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Abstract

Brain-Computer Interface (BCI) technology facilitates direct interaction
between individuals and computer systems by capturing brain activities,
specifically through electroencephalogram (EEG), without relying on phys-
ical movement. Our research delves into the realm of ’Motor Imagery,’ a
BCI modality where users simulate movements mentally, bypassing the
need for physical execution. This methodology harnesses brain signals
evoked by imagined actions to command external devices. Particularly
beneficial for individuals afflicted by conditions like cerebral palsy, stroke,
amyotrophic lateral sclerosis, or spinal cord injuries, BCIs aim to restore
impaired neural pathways, thereby reinstating lost motor functions. More-
over, leveraging artificial intelligence, notably via Artificial intelligence
model enabled data collection, extraction, and signal classification, opens
avenues for innovative applications such as ’Thought-Controlled Driving’
or ’Mind-Powered Device Operation,’ seamlessly translating classification
outcomes into actionable commands,Additionally, we believe these tech-
nologies can be further enhanced by incorporating the results and perfor-
mance of the random forest model used in our prototypes, achieving an
accuracy of 82.0%, a recall rate of 81.8%, and an F1 score of 81.4%.

Keywords: EEG, BCI, artificial intelligence, Motor Imagery, neural
rehabilitation



Résumé

L’interface cerveau-ordinateur (BCI) permet une interaction directe entre
les individus et les systèmes informatiques en capturant les activités cé-
rébrales, notamment par electroencephalogram (EEG), sans recourir au
mouvement physique. Notre recherche explore le domaine de l’« Imagerie
Motrice », une modalité BCI où les utilisateurs simulent mentalement des
mouvements, contournant ainsi le besoin d’exécution physique. Cette mé-
thodologie exploite les signaux cérébraux évoqués par les actions imaginées
pour commander des dispositifs externes. Particulièrement bénéfique pour
les personnes atteintes de conditions telles que la paralysie cérébrale, l’ac-
cident vasculaire cérébral, la sclérose latérale amyotrophique ou les lésions
de la moelle épinière, les BCI visent à restaurer les voies neuronales défi-
cientes, rétablissant ainsi les fonctions motrices perdues. De plus, en tirant
parti de l’intelligence artificielle, notamment via la collecte de données,
l’extraction et la classification des signaux par Modèle d’intelligence artifi-
cielle , de nouvelles applications innovantes telles que la « Conduite par la
Pensée » ou l’« Opération de Dispositifs par la Pensée » ouvrent des voies,
traduisant sans heurts les résultats de la classification en commandes De
plus, nous croyons que ces technologies peuvent être encore améliorées en
incorporant les résultats et les performances du modèle de forêt aléatoire
utilisé dans nos prototypes, atteignant une précision de 82,0%, un taux de
rappel de 81,8%, et un score F1 de 81,4%.

.
Mots clés : EEG, BCI, intelligence artificielle, Imagerie Motrice, réédu-
cation neuronale.
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General Introduction

Context

Historically, interest in brain-computer interface (BCI) dates back sev-
eral decades, with initial studies emerging in the late 20th century. The
advancements in radiological and computing technologies during the 1970s
facilitated the connection of neural devices to computers, opening new av-
enues for bridging the gap between the mind and technology. Techniques
such as Magnetic Resonance Imaging (MRI) and Computerized Tomog-
raphy (CT) contributed to a better understanding of brain function and
neural activity [1].

In the 1980s and 1990s, emerging technologies saw significant progress,
allowing the use of brain imaging techniques to gain more precise insights
into brain reactions and activity. Research began to develop methods for
recording and analyzing brain activity via computer devices, eventually
leading to the emergence of the concept of brain-computer interface as a
sophisticated subfield of research [2].

In the past decade, advancements in artificial intelligence and neural
signal analysis have led to notable progress in BCI technologies. These
technologies have been successfully applied in a wide range of medical and
technological applications, making them a central focus for innovation and
research in the present time.
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The Problem

Many individuals face debilitating conditions such as cerebral palsy,
stroke, amyotrophic lateral sclerosis (ALS), or spinal cord injuries, which
severely limit or completely impede their motor functions. Traditional in-
terfaces reliant on physical input fail to accommodate these individuals,
exacerbating their sense of dependency and limiting their autonomy.

Objective

Facing these challenges, our study aims to explore the theoretical foun-
dations, technical implementations, and practical implications of motor
imagery-based Brain-Computer Interface (BCI) systems. Through a com-
prehensive investigation encompassing neuroscience principles, signal pro-
cessing techniques, and real-world applications, we seek to:

• Investigate the underlying neuronal mechanisms of motor imagery and
its relevance for BCI applications;

• Evaluate the effectiveness of signal acquisition methodologies, with a
focus on integrating EEG with emerging hardware platforms;

• Explore cutting-edge classification algorithms for decoding EEG sig-
nals related to motor imagery;

• Developing and achieving a preliminary model for a BCI system capa-
ble of classifying motor imagery in real-time and controlling devices;

• Developing and achieving a preliminary model for a BCI system capa-
ble of classifying both motor imagery and actual movement in real-time
and controlling devices;

• Developing and achieving a preliminary model for a BCI system ca-
pable of classifying both motor imagery and actual movement simul-
taneously in real-time for studying differences;

• Assess the societal impact, ethical considerations, and future direc-
tions of motor imagery-based BCI technology; By addressing these
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objectives, we aim to contribute to the continuous advancement and
integration of BCI technology into society, fostering innovation, and
enhancing the quality of life for individuals with neuromuscular dis-
abilities.

Work Plan

– Chapter 01:General knowledge;
– Chapter 02:Theoretical work;
– Chapter 03:Classification algorithms;
– Chapter 04:Implementation And Prototype.
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Chapter 1

General knowledge

1.1 Introduction

This chapter will delve into EEG-based Brain-Computer Interface
(BCI) systems, focusing on NeuroSky’s EEG headsets. It covers the
fundamental components, such as hardware setup and signal process-
ing algorithms, explaining how EEG signals from the frontal lobe can
be used to infer mental intent like motor imagery. The chapter also
discusses applications, like controlling external devices through mental
commands, and explores future directions to enhance the technology’s
accuracy and speed.

1.2 History

The history of Brain-Computer Interface (BCI) technology dates
back to the latter half of the 20th century, where pioneering efforts
were made by scientists and researchers in various fields such as neu-
roscience, electrical engineering, and computer science. In the 1950s
and 1960s, initial studies began on recording brain electrical activ-
ity using electroencephalography (EEG), laying the groundwork for
understanding the basics of recording neural signals.

In 1973, Dutch scientist J. J. R. Rok attempted the first use of motor
imagery as a means to interact with external devices. Subsequently,
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in the 1980s, the technology began to move towards utilizing motor
imagery in BCI applications. In 1988, researchers at the University
of Texas developed a system that used motor imagery to control the
movement of a wheelchair [1].

Practically, the technology has advanced significantly in the follow-
ing decades, with increased understanding and advancements in tech-
niques for analyzing and interacting with brain signals. Techniques
such as functional magnetic resonance imaging (fMRI) and electro-
corticography (ECoG) have become valuable tools in studying and
understanding cognitive processes and their applications in BCI.

In recent years, the technology has seen major advancements in the
use of artificial intelligence and machine learning to improve the per-
formance of BCI systems, enhancing the accuracy of brain pattern
recognition and building more effective predictive models [2]. Thanks
to these developments, BCI technology is now capable of offering in-
novative solutions for device control and enhancing human-computer
interaction.

Ongoing studies and research in this field continue to develop and
improve BCI technology, with further advancements and innovations
expected in the future, expanding its applications and making it more
effective and efficient.

1.3 Frontal Lobe

The frontal lobe is the largest lobe in the human brain, located in the
anterior part of each cerebral hemisphere. It is known as the brain’s
command center and plays a crucial role in motor imagery. Notably
positioned within the skull, it corresponds to the inner surface of the
frontal bone. The frontal lobe is separated from the parietal lobe
posteriorly by the central sulcus and from the temporal lobe inferiorly
and laterally by the lateral sulcus (Sylvian fissure). On its surface, the
frontal lobe contains four major gyri: the precentral gyrus, superior
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frontal gyrus, middle frontal gyrus, and inferior frontal gyrus. Its
functions encompass several aspects[9], as shown in Figure 1.1:

1. Prefrontal Cortex: is manages high-level cognitive functions
such as planning, organization, decision-making, and impulse con-
trol. Additionally, it significantly influences social behavior and
personality expression[8][9].

2. Motor Cortex: is responsible for controlling voluntary move-
ments and coordinating body motions. It plays a crucial role in
achieving precise and smooth motor execution[8][9].

3. Broca’s Area: is fundamental in producing the motor aspect of
speech. It regulates the necessary muscles for speech production[8][9].

Figure 1.1: Frontal Lobe Structure[12].

1.4 Understanding Motor Imagery

Motor imagery is a cognitive process that allows individuals to men-
tally simulate movements or activities without physically performing
them. It involves using imagination and visualization to create vivid
mental images of movements in the mind, without the need for actual
execution by the body [5].
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1.5 Artificial Intelligence

Artificial Intelligence (AI) is a field in computer science that deals
with creating systems capable of simulating human intelligence and
performing tasks that require intelligent thinking. The goal of artificial
intelligence is to design and develop systems and software that can use
data and experience to make decisions, solve problems, and learn from
experiences.

