 ) ±g} 

 𝐺 :Slip, 𝑓𝑒𝑙: Electrical supply frequency  

𝐾/𝑝=1.5, 7, ... depending on motor winding 

  

II.5 Conclusion 

In this chapter, we have presented the different faults encountered in rotating 

machines. These faults can lead to disastrous consequences in most cases. Furthermore, we 

have explained how to calculate the kinematic frequencies of the different faults in rotating 

machines.  

In the next chapter, we will summarize the signal processing methods and also study the role 

of artificial intelligence in the field of rotating machine diagnostics. 
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III.1 Introduction 

In order to prevent machinery malfunctions, a monitoring and diagnostic system must 

be established and defined to detect faults before further issues arise, as the accumulation of 

faults can reduce the machine's lifespan. There are numerous techniques used in machinery 

diagnostics, most of which involve signal processing analyses. The three types of signal 

analyses include time domain analysis, frequency domain analysis, and time-frequency 

analysis. However, with the advancement of computing, specifically the development of 

calculation software, diagnostics have defined a new and effective strategy primarily based on 

artificial intelligence, which has currently proven its effective role in the field of rotating 

machinery diagnostics. 

III.2 Different analysis methods 

There are numerous and diverse analysis methods in the field of detection and 

diagnosis of faults in rotating machines, but they can be broadly divided into three main 

categories. Figure III.1 illustrates the different families of analysis methods. 

 

 

 

 

 

 

 

 

 

  

 Figure III.1 —Different Analysis Methods. 

III.2.1 Temporal Analysis 

Temporal methods are the oldest ones. They involve analyzing the temporal 

characteristics of the recorded signal. Typically, they include finding the peak-to-peak value 

Different analysis 

methods 
 

Temporal analysis 

     _ RMS 

      _ Kurtosis 

      _ Crest factor 

      _ Skewness 

      _ Etc… 

 

 Frequency Analysis 

   _ Fast Fourier Transform 

(FFT) 

    _ Envelope Analysis 

    _ Power Spectral Density 

(PSD)         

    _ Cepstrum 

    _ Etc… 

 

Analysis in the time-frequency 

domain 

     _ Short-term Fourier transform 

(STFT). 

     _ Wigner-vile distribution (DWV) 

     _ Wavelet packet decomposition 

     _ Empirical mode decomposition 

(EMD) 

     _ Etc. 
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of the maximum amplitude between the extremes of the measured signal, the RMS (Root 

Mean Square) value of the average energy of the measured signal, the skewness factor, and 

kurtosis, which measures the impulsive nature of the signal, among others. These scalar 

indicators are used for monitoring and diagnostics, meaning that when the values of these 

indicators change, it directly implies the onset of a machine failure. 

These statistical temporal indicators (see Figure III.2) are very simple and easy to 

interpret, with a high potential to increase the threshold when a fault begins to appear. 

Therefore, these indicators are particularly suitable for online monitoring and control, even in 

real-time. However, these descriptors yield good results only in the case of Gaussian signals. 

 

Figure III.2 — Statistical indicators of a signal [29]. 

III.2.1.1 Effective value or RMS value 

The RMS, also known as the root mean square value of a signal, corresponds to the 

square root of the second-order moment and is calculated as follows:  

RMS =  √
1

𝑁𝑒
∑ [𝑆(𝑡)]𝑁𝑒

𝑖=1
2       (III.1) 

Although S(t) is the measured time signal and N represents the number of samples 

taken from the signal. 

The RMS is an indicator used in industry; when it varies excessively, it generally 

implies a malfunction and therefore a failure. Among the major disadvantages of using RMS 

is that it generally provides a rather late alarm, and it does not detect all defects globally, such 

as bearing faults. 
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III.2.1.2 Peak Factor PF 

The peak factor Fc is defined as the ratio between the peak value and the root mean 

square value.  

The formula for Fc is as follows: 

Fc =  
𝑉𝑝𝑒𝑎𝑘

𝑅𝑀𝑆
       (III.2) 

For proper operation (without defects), the value of (Fc) typically ranges between 3 

and 6 as the peak factor follows a Gaussian (normal) distribution. When its value exceeds 6, it 

is said that the failure has begun to appear.[30] 

III.2.1.3 Kurtosis 

Kurtosis is a statistical indicator used to detect the occurrence of shocks and monitor 

the development of a defect that causes periodic impulse forces. It can quickly detect bearing 

failures. Kurtosis corresponds to the normalized fourth-order moment of the statistical 

distribution of the signal. It is defined as follows: 

𝐊𝐮𝐫𝐭𝐨𝐬𝐢𝐬 =
𝑴𝟒

𝐌𝟐
 =  

𝟏

𝑵𝒆
 ∑ (𝑺(𝒕)−�̅�)𝟒𝑵𝒆

𝟏

[ 
𝟏

𝑵𝒆
∑ (𝑺(𝒕)−�̅�)𝟐 ]𝟐𝑵𝒆

𝟏

       (III.3) 

Where M2, M4 are the statistical moments of order 2 and order 4, respectively. With S 

being the signal mean formulated as follows: 

�̅�  =  
𝟏

𝑵𝒆
 ∑ 𝑺𝒊𝑵𝒆

𝟏
       (III.4) 

Kurtosis also follows a normal distribution in the case of proper functioning, so its 

value is close to 3. For example, in the case of a healthy bearing, its value belongs to the 

interval [2.8; 3.2]. When its value exceeds 3.2, it directly implies the appearance of a defect 

such as bearing spalling [31]. 

