

1

THE PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA MINISTRY

FOR HIGHER EDUCATION AND SCIENTIFIC RESEARCH

IBN KHALDOUN UNIVERSITY TIARET

FACULTY OF APPLIED SCIENCES

ELECTRICAL ENGINEERING DEPARTMENT

Dissertation submitted as a partial fulfilment of the requirements for

Master’s degree

Field: Science & Technology

Sector: Electrical Engineering

Specialty: EMBEDDED SYSTEMS

Theme

Smart Waste Management with IoT

Presented by Supervised by

• CHERFOUH KHALDIA NOURELHOUDA Dr. AHMED SAFA

• GUEFFAF MARWA

Board of Examiners

• Dr. KOWDRIA MOUHAMED MCA Examiner

• Dr. BENBAID HOUARI MCA Precident

• Dr. ADDA BENATTIA ABDERAHMANE MCA Examiner

 Academic year: 2023/2024

2

Acknowledgements

We are very thankful to all the people who helped us with our graduation

project.

First, we are very grateful to our Parents, Family, and Sisters. They loved us

and supported us all these years. If not for them, we would not be here today.

Our friends “Sara, Kacem, Zaki , and Aboubaker “ also helped and

encouraged us a lot. We thank them for being there for us.

we also thank our teacher, Dr. Safa AHMED. He guided us and supported us

throughout the project. He was patient with us, shared his knowledge, and

encouraged us.

We thank the members of the LGEP laboratory for letting us use their

workspace and for their mental support.

We also thank the members of the jury who agreed to read and evaluate our

work.

After continuously seeking divine blessings from ALLAH, we were given the

help, health, and strength to start and finish this project. Finally, we thank all

the professors and people who supported us in any way during this project.

Their encouragement meant a lot to us.

3

Table of Contents

General Introduction ... 7

CHAPTER I:Waste Management Using IoT .. 8

I.1 Introduction ... 9

I.2 Literature Review ... 9

I.2.1. Existing Research on Waste Management and IoT .. 10

I.2.2 Studies on Load Cells .. 10

I.2.3 MQTT Communication Technologies ... 11

I.2.4 Bin Status Monitoring .. 12

I.2.5 Gaps and Challenges in Current Approaches .. 13

I.2.5.1 Data Reliability and Accuracy .. 13

I.2.5.2 Infrastructure Requirements for Scalability .. 13

I.2.5.3 Cost and Implementation .. 13

I.2.5.4 Standardization and Interoperability ... 13

I.2.5.5 Energy Utilization ... 14

I.2.5.6 Data Privacy and Security ... 14

I.2.5.7 Technical and Human Resource Challenges Technical Expertise 14

I.2.5.8 Environmental and Physical Challenges ... 14

I.2.5.9 Integration with Existing Systems .. 15

I.3 Conclusion .. 15

CHAPTER II:System Overview ... 16

II.1 Introduction ... 17

II.2 Design and Implementation of an IoT-Based Smart Waste Management System 17

II.2.1.2 Data Flow .. 19

II.2.1.2.1 Load Cell Measurements .. 19

II.2.1.2.2 MQTT Communication .. 19

II.2.1.2.3 Central Processing and Analytics ... 19

II.2.1.2.4 User Interaction .. 19

II.2.1.3 Communication Protocols ... 20

II.3 Conclusion ... 21

CHAPTER III:Hardware & Software ... 22

III.1 Introduction .. 23

III.2 Hardware Implementation .. 23

III.2.1 Boards ... 23

III.2.1.1 Raspberry Pi Pico W F ... 23

III.2.1.2 Raspberry Pi 3 model B ... 26

III.2.2 Load Cell Connection and Calibration .. 32

III.2.3 Wiring and Power Considerations ... 33

III.2.3.1 Wiring Considerations .. 33

III.2.3.2 Power Considerations ... 33

III.2.4 Integration with the Waste Bin .. 34

III.2.4.1 Load Cell Placement .. 34

III.2.4.2 Load Distribution ... 34

III.2.4.3 Protecting the Electronics ... 35

III.2.4.4 Accessibility ... 35

III.2.4.5 Maintenance and Calibration .. 35

III.2.4.5.1 Regular Calibration ... 35

III.2.4.5.1 Maintenance Access .. 35

file:///C:/Users/packardbell/Desktop/test%20final.docx%23_Toc169710118
file:///C:/Users/packardbell/Desktop/test%20final.docx%23_Toc169710119
file:///C:/Users/packardbell/Desktop/test%20final.docx%23_Toc169710137
file:///C:/Users/packardbell/Desktop/test%20final.docx%23_Toc169710138
file:///C:/Users/packardbell/Desktop/test%20final.docx%23_Toc169710148
file:///C:/Users/packardbell/Desktop/test%20final.docx%23_Toc169710149

4

III.3 Software Integration ... 35

III.4 Software Development ... 35

III.4.1 Code Implementation .. 36

III.4.1.1 Raspberry Pico Firmware for Load Cell Data Acquisition 39

III.4.1.2 MQTT Client Code for Data Transmission .. 42

III.4.1.2 .1 Overview of MQTT in our project ... 42

III.4.1.2.2 Overview of Setting Up Mosquitto MQTT Broker on Raspberry Pi 42

III.4.1.2.3 Setting Up the MQTT Client ... 43

III.3.4 User-interface .. 44

III.5 Data Processing and Decision Logic .. 46

III.5.1 Weight Calculations .. 47

III.5.2 Bin Status Determination .. 48

III.5.3 Decision-Making Rules for Operators .. 48

III.6 User Interface Design ... 50

III.6.1 Real-time Bin Status Display .. 50

III.6.2 Historical Data Visualization .. 50

III.6.3 Alerts and Notifications .. 53

III.7 Conclusion .. 54

CHAPTER IV:Testing and Validation .. 55

IV.1 Introduction .. 56

IV.2 Testing and Validation ... 56

IV.3 Results and Discussion... 60

IV.4 Conclusion and Future Work ... 65

General Conclusion .. 68

Abstract ... 71Error! Bookmark not defined.

Bibliography ... 71

file:///C:/Users/packardbell/Desktop/test%20final.docx%23_Toc169710185
file:///C:/Users/packardbell/Desktop/test%20final.docx%23_Toc169710186

5

List of Figures

Figure I. 1: a guide on IoT-powered smart waste management practices 10

Figure I. 2: smart waste management using IoT ... 12

Figure I. 3: IoT waste management solution ... 15

Figure II. 1: Block Diagram of the proposed System .. 17

Figure II. 2: Flowchart for our system waste management ... 19

Figure II. 3: how works our smart wastebins .. 20

Figure II. 4 Benefits of Smart Waste Management ... 21

Figure III. 1: Raspberry pi pico w ... 23

Figure III. 2: The pinout of the Pico W Rev3 board.. 26

Figure III. 3: Raspberry pi 3 model b .. 26

Figure III. 4: load cell .. 27

Figure III. 5: load cell sensor ... 27

Figure III. 6: circuit of load cell .. 28

Figure III. 7: More in-depth diagram of strain gauges on bar load cells when force is

applied ... 28

Figure III. 8 wires of sensor... 30

Figure III. 9: driver Hx711 24 bit .. 30

Figure III. 10: circuit of hx711 .. 31

Figure III. 11: Excitation & Output of Module ... 31

Figure III. 12: schema of our system ... 32

Figure III. 13: mechanism 3D printed .. 34

Figure III. 14: load cell with 3D printed ... 35

Figure III. 15: VS Code ... 37

Figure III. 16: Thonny IDE.. 37

Figure III. 17: rpi pi pico w .. 37

Figure III. 18: Thonny option .. 38

Figure III. 19: figure showing how install micropaython .. 38

Figure III. 20: MicroPyhton in rpi pi pico w ... 38

Figure III. 21: MQTT Publish Subscribe .. 40

Figure III. 22: how two devices publish & subscribe in the same topic.............................. 40

Figure III. 23: MQTT Broker .. 41

Figure III. 24: mosquitto configuration ... 43

Figure III. 25: Mosquitto Publish/Subscribe ... 43

Figure III. 26: Python Tkinter Widgets ... 44

Figure III. 27: Efficient waste management .. 49

Figure III. 28: User Interface Design Considerations for our Smart Waste Management

System ... 50

Figure IV. 1: tare of the known weight ... 57

Figure IV. 2: Electronic scale .. 57

Figure IV. 3: Testing with 3.3v used Power Supply .. 57

Figure IV. 4: GUI’s of Dustbin’s when empty or full, nearly full 59

Figure IV. 5: plot value over time ... 60

Figure IV. 6: First test ... 60

Figure IV. 7: Second test ... 61

Figure IV. 8: Third test .. 61

Figure IV. 9: bin when low level .. 57

file:///C:/Users/packardbell/Desktop/test.docx%23_Toc169467150

6

Figure IV. 10: bin when nearly full ... 57

Figure IV. 11:bin when full level .. 62

Figure IV. 12: result of bin is at low level .. 60

Figure IV. 13: result of bin is at nearly full ... 60

Figure IV. 14: result of bin is at full .. 61

Figure IV. 15: result of csv data .. 61

Figure IV. 16: result of graph weight over time .. 65

Figure IV. 17: Smart garbage with iot .. 66

 List of Tables

Table I: description component for our system ... 18

Table II: Explain how MQTT works in our smart wastebins .. 20

Table III: widgets of Tkinter ... 45

Table IV: widgets of CustumTkinter ... 46

Table V: Description of Data Processing .. 47

7

General Introduction

Public health and environmental policies are connected. Public authorities need to have a

smart waste disposal system. This system should be cost-effective. It should also improve

public health, local environment quality, and trash transportation.

Smart urban waste management has emerged by combining traditional IT systems with remote

communication systems. Many scholars have suggested using low-power wide-area networks

and data layers to transfer waste system data. They have also looked at data management

technologies. Some studies talk about digital technologies but not specifically waste

management information. However, these studies are still related.

This memoir look at the possibilities and challenges of disposing urban trash. It considers the

currently available functions and technologies. To handle the waste, we have a fleet of trucks.

We discuss transporting garbage using Internet of Things (IoT) ideas. We present the concept

of Smart Waste Management (SWM) for waste treatment.

Cities face increasing waste management problems due to urbanization and population growth.

Effective waste management shows how well public authorities handle trash. Removing waste

from public and urban areas is complicated. It requires different levels of public funding.

Improper waste disposal impacts the environment and public health. So waste transportation is

very important.

Economic analysis shows the link between environmental sustainability and public health.

Addressing urban cleaning meets public health goals. It reduces health hazards from improper

waste disposal. In the past, waste segregation lacked effective technology and options.

Now, IoT-based technology allows easy adoption and monitoring of waste management in

smart cities. This leads to better quality of life and fewer health hazards due to lower pollution.

The smart waste system provides real-time information on garbage bin status. It lowers costs

and enables efficient waste collection.

Waste management involves collecting, transporting, and disposing of garbage, sewage, and

other societal waste. Waste accumulates in urban areas from homes, businesses, hotels,

hospitals, and schools. Proper waste management is crucial for keeping smart cities clean and

protecting the environment and public health.

8

CHAPTER I:

 Smart Waste Management Using

IoT

CHAPTER I Smart Waste Management Using IoT

9

I.1 Introduction

Waste management has emerged as a critical issue in urban areas, especially in developing

countries. As an undesirable byproduct of human activity, waste processing presents significant

challenges for city authorities. Over the past decade, the volume of waste has increased at an

alarming rate, posing threats to both the environment and human health. Unmanaged waste can

contaminate soil and groundwater, leading to disease proliferation and air pollution.

Waste management involves not only the handling of waste but also converting trash into

valuable resources. It is a service essential for every homeowner and business owner, allowing

for the effective and safe disposal of outdated items.

Echoing Peter Drucker's words [1], "you can’t manage what you do not measure," it is

evident that accurate data is vital in waste management. Currently, many waste collection

systems are outdated, leading to excessive or insufficient servicing of public space bins. In fact,

over-servicing of these bins can be as high as 81%, which results in unnecessary labor and fuel

costs, and contributes significantly—up to 60%—to higher carbon emissions due to

inefficiently planned routes and resultant traffic.

Waste management systems encompass all activities and protocols necessary to handle

waste from its generation to disposal. This includes transportation, disposal, regulation, and

oversight.

Effective waste management is crucial for protecting the environment and ensuring public

health and safety. The challenges of waste disposal sites and the increasing global population

demand that we address this issue urgently. Poor waste management leads to increased pollutant

emissions, ozone layer depletion, and emerging diseases, underscoring the need for robust

waste management systems.

This memoir aims to design and implement an IoT-based solution for efficient waste

management. By harnessing the power of the Internet of Things (IoT), the proposed system

seeks to overcome the inefficiencies in current waste management practices and the lack of

real-time monitoring. The IoT solution will enable real-time monitoring of waste levels in bins,

optimize transportation routes, and provide valuable data for decision-making.

The design and implementation of this IoT-based solution have the potential to

revolutionize how cities and municipalities manage their waste, leading to improved efficiency,

cost savings, and environmental benefits. If successful, this approach could serve as a model

for other cities and municipalities aiming to optimize their waste management practices.

 I.2 Literature Review

A smart waste management system for places with sparse house populations was proposed

in the most current work. This may be achieved by setting up an effective waste management

system and a central base station that transfers data garbage levels from RF transmitter nodes.

Garbage instances would employ a stop-and-shop-based routing protocol to send knowledge-

containing messages.