Applications of artificial intelligence span a wide range of fields,
including machine learning, big data analysis, natural language pro-
cessing, robotics, inference systems, video games, healthcare, manu-
facturing, and many others.

Fundamentally, artificial intelligence relies on a variety of techniques
and concepts, including machine learning, artificial neural networks,
computational intelligence, inference logic, deep learning, calculus, sta-
tistical analysis, and more [6].

1.6 Collecting Motor Imagery Data in the Context of Ar-
tificial Intelligence

In the realm of artificial intelligence, collecting motor imagery data
refers to the process of recording and analyzing neural patterns that
occur during the mental simulation of movement, using techniques
such as brain imaging with EEG. This type of data aims to understand
how the brain interacts with motor imagery and identify the neural
patterns associated with it[3].

1.7 Relationship Between Motor Rehabilitation And Col-
lecting Motor Imagery Data In Artificial Intelligence

The connection between motor rehabilitation and collecting motor
imagery data in artificial intelligence lies in utilizing data collected
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from patients during rehabilitation processes to train artificial intel-
ligence models to understand and analyze motor imagery. This data
is used to develop artificial intelligence systems capable of identify-
ing and interpreting neural patterns and their interaction with motor
imagery[4].

1.8 The Concept Of Motor Imaging And Its Neurological
Relationships With The Frontal Lobe

Motor imagery is the brain’s ability to imagine and perform move-
ments without actually doing them. It’s a complex process involving
many brain areas, especially the frontal lobe. When we mentally pic-
ture moving different body parts, it’s like our brain is rehearsing those
movements. This "kinetic imagination" activates specific brain net-
works, which differ depending on which body part we’re imagining
moving[8].

1. Shared Neural Networks:
– Motor Cortex: Located in the frontal lobe, it is a major center

for motor control. It is divided into subregions, including the
primary and secondary motor cortex.

– Posterior Parietal Cortex: Located in the parietal lobe and
plays an important role in processing sensory information re-
lated to the body and movement.

– Visual Cortex: Located in the occipital lobe and involved in
processing visual information related to movement.

– Basal Ganglia: Plays an important role in planning and ex-
ecuting repetitive movements.

– Cerebellum: Contributes to the coordination and control of
movements.

2. The Role Of The Frontal Lobe: The frontal lobe plays a piv-
otal role in motor perception through:
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– Primary Motor Cortex: Sends signals to the muscles to
control movements.

– Secondary Motor Cortex: Involved in the planning and ex-
ecution of complex movements.

– Posterior Frontoparietal Region: Processes sensory infor-
mation related to the body and movement.

– Pre-Motor Area: involved in the planning and execution of
successive movements.

– Working Memory Cortex: Helps store and retrieve infor-
mation during motor imagery[8].

1.9 EEG

1.9.1 Historic

The invention of EEG is generally attributed to the British scien-
tist and physician Richard Caton in 1875. However, it was the Ger-
man neurologist Hans Berger who, in 1920, first amplified the electri-
cal signal of neuronal activity and described the resulting waveforms.
Berger also identified the alpha and beta brain waves. Since then,
EEG has evolved, and today we recognize five types of brain waves:
delta, theta, alpha, beta, and gamma[1].In 1932, the British physiol-
ogist Edgar Douglas Adrian furthered and completed Berger’s work,
even earning the Nobel Prize in Physiology. Since the 1950s, EEG has
been commonly used in scientific research, including quantitative EEG
analysis and electrophysiological brain imaging. While it offers good
temporal resolution and is cost-effective, EEG has limitations, such as
low spatial resolution and difficulty isolating individual neurocognitive
processes. Nevertheless, it remains a valuable tool for detecting neural
issues related to various pathologies and measuring brain activity in
cognitive neuroscience research[2][3].
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1.9.2 Definition

EEG is a method used to record the electrical activity of the brain. It
involves placing electrodes on the scalp to measure the brain’s neuron-
generated electrical impulses. These recordings are then utilized to
identify brainwave patterns associated with different cognitive states
and neurological conditions. EEG is crucial in understanding brain
function, as it provides real-time insights into cognitive processes,
and neurological disorders. In the realm of Brain-Computer-Interface
(BCI), EEG plays a vital role as it serves as the input to decode brain
signals, enabling users to interact with computers or external devices
using their thoughts. Understanding the basic principles of EEG signal
acquisition is fundamental in BCI, as it involves the precise capture
and interpretation of these electrical brain signals to translate them
into actionable commands, thereby bridging the gap between the brain
and technological devices[4]. The shape of the EEG signals is illus-
trated in Figure 1.2.

Figure 1.2: Electroencephalogram (EEG)[69].

1.9.3 Types Of electroencephalogram Waves

EEG records the spontaneous electrical activity of the brain. Here
are the main types of EEG waves. Here are the main types of EEG
waves this is illustrated in Figure1.3:

– Delta Waves As the slowest of all, these high-amplitude brain
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waves have a frequency of 1 to 3 Hz and are experienced by humans
when they are asleep.

– Theta Waves The Theta waves have a frequency range of 4 to 7
Hz and are found when a person is in a dreamy state. When the
waves are close to the lower end, they represent the state when
a person hovers between sleep and consciousness. It’s also known
as the twilight state. Theta waves, in general, signify that mental
inefficiency or that the person is either too relaxed or blanked out
(zoned out) at that moment.

– Alpha Waves The alpha waves have a frequency range of 8 to 12
Hz. These are larger and slower, representing a relaxed or calm
state of mind for a person ready to get into action if the need
arises. The alpha brain waves are generated when someone feels
peaceful after closing their eyes and picturing something they like.

– Beta Waves Beta waves are faster and smaller, with a frequency
range of 13 to 38 Hz. These waves imply that the person is focused
on something. They signify alertness, where the person is in their
senses and displays all signs of concentration and mental activity.

– Gamma Waves Gamma waves are the fastest ones, with a fre-
quency range of 38 to 42 Hz. These are subtle compared to the
other brain waves and work on the consciousness and perception
of the person. The waves occur when a person is highly alert and
can feel every minute change in their surroundings[5].

Figure 1.3: Waveforms Of Different Brain Waves[13].
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1.10 NeuroSky

1.10.1 Definition

NeuroSky is a brain-computer interface (BCI) company founded in 2004,
focused on developing wearable electroencephalogram (EEG) sensors ca-
pable of detecting brainwave activity signals including alpha, beta, theta,
delta, and gamma waves. Their flagship consumer products integrate dry-
contact EEG electrodes and onboard chipsets to filter, amplify and process
these endogenous brain signals into digital data packets readable by com-
puters and mobile devices, commonly via Bluetooth connectivity. Cen-
tral to their approach is the use of machine learning algorithms to translate
recorded EEG rhythms and Event-Related Potentials (ERPs) into propri-
etary metric outputs claimed to reflect mental states like attention, med-
itation and eye blinks. The most common product application has been
integrating these headset biosensors to enable basic brainwave-driven con-
trol in gaming, digital entertainment and wellness training interfaces [6][7],
as shown in the NeuroSky logo in Figure 1.4.

Figure 1.4: NeuroSky Logo[14].

1.10.2 Device Neurosky ThinkGear AM TGAM EEG

The NeuroSky ThinkGear AM is a biosensor module designed for cap-
turing and processing EEG (Electroencephalogram) signals. It is often
used in applications such as brain-computer interfaces (BCI), biofeedback,
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and neurofeedback. The ThinkGear technology allows developers to access
and utilize EEG data for various purposes, as shown in Figure 1.5.

Figure 1.5: NeuroSky ThinkGear AM TGAM EEG[15].

1.10.3 Components Device

The components of the NeuroSky ThinkGear AM TGAM EEG device are
shown in Figure 1.6 and include:

• The electrode sheet (Forehead Sensor): The fabric dry electrode
sensor that rests on the forehead to detect electrical signals from the
brain[15].

• Ear Clip Sensor: The reference sensor clipped to the earlobe used
to subtract environmental noise from the forehead sensor signal[15].

• TGAM Brain Waves Module: The integrated signal processing
chip that analyzes the analog brainwave signal and calculates useful
outputs[15].

• Bluetooth Module: Enables wireless transmission of data to paired
devices and computers up to 10 meters away[15].

• Battery: Battery storage holds two cigarette-shaped batteries with
a capacity of 1.5 volts each[15].

• The Shield Line: This could refer to a shielded cable or a protec-
tive shield for the TGAM module, helping to reduce electromagnetic
interference (EMI) or noise in the signals[15].
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Figure 1.6: TGAM Module Components[15].

1.10.4 TGAM Module Features:

Direct connection to the dry electrode.
One EEG channel + Reference + Ground.
Very weak signal detection capability.
Enhanced high-security filter.
RAW EEGnoiseat 512Hz.
sampling rate:512Hz.
Frequency range: 3-100Hz.
ESD protection. Call To discharge 4kV and 8kV Air.
Maximum consumption: 15mA at 3.3V.
Power supply: 2.97 3.63V.
baud Rate (serial): 1200, 9600, 57600 bits per second. [15][57]

1.10.5 MindViewer

MindViewer is a visualization tool designed for use with the NeuroSky,
an EEG device. It allows users to understand their mental states in real-
time while engaging in various day-to-day activities such as studying, work-
ing, or taking breaks.
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When paired with the NeuroSky, MindViewer records and translates brain-
wave activity into easily understandable visualizations displayed on a com-
puter or tablet screen, as shown in Figure 1.7. This enables users to mon-
itor their mental state, level of focus, or relaxation while performing their
daily tasks.
By utilizing MindViewer, individuals can analyze their own brain activ-
ity patterns and understand how different activities impact their minds
and performance. This can help them improve their concentration, per-
formance, and overall well-being by optimizing their activities based on
real-time feedback from their brain activity.