III.2.1.4 Skewness Factor 

The skewness factor measures the degree of asymmetry of a distribution around its 

sample mean. It is calculated using the following formula: 

𝐒𝐤𝐞𝐰𝐧𝐞𝐬𝐬 =
𝟏

𝑵𝒆
∑ [

𝑺(𝒕)−�̅�

𝑹𝑴𝑺
]

𝟑
𝑵𝒆
𝟏

       (III.5) 

III.2.2 Frequency Analysis 

Frequency analysis is based on the Fourier transform. It is even used for diagnosing 

electrical machines. After calculating the kinematic frequencies of each fault and performing 

spectrum analysis, the fault can be identified and localized through identification. 
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III.2.2.1 FFT Spectral Analysis 

The signal provided by a sensor is represented in the time domain (Amplitude versus 

time). Spectral analysis is used to show the vibration amplitude at each frequency. This 

analysis is based on the Fourier transform, which converts the signal from the time domain to 

the frequency domain. The Fourier transform is formulated as follows: 

X(f)  =  ∫ 𝑥(𝑡). 𝑒−𝑗2𝜋𝑓𝑡+∞

−∞
dt2       (III.6) 

The inverse Fourier transform is formulated as follows: 

𝒙(𝒕)  = ∫ 𝒙(𝒇). 𝒆𝒋𝟐𝝅𝒇𝒕𝒅𝒇
+∞

−∞
2       (III.7) 

Where x(t), t, f, X(f) are respectively the analog signal, time, frequency, and the 

Fourier transform. 

To discretize the analog signal, we use the Discrete Fourier Transform (DFT), formulated as 

follows: 

𝐗(𝐤 ∙ 𝚫𝐟)  =
𝟏

𝒏
∑ 𝐱(𝐢. 𝐭𝐞).𝒏−𝟏

𝒊=𝟎 𝒆−𝒋𝟐𝝅𝒇𝒕𝒅𝒇       (III.8) 

The Fast Fourier Transform (FFT) requires the discretization of the signal. FFT is the 

recipe that reduces the number of iterations needed to establish the Fourier transform of a 

discrete signal DFT. The FFT algorithm is performed by calculating the power spectrum or 

the power spectral density PSD, which is the ratio between the square of the Fourier transform 

module and the observation time (equation III.9) [32] .This power spectrum is another 

frequency representation of the signal that is widely used in the diagnosis of rotating 

machinery. 

𝑃𝑆𝐷(𝑓) =
‖𝑋(𝑓)‖

2

𝑑
       (III.9) 

Where X(f), d, and P_SD(f) are the Fourier transform of the signal, the observation 

duration, and the power spectral density, respectively. 

III.2.2.2 Cepstrum Analysis 

The cepstrum is a diagnostic tool used to distinguish defects that produce complex 

images due to multiple associated amplitude modulations. It allows for the identification and 

quantification of impacts (comb lines) and sideband modulations. Therefore, gear fault 

detection often requires cepstrum analysis. This analysis is crucial for diagnosing repetitive 

impacts in complex kinematic machines such as gearboxes and screw compressors, etc. The 

complex cepstrum of a signal x (t) represents the Inverse Fourier Transform of the decimal 

logarithm of its direct Fourier transform [33]. 
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𝐶[𝑥(𝑡)] = 𝐶(τ) = 𝑇𝐹−1[𝐿𝑜𝑔𝑇𝐹(𝑥(𝑡))]       (III.10) 

  Where τ represents the frequency. 

III.2.2.3 Envelope Analysis 

Envelope analysis or HFRF "High Frequency Resonance Technique" is notably used 

to analyze resonance phenomena caused by early defects in bearings and gears, even in 

machines running at very low speeds [34]. These defects, which cause periodic shocks, 

periodically excite the high frequency (resonance) of the structure. Consequently, the high 

frequency is modulated in amplitude at the characteristic frequency (low frequency) of the 

defect. By demodulating one of these resonances, the characteristics of the defect signal can 

be found[35]. This technique follows the following steps in order:  

• Determine the resonance frequency and select the area to demodulate, then filter around the 

selected resonance. 

• Calculate the envelope of the filtered signal using the Hilbert transform.  

•    Calculate the spectrum of the envelope of the signal using the Fourier transform. 

The signal envelope is defined as follows: 

𝐸(𝑡) = ‖𝑍(𝑡)‖ = √𝑆2(𝑡) + 𝑆2̆(𝑡)2       (III.11) 

Where Z (t), E(t), S(t) and 𝑺�̆�(𝒕) are the analytic signal, the signal envelope, the 

temporal signal, and the Hilbert transform of the signal respectively. Knowing that: 

�̆�(𝒕) =
𝑺(𝒕)

𝝅.𝒕
2       (III.12) 

𝑍(𝑡) = 𝑆(𝑡) + 𝑖. �̆�(𝑡) 2       (III.13) 

III.2.3 Time-Frequency Analysis 

Although recent frequency techniques prove to be effective in detecting defects, they 

do have some limitations. The main drawback of these techniques is that they cannot handle 

non-stationary signals. It is for this reason that time-frequency domain analysis has come to 

provide an optimal mathematical framework for analyzing non-stationary signals. This type of 

analysis is based on real functions that define an energy distribution in the time-frequency 

plane. Among the techniques used in this analysis, we find the Short-time Fourier Transform 

STFT, Empirical Mode Decomposition EMD, the Wigner-Ville Distribution WVD, or 

wavelet-based techniques. 
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III.2.3.1 Empirical Mode Decomposition EMD 

The Empirical Mode Decomposition (EMD) technique is a signal analysis method 

introduced by Norden Huang. EMD is a process called sifting that allows the signal to be 

decomposed into basic contributions called empirical modes or Intrinsic Mode Functions 

(IMF). EMD is particularly interesting because it is well-suited for the study of non-stationary 

signals and is also generated by nonlinear systems [36]. This decomposition has gained 

significant recognition in various fields such as oceanography, climatological studies, biology 

[37], non-destructive testing, underwater acoustics, and seismology [38]. 