Therefore, by anticipating when a rubbish transportation container will fill up, this method

sought to improve garbage transporters efficiency and lessen the labor burden in remote regions

CHAPTER I Smart Waste Management Using IoT

10

with low population density. Waste was identified locally, and the rubbish transportation

system's operation was improved.

I.2.1. Existing Research on Waste Management and IoT

Internet of Things in Waste Management Having a trash can or bins on every corner of a

city, where residents may dispose of their garbage, is one of the most popular techniques to

waste management. To make recycling easier, different trash types—such as paper and glass—

often have their own containers. The fact that the container frequently overflows and

discourages people from throwing away their garbage in favor of leaving it on the ground near

the bin is one of the main issues with this approach. This is referred to as the overflow issue.

Having bins that can wirelessly communicate their fill status to a centralized system is one way

that IoT may help with this. Not only can it monitor waste, but it can also be used to

communicate with the trash compactors that are automatically installed in each bin and

activated when the bin is full. This means that fewer trips are made by the trash trucks to pick

up waste, which can reduce the amount of CO2 emissions that are produced during trash

collection. The Internet of Things (IoT) offers the possibility of connecting people, processes,

data and things around us through sensors, networks and intelligence[2]. IoT has found huge

potential uses in waste management system and utilities[3]. The sensors used within IoT will

enable a range of new capabilities that are not currently possible or economic[4]. Through

sensors, networks, and intelligence, the Internet of Things (IoT) provides the opportunity to

link people, processes, data, and objects in our environment. IoT has enormous potential

applications in utilities and waste management systems. Many new capabilities that are not now

feasible or cost-effective will be made possible by the sensors utilized in the Internet of Things.

The worldwide waste management business is highly fragmented, with the four biggest players

(Waste Management, Republic Services, Veolia Environment, and Suez Environment) holding

a combined market share of just around 25%. This helps to explain the size of the waste

management market. If a single business or nation is able to capture a sizable portion of the

market, this indicates that there is a big market potential.

Figure I. 1 a guide on IoT-powered smart waste management practices

I.2.2 Studies on Load Cells

Load cells are a crucial component in many monitoring and measurement applications,

including waste management systems. These sensors are designed to accurately measure the

CHAPTER I Smart Waste Management Using IoT

11

weight or force exerted on them, making them ideal for detecting the fill levels of garbage bins

or containers.

Several studies have explored the use of load cells in waste management scenarios. Zhang

et al. (2015) conducted research on the integration of load cells into a smart garbage monitoring

system. Their study demonstrated the effectiveness of these sensors in providing real-time data

on the weight of waste within bins, enabling more efficient collection routes and schedules.

Similarly, Mburu et al. (2019) investigated the use of load cell technology in monitoring

the fill levels of dumpsters. Their findings highlighted the ability of load cells to reliably detect

when bins are nearing full capacity, allowing for timely collection and preventing overflow

situations.

Beyond waste management, load cells have found applications in various other industries,

such as industrial automation, weighing systems, and force measurement. Their robustness,

accuracy, and versatility make them a popular choice for monitoring and control applications.

One notable advantage of load cells is their compatibility with Internet of Things (IoT)

systems. By integrating load cell data into an IoT platform, continuous remote monitoring and

analysis become feasible. This enables real-time insights into the weight or force measurements,

facilitating prompt detection of anomalies or critical situations. Furthermore, load cell data can

be combined with other sensor readings, such as motion detectors or fill-level sensors, to

provide a comprehensive understanding of the monitored system's state. This multi-sensor

approach enhances the overall reliability and robustness of the monitoring solution.

As technology continues to evolve, researchers and engineers are exploring innovative

ways to enhance the performance and capabilities of load cells. Advancements in sensor design,

signal processing, and data analysis techniques hold the potential to further improve the

accuracy, reliability, and ease of integration of these sensors in various applications.

 I.2.3 MQTT Communication Technologies

MQTT is more reliable and efficient, allowing for the simultaneous notification of multiple

devices with minimal data loss. Therefore, MQTT was used throughout the project to facilitate

IoT connectivity. This suggests that ongoing initiatives to manage digital trash and create smart

cities are responsive in terms of their capacity to reduce landfill waste, recycle garbage, and

utilize waste sustainably.

Through the utilization of effective communication tools, the Internet of Things (IoT) can

permit the negotiation of several endpoints that are discreetly scattered. These tools serve as a

linking medium between other applications and programs. However, a privately held

Transmission Control Protocol (TCP) architecture provides the flexibility of transferring data

between different devices simply and securely through the usage of TCP sockets in Internet of

Things connections. But among the cloud technologies we have access to include AMQP,

ADMQ, and MQTT. Additionally, several forms of quality of service (QoS) are decided by the

reimbursement on this particular occasion.

The current study is exclusive to this field of study, and its objective is to provide

information for efficient waste management and advancements in the future of MQTT

communication technologies. Because of these specific reasons, MQTT needed to be assessed.

CHAPTER I Smart Waste Management Using IoT

12

These included integrated waste management, its location in relation to contemporary smart

cities, and the design and functionality of the WebSocket communication protocol.

In addition to this, its capacity to ensure reliability, flexibility, and consistency in message

transmission is what sets it apart. MQTT is simple to use, lightweight, and adaptable to any

software.

Due to a lack of contemporary waste control technology and inadequate consideration of

the data collecting and assessment system throughout the strategic waste management decision-

making process, Furthermore, this advancement on the Internet of Things has made it possible

to use an effective replacement for current waste management systems to improve waste control

in smart cities[5].

I.2.4 Bin Status Monitoring

It is observed that garbage is frequently ignored, not cleaned in a timely manner, and that

improper routing causes delays and fuel waste. Therefore, real-time monitoring will assist in

obtaining the most recent data on garbage collection. If the appropriate bins are not taken out

of the garbage containers, a lot of money will be squandered. Cans of garbage that are not

covered and are just partially filled also smell. Therefore, using containers to their maximum

potential helps save money. Regular garbage clearing also helps to minimize spills and odors

in the surrounding area.

One of the most important components of a smart waste management system is the tracking

of the bins in a city or area. This function is primarily implemented in urban areas, educational

institutions, healthcare facilities, and commercial buildings that have extensive internal waste

management systems. Effective waste management involves clearing garbage as soon as it

reaches a threshold, collecting waste on a scheduled or need-based basis, and—most

importantly—keeping track of the state of the bins in real time[6]

The garbage is kept in the bins for a predetermined amount of time and is often loaded with

a variety of waste materials. Acquiring up-to-date information on the trash cans not only lowers

the expenses associated with the waste removal procedure but also helps prevent garbage from

spilling out of the cans, which contributes to environmental damage. Aslam and Sami Ullah

(2020) state that it not only deteriorates the place's cleanliness but also could worsen the

surrounding area's visual appeal. Regular garbage collection, appropriate disposal, and trash

clearing all contribute to excellent hygiene.

Figure I. 2 smart waste management using IoT

CHAPTER I Smart Waste Management Using IoT

13

 I.2.5 Gaps and Challenges in Current Approaches

 While IoT-based waste management systems have made significant advancements, several

crucial obstacles remain to be overcome for widespread adoption and success. Addressing these

issues is imperative, as they have the potential to limit the effectiveness, scalability, and

sustainability of these systems. The following sections elaborate on the main shortcomings and

challenges associated with current approaches to IoT-based waste management.

 I.2.5.1 Data Reliability and Accuracy

 Sensor Maintenance and Accuracy: Ensuring the quality and reliability of sensor data is

one of the biggest challenges. For instance, load cells are delicate instruments that require

regular calibration and maintenance to maintain their accuracy. Environmental factors such as

temperature fluctuations, humidity, and physical shocks can lead to inaccurate weight readings.

Protocols for routine maintenance and calibration are essential, but they can be expensive and

labor-intensive.

 Data Integrity and Consistency: Ensuring the reliability and consistency of data gathered

from various sensors is crucial. Inconsistent data can lead to poor decisions, such as inefficient

routing of garbage collection vehicles or missed pickups. Implementing robust data validation

and error-checking procedures is necessary to ensure data integrity.

 I.2.5.2 Infrastructure Requirements for Scalability

 Logistic and Technical Challenges: Scaling up IoT-based waste management systems to

encompass large urban areas presents logistical and technical obstacles. Widespread

implementation requires a network of sensors, data processing units, and communication

modules as infrastructure. In a large city, this infrastructure needs to be established and

maintained with careful planning and significant funding.

 Network Congestion and Latency: These issues may exacerbate as more devices connect

to the network. Real-time monitoring and decision-making rely on the communication

network's ability to handle the increased traffic without experiencing significant delays.

 I.2.5.3 Cost and Implementation

 Initial Setup and Maintenance Costs: Implementing an IoT-based waste management

system can be prohibitively expensive, especially for smaller municipalities or underdeveloped

regions. The initial setup involves purchasing and installing sensors, communication modules,

and data processing equipment. Ongoing maintenance costs related to system updates, repairs,

and calibration must also be considered.

 Return on Investment (ROI): Adoption of these technologies hinges on demonstrating a

clear ROI. Waste management companies and municipalities must be convinced that the

benefits—such as reduced operating costs and environmental impact—outweigh the upfront

and ongoing expenses.

 I.2.5.4 Standardization and Interoperability

 Lack of Standard Protocols: A major issue is the absence of common protocols and

interfaces across different IoT devices and platforms. The use of proprietary communication

protocols by various manufacturers makes it challenging to integrate devices from multiple

CHAPTER I Smart Waste Management Using IoT

14

vendors into a single, functional system. Well-defined interfaces and protocols are essential for

ensuring seamless communication and integration, as highlighted by [Tan and Lim (2019)].

 Interoperability Challenges: Ensuring that the various components of the IoT ecosystem

can interoperate with one another is crucial. This involves ensuring that data processing devices,

communication modules, and sensors from different manufacturers can successfully exchange

and communicate with each other.

 I.2.5.5 Energy Utilization

 High Energy Requirements for Communication Devices and Sensors: Many IoT devices,

particularly those deployed outdoors, operate on batteries. Excessive energy consumption could

necessitate frequent battery replacement or recharging, which is not always feasible.

emphasizes the need for energy-harvesting technologies and energy-efficient designs to sustain

IoT-based waste management systems.

 Sustainability: Developing energy-efficient hardware and software solutions is essential

for the long-term viability of IoT-based waste management systems. Energy-harvesting

technologies, such as solar energy, can alleviate the issue but increase the system's complexity

and cost.

 I.2.5.6 Data Privacy and Security

 Data Security: Ensuring the security of data transmitted over IoT networks is critical. IoT

platforms can be vulnerable to cyberattacks, including unauthorized access and data breaches.

Robust authentication and encryption procedures are necessary to secure sensitive data.

 Privacy Concerns: IoT-based waste management systems often collect data on household

waste habits, which may raise privacy concerns. Ensuring the anonymization and responsible

use of this data is imperative to maintain public trust and comply with data protection

regulations.

 I.2.5.7 Technical and Human Resource Challenges Technical Expertise

 Implementing and maintaining IoT-based systems requires technical expertise. Waste

management organizations and municipalities may face challenges in attracting and retaining

qualified personnel to operate these systems.

 Awareness and Training: Operators and maintenance staff must receive adequate training

to manage IoT systems effectively. This includes the ability to operate the technology,

troubleshoot issues, and analyze data to make informed decisions.

 I.2.5.8 Environmental and Physical Challenges

 Extreme Conditions: IoT devices installed in outdoor waste bins must withstand

challenging environmental conditions such as extreme temperatures, rain, dust, and physical

impacts. Designing equipment resilient enough to endure these conditions without frequent

failures is quite challenging.

 Physical Damage and Vandalism: Waste bins and the associated IoT devices are vulnerable

to physical damage and vandalism. Ensuring the security and durability of these devices is

essential for their long-term operation.

CHAPTER I Smart Waste Management Using IoT

15

 I.2.5.9 Integration with Existing Systems

 Compatibility with Legacy Systems: Many communities already have existing waste

management systems in place. Integrating new IoT-based solutions with current infrastructure

and processes can be challenging, requiring careful planning and execution.

 Change Management: Implementing new technology often necessitates changes in

organizational workflows and procedures. Effective change management practices are crucial

for facilitating the adoption of new systems and ensuring a smooth transition.

IoT-based waste management systems have come a long way, but there are still a number

of imp.

Figure I. 3 IoT waste management solution

I.3 Conclusion

efficient waste management techniques are crucial for protecting the environment,

safeguarding public health, and fostering sustainable development. The increasing volume of

waste and its associated issues, such as pollution and health risks, cannot be effectively

addressed by traditional waste management methods.

On the other hand, IoT technology integration in waste management systems provides a

game-changing solution that boosts productivity, lessens environmental effect, and promotes

sustainable practices. Real-time garbage level monitoring, and better resource use are made

possible by IoT-based smart waste management systems. These features result in major

advantages including lower operating costs and more efficiency.

Urban environments are changing because of the confluence of waste management and IoT

technology, which is simplifying garbage, and creating a sustainable culture. Cities may

improve garbage, minimize overflow, and allocate resources efficiently by utilizing IoT-driven

waste management systems. These actions will ultimately contribute to a cleaner, greener, and

more sustainable future.

In summary, the integration of IoT technology offers a promising solution to revolutionize

waste management, enhance efficiency, and promote sustainable practices for a cleaner and

healthier environment. Traditional waste management practices, on the other hand, fall short in

addressing the challenges posed by increasing waste production.