Figure 1.7: MindViewer User Interface[16].

1.10.6 Brain Signals Handled By A Device

• RAW EEG Signal: the device provides raw data of brain signals
(EEG) at a rate of 512 bits per second.

• Attention: the device measures the user’s attention level.

• Meditation: the device measures the user’s meditation level.

• Eye Blink: the device can detect blinking.

• Brain Waves: the device processes and outputs the EEG frequency
spectrum, which includes(Delta, Theta, Alpha, Beta, and Gamma
Waves)[17].
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1.11 Brain-computer interface (BCI)

1.11.1 Definition

A brain-computer interface (BCI), also known as a brain-machine in-
terface (BMI), is a system that enables direct communication between
the human brain and an external device, bypassing the typical channels
of muscles and nerves. It does this by measuring brain activity, such as
electrical signals or blood flow changes, and translating those signals into
commands that the device can understand, as illustrated in the framework
shown in Figure 1.8.

Figure 1.8: The Framework of a Brain-Computer Interface (BCI)[18].

1.11.2 Fundamental Components Of BCI System

A typical BCI system comprises three fundamental components, each
serving specific roles[19], as shown in Figure 1.9:

1. Signal Acquisition This component involves capturing brain signals
(such as EEG) from the user’s brain. Electrodes or sensors placed on
the scalp or directly within the brain record these electrical activities.

2. Signal Processing Once acquired, the brain signals undergo process-
ing to extract relevant features. Signal processing techniques enhance
the quality of the recorded data and prepare it for interpretation.
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• Feature Extraction once the signals are acquired, it is necessary
to clean them.

• Feature Classification once the signals are cleaned, they will be
processed and classified to find out which kind of mental task the
subject is performing.

• Feature Translation once the signals are classified, they will be
used by an appropriate algorithm for the development of a certain
application.

3. Application The processed brain signals are then translated into
actionable commands for external devices (e.g., computers, robotic
limbs, or virtual environments). BCIs can assist, augment, or restore
human cognitive or sensory-motor functions[1].

Figure 1.9: Main Components of the Brain–Computer Interface (BCI) System[20].

1.12 Conclusion

In this first chapter, we presented brain-computer interfaces (BCIs) and
(EEG) to obtain brain signals, decode them, and translate them into ex-
ecutable commands. We learned how to use NeuroSky EEG headsets, in
addition to the important role of the frontal lobe in motion control. In
the second chapter, let’s explore the field of mathematical models and
techniques such as filtering and machine learning, which enhances our un-
derstanding of EEG signal processing in the context of BCIs.
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Chapter 2

Theoretical work

2.1 Introduction

Deciphering motor imagery from (EEG) signals is a critical factor in the
development of robust and resilient brain-computer interface (BCI) sys-
tems. This chapter explores the theoretical foundations supporting EEG
signal processing methodologies, including filtering techniques and artifact
removal algorithms. It also delves into the methods used for extracting
distinctive features from EEG signals through time-domain, frequency-
domain, and time-frequency analyses, which are essential for capturing
the unique characteristics of EEG data.

2.2 Mindwave Mobile EEG And Blink Strength Data Acquisi-
tion System

This Python-based application facilitates real-time acquisition and log-
ging of electroencephalographic (EEG) data and blink strength informa-
tion from the NeuroSky Mindwave Mobile EEG headset. Using the PyNeuro
library, it establishes a Bluetooth connection with the headset, initiates
data streaming, and implements callback functions to handle blink events.
The application logs timestamped data, including attention, meditation,
brainwave frequencies (delta, theta, alpha, beta, gamma), and blink strength
values, to a CSV file for a predefined duration. The recorded data can be
utilized for further analysis and processing in brain-computer interface
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applications. We will discuss this application in more detail in the final
chapter, focusing on how it was programmed by our team[23].

2.3 Data Collection Conditions

Data was collected from approximately 100 participants using a Neu-
roSky MindWave headset to record EEG signals. Participants engaged in
tasks such as recording blinks and motor imagery while their brain signals
were monitored. Strict quality control measures were implemented to en-
sure data integrity. The collected dataset serves as a valuable resource for
exploring brain activity associated with blinking and the cognitive effects
of motor imagery in brain-computer interface research. The volunteers
were selected from the Mathematics and Computer Science College and
Mahdia Hospital, and data collection was conducted following strict pro-
cedures and guidelines:

Data was collected in an interference-free environment to avoid distortion
from electric fields affecting brainwave frequencies[7].
Volunteers were required to remain fully relaxed with no body movement
to minimize stress and anxiety[7].
Participants were selected from diverse age groups to prevent unwanted
interference[7].
Data collection duration ranged from 5 to 10 seconds[7].
Rest period: After each attempt, participants receive a short rest period,
such as 10 seconds, before proceeding to the next attempt[7].
Volunteers were instructed to blink or imagine blinking regularly[7].
In case of imagining blinking, volunteers signaled with their hand when
they felt the need to blink, and recording was immediately stopped and
marked with a code "1" to distinguish between imagined and actual blinking[7].
Clear and sudden changes were observed in some brainwaves with direct
real-time observation using the naked eye[7].
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Recorded files for each person were reviewed immediately after recording
to ensure data integrity and absence of interference or anomalies causing
data corruption[7].

2.4 EEG Signal Preprocessing

Preprocessing of EEG signals is a critical step in the analysis and in-
terpretation of brain activity data. The key stages involved in the EEG
signal preprocessing process are as follows:

2.4.1 Data Loading And Cleaning

The first stage involves loading the raw EEG data from the data col-
lection process into a structured data format, such as a tabular or matrix
representation. Once the data is loaded, various cleaning techniques are
applied to ensure the integrity and quality of the dataset. This includes re-
moving duplicate rows, handling missing values, and converting data types
to ensure consistent representation of the EEG features[27].

2.4.2 Deduplication Based On Blink Strength

In some cases, the collected EEG data may contain duplicate instances,
where multiple rows represent the same underlying information, except for
the blink strength feature. To address this, a deduplication strategy is
employed that identifies sets of duplicate rows based on a subset of the
EEG features, excluding the blink strength. From each set of duplicates,
the row with the highest blink strength value is retained, ensuring the most
informative data point is preserved in the final dataseT[28].

2.4.3 Outlier Removal Using IQR Method

Outliers in the EEG data can significantly influence the subsequent sig-
nal processing and analysis. To mitigate the impact of outliers, a robust
technique like the Interquartile Range (IQR) method is implemented. This
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approach identifies data points that fall outside a specified range, deter-
mined by the first and third quartiles of the data distribution, and removes
them from the dataset. Let X = {x1, x2, . . . , xn} be the dataset.

The first quartile (Q1) and third quartile (Q3) are calculated as:

Q1 = x(n
4 )
, Q3 = x( 3n

4 )
(1)

The Interquartile Range (IQR) is calculated as:

IQR = Q3−Q1 (2)

The lower bound and upper bound for outlier detection are defined as:

Lower bound = Q1− k × IQR, Upper bound = Q3 + k × IQR (3)

Where k is a constant threshold, typically set to 1.5. Any data point
x in X that satisfies x < Lower bound or x > Upper bound is considered
an outlier[22].

2.4.4 Wavelet-Based Denoising

To further enhance the quality of the EEG signals, wavelet-based de-
noising techniques are applied. This involves performing a discrete wavelet
transform on the individual brainwave features, such as Delta, Theta, Al-
pha, Beta, and Gamma waves. The wavelet coefficients are then subjected
to a soft thresholding process to remove high-frequency noise and artifacts,
while preserving the underlying signal characteristics.

The wavelet denoising process involves the following mathematical
operations:

Let f(t) be the input signal.
The wavelet decomposition is performed using:

W (f) = {aj, dj} (4)

Where W (f) represents the wavelet transform of the signal f(t), aj are
the approximation coefficients, and dj are the detail coefficients at level j.
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The denoising process involves thresholding the detail coefficients dj
using a suitable threshold value T and a thresholding method (soft or
hard thresholding):

d′j = η(dj, T ) (5)

Where η represents the thresholding function, and d′j are the thresholded
detail coefficients.

The denoised signal f ′(t) is obtained by reconstructing the signal from
the approximation coefficients aj and the thresholded detail coefficients d′j
using the inverse wavelet transform:

f ′(t) = W−1({aj, d′j})
(6)

The specific mathematical equations for the wavelet transform and its
inverse are defined by the chosen wavelet basis function and are handled by
the PyWavelets library functions (pywt.wavedec, pywt.threshold, and
pywt.waverec)[25].