Decomposition process by EMD (Figure III.3): 

• Find local extrema (maximum and minimum) of the signal.  

• Estimate upper and lower envelopes by respectively interpolating the local maxima and 

minima. 

• Estimate the local mean envelope from the upper and lower envelopes.  

• Subtract the mean envelope from the input signal. This corresponds to the first sifting 

iteration. Then calculate the stopping criterion. 

• Check if the residue has a sufficient number of extreme values (more than two), and repeat 

the IMF extraction process for the resulting signal; otherwise, the residue is considered as the 

final residue r(t). Ideally, when the residue no longer contains extreme values, the IMF 

extraction process is completed. This means that the residue is a monotonic function, 

corresponding to the drift or trend of the initial signal x(t). 
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Figure III.3 — Sieving process to estimate the first IMF [39]. 

III.2.3.2 Short-Term Fourier Transform STFT 

The Short-Term Fourier Transform (STFT) was developed by Gabor in 1946. 

The STFT is a modified version of the standard Fourier transform. The principle of this 

technique is to decompose the signal under study into segments assumed to be stationary.  

Therefore, the STFT can be considered as a method that decomposes the non-stationary signal 

into many small segments that can be locally assumed to be stationary, and conventional FFT 

is applied to these segments [40]. This is done using a window function of a chosen width, 

which is shifted and multiplied with the signal to obtain small stationary signals [41]. It is 

described by the following formula: 

𝐒𝐓𝐅𝐓{𝐱(𝐭)}(𝛕, 𝛚)  ≡  𝐗(𝛕, 𝛚)  =  ∫ 𝐱(𝐭)𝐰(𝐭 −  𝛕 )
+∞

_∞
𝒆_𝒊𝒘𝒕𝐝𝐭       (III.14) 

The Short-Term Fourier Transform is an efficient method for time-frequency analysis 

and a powerful tool for monitoring the condition of rotating machinery.  

The short-term spectrum provides a clear representation of the time-frequency plane and a 

simple interpretation of energy variation and a clear representation of the time-frequency 

plane due to damage. Unfortunately, this approach poses a fundamental problem: high 

resolution cannot be achieved without the assistance of a monitoring system simultaneously in 

the time domain and in the frequency domain. To address this issue and achieve high 

accuracy, other methods have been developed, such as the Adaptive Short-Term Fourier 
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Transform. This method produces reasonable and useful window lengths for the form of the 

Short-Term Fourier Transform. 

III.2.3.3 Continuous Wavelet Transform CWT 

Continuous Wavelet Transform (CWT) is a very interesting tool for mapping the 

changing properties of non-stationary signals. The CWT is also an ideal tool for determining 

whether a signal is stationary or not in a global sense. When a signal is deemed non-

stationary, the CWT can be used to identify the stationary sections of the data stream. The 

Continuous Wavelet Transform is defined as the sum over all time of the signal multiplied by 

scales [42]: 

C(ScalePosition)  =  ∫ f(t). Ψ(ScalePosition, t)dt
+∞

_∞
      (III.15) 

such that 

Ψu, s(t)  =
1

√s
Ψ(

t−u

s
)      (III.16) 

Ψ: mother wavelet. 

u: time translation coefficient. 

s: scale coefficient. 

There is a correspondence between wavelet scales and frequency as indicated by 

wavelet analysis, as shown in the following figure: 

 

Figure III.4 — Signal scaling [34]. 

• Low scale a → compressed wavelet → rapidly changing detail → high frequency.  

• High scale a → stretched wavelet → slowly changing detail → low frequency. 

To perform the continuous wavelet transformation, five steps must be followed: 

1. Choose a wavelet and compare it to a section at the beginning of the original signal.  

2. Calculate a number C, which represents how closely correlated the wavelet is with the 

section chosen in the first step. The highest number C is the most similar. Specifically, if 

the signal energy and wavelet energy are both equal to 1, the latter can be interpreted as a 

correlation coefficient. Note that the results depend on the wavelet shape chosen. 

3. Shift the wavelet to the right and repeat steps 1 and 2 for all signals. 
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4. Stretch the wavelet and repeat step 1 to 3. 

5. Repeat steps 1 to 4 for all scales. When all the above steps are completed, coefficients 

will be produced at different scales by different sections of the signal. 

III.3 Artificial Intelligence 

Artificial intelligence (AI) techniques have demonstrated their effectiveness in 

diagnosing rotating machinery compared to conventional methods. AI enables machines to 

mimic a form of real intelligence and is used in various fields such as health, industry, and 

transportation. Historically, four AI methods have been developed: acting humanly (Turing 

test), thinking humanly (cognitive modeling), thinking rationally (laws of thought), and acting 

rationally (rational agents)[43], [44], [45]. These approaches combine empirical observations 

of human behavior with mathematical and engineering principles, thereby creating machines 

capable of intelligent perception, reasoning, and action. 