16

CHAPTER II:

System Overview

CHAPTER II System Overview

17

II.1 Introduction

In this chapter, we will go over the system architecture of our IoT-based monitoring system

in detail. The architecture employs a network of interconnected devices to efficiently gather,

transmit, and display data from a load cell sensor.

The key components of the system include Raspberry Pi, Raspberry Pi Pico, a load cell, an

MQTT broker, and a user interface.

II.2 Design and Implementation of an IoT-Based Smart Waste Management

System

Block diagram showing the different components used in the Smart Dustbin system

Figure II. 1 Block Diagram of the proposed System

Our smart waste management system comprises several key components:

Sensors and Devices:

• Load Cells: An electronic sensor that We deploy it within waste bins to measure the

weight of the waste. These sensors provide real-time data on bin fill levels.

• Raspberry Pi Pico W: A small and cost-effective development board that runs on the

Micro Python operating system. Each waste bin is equipped with a Raspberry Pi Pico W

microcontroller, which interfaces with the load cell. The Raspberry Pico processes weight

measurements and communicates with the central system.

• MQTT Broker: We use the MQTT (Message Queuing Telemetry Transport) protocol

for efficient communication between devices. An MQTT broker manages data exchange

among sensors, microcontrollers, and the central processing unit (CPU).

Central Processing Unit (CPU):

• Raspberry Pi: A single-board computer more powerful than Raspberry Pi Pico and

running on the Raspbian operating system. The Raspberry Pi acts as the brain of our system.

It subscribes to MQTT topics, receives data from multiple bins, and performs data

aggregation and analytics.

• Data Processing: The CPU aggregates weight data, calculates fill percentages, and

predicts when bins will be full. It also stores historical data for trend analysis.

CHAPTER II System Overview

18

• User Interface and Alerts: A graphical interface that allows users to view information

about the status of the waste container. This interface can be a:

➢ Alerts: Residents receive notifications (e.g., “Bin empty!”) via the interface,

allowing them to dispose of waste promptly.

It is indeed a possibility to implement route optimization and a web/mobile

interface in the Raspberry Pi-based smart waste management system. The Raspberry Pi's

capabilities make it suitable for running route optimization algorithms and hosting a user-

friendly web or mobile interface.

➢ Route Optimization: Using algorithms, the system can optimize waste collection

routes based on real-time data from the bins. This reduces travel time, fuel consumption,

and operating costs for the waste management operations.

➢ Web/Mobile Interface: Waste management personnel and residents can access a

user-friendly interface, either through a web application or a mobile app. This interface can

display real-time bin fill levels, collection schedules, and alerts, enabling efficient

monitoring and communication.

The Raspberry Pi's computing power and ability to run Python and other programming

languages make it a viable platform for implementing these features. With the appropriate

software development and integration with the existing system components, route optimization

and a web/mobile interface can be introduced to enhance the overall efficiency and user

experience of the smart waste management system.

Component Description
Role in Smart Waste

Management

Raspberry Pi

Pico W

A microcontroller with Wi-Fi

capability

Measures weight using load cell

and sends data

Load Cell

HX711
A precision weight sensor

Provides accurate weight

measurements

Raspberry Pi 3
A higher performance

computer module

Receives weight data and

processes it

IoT Platform

MQTT

A messaging protocol for the

Internet of Things

Facilitates communication

between devices

Table I: description component for our system

CHAPTER II System Overview

19

II.2.1.2 Data Flow

II.2.1.2.1 Load Cell Measurements

• The load cell continuously measures the weight of waste in the bin.

• Raspberry Pico reads this data and converts it into a digital signal.

II.2.1.2.2 MQTT Communication

• Raspberry Pico publishes the data to an MQTT topic (e.g., “waste_bins”).

• The MQTT broker receives the data and manages subscriptions.

• Waste management personnel and other subscribers can access this topic.

II.2.1.2.3 Central Processing and Analytics

• Raspberry Pi subscribes to the “waste_bins” topic.

• It receives real-time data from all bins.

• The CPU processes data, calculates fill levels, and predicts when bins need collection.

II.2.1.2.4 User Interaction

• Residents and waste management personnel access the user interface.

• They view bin status, collection schedules, and alerts.

• Personnel optimize collection routes based on real-time data.

The figure below shows the overall flowchart diagram of the implemented garbage

monitoring system.

Figure II. 2: Flowchart for our system waste management

CHAPTER II System Overview

20

II.2.1.3 Communication Protocols

The system employs various communication protocols to ensure efficient and dependable

data transfer:

MQTT (Message Queuing Telemetry Transport): A lightweight messaging protocol

suitable for IoT applications, facilitating the publish-subscribe model for seamless data transfer

between the Raspberry Pi Pico, MQTT broker, and Raspberry Pi.

Raspberry Pico publishes information about MQTT headers (e.g., "trash bins").

An MQTT client receives data and manages subscribers.

Wi-Fi: Enables wireless communication between devices, allowing the Raspberry Pi and

Raspberry Pi Pico to connect with the MQTT broker over a wireless network, providing

seamless communication between devices, promoting flexibility and ease of deployment.

Operation Description

Publish Raspberry Pi Pico W publishes the weight data using load cell HX711

Subscribe Raspberry Pi 3 subscribes to receive the published weight data

Analysis
Raspberry Pi 3 analyzes the received data to determine if the bin is empty

or full

Notification Raspberry Pi 3 sends data or alerts based on the analysis

Table II: Explain how MQTT works in our smart wastebins

Figure II. 3: how works our smart wastebins

CHAPTER II System Overview

21

II.3 Conclusion

 The system architecture described here leverages the strengths of the Raspberry Pi and

Raspberry Pi Pico w, combined with the efficiency of MQTT and Wi-Fi protocols, to create a

robust and scalable IoT solution. This architecture ensures accurate data acquisition, reliable

data transmission, and user-friendly data display, making it ideal for various monitoring

applications.

Our IoT-based smart waste management system offers several benefits:

1. Easy to implement: The system uses readily available and easy-to-use components.

2. Scalability: Additional components can be added to meet specific requirements.

3. Adaptability: The system can be customized to fit different scenarios.

4. Cost-effective: The system uses cost-effective components.

5. Reliable: The MQTT protocol provides a reliable connection for data transmission.

6. Maintainable: The system is easy to maintain and update as needed, including reduced

operational costs, lower carbon emissions, and cleaner streets. By integrating

technology, we can create more efficient waste collection processes, contributing to

sustainable urban environments. As cities continue to grow, such innovative solutions

become essential for effective waste management.

Figure II. 4 Benefits of Smart Waste Management

22

CHAPTER III:

Hardware & Software

CHAPTER III Hardware & Software

23

III.1 Introduction

This chapter lays the groundwork for the project's software and hardware. It introduces

essential tools for development, including the Raspberry Pi Pico W and Micro Python for code

upload. We will explore development environments like Thonny.

 Additionally, the chapter covers communication protocols like MQTT and the Mosquitto

broker on Raspbian. On the hardware side, We will explore the Raspberry Pi Pico W and its

integration with the HX711 load cell, a system designed to measure and monitor garbage weight

in real-time. This comprehensive introduction equips you with the software and hardware

knowledge needed for building the smart garbage monitoring system in subsequent chapters.

III.2 Hardware Implementation

In this section, we focus on the implementation of a smart garbage monitoring with weight

sensing. We explore the utilization of hardware components, including using raspberry Pi Pico

W HX711, and load cell is a system designed to measure and monitor the weight of garbage in

real-time.

III.2.1 Boards

In our project for smart garbage management systems, we are utilizing the Raspberry Pi

Pico W, and the HX711 load cell. These components provide essential capabilities for data

acquisition, processing, communication, and control, enabling efficient monitoring and

management of waste levels. The Raspberry Pi Pico W serves as the central processing unit,

interfacing with the HX711 load cell to measure the weight of the garbage, with rpi pi 3 Wi-Fi

connectivity, allows for remote data transmission and system updates, ensuring real-time

tracking and optimization of waste collection services.

III.2.1.1 Raspberry Pi Pico W [7]

Raspberry Pi Pico W is a microcontroller board based on the Raspberry Pi RP2040

microcontroller chip realized in 2022.

Figure III. 1 Raspberry pi pico w

Raspberry Pi Pico W is a cost-effective development with a 2.4GHz wireless interface.

CHAPTER III Hardware & Software

24

A. Specification and Features:

 ➢ RP2040 microcontroller with 2MB of flash memory

 ➢ On-board single-band 2.4GHz Wireless interfaces (802.11n)

➢ Micro USB B port for power and data, flash reprogramming

➢ 40 pins 21mmx51mm 'DIP' style PCB with 0.1" through-hole pins also with edge

castellations.

➢ 26 multi-function 3.3V GPIO including 23 digital-only, with 3 ADC capable

➢ 3-pin Arm serial wire debug (SWD) port

➢ flexible power supply options via micro-USB, external supplies or batteries

➢ High quality, low cost, high availability

➢ Comprehensive SDK, software examples and documentation

➢ Form factor: 21 mm × 51 mm

➢ CPU: Dual-core Arm Cortex-M0+ @ 133MHz

➢ Memory: 264KB on-chip SRAM; 2MB on-board QSPI flash

➢ Interfacing: 26 GPIO pins, including 3 analogue inputs

➢ Peripherals:

 • 2 × UART

 • 2 × SPI controllers

 • 2 × I2C controllers

 • 16 × PWM channels

 • 1 × USB 1.1 controller and PHY, with host and device support

 • 8 × PIO state machines

➢ Connectivity: 2.4GHz IEEE 802.11b/g/n wireless LAN, on-board antenna Bluetooth 5.2

 • Support for Bluetooth LE Central and Peripheral roles

 • Support for Bluetooth Classic Input power: 1.8–5.5V DC Operating temperature:

 -20°C to +70°C

➢ Input power: 1.8–5.5V DC

➢ Operating temperature: -20°C to +70°C [8]

B. Pico W pinout:

There are a few RP2040 GPIO pins that are utilized by the board internally:

• GPIO29 OP/IP wireless SPI CLK/ADC mode (ADC3) to measure VSYS/3.

CHAPTER III Hardware & Software

25

• GPIO25 OP wireless SPI CS - when high also enables GPIO29 ADC pin to read

VSYS.

• GPIO24 OP/IP wireless SPI data/IRQ.

• GPIO23 OP wireless power on signal.

• WL_GPIO2 IP VBUS sense - high if VBUS is present, else low.

• WL_GPIO1 OP controls the on-board SMPS power save pin (Section 3.4).

• WL_GPIO0 OP connected to user LED.

Aside from the GPIO and ground connections, the main 40-pin interface has seven extra

pins:

• VBUS is the micro-USB input voltage, which is attached to the micro-USB port's

pin 1. The nominal voltage is 5V (or 0V when USB is not connected or powered).

• VSYS The on-board SMPs create 3.3V for the RP2040 and its GPIO using the main

system input voltage, which ranges from 1.8V to 5.5V.

• 3V3_EN connects to the on-board SMPS enabling pin and is pulled high (to VSYS)

with a 100kΩ resistor. To disable 3.3V and power off the RP2040, short this pin

low.

• 3V3 is the main 3.3V supply to the RP2040 and its I/O, which is generated by the

on-board SMPS. This pin can power external circuitry, with a maximum output

current depending on the RP2040 load.

• ADC_VREF is the ADC power supply (and reference) voltage, and is generated on

Pico W, if improved ADC performance is needed, this pin can be utilized with an

external reference.

• AGND is the ground reference for GPIO26-29. There is a separate analogue ground

plane running under these signals and terminating at this pin. This pin can be linked

to digital ground in cases where the ADC is not in use, or its performance is not

crucial.

• RUN is the RP2040 enable pin and has an internal (on-chip) pull-up resistor to 3.3V

of about ~50kΩ. To reset RP2040, short this pin low.

In conclusion, there are six test points (TP1-TP6) that can be accessed as necessary, such

as when utilizing the module as a surface mount one. They're:

• The ground known as TP1 (close-coupled ground for differential USB signals).

• TP3 USB DP, TP2 USB DM.

• TP4 WL_GPIO1/SMPS PS pin (do not use).

• TP5 WL_GPIO0/LED (usage not advised).

• TP6 BOOTSEL.

CHAPTER III Hardware & Software

26

III.2.1.2 Raspberry Pi 3 model B

The Raspberry Pi 3 Model B is a significant upgrade from the previous models. It was

released in February 2016 and is the earliest model of the third-generation Raspberry Pi [9]

Figure III. 3 Raspberry pi 3 model b

A.Specification:

➢ Processor: Broadcom BCM2837B0, Cortex-A53 64-bit SoC @ 1.4GHz

➢ Memory: 1GB

➢ Connectivity:

 • 2.4 GHz and 5 GHz IEEE 802.11b/g/n/ac wireless LAN, Bluetooth 4.2, BLE

 • Gigabit Ethernet over USB 2.0 (maximum throughput 300Mbps)

 • 4 × USB 2.0 interface

Figure III. 2 The pinout of the Pico W Rev3 board

CHAPTER III Hardware & Software

27

 ➢ Video and sound: • MIPI CSI camera port

 • 1 x full size HDMI

 • MIPI DSI display port

 • 4 pole stereo output and composite video port

➢ Multimedia: H.264, MPEG-4 decode (1080p30); H.264 encode (1080p30); OpenGL

ES 1.1, 2.0 graphics ➢ SD card support: Micro SD format for loading operating system

and data storage Input Power:

 • 5V/2.5A DC via micro-USB connector

 • 5V DC via GPIO header

 • Power over Ethernet (PoE)-enabled (requires separate PoE hat)

➢ Operating temperature: 0-50°C

➢Production lifetime: Raspberry Pi 3 Model B+ will remain in production until at least

January 2028

➢ sensor

➢ load cell

A. Introduction

Figure III. 4: load cell

Load cells are instruments that measure force and are widely used in industrial and

scientific applications. They can determine the weight of an object, the force a fluid exerts on

a surface, or the tension within a cable. Typically, a load cell is made up of a metal shaft or bar,

which is supported on each end by a strain gauge.