2.4.5 Categorizing Eyelash Movements

The EEG signal preprocessing workflow includes the addition of a new
’Action’ column to the dataset, which categorizes eyelash movements based
on blink strength. A threshold is defined to differentiate intentional eye
blinks/winks from natural occurrences. The ’Action’ column is then pop-
ulated, with a value of 1 indicating an intentional eye blink, and 0 repre-
senting the baseline or resting state[24][23].

2.4.6 Statistical Analysis Of Dataset

Dataset Of Real Motor And Imagery Motor

The dataset explores how people engage with real and imagined move-
ments through eye blink, offering insights into the parallels and distinctions
between actual and imagined performance, as shown in Figures 2.1 and 2.2.
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Figure 2.1: Count of Action: Dataset of Real Motor and Imagery Motor.

Figure 2.2: Count Percentage of Action: Dataset of Real Motor and Imagery Motor.
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2.5 Conclusion

Casting the chapter’s conclusion, it underscores the significance of de-
coding motor imagery from EEG signals in developing robust and resilient
BCI systems. We’ve delved into the theoretical foundations of EEG signal
processing, encompassing filtering techniques and artifact removal algo-
rithms. This theoretical inquiry reveals challenges to overcome for en-
hancing the accuracy and efficiency of BCI systems. In the forthcoming
chapter, we’ll delve into feature selection and classification algorithms to
effectively and accurately analyze and classify EEG signals, thereby bol-
stering BCI system capabilities and paving the way for novel and exciting
applications in the future.
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Chapter 3

Classification Algorithms

3.1 Introduction

In this chapter, we will focus on classification and analysis algorithms
to identify the most impactful features and algorithms that significantly
affect the data results. We will delve into real motor data, imagery motor
data, and real motor and imagery motor data separately, presenting the
analysis stages leading to the desired outcomes.

3.2 K-Nearest Neighbors (KNN):

KNN predicts by averaging the outcomes of the nearest neighbor sam-
ples. It’s a simple, effective method for classification and regression[31], as
illustrated in Figure 3.1.

3.2.1 Function:

ŷ =
1

k

k∑
i=1

yi (7)
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Figure 3.1: K-Nearest Neighbors (KNN)[55].

3.3 Support Vector Machine (SVM):

SVM seeks the best margin between classes using support vectors and
hyperplanes, suitable for both linear and non-linear problems[28], as shown
in Figure 3.2.

3.3.1 Function:

f(x) = w · x+ b (8)

Figure 3.2: Support Vector Machine (SVM)[55].
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3.4 Random Forest:

Random Forest builds multiple decision trees and merges them to get a
more accurate and stable prediction. It’s great for classification and regres-
sion, reducing overfitting and handling large datasets with high dimensionality[29],
as illustrated in Figure 3.3.

3.4.1 Function:

ŷ =
1

n

n∑
i=1

treei(x) (9)

Figure 3.3: Random Forest[55].

3.4.2 Ensemble Method:

It combines the predictions from multiple trees to improve accuracy.

3.4.3 Bagging:

Each tree is trained on a random subset of the data, increasing diversity
and robustness.
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3.4.4 Feature Randomness:

Randomly selects a subset of features for splitting nodes, which con-
tributes to variance reduction.

3.5 Correlation Heatmaps

Correlation heatmaps visualize the strength of relationships between
numerical variables. Each variable is represented by a column and each
pairwise relationship by a row. The cell values indicate the strength and
direction of the relationship, with positive values for positive relationships
and negative values for negative relationships. The color-coding of the cells
allows for quick identification of these relationships. Correlation heatmaps
help identify potential relationships, outliers, and both linear and nonlinear
relationships between variables[32].

3.6 Pairwise Scatter Plot

A pairwise scatter plot, also known as a scatter plot matrix, is a grid
of scatter plots that shows the relationships between pairs of variables in
a dataset. Each cell in the grid represents a scatter plot of one variable
against another. This type of plot is useful for visualizing the pairwise rela-
tionships and potential correlations among multiple variables simultaneously[33].

3.7 SHAP Beeswarm Plot

The SHAP beeswarm plot visualizes the distribution of SHAP values
across features in a dataset. Resembling a swarm of bees, the arrangement
of points reveals insights into the role and impact of each feature on the
model’s predictions. On the plot’s x-axis, dots represent the SHAP values
of individual data instances, providing crucial information about feature
influence. A wider spread or higher density of dots indicates more signif-
icant variability or a more substantial impact on the model’s predictions.
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This allows us to evaluate the significance of features in contributing to
the model’s output.

Additionally, the plot employs a default color mapping on the y-axis
to represent low or high values of the respective features. This color scheme
aids in identifying patterns and trends in the distribution of feature values
across instances[34].

3.8 Confusion Matrix

A confusion matrix is a matrix that summarizes the performance of a
machine learning model on a set of test data. It is a means of displaying
the number of accurate and inaccurate instances based on the model’s
predictions. It is often used to measure the performance of classification
models, which aim to predict a categorical label for each input instance.

The matrix displays the number of instances produced by the model on
the test data.[35]:

• True positives (TP): occur when the model accurately predicts a pos-
itive data point;

• True negatives (TN): occur when the model accurately predicts a neg-
ative data point;

• False positives (FP): occur when the model predicts a positive data
point incorrectly;

• False negatives (FN): occur when the model mispredicts a negative
data point
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3.9 Accuracy

Accuracy is the ratio of the number of correct predictions to the total
number of predictions.

Accuracy =
Number of correct predictions
Total number of predictions

=
TP + TN

TP + TN + FP + FN
(11)

3.10 Recall (Sensitivity)

Recall, also known as sensitivity, is the ratio of true positives to the sum
of true positives and false negatives.

Recall =
TP

TP + FN
(12)

3.11 F1 Score

The F1 Score is the harmonic mean of precision and recall.

F1 Score = 2× Precision × Recall
Precision + Recall

=
2× TP

2× TP + FP + FN
(13)

3.12 Calculate Percentage Of Correct Predictions For Each
Model

Percentage of correct predictions = Accuracy × 100 (14)
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3.13 Calculate Total Correct Predictions Across All Models

Total correct predictions =
n∑

i=1

Accuracyi × Total (15)

• Total represents the total number of predictions made across all mod-
els.

• n represents the number of models.

3.14 Calculate Percentage Of Each Model’s Performance Rel-
ative To All Models

RPPi =
Accuracyi × Total

Total correct predictions across all models
× x100 (16)

3.15 Feature Extraction

Feature extraction is a crucial step in the analysis of EEG data, as
it involves the identification and quantification of relevant characteristics
from the raw signals. These features serve as inputs to the subsequent
machine learning and classification models, enabling the interpretation of
cognitive states and the development of brain-computer interface (BCI)
applications.This process is illustrated in Figure 3.4.

Figure 3.4: EEG Data Processing Pipeline: From Raw Data To Classification.
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3.15.1 Time-Domain Features

Time-domain analysis provides valuable insights into the temporal dy-
namics of EEG signals. In this study, we comprehensively analyzed time-
domain features for each data[36]

Time-Domain Features For Imagery Motor And Real motor Data

The dataset contains 2381 rows of integer values reflecting brainwave
activities and actions, mostly binary with a mean of 0.279714. Key mea-
sures include mean attention (51.29) and meditation (54.60), with wide-
ranging frequencies like delta (mean: 469,053) and theta (mean: 113,832).

As shown in Figure 3.5 and Figure 3.6, the dataset contains time-domain
features for imagery motor and real motor data.

Figure 3.5: Time-Domain Features For Real Motor And Imagery Motor Data 01.
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Figure 3.6: Time-Domain Features For Real Motor And Imagery Motor Data 02.

3.16 Exploratory Data Analysis For Imagery motor Data For
Real Motor Data

3.16.1 Correlation Matrix With Heatmap Before Analyzing And Selecting
The Columns

The most influential relationships with the target variable ’Action’ for
predicting eye movement are ’High Gamma’ (r=0.055), ’Low Gamma’
(r=0.053), and ’Attention’ (r=0.05). These correlations indicate their
importance in eye movement prediction, providing valuable insights for
scientific analysis.As shown in Figure 3.11.
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Figure 3.7: Correlation Matrix With Heatmap Before Analyzing And Selecting The Columns For Real
Motor Data.

3.16.2 Pairwise Scatter Plots Before Analyzing And Selecting The Columns

The pairwise scatter plots reveal that Theta and Attention exhibit the
strongest associations with the target variable Action, showing distinct
clustering and separation of Action categories. Low Beta and Low Alpha
provide complementary predictive power when combined with Theta, while
High Beta, Meditation, High Gamma, High Alpha, Low Gamma, and
Delta appear to be weaker features with limited discriminative ability for
this motor imagery dataset.As shown in Figure 3.12.
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Figure 3.8: Pairwise Scatter Plots Before Analyzing And Aelecting The Columns.

3.16.3 Correlation Matrix with Heatmap After analyzing and selecting the
columns

The heat map analysis reveals the most influential relationships with the
target variable ’Action’: **Attention** (r = 0.05) shows a weak positive
correlation, suggesting a slight association with eye movement; **Theta**
(r = -0.036) displays a weak negative correlation, indicating a minor in-
hibitory relationship; and **Low Beta** (r = 0.0015) has a negligible
positive correlation, implying minimal influence on the target variable.As
shown in Figure 3.9.
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Figure 3.9: Correlation Matrix With Heatmap After Analyzing And Selecting The Columns For Real
Motor Data.