III.3.1 Machine learning algorithm for faults classifications 

Machine learning algorithms dedicated to fault classification are instrumental in 

automatically assigning input samples to predefined classes. The classification process 

involves two essential stages: initial training on a labeled set of samples, where each sample is 

associated with a specific class within the output class vector, and subsequent utilization of 

the trained model to classify new, unlabeled samples. Several classification algorithms, 

including decision trees (DT), logistic regression (LR), support vector machines (SVM), k-

nearest neighbors (KNN), and neural networks (NN). In this study, DT, SVM and a novel 

method for enhancing fault diagnosis of bearing systems is developed, are employed in this 

investigation to showcase the effectiveness of the proposed methodology. 
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Figure III.5 — Fault Classification Boundaries [46]. 

III.4 Conclusion 

In this chapter, we have discussed the various signal processing techniques used in 

diagnostics. We have also studied artificial intelligence of different kinds and know its 

effectiveness in diagnosing rotating machinery. Although signal processing techniques are 

still used today, it can be said that they have limitations in many cases. We have provided a 

general overview of one area of artificial intelligence. 
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IV.1 Introduction 

Bearings play a vital role in diverse industrial applications. Due to the rigorous 

demands placed on them, bearings are susceptible to high levels of stress and wear, with 

potential failures leading to costly repairs, unforeseen down-time, and safety risks. 

Consequently, monitoring the health of bearings is imperative to preempt unexpected break-

downs, enhance equipment efficiency, and prolong machine lifespans [47].  

In this chapter, a novel method for enhancing fault diagnosis of bearing systems is 

developed. First, we will present an experimental investigation into the diagnosis of bearing 

under varying operational speeds, utilizing acoustic signals obtained from experiments 

conducted at the Mechanical Structures Laboratory MSL of Polytechnic Military School, 

Bordj Elbahri, Algiers. Subsequently, we have integrated advanced signal processing 

techniques into our diagnostic approach by merging several health indicators and a powerful 

statistical technique is employed for fault classification. The results demonstrate the 

effectiveness of the proposed method in accurately identifying and classifying bearing faults 

across various working conditions. This approach holds promise for real-world industrial 

applications, offering a reliable method for condition monitoring and diagnostics in bearing 

systems. 

IV.2 Methodology and diagnostic approach 

The proposed diagnostic methodology comprises five essential steps, presented in 

FigureIV.1. 
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Figure IV.1 — Proposed bearing fault diagnostic methodology. 

Initially, acoustic signals are acquired from the microphones, which are positioned on 

the target machine for monitoring purposes. These signals are then transmitted to a data 

acquisition system, adhering to predefined sample rates and acquisition times. The system 

records and analyzes the signals to detect any abnormal acoustic patterns bearing faults within 

the system. 

The second step involves signal segmentation using a defined time window. This 

segmentation process aims to derive sub-signals that encapsulate samples representing distinct 

operational modes of the bearing. 

The third step, the methodology incorporates the Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise (CEEMDAN) technique. This step decomposes vibration 

and current sub-signals into their frequency components by extracting intrinsic mode 

functions (IMFs). Notably, CEEMDAN includes an adaptive noise reduction step to diminish 

noise, thereby improving the accuracy of the decomposition. This step addresses the 

sensitivity to noise exhibited by Empirical Mode Decomposition (EMD) by ensuring the 

decomposition is not biased toward a specific frequency range [48]. 

In the fourth step, the obtained IMFs (energetic IMF) signals by calculating the Hilbert 

Envelope Spectrum (HES) are meticulously processed to extract health indicators, totaling 

three in our specific case. These indicators are computed from the most energetic IMF, 

accurately reflecting the condition of each bearing fault state. To minimize sample dispersion, 

a division by the standard deviation (STD) of the signal is performed in this step. 
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The refined indicators (three indicators calculated, divided by the STD of the original 

signal) undergo selection through the application of the Sequential Backward Selection (SBS) 

algorithm, aiming to retain the most relevant ones. 

In the fifth and final step, the selected indicators (three in this case) serve as inputs for 

machine learning models to classify different modes (load levels) and identify bearing 

failures. The Discriminant Analysis algorithm (DA) in machine learning is employed to 

achieve this classification and fault detection. 

This comprehensive methodology is designed to enhance the accuracy and efficiency 

of bearing fault diagnosis, ensuring robust performance across diverse operating conditions. 

IV.2.1 Signal acquisition 

In this experiment, our primary focus was on accurately localizing acoustic noise 

sources utilizing a setup comprising three microphones and acquisition channels equipped 

with acoustic transducers from Bruel & Kjaer. Specifically, we utilized Bruel & Kjaer’s high-

precision microphones known for their exceptional performance in free field measurements 

with a sensitivity of 50mV/Pa and a frequency range up to 100 kHz. For data collection, we 

employed input modules along with the Pulse LabShop software, enabling seamless transfer 

of acquired signals for subsequent post-processing. Prior to the experiment, the equipment 

underwent amplitude calibration to ensure accurate measurements. The measured signals 

captured through these high-quality microphones formed a crucial dataset for our 

analysis[48].  

IV.2.2 Signal segmentation 

Once vibro-electric signals have been acquired, the next step involves dividing these 

signals into sub-signals, each representing a sample. The objective of this operation is to 

generate multiple samples to form classes that represent the distinct operating modes of the 

bearing. The segmentation process entails breaking down the acquired signal denoted as x(t) 

into smaller segments denoted as xi(t), where 1 ≤ i ≤ N. 

Here, i represents the index of the sub-signal and N signifies the number of sub-

signals. This segmentation process is pivotal as it establishes a database for training and 

testing, laying the groundwork for the development and evaluation of machine learning 

models in our study. 