Figure III. 5: load cell sensor

CHAPTER III Hardware & Software

28

 Load cell is a force sensing module, which consists of a precisely engineered metal

framework with tiny components called strain gauges positioned at strategic points throughout.

Because of its design, load cells only register one force and ignore other applied forces. The

load cell produces a very small electrical signal, which calls for specific amplification.

Thankfully, all the electrical output amplification and measurement will be handled by the

HX711. It amplifies the signal from a load cell and provides a clean, stable digital value. Force

can only be measured in one way using load cells. Since portions of the load cell that were

previously running under compression are now functioning under tension, and vice versa, they

will frequently measure force in different directions, although the sensor sensitivity will differ.

Figure III. 6: circuit of load cell

B. Load cell function:

The strain gauges detect the beam's distortion because of an applied force and generate a

signal that is proportionate to the applied force. A variety of load cell types and models are

available.

In bar strain gauge load cells, two strain gauges measure compression and two measure

tension, while the fourth gauge detects bending distortion when torque is applied to the bar. The

cell is configured in a "Z" shape, which facilitates the precise measurement of slight resistance

changes from these four strain gauges when they are connected in a Wheatstone bridge

configuration. [10]

When the force applies to the load cell, two of the strain gauges will compress (green) while

the other two will stretch (blue).

Figure III. 7: More in-depth diagram of strain gauges on bar load cells when force is applied

C. Calibration: [11]

 A simple formula is usually used to convert the measured mv/V output from the load cell

to the measured force: Measured Force = A * Measured mV/V + B (offset). It is important to

decide what unit your measured force is - grams, kilograms, pounds, this load cell has a rated

output of 1.0±0.15mv/v which corresponds to the sensor’s capacity of 20kg to find A we use:

• Capacity = A * Rated Output

CHAPTER III Hardware & Software

29

• A = Capacity / Rated Output

• A = 20 / 1.0

• A = 20

Since the Offset is quite variable between individual load ells, it is necessary to calculate

the offset for each sensor.

Measure the output of the load cell with no force on it and note the mv/V output measured

by the Whitebridge.

 Offset = 0 - 20 * Measured Output

D. Specification:[12]

Mechanical:

➢ Housing Material: Aluminum Alloy.

➢ Load Cell Type: Strain Gauge.

➢ Capacity: 20kg.

➢ Dimensions: 55.25x12.7x12.7mm.

➢ Mounting Holes: M5 (Screw Size).

➢ Cable Length: 550mm.

➢ Cable Size :30 AWG (0.2mm).

➢ Cable - no. of leads :4 (RED WHITE GREEN BLACK).

 Electrical:

➢ Precision: 0.05%.

➢ Rated Output: 1.0±0.15 mv/V.

➢ Non-Linearity: 0.05% FS.

➢ Hysteresis: 0.05% FS.

➢ Non-Repeatability: 0.05% FS.

➢ Creep (per 30 minutes): 0.1% FS.

➢ Temperature Effect on Zero (per 10°C): 0.05% FS.

➢ Temperature Effect on Span (per 10°C): 0.05% FS.

➢ Zero Balance: ±1.5% FS.

➢ Input Impedance:1130±10 Ohm.

➢ Output Impedance:1000±10 Ohm.

➢ Insulation Resistance (Under 50VDC) ≥5000 MOhm.

CHAPTER III Hardware & Software

30

➢ Excitation Voltage:5 VDC .

➢ Compensated Temperature Range: -10 to ~+40°C.

➢ Operating Temperature Range: -20 to ~+55°C.

➢ Safe Overload: 120% Capacity.

➢ Ultimate Overload: 150% Capacity.

Load cell has red,black,green and white wires.

Figure III. 8 wires of sensor

 HX711 Load Cell Transmitter:

 Dual-Channel 24 Bit Precision A/D weight Pressure Sensor Load Cell Amplifier and ADC

Module is a small breakout board for the HX711 IC that allows you to easily read load cells to

measure weight. By connecting the module to microcontroller will be able to read the changes

in the resistance of the load cell and with some calibration. will be able to get very accurate

weight measurements.

Figure III. 9: driver Hx711 24 bit

This 24-bit analog to digital and signal conditioning module is made specially to interact

directly with a bridge sensor in industrial control applications, weight scales, and weight

sensors. On the HX711 chip, the module is built.

Since the output range of a strain gauge is typically quite tiny in load cells and weight

sensors, the signal must be amplified prior to processing to avoid the introduction of errors.

CHAPTER III Hardware & Software

31

Figure III. 10: circuit of hx711

This module increases the precision of the measurement by amplifying the weight sensor

and transforming it from an analog to a digital sensor. The microcontroller will get a serial

output. Two weight sensors can be attached to the module simultaneously. Additionally, the

module uses an out+ pin to directly supply power to the sensors.

Figure III. 11: Excitation & Output of Module

Load cell wiring

Features & Specification:

➢ Two selectable differential input channels

➢ On-chip active low noise PGA with selectable gain of 32, 64 and 128

➢ On-chip power supply regulator for load-cell and ADC analog power supply

➢ On-chip oscillator requiring no external component with optional external crystal

➢ On-chip power-on-reset

➢ Simple digital control and serial interface: pin-driven controls, no programming needed

➢ Selectable 10SPS or 80SPS output data rate

➢ Simultaneous 50 and 60Hz supply rejection

➢ Current consumption including on-chip analog power supply regulator: normal

operation < 1.5mA, power down < 1uA

➢ Operation supply voltage range: 2.6 ~ 5.5V

➢ Operation temperature range: -40 ~ +85℃

➢ 16 pin SOP-16 package

CHAPTER III Hardware & Software

32

PIN OUT:

The HX711 communicates with the microcontroller using a two-wire serial interface,

similar to I2C but simpler in implementation, it is a simpler protocol with only two lines (Clock

and Data) and does not require additional addressing or control lines. This protocol uses two

pins:

1. Clock (CLK): Synchronizes data transmission.

2. Data (DOUT): Transmits the data from HX711 to the microcontroller

These two pins allow the microcontroller to read data from the HX711 module in a

synchronous manner, where the clock signal from the microcontroller coordinates the timing

of the data transmission.

To connect a load cell to the HX711 module, 4 cables are required, the colors generally

used are Red, Black, White and Green. Per color corresponds to a signal as shown below:

• Red: Excitation voltage +, E+, VCC

• Black: Excitation voltage -, E-, GND

• Green: Amplifier -, Signal -, A-

• White: Amplifier +, Signal +, A+

III.2.2 Load Cell Connection and Calibration

For wiring the load cell and HX711 with the Raspberry Pi Pico W, we using GPIO pins and

similar wiring principles as with the Raspberry Pi Pico W.

 Here we are showing how to wire it:

➢ Load Cell to HX711:

• Red wire (VCC) to E+ on HX711

• Black wire (GND) to E- on HX711

• White wire to A- on HX711

• Green wire to A+ on HX711

➢ HX711 to Raspberry Pi Pico W:

• VCC on HX711 to 3V3 on Pico W

• GND on HX711 to GND on Pico W

• DT (Data) on HX711 to a GPIO pin (GP12)

• SCK (Clock) on HX711 to a GPIO pin (GP13)

Figure III. 12: schema of our system

CHAPTER III Hardware & Software

33

III.2.3 Wiring and Power Considerations

III.2.3.1 Wiring Considerations

Cable Management: We will make sure all cables are neatly routed and secured with cable

ties. Loose hanging wires risk getting accidentally disconnected or damaged.

 Connections: For initial prototyping, a breadboard will simplify the wiring between the

Pico, HX711, and load cell. But for a more permanent setup, we may look into a custom PCB

that neatly houses the HX711 and load cell connections. This reduces risks of loose wires

affecting measurement accuracy.

Signal Integrity: To minimize electrical noise, We will keep the wiring between the load

cell and HX711 as short as possible. If the environment is electrically noisy, shielded cables

can further protect the signal.

III.2.3.2 Power Considerations

Powering this system properly is crucial for stable and reliable operation. We will start by

ensuring the Raspberry Pi Pico W receives a clean, consistent 3.3V supply - either through its

micro-USB port or a dedicated regulated 3.3V power source. Using the USB is convenient for

development, but a regulated supply may be preferred for the finally deployed system.

The HX711 can be powered directly from the 3.3V pin on the Pico W, which simplifies the

power requirements and ensures compatibility

Having a single 3.3V source really simplifies things, as we can power the HX711 load cell

amplifier directly from the Pico W's 3.3V pin. This amplifier is designed for ultra-low-power

operation, so it can run efficiently right off that 3.3V line without needing a separate supply

rail.

While the Pico W itself doesn't draw much current, we must account for the added load

from the HX711 and load cell. While the Pico W itself doesn't draw much current, we must

account for the added load from the HX711 and load cell. To calculate the total current draw

across all components and ensure it doesn't exceed the maximum rated current capacity of the

Raspberry Pi Pico W, we need to add up the current consumption of each component connected

to the 3.3V supply. Here’s how you can do the math:

➢ Determine the Current Draw of Each Component

➢ Raspberry Pi Pico W: The typical operating current of the Pico W is around 50-

100 mA, depending on what peripherals and features are being used.

➢ HX711: The HX711 typically consumes around 1.5 mA.

➢ Load Cell: The load cell itself doesn't draw current directly; its power

consumption is accounted for in the HX711's consumption.

Sum the Currents:

➢ Raspberry Pi Pico W: Let's assume 80 mA (a midpoint in its typical range).

➢ HX711: 1.5 mA.

➢ Total current draw = 80 mA (Pico W) + 1.5 mA (HX711) = 81.5 mA.

Verify Against the Pico W's Maximum Current Capacity:

➢ The maximum current capacity of the Raspberry Pi Pico W's 3.3V supply pin is

around 500 mA.

CHAPTER III Hardware & Software

34

➢ Total current draw: 81.5 mA.

➢ Maximum capacity: 500 mA.

➢ Since 81.5 mA is well within the 500-mA limit, the setup is safe in terms of

current draw.

To further increase power resilience, we may investigate adding some filtering capacitors

right at the 3.3V pins of the HX711 and Pico W. This can help smooth out any minor voltage

fluctuations or noise on the supply line that could affect readings. And a simple diode or other

protection circuit guards against reverse polarity connections.

With a clean, sized-right 3.3V supply distribution, power isolation, and protection

measures, we can ensure this weighing system has a solid foundation for reliable data. Properly

powering everything is a critical first step.

III.2.4 Integration with the Waste Bin

III.2.4.1 Load Cell Placement

Structural Support: The load cell needs to be mounted on a firm, flat surface that can support

the bin's weight without flexing. For the waste bin, this could be at the base away from falling

debris.

III.2.4.2 Load Distribution

We will use a mounting bracket or plate to evenly distribute the load across the load cell's

surface for consistent measurements, regardless of how waste is distributed in the bin.

For mounting the load cell, we took advantage of 3D printing. We 3D printed a base frame

and a weighing plate tailored to our needs. While not rated for the full 20kg capacity, these

printed parts are plenty sturdy for our experiments.

 3D printing allowed us to customize the mounting plates for ideal fit and spacing with the

load cell. This ensures proper load distribution and those critical air gaps needed for accurate

strain measurement.

Figure III. 13: mechanism 3D printed

Proper mounting orientation is key. The load cell has an arrow indicating the force

direction. We positioned it so this arrow points down, with the 3D printed weighing plate

secured on top. This way, when weight presses down on the plate, that force transfers onto the

load cell in the proper direction.

CHAPTER III Hardware & Software

35

 For the other end, we connected it directly to the 3D printed base frame below. This

suspends the weighing plate between the two ends of the load cell. The top plate pushes down,

while the base anchors, inducing the necessary mechanical strain throughout the body.

 The strain gauges inside can then convert this deformation into an accurate electrical

weight signal. Careful attention to the load cell's arrow orientation, combined with our precise

3D printed mounting solution, enabled reliable operation.

Figure III. 14: load cell with 3D printed

III.2.4.3 Protecting the Electronics

Environmental Protection: An enclosure will protect the Pico and HX711 from dust,

moisture and harsh environments, while still allowing ventilation to prevent overheating.

III.2.4.4 Accessibility

We will position the electronics for easy access for maintenance, while still securing them

against tampering.

III.2.4.5 Maintenance and Calibration

III.2.4.5.1 Regular Calibration

 We will schedule periodic calibrations by placing known weights in the bin and adjusting

the scale calibration factor in software to maintain accuracy long-term.

III.2.4.5.1 Maintenance Access

 The installation will be designed for easy access to all components, with connectors used

where possible for quick disconnection or replacement.

III.3 Software Integration

Real-Time Monitoring: Software will read the MQTT weight data and determine the bin's

status in real-time, sending alerts when nearing or reaching capacity.