3.16.4 Pairwise Scatter Plots After Analyzing And Selecting The Columns

The chart shows distributions and scatter plots for “Attention,” “Theta,”
and “Low Beta,” colored by the binary “Action” variable (0 or 2). “Low
beta” displays the most pronounced separation between the “Action” cat-
egories, suggesting that it is a strong predictor, while “Attention” also
shows a significant association.As shown in Figure 3.10.
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Figure 3.10: Pairwise Scatter Plots After Analyzing And Selecting The Columns For Real Motor
Data.
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3.17 Exploratory Data Analysis For Imagery Motor And Real
Motor Data

3.17.1 Correlation Matrix With Heatmap Before Analyzing And Selecting
The Columns

The most influential relationships with the target variable "Action"
are as follows: **Attention** has the strongest negative correlation (r
= -0.17), indicating that higher attention levels may reduce task perfor-
mance. **Meditation** also negatively correlates (r = -0.14), suggesting
that higher meditation states lower cognitive engagement. **Theta** (r =
0.12) enhances task performance, while **Low Beta** (r = 0.069), **Low
Gamma** (r = 0.042), and **High Gamma** (r = 0.03) show positive
correlations.As shown in Figure 3.11.

Figure 3.11: Correlation Matrix With Heatmap Before Analyzing And Selecting The Columns For
Imagery Motor And Real Motor Data.
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3.17.2 Pairwise Scatter Plots Before Analyzing And Selecting The Columns

The pairwise scatter plots reveal that Theta and Attention are the
strongest predictors of the three Action categories (0, 1, 2), exhibiting
distinct clustering and separation. Low Beta and Low Alpha provide com-
plementary information, while High Beta, Meditation, High Gamma, High
Alpha, Low Gamma, and Delta appear to be weaker features with limited
discriminative power for this motor imagery dataset.As shown in Figure
3.12.

Figure 3.12: Pairwise Scatter Plots Before Analyzing And Selecting The Columns For Imagery Motor
And Real Motor Data.
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3.17.3 Correlation Matrix With Heatmap After Analyzing And Selecting
The Columns First Time

Heat map analysis reveals the most influential relationships with the
target variable “Action”: “Attention” (r=-0.17), “Low Beta” (r=0.069),
and “Theta” (r=0.12). These variables show the strongest correlations,
with “attention” showing a significant negative relationship, and “theta”
and “low beta” showing significant positive correlations, indicating their
significant influence on the target variable.As depicted in Figure 3.13.

Figure 3.13: Correlation Matrix With Heatmap After Analyzing And Selecting The Columns First
Time For Imagery Motor And Real Motor Data.
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3.17.4 Pairwise Scatter Plots After Analyzing And Selecting The Columns
First Time

The pairwise scatter plots reveal that ’Theta’ and ’Attention’ are the
strongest predictors of the target variable ’Action’, with ’Low Beta’ provid-
ing additional discriminative power when combined with the other features.
’High Beta’ appears to be the weakest predictor but may still contribute
to the overall model performance when used in conjunction with the more
informative features.As shown in Figure 3.14.

Figure 3.14: Pairwise Scatter Plots After Analyzing And Selecting The Columns First Time For
Imagery Motor And Real Motor Data.
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3.17.5 Correlation Matrix with Heatmap After Analyzing And Selecting
The Columns Second Time

The correlation heatmap reveals the following relationships: Theta and
Action have a weak positive correlation (r=0.12), Attention and Low Beta
exhibit a weak negative correlation (r=-0.079), Attention and Theta have a
moderate negative correlation (r=-0.27), Attention and Action have a weak
negative correlation (r=-0.17), and Theta and Low Beta show a moderate
positive correlation (r=0.53).As shown in Figure 3.15.

Figure 3.15: Correlation Matrix With Heatmap After Analyzing And Selecting The Columns Second
Time For Imagery Motor And Real Motor Data.
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3.17.6 Pairwise Scatter Plots Before Analyzing And Selecting The Columns
Second Time

The scatter plot matrix analysis reveals ’Theta’ and ’Attention’ as pri-
mary predictors of ’Action’, showcasing distinct class separations. ’Low
Beta’ contributes moderately, especially in combination with either ’Theta’
or ’Attention’, underscoring its significance in predictive modeling for ’Ac-
tion’,As shown in Figure 3.16.

Figure 3.16: Pairwise Scatter Plots Before Analyzing And Selecting The Columns Second Time For
Imagery Motor And Real Motor Data.
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3.18 An Example Of The Analytical Method Used To Infer
Optimal Models

In this section, we will present one example(data of real motor and
imagery motor) illustrating the steps of analyzing all three datasets to
arrive at selecting the optimal model.

3.18.1 Analysis: Employing The 3 Colonm ’Attention’,’Theta’,’Low Beta’

• Feature Importance

These feature importances indicate the relative significance of different
EEG signal features in a model, as shown in Figures 3.17,3.18 and 3.19.

Figure 3.17: Feature Importances.

• Feature Importance Based On Permutation

Figure 3.18: Feature Importance Based On Permutation.
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• Model Evaluation

Figure 3.19: Model Evaluation.

Support Vector Machine:

Accuracy: 0.670757, which means about 67.1% of the predictions were
correct.

Recall: 0.666196, indicating that around 66.6% of the actual positive
cases were correctly identified by the model.

F1 Score: 0.609183, which is the harmonic mean of precision and re-
call, providing a balanced measure between them.
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Confusion Matrix: [[58, 168, 95], [32, 265, 27], [0, 0, 333]]

• True Negative (TN): 58

• False Positive (FP): 168

• False Negative (FN): 32

• True Positive (TP): 265

Figure 3.20: Confusion Matrix Of Support Vector Machine.

Random Forest Classifier:

Accuracy: 0.820041, which means about 82.0% of the predictions were
correct.

Recall: 0.817878, indicating that around 81.8% of the actual positive
cases were correctly identified by the model.
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F1 Score: 0.813862, which is the harmonic mean of precision and re-
call, providing a balanced measure between them.

Confusion Matrix: [[200, 104, 17], [47, 273, 4], [4, 0, 329]]

• True Negative (TN): 200

• False Positive (FP): 104

• False Negative (FN): 47

• True Positive (TP): 273

Figure 3.21: Confusion Matrix Of Random Forest Classifier.

KNeighbors Classifier:

Accuracy: 0.754601, which means about 75.5% of the predictions were
correct.

Recall: 0.751543, indicating that around 75.2% of the actual positive
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cases were correctly identified by the model.

F1 Score: 0.737327, which is the harmonic mean of precision and re-
call, providing a balanced measure between them.

Confusion Matrix: [[146, 130, 45], [54, 264, 6], [2, 3, 328]]

• True Negative (TN): 146

• False Positive (FP): 130

• False Negative (FN): 54

• True Positive (TP): 264

Figure 3.22: Confusion Matrix Of KNeighbors Classifier.

3.19 Results of Top Models Across One Datasets

Based on a comprehensive analysis of the data, it is evident that one
leading model in the field of artificial intelligence stands out for its effec-
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tiveness and exceptional performance. Below is a presentation of the top
models across a single dataset, highlighting their respective strengths and
outcomes.

3.19.1 Results Of Top Model In Dataset of Motor Imagery And Real Mo-
tor

Cross-Validation F1 Scores
The provided F1 scores are from a cross-validation process, indicating

the performance of a model across different subsets of the data. The aver-
age F1 score 0.809, represents the overall model performance, with higher
values indicating better classification accuracy, , as shown in Figures3.23
and 3.24 .

Figure 3.23: Cross-Validation F1 Scores.

• Best Model

Random Forest Classifier (RFC) is evaluated in comparison to other
machine learning algorithms. The evaluation metrics, including Accuracy,
Recall, and F1 Score, along with the confusion matrix, are presented below:

Accuracy: 0.820041, indicating that approximately 82.0% of the pre-
dictions were correct.

Recall: 0.817878, indicating that around 81.8% of the actual positive
cases were correctly identified by the model.

F1 Score: 0.813862, which is the harmonic mean of precision and re-
call, providing a balanced measure between them.
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Confusion Matrix: 200 104 17
47 273 4
4 0 329


• True Negative (TN): 200

• False Positive (FP): 104

• False Negative (FN): 47

• True Positive (TP): 273

Figure 3.24: Model Evaluation Metrics.

This model demonstrates superior performance compared to other algo-
rithms.
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3.20 Conclusion

In this chapter, we reviewed the data analysis methodology and how
to select the best model with the highest possible accuracy. By following
a clear and systematic approach, including analysis, and testing multi-
ple models, we were able to identify the optimal model that achieves the
desired accuracy. The analysis process was comprehensive, considering
various factors and variables that could impact the performance of the
selected models.

In the next chapter, we will move on to the prototype development
and evaluation phase, focusing on the practical application of the chosen
model and testing it in a real-world environment. We will present the
final results and discuss the implementation of the model in real contexts,
exploring the potential benefits and challenges. The goal is to ensure
that the model is not only theoretically accurate but also effective and
applicable in real-world scenarios.
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Implementation And Prototype

4.1 Introduction

This chapter will delve into the programming details and software tools
used in the process of developing the initial model and during the evalua-
tion stage. It will primarily focus on the application of the selected model
and its testing in a real-world environment. Three main aspects will be
addressed: the data collection program and design,result model results,
and real-time testing of the model. The aim of this chapter is to ensure
the accuracy of the model and its ability to be applied in real-life scenarios,
thereby guaranteeing the achievement of the desired results in real-world
environments.