Mathematically, the segmentation process is summarized by the following equation [47]: 
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𝑥(𝑡) = [𝑥1(1), 𝑥1(2), … , 𝑥1(𝑇), 𝑥2(1), 𝑥2(2), … , 𝑥2(𝑇), … , 𝑥𝑁(1)𝑥𝑁(2), … , 𝑥𝑁(𝑇)]  (eq. IV.1) 

              

               x1(t)                               x2(t)                                    xN(t) 

Where, t signifies the time within the segment and T represents the fixed window time 

length. 

In this case, we employ CEEMDAN technique to decompose sub-signals xi(t) into an 

ensemble of IMFs, the detail of the method is illustrated in the reference [47]. 

IV.2.3 Health indicator calculation 

The acoustic signals most energetic IMF, extracted through CEEMDAN 

decomposition are chosen for its superior representation of the bearing. This IMF epitomizing 

distinct states of the machinery components serves as the basis for calculating three pivotal 

indicators widely utilized in diagnosing bearings. 

The indicators are described as follows [49]: 

a - Square Root Amplitude Value (SRAV) 

𝑆𝑅𝐴𝑉 = (
1

𝑇
∑ √|𝑢(𝑡)|𝑇

𝑖=1 )
2

               (eq. IV.2) 

b - Absolute Mean Amplitude Value (AMAV) 

𝐴𝑀𝐴𝑉 =  
1

𝑇
∑ |𝑢(𝑡)|𝑇

𝑖=1            (eq. IV.3) 

c - Clearance Indicator (CLI) 

𝐶𝐿𝐼 =  
𝑚𝑎𝑥|𝑢(𝑡)|

(
1

𝑇
∑ √|𝑢(𝑡)|𝑇

𝑖=1 )
2

 
         (eq. IV.4) 

A set of three (03) indicators will be calculated for the selected IMF, IMF selected (t) 

= u1, u2, u3,…uT where T represents the length of the window size, which is also the number 

of vibration or current vector components. This vector will be used for the mathematical 

description of these indicators. These indicators play a vital role in diagnosing the condition 

of bearings providing valuable insights into their health and performance. 

The next step is standardization, a crucial process where each calculated indicator 

signal is divided by the standard deviation of the signal for which the respective indicator was 

calculated. Standardization is vital for several reasons [48]: 
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 Standardization ensures that the scale of the indicators is uniform, allowing for 

meaningful comparisons and analyses across different signals and data points. 

 It helps in reducing the influence of outliers or unusually large or small values, 

promoting more accurate and robust analysis results. 

 By standardizing the indicators, we bring them to a common scale, aiding in a fair 

comparison of the health states of bearings. 

Mathematically, the standardization process involves dividing each calculated 

indicator signal, by its respective standard deviation (STD). 

IV.2.4 Discriminant Analysis for fault classification 

Discriminant Analysis is a powerful statistical technique employed for fault 

classification in diverse applications, including machinery health monitoring [49]. In our 

study, we utilize Discriminant Analysis as a crucial tool to classify different fault modes in 

the bearing systems. 

The fundamental principle of Discriminant Analysis involves determining a 

discriminant function that maximizes the separation between multiple classes as shown in 

Figure IV.2, enabling effective classification. We aim to develop a discriminant function that 

optimally distinguishes between various fault states, such as different types of bearing faults, 

and normal or healthy states. Mathematically, given a set of features or indicators, 

Discriminant Analysis seeks to find a linear combination of these features that maximizes the 

ratio of between-class variance to within-class variance. This discriminant function is then 

used to classify new instances into their respective fault categories. 

In our specific application, the Discriminant Analysis algorithm analyzes the 

standardized indicators calculated from the segmented signals. These indicators serve as 

features for classification. The discriminant function developed through this analysis 

accurately categorizes the acoustic patterns into the distinct fault modes, aiding in the precise 

identification of bearing faults. 
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Figure IV.2 — Discriminant Analysis algorithm [48]. 

For evaluating the model’s performance, metrics such as accuracy, precision, recall, 

and F1 score will be utilized. Precision is determined by considering correct positive 

predictions over all positive labels, while recall assesses the classifier’s ability to identify 

positive cases. The F1 score offers a balanced measure of the model’s performance, 

considering both precision and recall. These metrics are computed based on the indicators 

selected as input for this model. The detail of the calculation of these metrics is illustrated in 

the reference. 
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IV.3 Results and discussion 

IV.3.1 Test bench and test description 

The Figure IV.3, illustrate the experimental configuration utilized for our investigation 

and data acquisition. The shaft was set into motion by means of an electric motor, allowing 

for a varied rotational speed ranging from 0 to 6000 rpm. The MB Manufacturing ER-10K 

ball bearings are used, characterized by the presence of 8 ball rollers aligned in a singular 

row. The experiment was meticulously focused on localizing acoustic noise sources, 

employing three microphones and dedicated acquisition channels equipped with acoustic 

transducers from Brüel & Kjær. 

 

Figure IV.3 — Experimental setup. 
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a. Sensor used 

The accelerometer integrated into our experimental setup is a piezoelectric sensor of 

type 4507 B 001 manufactured by Brüel & Kjær (see Figure IV.4). This choice is motivated 

by its high sensitivity and its ability to accurately measure low frequencies, making it an ideal 

tool for vibration detection and analysis in our application. 

 

Figure IV.4 — Accelerometer of type 4507-B-001. 

The following table presents some characteristics of the accelerometer used: 

Table IV.1 — Characteristics of accelerometer 4507-B-001. 