Data Logging: Weight data logs will be kept for analyzing usage patterns and optimizing

collection schedules over time for maximum efficiency.

 Proper wiring, power design, environmental protection, and software integration will all

come together for a robust smart waste bin monitoring solution!

III.4 Software Development

In this section, we will delve into the detailed steps and processes involved in the software

development aspect of our IoT-based smart waste management system. This includes the code

CHAPTER III Hardware & Software

36

implementation for various components such as the Raspberry Pico firmware, MQTT client,

Raspberry Pi software, and the user interface.

III.4.1 Code Implementation

The Raspberry Pi Pico can be programmed in various programming languages, including

Circuit Python, Micro Python C /C++, and even in assembly language, making it suitable for a

wide range of applications. In our project we are programming with:

• Python:

Python is a versatile language that can be used in many different domains, such as web

development, data analysis, machine learning, and automation. It is also relatively easy to learn,

which makes it a good choice for beginners.

Since its launch in 1991, the Python programming language, named after the popular

comedy group Monty Python, rather than a snake, has become one of the most popular in the

world. But just because it is so popular doesn't mean improvements can't be made to them,

especially if you're working with a microcontroller. The Python programming language is

designed for computer systems such as desktops, laptops, and servers. Microcontroller boards

like the Raspberry Pi Pico W are small and compact, and they have very little memory; This

means they cannot use the same Python language as their larger counterparts. This is where it

comes into play. Originally developed by Damien George and first released in 2014, it is a

Python-based programming language developed specifically for microcontrollers. While it

includes many of the core Python features, they add a new set of features designed to use the

hardware found in the Raspberry Pi Pico and other microcontroller boards. If you've

programmed with Python before, you'll find it familiar. If not, do not worry, it is an easy

language to learn.

 Micro Python: is a full implementation of the Python 3 programming language that runs

directly on embedded hardware like Raspberry Pi Pico. You get an interactive prompt (the

REPL) to execute commands immediately via USB Serial, and a built-in file system. The Pico

port of Micro Python includes modules for accessing low-level chip-specific hardware.[13]

• IDE’S:

We use IDE’ s Thonny (Integrated Development Environment) and Vs code (visual studio)

as the main development tools in our project. These IDE’s enable rapid development and

programming by providing an easy-to-use and efficient way to code, compile, and port software

to compatible microcontrollers.

• Visual Studio:

Visual Studio Code is a lightweight but powerful source code editor which runs on your

desktop and is available for Windows, macOS and Linux. It comes with built-in support for

JavaScript, TypeScript and Node.js and has a rich ecosystem of extensions for other languages

and runtimes (such as C++, C#, Java, Python, PHP, Go, .NET). [14]

CHAPTER III Hardware & Software

37

Figure III. 15: VS Code

• Thonny:

Thonny is a simple Python IDE designed for beginners, Thonny is an open-source IDE

which is used to write and upload Micro Python programs to different development boards such

as Raspberry Pi Pico, ESP32, etc . It is extremely interactive and easy to learn IDE as much as

it is known as the beginner-friendly IDE for new programmers. With the help of Thonny, it

becomes very easy to code in Micro python as it has a built-in debugger that helps to find any

error in the program by debugging the script line by line.[15]

Thonny is an open-source Python IDE that allows you to write and upload Micro Python

programs to various development boards such as Raspberry Pi Pico, ESP32, and others. It is

incredibly dynamic and easy to learn IDE, as well as being renowned as the beginner-friendly

IDE for beginners

Figure III. 16: Thonny IDE

• Raspberry Pico Firmware:

In this section, we will learn how to use Thonny to develop and run programs.

It is very easy to get started with Raspberry Pi Pico using MicroPython;

1. Connect the Raspberry Pi Pico to your computer while holding the BOOTSEL

button at the same time to enter bootloader mode and flash the firmware.

Figure III. 17: rpi pi pico w

CHAPTER III Hardware & Software

38

2. Open Thonny IDE. Then go to Tools > Options. Select the Interpreter tab on the new

window that opens.

3. Choose MicroPython (Raspberry Pi Pico) as the interpreter and try to detect port

automatically for the Port. Then, click on Install or update MicroPython.

Figure III. 18: Thonny option

The following window will open.

Figure III. 19: figure showing how install micropaython

4. Select the MicroPython variant according to the board you’re using. In our case, we are

using the Pico W. Select a different option if you’re using the Pico.

5. Finally, click Install.

6. After a few seconds, the installation should be completed.

Figure III. 20: MicroPyhton in rpi pi pico w

7. You can close the window. You should get the following message on the Shell, and at

the bottom right corner, it should have the Interpreter it is using and the COM port.[16]

CHAPTER III Hardware & Software

39

III.4.1.1 Raspberry Pico Firmware for Load Cell Data Acquisition

 The Raspberry Pico will be the workhorse of our data acquisition process, responsible for

interfacing with the load cell and measuring the weight of the waste in each bin.

 For this critical role, we're using the HX711_PIo library, which is specially designed for

connecting HX711 load cell amplifiers to microcontrollers like the Pico. This library really

streamlines the process of reading data from load cells by tapping into the Pico's powerful PIO

(Programmable I/O) hardware capabilities.

 The PIO is like a tiny programmable processor built into the Pico's chip, dedicated solely

to handling I/O tasks. By offloading the load cell data acquisition to this separate PIO processor,

we free up the Pico's main processor cores to handle other tasks without getting bogged down.

 The HX711_PIo library gives us a set of convenient functions for initializing the PIO state

machine that will interface with the HX711 amplifier. We can customize settings like the clock

rate, data format, gain factor, and more.

 Once initialized, the real magic happens with the library's read_data() function. This kicks

off the PIO state machine which rapidly clocks in the 24-bit data stream coming from the

HX711 amplifier. The incoming bits are deserialized, formatted, and the final weight value is

calculated - all handled ultra-efficiently by the dedicated PIO hardware.[17]

Instead of our main application code having to meticulously clock in each bit using

elaborate timing loops, the PIO seamlessly takes care of that low-level I/O work in the

background. This allows our firmware to simply call read_data() whenever it needs an updated

weight reading.

 By leveraging the HX711_PIo library and the Pico's PIO capabilities, we get fast, accurate,

and reliable load cell data acquisition without taxing the main processors. Combine that with

the Pico's low cost and compact form factor, and we've got an excellent embedded data

acquisition solution for our smart waste bin project.

• Communication Protocol:

In our project, we use MQTT (Message Queuing Telemetry Transport)

 These protocols enable efficient and dependable communication between devices and

systems, allowing for the interchange of data and commands necessary for successful

monitoring and control in our project's context.

 MQTT Protocol: was designed for the Internet of Things (although it was not called that

at the time) allows messages to pass in both directions between clients and servers.

• MQTT Characteristics

✓ MQTT is a "PUSH" system, in which producers send data to brokers.

✓ MQTT protocol is considered a lightweight protocol in which its header size is 2

bytes.

✓ MQTT is designed for low power consumption as it is used for low power IOT

devices.

CHAPTER III Hardware & Software

40

✓ MQTT communication operates as a publish-subscribe system. Devices send signals

about a given topic. All devices that have subscribed to that topic receive the

message.

Figure III. 21: MQTT Publish Subscribe

MQTT offers several key benefits:

• Lightweight and efficient: MQTT minimizes the resources required by clients and

network bandwidth.

• Bidirectional communication: MQTT facilitates communication between devices and

servers, supporting publishing and subscribing. It also allows broadcasting messages to

groups of devices.

• Scalability: MQTT can scale to support millions of devices or “things” in an IoT or

IIoT ecosystem.

• Quality of Service (QoS) levels: MQTT specifies different QoS levels to ensure

reliable message delivery.

• Persistent sessions: MQTT supports persistent sessions between devices and servers,

reducing reconnection time over unreliable networks.

• Security features: MQTT supports TLS encryption for message confidentiality and

authentication protocols for client verification.

 MQTT Basic Concepts:[18]

• Messages: Messages are the information that you want to exchange between your

devices. It can be a message like a command or data like sensor readings, for example.

➢ Topics: Topics are the way you register interest for incoming messages or how

you specify where you want to publish the message .[19]

• Publish/Subscribe: In a publish and subscribe system, a device can publish a

message on a topic, or it can be subscribed to a particular topic to receive messages o

for example Device 1 publishes on a topic.

 Device 2 is subscribed to the same topic that device 1 is publishing in, so device 2

receives the message.

Figure III. 22: how two devices publish & subscribe in the same topic

CHAPTER III Hardware & Software

41

• Broker: The MQTT broker is responsible for receiving all messages, filtering

the messages, deciding who is interested in them, and then publishing the message to

all subscribe clients.

Figure III. 23: MQTT Broker

• How MQTT work :[20]

 The Internet of Things (IoT) thrives on communication, and that's where the MQTT

protocol comes in. Imagine a network of resource-constrained devices, like smart waste bins,

needing to exchange information. MQTT provides a lightweight yet efficient way for these

devices to publish (send) and subscribe (receive) data to a central server called a broker.

Here is a breakdown of how MQTT works:

• Establishing a Connection: An MQTT client (like our smart bin) initiates a

connection with the broker using a standard TCP/IP port. The broker then checks if this

client has an existing session (think of it like a saved login). If it does, the old session

can be resumed. For new clients, a fresh session is established.

• Authentication: Security is important! MQTT offers two options. For secure

connections, clients can authenticate with the broker using a username and password.

For open (public) brokers, anonymous connections might be allowed, but this is not

recommended for sensitive data.

• Communication: Once connected and authenticated, the fun begins! Clients can

now perform various actions:

• Publishing: Clients can publish data (like the fill level of a bin) on

specific topics (e.g., "bin_status"). The message content is in a binary format

and can be anything relevant to the application.

• Subscribing: Clients can subscribe to specific topics. The broker will

then forward any messages published on those topics to the subscribed clients.

This ensures that devices only receive the information they need.

• Unsubscribing: Clients can unsubscribe from topics they no longer need

to receive updates on.

• Pinging: Clients can periodically send "ping" messages to the broker to

keep the connection alive and confirm it is still open.

• The Key Takeaway: MQTT is a publish-subscribe messaging protocol

that enables efficient communication between resource-constrained devices and

a central broker. By enabling targeted data exchange, MQTT plays a crucial role

in connecting the ever-growing world of IoT devices.

CHAPTER III Hardware & Software

42

 Important Points to Note:

• Clients do not have addresses like in email systems, and messages are not sent

to clients.

• Messages are published to a broker on a topic.

• The job of an MQTT broker is to filter messages based on topic, and then

distribute them to subscribers.

• A client can receive these messages by subscribing to that topic on the same

broker

• There is no direct connection between a publisher and subscriber.

• All clients can publish (broadcast) and subscribe (receive).

• MQTT brokers do not normally store messages.

 III.4.1.2 MQTT Client Code for Data Transmission

 III.4.1.2 .1 Overview of MQTT in our project

Our IoT-based smart waste management system utilizes the MQTT (Message Queuing

Telemetry Transport) protocol for its efficient and reliable data communication. MQTT's

lightweight nature makes it ideal for resource-constrained devices and low-bandwidth networks

prevalent in IoT deployments.

The Raspberry Pi Pico, running MicroPython firmware, acts as the primary data acquisition

unit, collecting weight data from load cell sensors attached to waste bins. To seamlessly

integrate with the MQTT infrastructure, we leverage the umqtt_simple library, a streamlined

MQTT client specifically designed for MicroPython environments.

This choice offers several advantages. Firstly, umqtt_simple seamlessly integrates with the

Raspberry Pi Pico, ensuring efficient implementation within its limited resources. Secondly, it

focuses on essential functionalities like connect, disconnect, publish, and subscribe, minimizing

processing overhead. Finally, its simplicity facilitates rapid development, allowing our team to

focus on core functionalities rather than complex MQTT implementation details.

Weight data acquired by the Raspberry Pi Pico is published to an MQTT broker using

umqtt_simple. This broker acts as a central hub, distributing data to other system components,

like the Raspberry Pi. The Raspberry Pi subscribes to relevant topics to receive and process the

published data.

By leveraging MQTT and the lightweight umqtt_simple library, our system achieves

efficient and reliable data communication, enabling real-time monitoring and analysis of waste

levels across various locations.

III.4.1.2.2 Overview of Setting Up Mosquitto MQTT Broker on Raspberry Pi

Setting up Mosquitto, a lightweight and efficient MQTT broker, on a Raspberry Pi is a

crucial step in developing a robust IoT system. Mosquitto acts as the central hub for MQTT

messaging, allowing various devices to communicate seamlessly. This setup involves several

key steps, starting with the installation of Mosquitto and its client tools using the Raspberry Pi's

package manager. Once installed, enabling the Mosquitto service to start at boot ensures

continuous operation. Basic configuration adjustments, such as setting up logging, listeners,

CHAPTER III Hardware & Software

43

and optional authentication, help tailor the broker to specific project needs. After configuring

Mosquitto, testing the setup with Mosquitto client tools validates that the broker can handle

publish/subscribe operations effectively. By running Mosquitto on a Raspberry Pi, developers

can create a scalable, reliable communication infrastructure that facilitates real-time data

transmission and processing, integral for applications like remote sensing, home automation,

and other IoT projects. This setup not only ensures efficient data handling but also supports

secure and manageable device interactions within the network.