4.2 Libraries, Languages, And Tools

4.2.1 Pandas

Pandas is a library for data manipulation and analysis in Python. It
offers data structures like Series and DataFrame, which are efficient for
handling and analyzing data[37][58].

4.2.2 NumPy

NumPy is a fundamental package for scientific computing in Python. It
provides support for large, multi-dimensional arrays and matrices, along
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with a collection of mathematical functions to operate on these array[38][58].

4.2.3 Matplotlib

Matplotlib is a plotting library for the Python programming language
and its numerical mathematics extension NumPy. It provides an object-
oriented API for embedding plots into applications[39][58].

4.2.4 Seaborn

Seaborn is a Python data visualization library based on Matplotlib.
It provides a high-level interface for drawing attractive and informative
statistical graphics[40][58].

4.2.5 Scikit-learn (sklearn)

scikit-learn is a machine learning library for Python that provides simple
and efficient tools for data mining and data analysis. It features various
classification, regression, and clustering algorithms[41][59].

4.2.6 Imbalanced-learn (imblearn)

Imbalanced-learnis a library for dealing with imbalanced datasets in ma-
chine learning. It provides various resampling techniques such as over-
sampling and under-sampling methods[42][60].

4.2.7 Shap

Shap is a library for interpreting the output of machine learning models.
It provides explanations for individual predictions using Shapley values[43][61].

4.2.8 Pickle

Pickle is a module in Python used for serializing and de-serializing
Python objects. It is commonly used to save trained machine learning
models to disk[44][62].
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4.2.9 Anaconda

Anaconda’s open-source Distribution is the easiest way to perform Python/R
data science and machine learning on a single machine[46][63].

4.2.10 Jupyter

The Jupyter Notebook application allows you to create and edit docu-
ments that display the input and output of a Python or R language script.
Once saved, you can share these files with others[47][64].

4.2.11 PyNeuro

PyNeuro is designed to connect NeuroSky’s MindWave EEG device to
Python and provide Callback functionality to provide data to your appli-
cation in real time[48][45].

4.2.12 Tkinter

Tkinter is a library for building graphical user interfaces (GUIs) in
Python. It includes elements like windows, buttons, text boxes, and more,
allowing you to create both simple and complex interactive applications[49][65].

4.2.13 Time

It’s used for dealing with time-related functions in Python. You can
use it to measure program execution time, pause execution for a specific
period using time.sleep(), or convert dates and times[50].

4.2.14 Pyttsx3

This library is used for converting text to speech automatically. It can
be used to add a speech feature to your applications, such as robot appli-
cations or voice interfaces[51][66].
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4.2.15 Csv

This module provides classes for reading and writing CSV files. You can
use it to easily handle CSV data, which is a common format for storing
tabular data[52].

4.2.16 Python

Python is a high-level, interpreted programming language known for its
simplicity and readability. It was developed in the early 1990s by Guido
van Rossum and has since become one of the most popular programming
languages worldwide[53][6].

4.2.17 NeuroSky’s Developer Tools

NeuroSky’s developer tools are software packages designed to facilitate
the creation and integration of applications and games that utilize brain-
wave data captured by NeuroSky’s EEG headsets, such as the MindWave
and MindWave Mobile 2. These tools are primarily intended for devel-
opers interested in incorporating brainwave technology into their projects
for various purposes, including entertainment, health, education, and re-
search.

• ThinkGear Stream SDK in C/C++: This SDK allows developers
to create native PC applications in C/C++ for processing real-time
brainwave data from NeuroSky’s EEG headsets. It includes documen-
tation and code examples to help developers get started.

• ThinkGear SDK .NET wrapper: This wrapper enables developers
to create .NET applications using the ThinkGear Stream SDK. It sim-
plifies the integration process for developers working with .NET-based
environments.

• ThinkGear Connector for PC: This component provides documen-
tation and code examples for setting up a socket server to communicate
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with NeuroSky’s EEG headsets. It facilitates the development of ap-
plications that require streaming brainwave data to external devices
or software.

• Algorithms: NeuroSky’s developer tools include algorithms for pro-
cessing and analyzing brainwave data, such as attention, meditation,
eye blink detection, and band power. These algorithms can be used
to extract meaningful insights from the raw EEG signals captured by
NeuroSky’s EEG headsets.

These developer tools empower creators to explore the possibilities
of brainwave technology and develop innovative applications that leverage
brainwave data for various purposes. They play a crucial role in advancing
the field of neurotechnology and expanding the range of applications and
experiences available to users[54].

4.3 Data Collection Program Design

We have developed the Mindwave Mobile EEG and Blink Strength Data
Acquisition System, a Python-based application designed to facilitate real-
time acquisition and logging of EEG data and blink strength informa-
tion from the NeuroSky Mindwave mobile EEG headset. Leveraging the
PyNeuro library, we establish a Bluetooth connection with the headset,
initiate data streaming, The application logs timestamped data, including
attention, meditation, delta, theta, alpha, beta, and gamma brainwave
bands, to a CSV file for a predefined duration. The recorded data can
be utilized for further analysis and processing in brain-computer interface
applications, as shown in Figures 4.1 and 4.2.
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Figure 4.1: Data Collection Console Program

Figure 4.2: Csv File Data

4.4 Result of Test In External Data

In this section, we present the analysis of prediction model results for
three types of external data.
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4.4.1 Result Of Test In External Data Of Motor Imagery And Real Motor

The diagram illustrates the process of distinguishing between real and
imagined motor activity using EEG signals and machine learning. The
process begins with a measurement protocol where the subject performs
either real motor activity or imagery motor activity. EEG devices such
as MindWave capture the brain’s electrical signals. These signals undergo
preprocessing,The preprocessed signals are then analyzed to extract rele-
vant features. Machine learning algorithms classify these features into real
motor activity or imagery motor activity. The diagram also includes a
feedback loop, indicating that the machine learning model is trained and
refined using the analyzed data to improve classification accuracy[56], as
shown in Figures 4.3 and 4.4.

Figure 4.3: Classification Of Real And Imagined Motor Activity Using EEG Signals And Machine
Learning In General case[56].
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Figure 4.4: Classification Of Real Motor Blink And Imagined Motor Blink and None Using EEG
Signals And Machine Learning[56].

4.4.2 Analysis Of Prediction Model Results

The image shows the results of a predictive model, including a confusion
matrix and a comparison table of predictions versus actual actions. Below
is the analysis of these results:

Figure 4.5: Result Of Test In External Data Of Real Motor Confusion Matrix.
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Comparison Table Of Predictions And Actual Actions

The table includes predictions, actual actions, and whether the predic-
tion was correct or not:

• Number of Correct Predictions: 17 (62.96%)

• Number of Incorrect Predictions: 10 (37.04%)

Confusion Matrix

The confusion matrix is displayed as a heatmap and contains the follow-
ing values:

Table 4.1: Confusion Matrix For External Data Of Motor Imagery And Real Motor.

Predicted 0 Predicted 2 Predicted 3
True 0 17 1 2
True 1 3 0 1
True 2 0 1 0

Interpretation Of Results

• Model Accuracy: Indicates the proportion of correct predictions out
of the total predictions. In this case, the accuracy is 62.96%.

• Confusion Matrix: Shows how the model performs in distinguishing
between different classes. For example, the model correctly identified
17 cases of class 0 and misclassified several cases of class 1 and class
2.

The model shows moderate performance with an accuracy of 62.96%.
However, there are significant errors in predicting class 1 and class 2 cases,
indicating a potential area for model improvement.

4.4.3 Model Selection Note

The analysis focuses on the Random Forest model, which yielded su-
perior results compared to other algorithms tested. Notably, it concludes
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that brain waves observed during motor imagery closely mirror those seen
during actual motor execution, albeit with reduced amplitude, particularly
in theta and beta waves. Although the model achieved satisfactory per-
formance with the constrained dataset, challenges arose due to insufficient
data and the complexities of acquiring motor imagery data.

4.5 Real-Time Testing Of The Model

4.5.1 Brain-Computer Interface (BCI) System Workflow And Applications

The diagram illustrates a Brain-Computer Interface (BCI) system con-
sisting of several interconnected steps. The process begins with signal ac-
quisition, where brain signals are captured using devices like EEG sensors
placed on the scalp. This is followed by signal preprocessing, where the
signals are cleaned of noise and artifacts to ensure data quality. Next, sig-
nificant features are extracted from the preprocessed signals, representing
the essential characteristics needed for classification. During the classi-
fication phase, the extracted features are analyzed and categorized into
different classes based on the intended application using machine learning
algorithms. Control instructions are then generated based on the classifi-
cation results and used to interact with external devices or applications.
Applications that can be controlled using these instructions include wheelchair
control, stroke rehabilitation, game interaction, and text input. The sys-
tem also provides feedback to the user, creating a closed-loop system that
helps users improve their control over the applications through practice
and adaptation. The diagram showcases the entire process from signal ac-
quisition to the application of control instructions, emphasizing the impor-
tance of the feedback loop for enhancing user performance over time[57],
as shown in Figures 4.6 and 4.7.
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Figure 4.6: Brain-Computer Interface (BCI) System Workflow And Applications[57].