Designation Values 

Frequency Range [0. 3 ; 6000 Hz] 

Temperature Range [229 ; 394 K] 

Sensitivity 10 mV/ms² 

Resonance Frequency 18 kHz 

 

b. Acquisition Card 

The acquisition card used (Figure IV.5) is the Brüel & Kjær 3050-A-060 type, 

equipped with six LEMO channels and 7 pins, with each channel having a maximum 

sampling frequency of 50 kHz. 
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Figure IV.5 — Brüel & Kjær 3050-A-060 Acquisition Card. 

c. Operating Software: PULSE Labshop 

Brüel & Kjær's PULSE Labshop operating software is a platform for measuring 

vibrational accelerations and acoustic pressures. It can analyze and record various measured 

values (see Figure IV.6). It consists of several integrated modules and utilizes basic functions 

such as (FFT). 

 

Figure IV.6 — PULSE LabShop Software Interface. 

The measurement chain used to ensure signal acquisition consists of: 

a. The test specimen to be monitored, which in our case is the bearings and their 

constituent components, 

b. The sensor used, 

c. The acquisition card, and finally 

d. The computer for signal processing, as illustrated in the Figure IV.7, 
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 Figure IV.7 — Measurement Chain.. 

e. Creation of Defects  

For simulating faults in rotating machinery, we used an MB Manufacturing ER-10K 

type bearing. Additional characteristics are presented in the following table. 

Table IV.2 — Bearing Characteristics (MB Manufacturing ER-10K) 

Bearing Dimension Values 

Number of Balls 8 

Ball Diameter 7.9375 mm 

Mean Diameter (Pitch) 33.5026 mm 

Contact Angle 0 rad 

We created several bearing faults (Table IV.3) during the tests, such as deterioration of 

the outer race, the inner race, and ball defects (Figures IV.8). 
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Figure IV.8 — Various Bearing Faults Created. 

Table IV.3 — Various Bearing Faults Created 

 

Case 

Bearings 

Inner race Outer race Ball Damage 

position 

0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.021 Damage 

degree 

)inch( 

C1 GD GD GD GD GD GD GD GD GD 

C2 F GD GD GD GD GD GD GD GD 

C3 GD F GD GD GD GD GD GD GD 

C4 GD GD F GD GD GD GD GD GD 

C5 GD GD GD GD GD GD F GD GD 

C6 GD GD GD GD GD GD GD F GD 

C7 GD GD GD GD GD GD GD GD F 

C8 GD GD GD F GD GD GD GD GD 

C9 GD GD GD GD F GD GD GD GD 

C10 GD GD GD GD GD F GD GD GD 

 

GD is Good and F is Fault; with: 
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Table IV.4 — Bearing Condition Classification 

Class 

C1 Normal condition (Healthy bearing) 

C2 Inner race fault of the bearing 

C3 Inner race fault of the bearing 

C4 Inner race fault of the bearing 

C5 Ball fault of the bearing  

C6 Ball fault of the bearing 

C7 Ball fault of the bearing 

C8 Outer race fault of the bearing 

C9 Outer race fault of the bearing 

C10 Outer race fault of the bearing 

In this work, vibrations are meticulously acquired from experiments conducted at the 

Mechanical Structures Laboratory MSL of Polytechnic Military School, Bordj Elbahri, 

Algiers, with the Laboratory’s doctoral students. 

IV.3.2 Results of the experiment 

IV.3.2.1 Fault detection through time-domain analysis 

In order to detect bearing faults, such as inner race faults, outer race faults, and ball 

faults, we perform a time-domain analysis of the acquired signals 

 

Figure IV.9 — Vibrational signal of normal condition (Healthy bearing). 
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Figure IV.10 — Comparison of Temporal Signals: Healthy and. Faulty Bearings. 

The analysis of the plotted temporal signals provides valuable insights into the 

condition of the bearings under investigation. The healthy bearing signal demonstrated a 

consistent pattern with relatively low amplitudes and minimal high-frequency peaks, 

indicative of smooth and normal operation. In contrast, the faulty bearing signals exhibited 

higher amplitudes, often accompanied by distinct high-frequency peaks or impulsive spikes. 

These deviations from the healthy signal suggest the presence of anomalies or defects within. 

IV.3.2.2 Vibrational signal analysis 

In Figure IV.11 (a-b-c-d), we present the vibrational signals decomposition using the 

CEEMDAN. Each signal is segmented into 118 non-overlapping sub-signals and each with a 

length of 1024 samples.  

So, the CEEMDAN process is then applied to each sub-signal, yielding a distinct set 

of IMF components.  The subsequent phase involves computing the Hilbert Envelope 

Spectrum (HSE) for each IMF and identifying the characteristic frequency associated with 

each fault. The underlying principle of these operations is the automated identification of the 

IMF with the maximum energy value around the frequency of the fault. For each sub-signal, 

we compute the CEEMDAN algorithm and then calculate the HES to determine the most 

energetic IMF to use it next for diagnosis purpose. After determination of the most energetic 

IMF, we compute the three indicators.  

All simulations are obtained by scripts designed with MATLAB software of 

Laboratory. 
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Figure IV.11-a — Healthy bearing vibration signal segmentation process. 

 

Figure IV.11-b — Inner race fault vibration signal segmentation process. 
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Figure IV.11-c — Ball fault vibration signal segmentation process. 

 

Figure IV.11-d — Outer race fault vibration signal segmentation process. 

 

Figure IV.12 — Script block of vibration signal segmentation process.  
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The CEEMDAN process is subsequently applied to each sub-signal, generating a 

distinctive set of IMF components, as illustrated in Figure IV.13. 