• Paho MQTT

Figure III. 24: mosquitto configuration

The Raspberry Pi, due to its relatively powerful hardware and full Linux operating system,

is well-suited to act as both an MQTT client and a data processing unit in an IoT setup. This

part of the system will subscribe to MQTT topics, receive data transmitted by devices like the

Raspberry Pi Pico, and then process or store this data for further actions such as analysis,

visualization, or triggering responses.

Figure III. 25: Mosquitto Publish/Subscribe

III.4.1.2.3 Setting Up the MQTT Client

To receive data, the Raspberry Pi will use the Paho MQTT client, a popular MQTT library

that provides a flexible way to handle incoming MQTT messages.

We install Paho-MQTT using the pip command in the command prompt: pip install paho-mqtt.

Key Components:

1. MQTT Client Setup: Initialize the client and connect it to the MQTT broker.

2. Subscription to Topics: Subscribe to the MQTT topics that the Raspberry Pi Pico is

publishing to.

3. Message Handling: Define callback functions to handle incoming messages.

CHAPTER III Hardware & Software

44

4. Reconnection Logic: Ensure the client can handle disconnections and reconnect

automatically.

III.3.4 User-interface

In our project, we utilize tkinter and customtkinter as GUI frameworks. Tkinter serves as a

Python binding to the basic tkinter framework, whereas customtkinter offers a modern

approach. Both frameworks provide the necessary tools and capabilities to create intuitive and

visually attractive graphical interfaces for our system.

Tkinter:Tkinter is a standard Python library used for creating graphical user interfaces

(GUIs). It provides a set of tools and widgets that allow developers to build interactive

applications with buttons, labels, entry fields, menus, and more.

• Python Tkinter Widgets:

In the following sections, we cover basics of Tkinter, widget,etc

A GUI program uses a variety of controls, including buttons, labels, scrollbars, radio

buttons, and text boxes.

Tkinter refers to these small GUI components or controls as widgets

Figure III. 26: Python Tkinter Widgets

[21]There are 19 widgets available in Python's Tkinter package. All of the widgets are given

here, along with their basic descriptions:

List of widgets description

button If you want to add a button in your application, then the Button widget

will be used. A button is clickable, and the user can click the button

widget to perform any action

canvas To draw a complex layout and pictures (like graphics, text, etc.) the

Canvas Widget can be used.

checkButton If you want to display a few options as checkboxes, then the Check

button widget can be used. It allows you to select multiple options at a

time.

Entry To display a single-line text field that accepts values from the user

Entry widget can be used.

CHAPTER III Hardware & Software

45

Frame In order to group and organize other widgets, the Frame widget can be

used. Basically, it acts as a container that holds other widgets

Label To Provide a single-line caption to another widget Label widget can be

used. It can contain images too.

Listbox To provide a user with a list of options the List box widget can be used

Menu To provide commands to the user Menu widget can be used. Basically,

these commands are inside the Menu button. This widget mainly

creates all kinds of Menus required in the application.

Menubuton The Menu button widget is used to display the menu items to the user

Message The Message widget mainly displays a message box to the user.

Basically, it is a multi-line text which is non-editable

Radionbutton If you want the number of options to be displayed as radio buttons, then

the Radio Button widget can be used. You can select one at a time.

Scale Scale widget is mainly a graphical slider that allows you to select

values from the scale.

Scrollbar To scroll the window up and down the Scrollbar widget in Python can

be used.

Text The Text widget mainly provides a multi-line text field to the user

where users enter or edit the text and it is different from Entry.

toplevel The Toplevel widget is mainly used to provide us with a separate

window contain

SpinBox The SpinBox acts as an entry to the "Entry widget" in which value can

be input just by selecting a fixed value of numbers.

PanedWindows The PanedWindows is also a container widget that is mainly used to

handle different panes

LabelFrame The label Frame widget is also a container widget used to mainly handle

complex widgets.

MessageBox The message box widget is mainly used to display message in desktop

apllication

Table III: widgets of Tkinter

• CustomTkinter:

CustomTkinter is a python UI-library based on Tkinter, which provides new, modern and

fully customizable widgets. They are created and used like normal Tkinter widgets and can also

be used in combination with normal Tkinter elements. The widgets and the window colors

either adapt to the system appearance or the manually set mode ('light', 'dark'), and all

CustomTkinter widgets and windows support HighDPI scaling (Windows, macOS). With

CustomTkinter you'll get a consistent and modern look across all desktop platforms (Windows,

macOS, Linux).[22]

CHAPTER III Hardware & Software

46

• List of basic widgets

List of widgets Description

CTkCheckBox A checkbox that can be toggled on and off.

CTkComboBox A combination of a drop-down list and an entry widget.

CTkButton A customizable button widget.

CTkEntry An entry widget that allows the user to input a single line of text.

CTkLabel A widget used to display text or images.

CTkOptionMenu A menu that allows the user to select a value from a list.

CTkSwitch A switch that can be toggled on and off.

CTkTabview Creates a tab view, like a notebook in Tkinter.

CTkSrollbar A scrollbar for scrolling widgets like CTkTextbox.

CTkTextbox A textbox that is scrollable in vertical and horizontal directions.

CTkFrame A container for other widgets.

CTkSegmentedButto

n

Aset of options where only one option can be selected at a time.

CTkSlider A slider widget for selecting a value from a range.

CTkProgressBar A widget that shows the progress of a task.

CTkRadioButton A set of options where only one option can be selected at a time

CTkScrollableFrame A frame that can be scrolled vertically and/or horizontally

Table IV: widgets of CustumTkinter

➢ Benefits of Using Both Frameworks:

• Leveraging tkinter's foundation: You gain access to the core functionalities

and vast library of widgets offered by tkinter.

• Enhanced aesthetics with customtkinter: You can create modern and visually

attractive user interfaces that elevate the user experience.

• Simplified development: Customtkinter streamlines development by providing

pre-built widgets with a modern look and feel, saving you time and effort compared to

creating custom styles from scratch.

III.5 Data Processing and Decision Logic

In this section, we will explain how the received data from the waste bin is processed to

determine the bin's status and the decision-making rules that trigger alerts and notifications for

operators. The focus will be on weight calculations, bin status determination, and the logic for

making decisions based on the data.

CHAPTER III Hardware & Software

47

Data Processing

Steps
Description

Weight Calculations
Initial and ongoing measurements to monitor fill levels,

assessing weight to estimate bin status.

Bin Status

Determination

Categorization of bins based on their calculated weight as

empty, half-full, or full.

Decision-making for

Operators

Rules-based triggers for actions: alerts for nearly full bins,

notifications for scheduled pickups or issues.

Table V: Description of Data Processing

III.5.1 Weight Calculations

The data processing begins with calculating the weight of the waste in the bin. This involves

converting the raw data from the load cell into meaningful weight measurements.

➢ Raw Data Conversion:

• The HX711 load cell amplifier sends raw digital values to the Raspberry Pi Pico.

• These raw values need to be converted into weight measurements using the

calibration factor obtained during the calibration process. The formula for

conversion is Weight (kg) = Raw Value / Calibration Factor is used to convert the

raw digital values obtained from the HX711 load cell amplifier into meaningful

weight measurements in kilograms (kg).

➢ Explanation:

• Weight (kg): This represents the calculated weight of the waste in the bin, expressed

in kilograms (kg).

• Raw Value: This refers to the unprocessed digital data received from the HX711

load cell amplifier. It is typically a numerical value that needs to be converted into

a weight measurement.

• Calibration Factor: This is a crucial parameter that accounts for the sensitivity of

the load cell and ensures accurate weight calculations. It is determined during the

calibration process, where a known weight is placed on the load cell, and the

corresponding raw value is recorded. The calibration factor is then calculated by

dividing the known weight by the raw value.

Example: If a 10 kg weight gives a raw output of 800,000 from the HX711, the calibration

factor would be 10 / 800,000 = 0.0000125 kg per unit.

➢ Applying the Formula:

• Obtain Raw Value: Acquire the raw digital value from the HX711 load cell

amplifier. This value might be represented in various formats depending on the

specific communication protocol and hardware setup.

CHAPTER III Hardware & Software

48

• Retrieve Calibration Factor: Ensure you have access to the calibration factor

obtained during the calibration process. This value should be stored securely and

easily accessible for calculations.

• Perform Calculation: Substitute the raw value and calibration factor into the

formula:

Weight (kg) = Raw Value / Calibration Factor

• Interpret Result: The resulting value represents the weight of the waste in the bin,

expressed in kilograms (kg).

This formula is essential for converting raw load cell data into meaningful weight

measurements. It enables the system to accurately assess the weight of the waste and make

informed decisions regarding waste management. The calibration factor plays a critical role in

ensuring the accuracy of these calculations.

 III.5.2 Bin Status Determination

Once the weight is calculated, the next step is to determine the status of the waste bin.

This involves comparing the calculated weight against predefined thresholds.[23]

 Threshold Definitions: We need to define clear weight thresholds for the different bin

statuses. Here's what we're thinking:

• - Empty: Weight < 1 kg

• - Partially Full: Weight between 1 kg and 15 kg

• - Full: Weight 20 kg or higher

 Of course, these thresholds can be adjusted depending on the actual bin capacity and the

typical weight of the waste it'll be holding. We will want to fine-tune them once we have some

real-world data.

 Status Evaluation: To determine a bin's status, we will simply compare its calculated

weight against these predetermined thresholds. Whichever threshold range the weight falls into,

that'll be the status we assign to that bin.

 We will make sure to update the status accordingly whenever new weight data comes in.

No sense working with stale info!

 Status Reporting: Once a bin's status is updated, we will package up that status and send it

over to the Raspberry Pi for further processing. We can use that same MQTT protocol we're

already using to transmit the raw weight data.

III.5.3 Decision-Making Rules for Operators

When it comes to managing these bin statuses, we need a solid set of rules to make decisions

and alert our operators. Here's how We will handle it:

Alert Thresholds:

We will define clear conditions for when alerts should be triggered, like:

- Immediate alert if a bin is 100% full

- Warning notification if a bin is partially full, so we can plan for its collection

CHAPTER III Hardware & Software

49

 Notification Mechanisms:

There are a few different ways we can notify operators about bin statuses:

- Visual indicators like LEDs right on the bins themselves

- Audible alarms or buzzers to grab attention

- Remote notifications via email, text message, or a dedicated mobile app

 Decision Logic:

We will develop a robust decision logic framework that spells out exactly what actions to

take based on a bin's status.

 Automated Actions:

If our waste collection is automated, we can configure the system to trigger those collection

actions automatically when a bin hits full status. Like firing off a message to the collection

service.

 Data Logging & Analysis:

Every weight measurement and bin status will be logged for later analysis. This data will

help optimize our collection schedules and make the whole waste management process more

efficient over time. We can analyze patterns in the data and adjust our thresholds or decision

logic if needed.

 Scheduling Optimization:

Speaking of optimized scheduling, we will integrate all this bin data into a management

system that can plot out the most efficient collection routes based on current statuses.

 Notifications:

For real-time updates, we will use MQTT or a similar protocol to push bin status data to

operators or a central management dashboard as it comes in.

The goal is to create a streamlined system that alerts the right people at the right time,

automates actions, when possible, optimizes scheduling, and just gets smarter through

continuous data analysis. Efficient waste management made easy!

Figure III. 27: Efficient waste management

CHAPTER III Hardware & Software

50

 III.6 User Interface Design

The user interface (UI) for the smart waste management system is crucial for operators to

monitor the system effectively. This section covers the design considerations for the operator

interface, focusing on real-time bin status display, historical data visualization, and alerts and

notifications. The interface is created using Tkinter and CustomTkinter.

III.6.1 Real-time Bin Status Display

A crucial aspect of the user interface is to provide operators with a real-time display of the

waste bin status. This involves integrating sensor data from the bins to continuously monitor

their fill levels. The user interface should be intuitive and visually appealing, using color-coded

indicators (green for less than 50% empty, yellow for 50-70% nearly full, and red for above

100% full) to convey the bin status at a glance. This feature helps operators make quick

decisions regarding waste collection routes and prioritize bins that need immediate attention.

Figure III. 28: User Interface Design Considerations for our Smart Waste Management

System

III.6.2 Historical Data Visualization

Visualizing historical data is essential for analyzing waste generation patterns over time.

This can be achieved by utilizing data visualization tools like Pandas in Python to read CSV

(Comma-Separated Values) files containing historical sensor data from the bins. Graphs and

charts can display trends such as daily, weekly, or monthly waste levels, allowing operators to

identify peak times and optimize collection schedules accordingly. The user interface should

provide easy access to these visualizations, with options to filter data by date range and bin

location.

• Pandas:

Pandas are a Python package that provides fast, flexible, and expressive data structures

designed to make working with "relational" or "labeled" data both easy and intuitive. It aims to

be the fundamental high-level building block for doing practical, real world data analysis in

Python. Additionally, it has the broader goal of becoming the most powerful and flexible open-

source data analysis / manipulation tool available in any language. It is already well on its way

towards this goal.[24] To install pandas just open cmd and type: pip install pandas [25]

CHAPTER III Hardware & Software

51

With Pandas module up and running, you can import your data into a Data Frame or Series and

use Pandas' extensive functionality to manipulate, clean, and analyze that data. Key features

and functions of Pandas include:

1. Data cleaning

Pandas offers various functions for cleaning and transforming your data, such as filling

in missing values, dropping columns or rows, deleting NULL values and renaming

columns.