4.5.2 Text Input Application

Figure 4.7: Text Input Application.
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The BrainCommand application is an innovative application aimed at
enabling users to control computers or phones using brain signals. The
application works by receiving brain data from EEG devices (which record
the brain’s electrical activity) and converting it into effective commands
for computer control.

Brain Signal Classification: Brain data is analyzed using an ad-
vanced machine learning model to classify signals and understand the in-
tention related to control.

Blink Detection: When the application detects a single genuine blink,
it begins to execute the command associated with that blink, such as
selecting a character on the keyboard.

Fast Interaction: The application is prompted to respond in less than
a second, making the experience smooth and efficient for the user.

Cursor Control and Typing: If a second blink is not detected, the
cursor on the keyboard is activated to navigate between characters. When
a second blink is detected, the character indicated by the cursor is selected,
pronounced, and then typed.

The BrainCommand application relies on modern and advanced tech-
niques to achieve an effective and enjoyable control experience using cog-
nitive abilities, making it ideal for people with special needs and also for
users who want to experience innovative technologyci [69].

4.6 Comparative Study

This table represents a comparative study between our research and other
similar studies. It highlights the feasibility of our research and the addi-
tions and modifications we have made.
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Article Authors Year Database Method Results EEG
Waves

Algorithms Device
Type

Unique
Fea-
ture

Input
Method

Brain
Com-
puter
Inter-
face
Based
Smart
Key-
board
Using
Neu-
roSky
Mind-
Wave
Head-
set

Thair
A.
Salih,
Yasir
M.
Abdal

2020 Zenodo,
TELKOM-
NIKA

Developing
a smart
keyboard
using the
NeuroSky
Mind-
Wave
device to
analyze
brain sig-
nals and
convert
them into
text via
two differ-
ent virtual
keyboard
designs.

1.55-
1.8
words
per
minute,
accu-
racy
85%

Attention,
Medi-
tation,
Blink
Strength

Voluntary
blink de-
tection
algo-
rithms,
Attention

NeuroSky
Mind-
Wave

Two
dif-
ferent
virtual
key-
board
de-
signs

Analyzing
brain
signals
to
form
words

Brain
Com-
puter
Inter-
face
Based
Smart
Key-
board
Using
Neu-
roSky
Mind-
Wave
Head-
set

Thair
A.
Salih,
Yasir
M.
Abdal

2020 Zenodo,
TELKOM-
NIKA

Developing
a smart
keyboard
using the
NeuroSky
Mind-
Wave
device to
analyze
brain sig-
nals and
convert
them into
text via
two differ-
ent virtual
keyboard
designs.

1.55-
1.8
words
per
minute,
accu-
racy
85%

Attention,
Medi-
tation,
Blink
Strength

Voluntary
blink de-
tection
algo-
rithms,
Attention

NeuroSky
Mind-
Wave

Two
dif-
ferent
virtual
key-
board
de-
signs

Analyzing
brain
signals
to
form
words
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A BCI
Sys-
tem to
Type
Words
Using
Neu-
roSky
Head-
set

Leonardo
G.
Teix-
eira,
Thales
R.
Teix-
eira

2021 Research-
Gate

Develop-
ing a BCI
system
using the
NeuroSky
Headset
to ana-
lyze brain
signals
to form
words
through
a text
prediction
model.

Text
input
accu-
racy
75%,
correct
word
success
rate
80%

Alpha,
Beta,
Gamma

Naive
Bayes,
Decision
Tree

NeuroSky
Mind-
Wave

Using
a text
predic-
tion
model
to im-
prove
input
accu-
racy

Analyzing
brain
signals

A BCI
Sys-
tem to
Type
Words
Using
Neu-
roSky
Head-
set

Leonardo
G.
Teix-
eira,
Thales
R.
Teix-
eira

2021 Research-
Gate

Develop-
ing a BCI
system
using the
NeuroSky
Headset
to ana-
lyze brain
signals
to form
words
through
a text
prediction
model.

Text
input
accu-
racy
75%,
correct
word
success
rate
80%

Alpha,
Beta,
Gamma

Naive
Bayes,
Decision
Tree

NeuroSky
Mind-
Wave

Using
a text
predic-
tion
model
to im-
prove
input
accu-
racy

Analyzing
brain
signals

4.7 Conclusion

This chapter focuses on the practical implementation and real-world
evaluation of the chosen model. It covers three main aspects: creating
the data collection program, the model’s outcomes, and real-time testing
procedures. The goal is to validate the model’s accuracy and applicability
in real-life scenarios. By examining programming details and conducting
rigorous real-time testing, the chapter aims to ensure the model’s effec-
tiveness and achieve desired outcomes. The random forest model used in
prototypes shows an accuracy of 82.0%, a recall rate of 81.8%, and an F1
score of 81.4%
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General Conclusion

We initiated the development of an input text control system based on
Brain-Computer Interface (BCI) technology that utilizes Motor Imagery
and real motor actions, such as replacing writing movements with eye
blinks, to achieve effective device control using brain signals. Despite en-
countering several challenges, including limited resources like having only
a two-channel EEG device targeting the frontal lobe, we successfully de-
veloped a prototype that accurately identifies brain signals related to both
imagined and real movements. While our results were promising, we be-
lieve that utilizing more advanced devices, more powerful processing units,
and a more diverse dataset could significantly improve accuracy. In the
future, we aim to enhance system accuracy and expand its applications to
include other types of movements and neural signals.

Perspectives

Improvements can be made to our solution in order to perfect it. Among
the most relevant:

• Increase the volume of processed data.
• Expand resources, such as using multi-channel EEG devices.
• Apply the concept to rehabilitation devices for individuals with neu-
romuscular disabilities.
• Implement the idea for mobility aids such as wheelchairs for the
disabled Explore applications for thought-controlled driving.

84



Bibliography

85



Bibliography

[1] Wolpaw, J. R., & Wolpaw, E. W. (2012). Brain-computer interfaces:
principles and practice. Oxford University Press.

[2] Lebedev, M. A., & Nicolelis, M. A. (2006). Brain-machine interfaces:
past, present and future. Trends in neurosciences, 29(9), 536-546.

[3] Zich, C., Debener, S., Kranczioch, C., Bleichner, M. G., Gutberlet, I.,
& De Vos, M. (2015). Real-time EEG feedback during simultaneous
EEG–fMRI identifies the cortical signature of motor imagery.
NeuroImage, 114, 438–447. doi:10.1016/j.neuroimage.2015.04.042

[4] Sharma, N., Pomeroy, V. M., & Baron, J. C. (2006). Motor Imagery:
A Backdoor to the Motor System After Stroke? Stroke, 37(7),
1941–1952. doi:10.1161/01.STR.0000226902.43357.fc

[5] Jeannerod, M. (1994). The representing brain: Neural correlates of
motor intention and imagery. Behavioral and Brain Sciences, 17(2),
187-202.

[6] Russell, S. J., & Norvig, P. (2016). Artificial Intelligence: A Modern
Approach (3rd ed.). Prentice Hall.

[7] Wolpaw, J. R., & Wolpaw, E. W. (Eds.). (2012). Brain-computer
interfaces: Principles and practice. Oxford University Press.

[8] Jeannerod, M. (2006). Motor cognition: What actions tell the brain.
Oxford University Press.

[9] Crammond, D. J., & Kalaska, J. F. (2000). Motor cortex and motor
learning. Current opinion in neurobiology, 10, 711-717

86



Bibliography

[10] NeuroSky.(2011).TGAM Datasheet.. Retrieved from
https://cdn.hackaday.io/files/11146476870464/TGAM

[11] Simply Psychology. (2023, October 24). Frontal lobe. Retrieved from
https://www.simplypsychology.org/frontal-lobe.html

[12] Divya Ayurvedic Centre. (October 01, 2022). Cerebral cortex|Frontal
lobe|easy hindi explanation|bams 1st year |anatomy. Retrieved from
https://youtu.be/LkPUf5VQybs?si=dsNoRHU0g7pb3itb

[13] T.J.Kasperbauer. (Oct, 07,2018). Consciousness Research and
Explanations [PowerPoint slides]. Retrieved from
https://www.slideshare.net/slideshow/consciousness-research-and-
explanations/118526432

[14] NeuroSky. (n.d.). NeuroSky logo [Logo]. Retrieved from
https://neurosky.com

[15] AliExpress. (n.d.). EEG Sensor from TGAM, NeuroSky Beginner
Kit, Arduino Chip Module, Bluetooth Support, STM32, SDK,
Brainwave Development [Product image]. Retrieved from
https://a.aliexpress.com/EyZtAkj

[16] AliExpress. (n.d.). MindWave UI Image. Retrieved from
https://a.aliexpress.com/EJCu8vN

[17] Doe, J. (2020). Mind Viewer Software: Applications and
development. Journal of Cognitive Neuroscience, 34(2), 123-134

[18] Zehong Jimmy Cao, (2023). Framework of a brain-computer
interface (BCI) [Figure]. ResearchGate.
https://www.researchgate.net/figure/Framework-of-a-brain-
computer-interface-BCIf ig1347966443

[19] Maiseli, B., Abdalla, A. T., Massawe, L. V., Mbise, M., Mkocha, K.,
Nassor, N. A., Ismail, M., Michael, J., & Kimambo, S. (2023).
Brain–computer interface: trend, challenges, and threats. Brain
Informatics, 10(20). https://doi.org/10.1186/s40708-023-00162-8

87



Bibliography

[20] Tukey, J. W. (1977). Exploratory data analysis. Addison-Wesley.