 

Figure IV.13 — CEEMDAN for IMFs extraction. 

In this phase, for model classification and evaluation and a further refinement has been 

introduced to enhance the accuracy of the methodology. The key indicators identified through 

the SBS algorithm, namely SRAV, AMAV and CLI demonstrated proficiency in distinguishing 

between various types of faults. To augment precision, each indicator is now normalized by the 

signal standard deviation (STD), effectively mitigating class dispersion.  

In order to consolidate our new model, we carried out simulations with models too used 

in fault diagnostics; firstly, the Figure IV.14 visually represents the dispersion parameter for the 

selected three indicators with Decision Tree (DT) analysis firstly. The result in accuracy with 

84.3%. 
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Figure IV.14 — Class distribution with Decision Tree analysis. 

As well, we used the confusion matrix plot to understand how the currently selected 

classifier performed in each class. The confusion matrix help identify the areas where the 

classifier performed poorly. The diagonal cells show where the true class and predicted class 

match. If these diagonal cells are blue, the classifier has classified observations of this true class 

correctly. To see how the classifier performed per class, the TPR is the proportion of correctly 

classified observations per true class. The FNR is the proportion of incorrectly classified 

observations per true class. 

In this figure analysis (Figure IV.15), the columns show the predicted classes, so the true 

positive rate for correctly classified points in this class, shown in the blue cell in the TPR 

column. 
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The false negative rate for incorrectly classified points in this class is shown in the orange 

cell in the FNR column. 

 

Figure IV.15 — Confusion matrix of Decision Tree analysis. 

The following figure represents the prediction graph with Decision Tree analysis for class 

distribution, where the circle patterns (●) are correct prediction and the cross patterns (x) are 

incorrect prediction. 

 

Figure IV.16—Prediction graph of Decision Tree analysis. 
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Also, we have used Quadratic Support Vector Machine analysis by using classification 

learner Toolbox in MATLAB in order to approve our new model, the result in accuracy with 

92.5%. The following figures represent Confusion matrix and prediction graph of Quadratic 

SVM analysis   

 

Figure IV.17—Confusion matrix of Quadratic SVM analysis. 

 

Figure IV.18—Prediction graph of Quadratic SVM analysis. 
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Following, among the machine learning techniques, Discriminant Analysis stands out as a 

widely embraced method for various reasons. It is a robust statistical technique designed to 

identify linear combinations of features that optimally discriminate between classes [48]. 

In this section the simulation results obtained by scripts designed with MATLAB 

software of the Discriminant Analysis algorithm in machine learning is employed to achieve this 

classification and fault detection. 

For robust model performance assessment, a 5-fold cross-validation methodology was 

employed. Within this framework, key metrics including Accuracy, Precision, Recall, and F1 

score were scrutinized meticulously to gauge the model’s efficacy and proficiency.  

 

   

Figure IV.19—Classification results with Discriminant Analysis algorithm. 

The Figure IV.19 illustrates the dispersion of classes with standardization, respectively. 

Standardizing the indicators significantly enhances class dispersion, resulting in a remarkable 

accuracy increase to 92.94%. 

Classification results in Table IV.5 underscore the methodology’s efficiency in 

distinguishing bearing failures under variable load levels, achieving an impressive accuracy of 

92.94%. The trained model exhibits a high capacity to differentiate between various fault types, 

showcasing notable precision, recall, and F1 score. This proficiency is particularly significant for 

identifying faults in rotating machines under varying loads. 

Table IV.5—Performance of the proposed model 

Method Accuracy (%) Precision (%) Recall (%) F1 Store (%) 

DA 92.94 93.02 93.39 93.11 
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Figure IV.20 illustrates the outcomes of the classification using the Discriminant 

Analysis algorithm. It is crucial to emphasize that the classes exhibit clear separability, 

underscoring the efficacy of the selected indicators. 

 

 

Figure IV.20— Classification results using Discriminant Analysis algorithm. 

The Figure IV.21 visually represents the represents the results of simulations on 

MATLAB software 
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Figure IV.21—Results of simulations on MATLAB software. 

IV.4 Conclusion 

In conclusion, a novel method for enhancing fault diagnosis of bearing systems is 

developed in collaboration with the Mechanical Structures Laboratory MSL team of Polytechnic 

Military School, Bordj Elbahri, Algiers. 

We used acoustic signals obtained from experiments and applied the Complete Ensemble 

Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) to derive the Intrinsic Mode 

Functions (IMF). Calculating the Hilbert envelope spectrum of these IMFs allowed us to identify 

the most energetic IMF, which was then chosen for the subsequent diagnostic analysis.  

Three indicators are computed from the most energetic IMF, accurately reflecting the 

condition of each bearing fault state. To minimize sample dispersion, a division by the standard 

deviation (STD) of the signal is performed in this step. 

Machine learning algorithms dedicated to fault classification are used, such as, Decision 

Tree analysis and Quadratic SVM analysis. The Discriminant Analysis algorithm provided the 
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best result with accuracy of 92.94%. 

The success of this approach holds significant promise for the field of machinery health 

assessment and fault detection.  

 

 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 



 

 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

GENERAL  

CONCLUSION 

 
 
 

 
 
 
 
 
 
 

 
 
 
 

 
 
 

 
 
 
 
 
 
 
 



                                                                           GENERAL CONCLUSION 

 

68 

 

 
 

In this project, we have explored the multifaceted domain of fault diagnosis in rotating 

machinery, emphasizing the integration of advanced diagnostic techniques and machine learning 

algorithms to enhance maintenance practices. Our investigation commenced with a 

comprehensive review of various maintenance philosophies, highlighting the critical importance 

of predictive and preventive maintenance strategies in ensuring the operational efficiency and 

longevity of industrial equipment. 