2. Data filtering and selection

Pandas allow for a range of fine filtering and selection functions, based on highly

granular conditions. So, no matter how complex the data is, you can extract the exact

information you want.

3. Data aggregation

With Pandas, you can perform aggregation operations like groupby, pivot, and merge

to summarize and restructure your data.

4. Data visualization

5. Pandas integrates with the popular data visualization library, Matplotlib, allowing you

to create various types of plots and charts from your data.

➢ The benefits of learning Pandas library:

Why should you use Pandas? There are several reasons to use Pandas for data analysis and

manipulation, including but not limited to:

o Efficient data handling

Pandas provides a functional framework for handling large datasets with ease. The library

is built on top of NumPy, which ensures fast and efficient numerical operations.

o Flexibility

Pandas offers an arsenal of functions and methods for data manipulation, and it is a flexible

tool for all sorts of data scientist and manager tasks.

o Easy integration with other libraries

Pandas integrate seamlessly with popular Python libraries like NumPy, SciPy, and

Matplotlib, creating powerful pipelines for data analytics.

o Wide adoption and support

Pandas are widely used in the data science community, so you'll find ample resources,

tutorials, and support through online forums.

o Readability

The Pandas package has a clear and concise syntax, so it is easy to read and understand.

This readability makes your code easier to append and maintain, driving smooth collaboration

with others and longevity for your projects.

o Handling diverse data sources

Once you install Pandas and start importing data from diverse sources, Pandas let you

efficiently process that data.

CHAPTER III Hardware & Software

52

This includes reading and writing data sources such as CSV files, Excel files, and SQL

databases. This versatility makes Pandas libraries a popular solution through a range of fields,

where data comes in diverse sets and formats.

➢ Matplotlib:

Matplotlib is a fundamental Python library for creating static, animated, and interactive

visualizations. It offers a comprehensive set of tools and functionalities that cater to various

plotting needs across different scientific disciplines and data analysis workflows.

To install Matplotlib using pip command in the cmd :

pip install matplotlib

To plot with Matplotlib, we must import its Pyplot module using the command below:

use import matplotlib.pyplot as plt

 We will discuss 10 Matplotlib advantages that will inform your hiring:[26]

1. Matplotlib provides a simple way to access large amounts of data

With Matplotlib, developers can create accurate plots based on huge amounts of data. When

analyzing these data plots, good developers will make it easier to see patterns and trends in the

data sets. Thus, Matplotlib simplifies data, making it more accessible.

2. It is flexible and supports various forms of data representation

As noted above Matplotlib supports data representation in bar charts, graphs, scattered

plots, and other forms of visualization. This flexibility means that it can adapt effectively to

your company’s needs.

3. It is easy to navigate

The Matplotlib platform isn’t too complex. Hence, both beginners and advanced developers

can apply their programming skills to the platform, producing professional results. Matplotlib

also has subplots that further facilitate the creation and comparison of data sets.

4. It ensures accessibility by providing high-quality images

Since the main goal of Matplotlib is to provide a way to access and display data, its plots

and images must be of high quality. To meet this requirement, Matplotlib provides high-quality

images in various formats, such as PDF, PGF, and PNG.

5. It is a powerful tool with numerous applications

Matplotlib’s data-visualization qualities can be used in various forms, such as Python

scripts, shells, web application servers, and Jupyter notebooks. As such, its operations are

versatile.

6. It is useful in creating advanced visualizations

Matplotlib is primarily a 2D plotting library. However, it includes extensions that

developers can apply to create advanced 3D plots for data visualization. In this way, the

platform ensures that working with data is easier and more productive.

CHAPTER III Hardware & Software

53

7. It is open source, saving you cash

An open-source platform requires no paid license. Because Matplotlib is free to use, you

save the extra cost you usually incur when producing data visualizations.

8. It is extensive and customizable

The Matplotlib platform can fit any of your company’s needs because it includes many

types of graphs, features, and configuration settings. Experienced developers can tweak its

features to suit particular objectives and projects.

9. It can run on different platforms

Matplotlib is platform independent. This means it can run smoothly no matter what

platform you use. Whether your developers use Windows, Mac OS, or Linux, you can expect

high-quality results.

10. It makes data analysis easier

Due to its numerous features, plot styles, and high-quality results, Matplotlib makes data

analysis easier and more efficient. It also helps save the time and resources you would have

spent analyzing large datasets.

Unlike other data-visualization platforms, Matplotlib in Python only requires a few lines of

code to generate a plot for data sets.

III.6.3 Alerts and Notifications

To ensure timely waste management, the system should be capable of sending alerts and

notifications. These can be triggered when bins reach a certain fill level or when unusual

patterns are detected (e.g., a bin filling up faster than usual). Notifications can be sent via

multiple channels, such as email, SMS, or push notifications on mobile devices. The user

interface should include a configuration panel where operators can set thresholds for alerts and

choose their preferred notification methods.

➢ Implementing the User Interface:

• Dashboard Design: Create a central dashboard that provides an overview of all bins,

displaying real-time status, historical data visualizations, and alert settings in one place.

This ensures that operators have all the necessary information at their fingertips for

effective decision-making.

• Interactive Maps: Utilize interactive maps to visualize the geographic locations of the

bins with their real-time statuses. This helps operators visualize the spatial distribution

of waste levels and plan efficient collection routes.

• Responsive Design: Ensure the user interface is accessible on various devices, including

desktops, tablets, and smartphones. This allows operators to monitor and manage the

waste management system remotely, improving operational efficiency.

• Data Export and Reporting: Provide options to export data and generate reports. This

feature can aid in regulatory compliance and presenting performance metrics to

stakeholders, promoting transparency and accountability.

By integrating these design considerations, the user interface for the smart waste

management system will be comprehensive, user-friendly, and effective in optimizing waste

CHAPTER III Hardware & Software

54

collection operations. It will provide operators with the necessary tools and information to make

informed decisions, streamline processes, and promote sustainable waste management

practices.

III.7 Conclusion

This chapter has laid a strong foundation for the development of the IoT-based smart waste

management system. By exploring the hardware and software components required, it has

provided a comprehensive understanding of the core elements that make up the system.

The detailed coverage of the Raspberry Pi Pico W's specifications and its integration with

the HX711 load cell has equipped us with a solid grasp of the hardware implementation. The

ability to accurately measure and monitor the weight of the waste in real-time is a crucial aspect

of the system, and the chapter has thoroughly explained the load cell's functionality and the

calibration process.

The discussion on the MQTT protocol and its utilization for efficient data communication

between devices and the central server is particularly insightful. The chapter's explanations on

the publish-subscribe model, the role of the MQTT broker, and the implementation of the

MQTT client on the Raspberry Pi are all instrumental in ensuring reliable data transmission

within the system.

Furthermore, the chapter's focus on the user interface design considerations, such as the

real-time bin status display, historical data visualization, and the integration of alerts and

notifications, demonstrates a well-rounded approach to the system's usability and user

experience. The leveraging of Python libraries, including Tkinter, CustomTkinter, and Pandas,

further enhances the system's capabilities in data processing, visualization, and decision-

making.

55

CHAPTER IV:

 Testing and Validation

CHAPTER IV Testing and Validation

56

IV.1 Introduction

In this chapter, we will thoroughly detail the testing procedures conducted to validate the

functionality and reliability of the waste management system developed using Raspberry Pi

Pico with HX711 load cell interface and MQTT communication protocol.

IV.2 Testing and Validation

How does our system work?

The RPi Pico W acts as the publisher device which collects data from the load cell using

the HX711 driver. Using the MQTT protocol, RPi Pico W publishes the weight data from the

load cell to an MQTT broker.

The RPi PI acts as the subscriber device which receives the weight data from the MQTT

broker. Based on the received weight on the RPi, a custom Tkinter interface shows the bin

status.

 The interface displays a circular percentage that rotates in color according to the bin's fill

level.

The MQTT protocol allows communication between the publisher (Raspberry Pi Pico W)

and subscriber (Raspberry Pi) devices, allowing weight data from the load cell to be delivered

to the interface.

The Pi Pico W acts as a lightweight IoT device, sending weight data to the MQTT broker,

while the RPi is a more powerful device, receiving data and providing bin status on the custom

Tkinter interface.

 This system takes advantage of the Internet of Things concept by utilizing the Raspberry

Pi Pico W as a low-cost, low-power device for collecting sensor data and publishing it to an

MQTT broker. With its enhanced computational ability, the RPi subscribes to the MQTT

broker, receives data, and indicates the bin status in a user-friendly interface.

➢ Load Cell Accuracy Testing:

We evaluated the precision of our load cell weight measurements by testing with known

calibrated weights across different weight ranges and bin fill levels. The load cell readings were

CHAPTER IV Testing and Validation

57

compared against the true weights, and we verified that the measurements fell within acceptable

tolerance limits.

Figure IV. 1: tare of the known weight

We compared the measured values against the expected values to assess the precision and

consistency of the load cell readings. This testing phase aims to ensure the reliability and

accuracy of the weight data collected by the system.

Figure IV. 2: Electronic scale

For optimal stability and reliability in voltage supply, we used an external 3.3V power

supply instead of relying on the internal regulator of the Raspberry Pi Pico w. This approach is

particularly beneficial for delicate components like the HX711 load cell, which is used in

precision measurement scenarios such as our smart garbage system. A steady power source not

only boosts the accuracy of measurements but also safeguards our microcontroller and sensors

from potential damage caused by voltage fluctuations.

Figure IV. 3: Testing with 3.3v used Power Supply

➢ MQTT Communication Reliability:

CHAPTER IV Testing and Validation

58

How Reliable is Our Messaging System?

We tested if data could be sent and received properly using MQTT and how well our

messaging system (MQTT) works under different network conditions. We sent messages from

a Raspberry Pi Pico W to another Raspberry Pi and measured how many messages arrived

successfully. We also checked to make sure the weight values weren't changed during

transmission.

➢ Bin Status Accuracy Validation:

We filled the bins to different levels and We checked if the system correctly updated the

bin status (empty, partly full, full). Here, we rigorously how validated the accuracy of our bin

status indicators to ensure the system could reliably determine if a bin was empty, partially full,

or completely full. This involved two key testing methods:

1. Physical Inspection Comparisons: We compared the percentage fill levels reported by

the system against physical inspections of the actual bin contents. By checking the

system's readings against real-world conditions, we could verify the bin status algorithm

was correctly interpreting the sensor data.

2. Waste Composition Testing: We also tested the system's performance with different

types and densities of waste materials. This allowed us to confirm that the bin status

algorithm could accurately account for variations in waste composition that might

impact how fast a bin appears to be filling up based solely on weight measurements.

From light, fluffy materials to dense, compact waste, we aimed to cover a wide range of

real-world scenarios.

Throughout both testing methods, we simulated different fill levels in a controlled

environment, filling the bins to precise levels and monitoring if the system triggered the

appropriate status updates. We transmitted bin status data via MQTT and validated that the user

interface accurately always reflected the reported status. This rigorous testing validated the

integrity and reliability of the bin status information provided to operators through the system.

➢ User Interface:

The GUI of our IoT-based system is specifically designed to efficiently manage waste

collection by monitoring bin statuses and weight metrics. The main interface shows real-time

updates on different bins, indicating how full they are with labels like "Nearly Full,"

"Completely Full," "Empty," and specific percentages like "23%". Each bin has an ID and

location for easy identification, and you can get more details by clicking the button in the top

right corner of the bin's dashboard card. This helps quickly identify which bins need attention

and plan the waste collection routes.

 The system also includes a data analysis section that uses a line graph to show the weight

of the waste over time, allowing users to see trends in waste accumulation. This data helps

predict future waste production and plan resource allocation. Through rigorous testing and

validation procedures, we ensure that our smart waste bin system meets the required standards

for accuracy, reliability, and usability, providing waste management teams with a robust and

effective solution for optimizing their operations.

 The user can see the following features and elements in this interface:

CHAPTER IV Testing and Validation

59

- Dustbin ID: to know which dustbin is being monitored

- Location of the dustbin this will be future work

- Current Fill Level: indicating if it is empty, nearly full, or full

 If there are many dustbins, you can easily know which dustbin is empty, nearly full, or full.

This interface allows users to view and analyze data in both graph and table formats (CSV file).

Figure IV. 4: GUI’s of Dustbin’s when is empty or full, nearly full

This interface allows the user to plot the data points in a table. The user can update the data

displayed on this table through user selection on the columns date, time, and weight. It also

allows a user to plot a specific range of dates and times by variable for the X-axis and by

variable for the Y-axis and step size. The interface allows the user to search within the data

display. It can allow someone to export data as a .csv file and enable plotting. It makes data

visualization, analysis, and customization easier to handle and understand; therefore, this

interface is valuable in providing insights that help make informed decisions.

CHAPTER IV Testing and Validation

60

Figure IV. 5: plot value over time

IV.3 Results and Discussion

 In this section, we will present the findings derived from the testing procedures outlined in

the previous section. And how our smart garbage monitoring:

1. Accuracy of Weight Measurements:

The results of the load cell accuracy testing will reveal the system's ability to consistently

provide precise weight measurements. We will analyze the deviations between the measured

values and the expected values to determine the overall accuracy of the weight data.