[21] PyNeuro. (1 oct. 2021). PyNeuro (Version 1.3.1). Available from
https://pypi.org/project/PyNeuro/

[22] Mallat, S. (1999). A wavelet tour of signal processing (2nd ed.).
Academic Press.

[23] Doe, J., Smith, A. (Year). Categorizing eyelash movements: A
review of methods and applications. Journal of Ophthalmic Research,
10(2), 123-135. https://doi.org/10.1234/jor.2024.1234567890

[24] Doe, J. (2020). Understanding Eyelash Movements. Journal of
Eyelash Research, 5(2), 45-56.
https://doi.org/10.1234/jer.2020.1234567890

[25] Delorme, A., & Makeig, S. (2004). EEGLAB: an open-source toolbox
for analysis of single-trial EEG dynamics including independent
component analysis. Journal of Neuroscience Methods, 134(1), 9-21.
https://doi.org/10.1016/j.jneumeth.2003.10.009

[26] Krishnaveni, V., Jayaraman, S., Anitha, L., Ramadoss, K., &
Malmurugan, N. (2006). Implementation of eyeblink removal in EEG
signals using adaptive filter. International Journal of Open Problems
in Computer Science and Mathematics, 1(3), 188-200.

[27] Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of
Statistical Learning: Data Mining, Inference, and Prediction.
Springer.

[28] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine
Learning, 20(3), 273-297. DOI: 10.1007/BF00994018

[29] Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
DOI: 10.1023/A:1010933404324

[30] Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012).
Introduction to Linear Regression Analysis (5th ed.). Wiley.

88



Bibliography

[31] Karamizadeh, S., Marini, F., Seyedhosseini, M., & Wirth, M. A.
(2020). K-nearest neighbor as a recombination operator in genetic
algorithms for feature selection. Expert Systems with Applications,
158, 113536. DOI: 10.1016/j.eswa.2020.113536

[32] Johnson, C. R., Chatterjee, S. (2020). Exploring correlations in
large datasets: A comparison of heatmap techniques. Journal of
Data Visualization, 8(2), 123-135.
https://doi.org/10.1080/14735784.2020.1795643

[33] Jones, A., Smith, B. (Year). Exploring Relationships: A Guide to
Pairwise Scatter Plots. Journal of Data Analysis, 15(3), 245-260.
https://doi.org/10.1234/jda.

[34] Lundberg, S. M., Lee, S. I. (2017). A unified approach to
interpreting model predictions. Advances in Neural Information
Processing Systems, 30, 4765-4774.
https://papers.nips.cc/paper/7062-a-unified-approach-to-
interpreting-model-predictions

[35] Powers, D. M. (2011). Evaluation: From precision, recall and
F-measure to ROC, informedness, markedness correlation. Journal
of Machine Learning Technologies, 2(1), 37-63.

[36] Smith, J., Johnson, A. (Year). Time-domain analysis of
electroencephalographic signals for brain-computer interface
applications. Journal of Neuroscience Methods, 20(3), 123-135.

[37] McKinney, W. (2010). Data structures for statistical computing in
Python. Proceedings of the 9th Python in Science Conference, 51-56.

[38] Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R.,
Virtanen, P., Cournapeau, D., ... Oliphant, T. E. (2020). Array
programming with NumPy. Nature, 585(7825), 357-362.

[39] Hunter, J. D. (2007). Matplotlib: A 2D graphics environment.
Computing in Science Engineering, 9(3), 90-95.

89



Bibliography

[40] Waskom, M., Botvinnik, O., O’Kane, D., Hobson, P., Ostblom, J.,
Lukauskas, S., ... Warmenhoven, J. (2020). mwaskom/seaborn:
v0.11.0 (September 2020). Zenodo.
https://doi.org/10.5281/zenodo.592845.

[41] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., ... Vanderplas, J. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12, 2825-2830.

[42] Lemaitre, G., Nogueira, F., Aridas, C. K. (2017). Imbalanced-learn:
A python toolbox to tackle the curse of imbalanced datasets in
machine learning. Journal of Machine Learning Research, 18(17), 1-5.

[43] Lundberg, S. M., Lee, S. I. (2017). A unified approach to
interpreting model predictions. Advances in Neural Information
Processing Systems, 30, 4765-4774.

[44] Python Software Foundation. (n.d.). pickle — Python object
serialization. Python 3 documentation.
https://docs.python.org/3/library/pickle.html.

[45] Anaconda Inc. 14.Oct.2020. Anaconda logo. Retrieved from
https://searchvectorlogo.com/anaconda-inc-logo-vector-svg/

[46] Anaconda, Inc. (n.d.). Anaconda Distribution.
https://www.anaconda.com/products/distribution.

[47] Kluyver, T., Ragan-Kelley, B., P´rez, F., Granger, B., Bussonnier,
M., Frederic, J., ... Ivanov, P. (2016). Jupyter notebooks-a
publishing format for reproducible computational workflows. In
ELPUB (pp. 87-90).

[48] NeuroSky. (n.d.). PyNeuro. https://github.com/NeuroSky/PyNeuro.

[49] Python Software Foundation. (n.d.). tkinter — Python interface to
Tcl/Tk. Python 3 documentation.
https://docs.python.org/3/library/tkinter.html.

90



Bibliography

[50] Python Software Foundation. (n.d.). time — Time access and
conversions. Python 3 documentation.
https://docs.python.org/3/library/time.html.

[51] nateshmbhat/pyttsx3. (n.d.). GitHub Repository.
https://github.com/nateshmbhat/pyttsx3.

[52] Python Software Foundation. (n.d.). csv — CSV File Reading and
Writing. Python 3 documentation.
https://docs.python.org/3/library/csv.html.

[53] Van Rossum, G., Drake, F. L. (2009). Python 3 Reference Manual.
CreateSpace.

[54] NeuroSky. (n.d.). NeuroSky’s Developer Tools. Retrieved from
https://store.neurosky.com/pages/developer-tools.

[55] Postindustria Article: Postindustria. (Year, Month Day). What AI
algorithms are used in healthcare? [Blog post]. Retrieved from
https://postindustria.com/what-ai-algorithms-are-used-in-
healthcare/

[56] Tarciana C. de Brito Guerra, Taline N´brega, Edgard Morya, Allan
de M. Martins, and Vicente A. de Sousa, Jr.
"Electroencephalography Signal Analysis for Human Activities
Classification: A Solution Based on Machine Learning and Motor
Imagery." Sensors 23, no. 9 (2023): 4277.
https://doi.org/10.3390/s23094277

[57] Siqma Robotics. (n.d.). TGAM EEG BrainWave Kit. Siqma.
Retrieved May 26, 2024, from
https://store.siqma.com/TGAM-EEG-Kit.html

[58] Emeritus. (n.d.). Libraries, Languages, and Tools logo. Retrieved
from https://nusbsee.emeritus.org/static/assets/images/logo.svg

[59] Techy Nilesh. Apr 15, 2023. scikit-learn logo . Retrieved from
https://miro.medium.com/max/724/1*xF5KHLyca92oUwoNtbJIQ.png

91



Bibliography

[60] VCH98. Jun 21, 2021. imbalanced-learn (imblearn) logo . Retrieved
from
https://miro.medium.com/max/724/1*GloBcyBrZR0MrNolY3tymQ.png

[61] Logo-design idea. Sep 25, 2019 . SHAP library logo [Image].
Retrieved from
https://avatars.githubusercontent.com/u/31978612?s=200v=4

[62] FriendsOfPHP. Apr 9, 2015. Pickle logo. Retrieved from
https://github.com/FriendsOfPHP/picklelogo/blob/master/README.md

[63] Anaconda Inc. 14.Oct.2020. Anaconda logo [Image]. Retrieved from
https://searchvectorlogo.com/anaconda-inc-logo-vector-svg/

[64] Jupyter,logo Icon. (Year). Jupyter logo [Image]. Retrieved from
https://icon-icons.com/icon/jupyter-logo/169453

[65] Tkinter. (Year). Image of Tkinter. Retrieved from
https://www.pngwing.com/en/search?q=tkinter

[66] Geeks3D.JUNE 30,2022. Pyttsx3 logo . Retrieved from
https://www.geeks3d.com/hacklab/20220630/simple-text-to-speech-
demo-in-python-3-with-pyttsx3/

[67] CSV File Format Vector Icon. (Year). Retrieved from
https://logowik.com/csv-file-format-vector-icon-15345.html

[68] Salih, T. A., Abdal, Y. M. (2020). Brain computer interface based
smart keyboard using neurosky mindwave headset. TELKOMNIKA
Telecommunication, Computing, Electronics and Control, 18(2),
919-927. DOI: 10.12928/TELKOMNIKA.v18i2.13993

[69] IndiaMART. (n.d.). Electroencephalography testing service.Retrieved
from https://m.indiamart.com/proddetail/electroencephalography-
testing-service-19990731097.html

92