We delved into the primary faults that afflict rotating machinery, identifying common 

issues such as imbalance, misalignment, and bearing failures. By understanding the kinematic 

frequencies associated with these faults, we laid the groundwork for accurate fault detection and 

diagnosis. Our research progressed into the realm of signal processing techniques, essential for 

analyzing the complex, non-stationary signals generated by rotating machinery. Techniques such 

as the Short-Time Fourier Transform (STFT), Empirical Mode Decomposition (EMD), and 

Continuous Wavelet Transform (CWT) were examined for their efficacy in providing detailed 

insights into the condition of machinery. 

A pivotal aspect of our study involved the application of machine learning algorithms to 

classify and predict machinery faults. This approach demonstrated significant promise in 

enhancing the precision and reliability of diagnostic systems, thus paving the way for more 

effective maintenance interventions. Specifically, in the experimental phase, we utilized acoustic 

signals obtained from experiments and applied the Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise (CEEMDAN) to derive the Intrinsic Mode Functions 

(IMFs). By calculating the Hilbert envelope spectrum of these IMFs, we identified the most 

energetic IMF, which was then used for diagnostic analysis. 

Three indicators were computed from the most energetic IMF, accurately reflecting the 

condition of each bearing fault state. To minimize sample dispersion, a division by the standard 

deviation (STD) of the signal was performed. Various machine learning algorithms were 

employed for fault classification, including Decision Tree analysis and Quadratic SVM analysis. 

The Discriminant Analysis algorithm provided the best result, with an accuracy of 92.94%. 

In conclusion, this project underscores the necessity of integrating advanced diagnostic 

techniques with machine learning to create intelligent maintenance systems. These systems are 

capable of preemptively identifying potential failures, thereby minimizing downtime and 

maintenance costs while maximizing the operational lifespan of critical machinery. The success 

of this approach holds significant promise for the field of machinery health assessment and fault 

detection. Future research should continue to refine these techniques and explore their 



                                                                           GENERAL CONCLUSION 

 

69 

 

applications across a broader range of industrial contexts, ensuring that the advancements in this 

field translate into tangible benefits for various sectors reliant on rotating machinery. 
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 الملخص

يص بي لتشخفي هذه الدراسة، تم تطوير طريقة متقدمة لتحسين تشخيص أعطال أنظمة المحامل. كما تم إجراء تحقيق تجري

لعسكرية امدرسة المحامل تحت سرعات تشغيلية مختلفة باستخدام الإشارات الصوتية من التجارب في مختبر الهياكل الميكانيكية بال

 ي الكامل معلتجريباالمتعددة التقنيات، برج البحري، الجزائر. تمت معالجة الإشارات الصوتية باستخدام تحليل تجميع النمط الذاتي 

التشخيص. تم  ذات أعلى قيم طاقة، والتي استخدمت لأغراض (IMF) لتحديد الدوال النمطية الذاتية (CEEMDAN) الضوضاء التكيفية

ومؤشر  (AMAV) ، قيمة متوسط السعة المطلقة(SRAV) لدوال باستخدام مؤشرات حرجة: قيمة الجذر التربيعي للسعةتحليل هذه ا

مييزي وتحليل ت (SVM) ، وآلات دعم المتجهات التربيعية(DT) استخدمت خوارزميات تصنيف مثل شجرة القرار .(CLI) الخلوص

نيف لمنهجية لتصاودقة  فعالية المنهجية المقترحة. هذا النهج المتكامل يعزز أداء بالتزامن مع معيار المؤشر والتحقق المتبادل، لعرض

ريبي النمط الذاتي التج الكلمات المفتاحية: نظام المحامل، الإشارة الصوتية، تحليل تجميع .أوضاع الأعطال المختلفة في أنظمة المحامل

الكلمات  .تشخيص، التحليل التمييزي، معيار المؤشر، ال(IMF) لذاتية، الدوال النمطية ا(CEEMDAN) الكامل مع الضوضاء التكيفية
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ABSTRACT 

In this study, an advancing method for enhancing fault diagnosis of bearing systems is 

developed. Equally an experimental investigation into the diagnosis of bearing under varying 

operational speeds, utilizing acoustic signals obtained from experiments conducted at the 

Mechanical Structures Laboratory MSL of Polytechnic Military School, Bordj Elbahri, Algiers is 

presented. The raw acoustic signals are preprocessed using the Complete Ensemble Empirical 

Mode Decomposition with Adaptive Noise (CEEMDAN) for the determination of the Intrinsic 

Mode Functions (IMF) containing the highest energy values, which are then employed for 

diagnostic purposes. The IMFs with the most significant energy content are carefully analyzed 

using critical indicators: Square Root Amplitude Value (SRAV), Absolute Mean Amplitude 

Value (AMAV) and Clearance Indicator (CLI). Several classification algorithms, including 

Decision Tree (DT), Quadratic Support Vector Machines (SVM) and a novel the diagnostic 

approach involves the application of Discriminant Analysis (DA) in conjunction with indicator 

standardization and cross-validation are employed in this investigation to showcase the 

effectiveness of the proposed methodology. This integrated approach significantly enhances the 

methodology’s performance and accuracy to classify different fault modes in the bearing 

systems. 

Keywords: Bearing System, Acoustic Signal, Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise (CEEMDAN), Intrinsic Mode Functions (IMF), 

Discriminant Analysis, Indicator Standardization, Diagnosis. 
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