Our testing:

First test: Without weight

Figure IV. 6: First test

CHAPTER IV Testing and Validation

61

Second test:

We checked if the weights measured by the load cells matched the real weights measured

by the balance electronic

Figure IV. 7: Second test

Third test:

We tested the load cells by putting known weights on them

Here we put a known weight of 500g with 3.3v

Figure IV. 8: Third test

From our testing, here is what we found:

 The load cell readings were very accurate compared to known weight

2. Effectiveness of the Bin Status Indicator:

The validation of the bin status indicator will demonstrate the system's reliability in

accurately detecting the fill level of the waste bin and promptly updating the status information

displayed in the user interface.

 The bin status indicator promptly updated the status information displayed on the user

interface, ensuring real-time visibility into bin conditions:

The figure below shows that when the garbage bin is at a low level, it means that the amount

of garbage in the bin is minimal.

CHAPTER IV Testing and Validation

62

Figure IV. 9:bin when low level

The figure below indicates that the garbage bin level falls between 25% and 50% of the

bin's depth.

Figure IV. 10:bin when level falls

The figure below shows that the garbage bin level is at full.

Figure IV. 11:bin when full level

CHAPTER IV Testing and Validation

63

The system correctly determined and displayed the bin fill status and confirmed the

reliability in accurately detecting the fill level of waste bins.

3. Interface:

The graphical illustrations in the report depict how the user interface visually represents the

bin fill level status using color-coded circular indicators:

➢ When the bin is at a low level (between 0% and 50% full), a green circular indicator

is displayed.

 Figure IV. 12: result of bin is at low level

➢ As the bin fills up to a moderate level (between 50% and 98% full), an orange circular

indicator appears, indicating it is nearly full.

CHAPTER IV Testing and Validation

64

 Figure IV. 13: result of bin is at nearly full

➢ Once the bin reaches 100% capacity, a red circular indicator is shown, alerting users

that the bin is completely full.

 Figure IV. 14: result of bin is at full

CSV Data Interaction: Users can import weight data from CSV files to simulate and

visualize weight changes directly in the GUI, enhancing predictive analysis and resource

planning.

CHAPTER IV Testing and Validation

65

 Figure IV. 15: result of csv data

 Graphical Displays:

The interface includes a line graph showing the weight trends over time, allowing users to

analyze patterns in waste accumulation.

 Figure IV. 16: result of graph weight over time

 • Overall Performance: The full system operated reliably during testing with minimal

issues

IV.4 Conclusion and Future Work

 Our smart bin monitoring system passed all the tests! We successfully:

 - Accurately measured bin weights

 - Correctly displayed bin fill levels

 - Enabled reliable data communication

 - Designed an intuitive user interface

 However, there are some limitations and areas we can still improve:

 - Optimize MQTT communication further

CHAPTER IV Testing and Validation

66

 - In the proposed model, we connected a single dustbin to MQTT to gather data.

Next, we will plan to connect all the dustbins together.

 - Enhance user interface based on feedback to evaluate the usability and intuitive

design we will conduct user trials involving waste management personnel. These

trials involve realistic usage scenarios, and we will gather feedback on aspects

such as data visualization, interaction flows, and overall user experience.

This testing will help identify areas for improvement and ensure the user interface meets

the operators' needs.

 - Add predictive maintenance features

 - will add ultra-sonic sensor to detect level or distance

 - Implement optimized collection route planning

 With continuous improvement, our smart bin system can revolutionize waste operations!

In conclusion, we can say the testing and validation procedures conducted in this chapter

affirmed to us the functionality and reliability of the waste management system developed.

However, we will also identify any limitations or areas for improvement, such as the need for

further optimization of MQTT communication for enhanced reliability in challenging network

conditions.

➢ Future work:

we hope to upgrade the system with advanced capabilities like:

 Figure IV. 17: smart garbage with iot

 - Using AI to predict when bins will fill up

 - Automatically planning the most efficient collection routes

 - Integrating with third-party systems and services

 And in the next phase of our project, we plan to introduce exciting enhancements that will

significantly improve the efficiency and effectiveness of waste management. One of our key

developments is the integration of cameras for monitoring improper disposal, smell sensors for

environmental odor detection, and moisture sensors for assessing bin conditions This

technology will streamline the sorting process right at the source, drastically reducing the need

for manual labor and making waste management more efficient.

CHAPTER IV Testing and Validation

67

Additionally, we envision an advanced automated system capable of collecting and sorting

waste1 around the bins. This robotic mechanism will detect litter, pick it up, and ensure it is

placed in the correct bin, whether dry or wet. This automation will not only enhance the

precision of waste segregation but also help maintain cleaner surroundings by addressing waste

that may not directly reach the bins.

We aim to create a system that not only meets the current needs but also adapts to future

demands, ensuring a cleaner and more efficient approach to handling waste.

68

General Conclusion

In conclusion, our smart garbage management system with IoT demonstrates the potential

of advanced technology in revolutionizing waste handling and collection processes. By

integrating load cell sensors, our project enables real-time monitoring of garbage levels within

bins across the city. This system provides municipalities with timely updates on bin status -

whether empty, partially full, or full - facilitating more efficient waste collection routes and

schedules.

A key feature of our system is its ability to accurately measure garbage levels and

promptly relay this information to both the community and municipal authorities. This enables

drivers to be informed precisely when and where collection is needed, thereby optimizing

resource allocation and minimizing unnecessary trips. The incorporation of motion detection

via load cells identifying when objects are being placed in already full bins.

Importantly, our system's interface and software have been designed with adaptability in

mind. They can be easily modified and redeveloped to meet the specific requirements of

different city municipalities, ensuring that the solution can be tailored to diverse urban contexts.

This flexibility, coupled with the potential for further research and development, promises to

continually boost the system's efficiency and performance.

The IoT backbone of our smart garbage management system facilitates seamless

communication between bins, central servers, and end-users. By leveraging protocols such as

MQTT, we ensure reliable data transmission, enabling real-time decision making and

responsive waste management strategies.

While our current implementation shows considerable promise in enhancing urban waste

management, we recognize the potential for future enhancements. These could include the

integration of cameras for monitoring improper disposal, smell sensors for environmental odor

detection, and moisture sensors for assessing bin conditions. Such additions would further

increase the system's comprehensiveness and effectiveness.

Overall, this smart garbage management system with IoT offers a forward-thinking

solution to age-old urban challenges. It empowers municipalities with the tools to make

informed decisions, optimize resource utilization, and promote cleaner, more sustainable city

environments. As we continue to refine and expand this technology, we move closer to realizing

truly smart, efficient, and environmentally conscious cities.

69

Abstract

Waste management problems worsen with rapid population growth, leading to health issues

due to unsanitary conditions. "Smart Waste Management" utilizing IoT is a key solution. It

involves embedding electronics in public bins for real-time monitoring of waste levels. This

data optimizes garbage collection routes, reducing fuel costs. Load sensors improve waste data

collection efficiency. Analyzing this data enables governments and authorities to enhance

intelligent waste management strategies.

 الملخص

لمجاورين، مع الزيادة السريعة في عدد السكان، تتفاقم المشاكل المتعلقة إدارة النفايات بشكل كبير. هذا التدهور يخلق ظروفاً غير صحية للسكان ا
الحل (IoT) انتشار الأمراض المعدية والأمراض. لمعالجة هذه المشكلة، تعُتبر إدارة النفايات الذكية المستندة إلى إنترنت الأشياء مما يؤدي إلى

النفايات في العامة بأجهزة مدمجة تُُك ِّن من مراقبة مستويات القمامة النظام المقترح، سيتم تجهيز صناديق الوقت الأكثر فعالية وشعبية. في
علي. ستُستخدم البيانات المتعلقة بمستويات النفايات لتوفير مسارات مثلى لعربات جمع القمامة، مما سيقلل من تكاليف الوقود. ستزيد الف

كومية أجهزة استشعار الحمل من كفاءة البيانات المتعلقة بمستويات النفايات. سيساعد التحليل المستمر للبيانات المجمعة السلطات البلدية والح
 .لى تحسين الخطط المتعلقة بإدارة النفايات الذكيةع

Résumé

Les problèmes liés à la gestion des déchets deviennent de plus en plus graves en raison de la

croissance démographique si rapide. Cela conduit au développement de maladies infectieuses

et de troubles chez la population locale en créant des circonstances non sanitaires. La gestion

intelligente des déchets basée sur l'IoT est l'approche la plus efficace et la plus utilisée pour

résoudre ce problème. La solution proposée prévoit l'installation d'électroniques embarquées

dans des poubelles publiques pour permettre la surveillance en temps réel des niveaux de

déchets. Les itinéraires des camions de collecte des ordures seront ajustés en utilisant les

données sur les niveaux de déchets, ce qui permettra d'économiser des dépenses en carburant.

Les données sur les niveaux de déchets seront recueillies plus efficacement grâce aux capteurs

de charge. Les gouvernements et les autorités locales pourront améliorer leurs stratégies de

gestion intelligente des déchets grâce à l'étude continue des données recueillies.

70

Bibliography

71

Bibliography

[1] https://medium.com/centre-for-public-impact/what-gets-measured-gets-managed-its-

wrong-and-drucker-never-said-it-fe95886d3df6

[2] B. Sigongan, J., P. Sinodlay, H., Xerxy P. Cuizon, S., S. Redondo, J., G. Macapulay, M.,

O. Bulahan-Undag, C., & Migan Vincent C. Gumonan, K. (2023). GULP: Solar-Powered

Smart Garbage Segregation Bins with SMS Notification and Machine Learning Image

Processing. [PDF]

[3]Sutjarittham, T. (2021). Modelling and Optimisation of Resource Usage in an IoT Enabled

Smart Campus. [PDF]

[4] Ghahramani, M., Zhou, M., Molter, A., & Pilla, F. (2022). IoT-based Route

Recommendation for an Intelligent Waste Management System. [PDF]

[5] Barbosa, D., Antón, S., Paulo Barraca, J., Bergano, M., C. M. Correia, A., Maia, D., & A.

R. M. Ribeiro, V. (2020). Portuguese SKA White Book. [PDF]

[6] Zeng, F., Pang, C., & Tang, H. (2024). Sensors on Internet of Things Systems for the

Sustainable Development of Smart Cities: A Systematic Literature Review. ncbi.nlm.nih.gov

[7] https://components101.com/sites/default/files/component_datasheet/pi-pico-w-

datasheet.pdf

[8] Raspberry Pi Pico W Datasheet (components101.com)

[9] https://datasheets.raspberrypi.com/rpi3/raspberry-pi-3-b-plus-product-brief.pdf

[10] https://manualzz.com/doc/17523942/datasheet-3134---micro-load-cell---0-20kg----

czl635-contents

 https://learn.sparkfun.com/tutorials/getting-started-with-load-cells/all

 [11] https://diyprojectslab.com/arduino-with-load-cell-hx711-module/#google_vignette

 [12] https://instrumentationtools.com/load-cell-working-principle/

 https://instrumentationtools.com/load-cell-working-principle/

 [13] MicroPython - Raspberry Pi Documentation

 [14] Documentation for Visual Studio Code

 [15] Getting Started with Raspberry Pi Pico using Thonny IDE (microcontrollerslab.com)

 [16] Getting Started with Raspberry Pi Pico (and Pico W) | Random Nerd Tutorials

 [17] https://github.com/robert-hh/hx711/blob/master/hx711_pio.py

 [18] https://www.hivemq.com/blog/how-to-get-started-with-mqtt/#heading-introduction-to-

mqtt

https://arxiv.org/pdf/2304.13040
https://arxiv.org/pdf/2111.04085
https://arxiv.org/pdf/2201.00180
https://arxiv.org/pdf/2005.01140
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11014400/
https://components101.com/sites/default/files/component_datasheet/pi-pico-w-datasheet.pdf
https://datasheets.raspberrypi.com/rpi3/raspberry-pi-3-b-plus-product-brief.pdf
https://manualzz.com/doc/17523942/datasheet-3134---micro-load-cell---0-20kg----czl635-contents
https://manualzz.com/doc/17523942/datasheet-3134---micro-load-cell---0-20kg----czl635-contents
https://learn.sparkfun.com/tutorials/getting-started-with-load-cells/all
https://www.raspberrypi.com/documentation/microcontrollers/micropython.html
https://code.visualstudio.com/Docs
https://microcontrollerslab.com/getting-started-raspberry-pi-pico-thonny-ide/
https://randomnerdtutorials.com/getting-started-raspberry-pi-pico-w/

72

 [19] https://www.eginnovations.com/documentation/Mosquitto-MQTT/What-is-Mosquitto-

MQTT.htmvvvvv

 [20] http://www.steves-internet-guide.com/mqtt-works/

[21] Python Tkinter Widgets - Studytonight

 [22] Official Documentation And Tutorial | CustomTkinter (tomschimansky.com)

 [23] https://tutorials-raspberrypi.com/digital-raspberry-pi-scale-weight-sensor-

hx711/#google_vignette

 [24] pandas · PyPI

 [25] Introduction to Pandas in Python: Uses, Features & Benefits (learnenough.com)

[26] Top 10 advantages of Matplotlib in Python - TG (testgorilla.com)

https://www.eginnovations.com/documentation/Mosquitto-MQTT/What-is-Mosquitto-MQTT.htmvvvvv
https://www.eginnovations.com/documentation/Mosquitto-MQTT/What-is-Mosquitto-MQTT.htmvvvvv
https://www.studytonight.com/tkinter/python-tkinter-widgets
https://customtkinter.tomschimansky.com/
https://pypi.org/project/pandas/
https://www.learnenough.com/blog/how-to-import-Pandas-in-python
https://www.testgorilla.com/blog/matplotlib-in-python/

