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Abstract 

Automated lung region segmentation in computed tomography (CT) images is vital for 

diagnosing and treating lung diseases. This research leverages artificial intelligence (AI) techniques 

to enhance the preprocessing and semantic segmentation of lung disease images. Two approaches 

are proposed: one integrating YOLOv8 and U-Net, and the other combining YOLOv8 with 

Attention U-Net for improved segmentation precision. These approaches efficiently identify and 

segment lung regions from CT images, enhancing accuracy and robustness. Using a dataset of 140 

CT exams, the approaches were trained and evaluated using metrics such as Dice coefficient, IoU, 

precision, recall, and computational cost. The first approach showed significant improvements, 

with a training Dice Coefficient reaching 0.9900 and a validation Dice Coefficient of 0.9788. The 

second approach also demonstrated robust performance, with validation precision reaching about 

0.996 and recall about 0.987. Additionally, a web application called Lung Vision, which facilitates 

medical image management, is introduced. The results underscore the high accuracy and efficiency 

of the proposed approaches, offering innovative solutions for lung segmentation and practical 

applications in clinical settings, thereby advancing patient care through advanced AI technologies. 

Keywords: preprocessing, semantic segmentation, object detection, lung regions, computed 

tomography (CT) images, early diagnosis, lung diseases, AI technologies, artificial intelligence 

(AI), medical images, YOLOv8, U-Net, Attention-UNet. 
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Introduction 

The field of medical imaging has seen remarkable advancements driven by technology and 

computational progress. Among these modalities, computed tomography (CT) plays a vital role in 

diagnosing and monitoring lung diseases, including cancer and hereditary conditions. Accurate 

analysis of CT images is crucial for early detection, treatment planning, and prognosis. However, 

the intricate and variable nature of lung morphology poses significant challenges in automating 

image segmentation and analysis. Artificial intelligence (AI), encompassing machine learning 

(ML) and deep learning (DL), offers robust tools to address these challenges. By leveraging AI 

techniques in preprocessing and semantic segmentation, there is potential to enhance the accuracy 

and efficiency of lung image analysis, ultimately improving clinical decision-making. This thesis 

explores the integration of AI techniques for preprocessing and semantic segmentation of medical 

images, with a specific focus on lung diseases, aiming to develop robust methodologies for 

enhanced precision in image segmentation. 

Problematic 

The intricate nature of lung diseases demands accurate image analysis for effective diagnosis 

and treatment planning. However, existing methods for preprocessing and segmentation of medical 

images often lack the precision required for optimal clinical decision-making. This thesis aims to 

investigate and implement AI techniques for preprocessing and semantic segmentation of lung 

disease images, aiming to enhance accuracy and efficiency in diagnosis and prognosis. 

Objectives 

The primary objectives of this thesis are: 

 To investigate and implement effective preprocessing techniques that enhance the quality and 

consistency of CT images for lung disease analysis. 

 To develop advanced AI approaches for the semantic segmentation of lung regions from CT 

images, focusing on integrating state-of-the-art object detection and segmentation algorithms. 

 To create a practical application, named Lung Vision that incorporates the developed AI models 

into a user-friendly platform for managing medical images, patients, and scans. 

Plan 

Structured into four main chapters, this thesis aims to enhance lung disease image analysis 

through AI techniques.  

In Chapter I, foundational concepts of artificial vision are introduced, covering digital image 

characteristics, types, processing, medical imaging modalities, and computer vision.  
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Chapter II builds upon these principles, exploring the broader domain of artificial intelligence. 

addressing AI types, machine learning approaches, neural networks, including CNNs and transfer 

learning, and concludes with a summary of insights.  

Chapter III conducts a detailed review of the current state of the art in lung image segmentation, 

critically examining recent advancements in AI-driven methods such as Modified U-Net, Mask R-

CNN, and Residual U-Net. This review identifies research gaps, laying the groundwork for the 

development of novel methodologies presented in this thesis.  

Finally, Chapter IV outlines the experimental setup, implementation, and results of the proposed 

methodologies. Introducing two primary approaches one combining YOLOv8 with U-Net and the 

other integrating YOLOv8 with Attention-UNet this chapter also elaborates on the development 

and functionality of the Lung Vision application, demonstrating its practical utility in clinical 

settings.
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I. 1 Introduction 

Artificial vision, a key area in computer science and engineering, enables machines to interpret 

and understand visual information. Building on image processing techniques, it enhances images 

or extracts valuable data, supporting applications like autonomous vehicles, medical imaging, and 

industrial automation. This technology is essential for advancing machine interaction with the 

environment. 

I. 2 Digital Image 

A digital image is a discrete two-dimensional function 𝑓(𝑥, 𝑦), which has been quantized over 

its domain and range. Without loss of generality, it will be assumed that the image is rectangular, 

consisting of 𝑌 rows and 𝑋 columns. The resolution of such an image is written as 𝑋 ×  𝑌. By 

convention, 𝑓(0, 0) is taken to be the top left corner of the image, and 𝑓(𝑋 − 1, 𝑌 − 1) the bottom 

right corner [1]. As shown in (Figure I.1). 

 

Figure I.1: A rectangular digital image of resolution 16 x 8. 

Each distinct coordinate in an image is called a pixel, which is short for “picture element”. 

The nature of the output of 𝑓(𝑥, 𝑦) for each pixel is dependent on the type of image. Most images 

are the result of measuring a specific physical phenomenon, such as light, heat, distance, or energy. 

The measurement could take any numerical form. 

A greyscale image measures light intensity only. Each pixel is a scalar proportional to the 

brightness. The minimum brightness is called black, and the maximum brightness is called white. 

A typical example is given in (Figure I.2). A colour image measures the intensity and chrominance 

of light. Each colour pixel is a vector of colour components. Common colour spaces are RGB (red, 

green and blue), HSV (hue, saturation, value), and CMYK (cyan, magenta, yellow, black), which 

is used in the printing industry. Pixels in a range image measure the depth of distance to an object 

in the scene. Range data is commonly used in machine vision applications. 
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Figure I.2: A typical greyscale image of resolution 512x512. 

For storage purposes, pixel values need to be quantized. The brightness in greyscale images is 

usually quantized to 𝑍 levels, so (𝑥, 𝑦)  ∈  {0, 1, … , 𝑍 − 1} . If 𝑍 has the form 2/𝐿 , the image is 

referred to as having 𝐿 bits per pixel. Many common greyscale images use 8 bits per pixel, giving 

256 distinct grey levels. This is a rough bound on the number of different intensities the human 

visual system is able to discern. For the same reasons, each component in a colour pixel is usually 

stored using 8 bits. 

I. 3 Digital Image Characteristics 

I. 3. 1 Pixel 

The term pixel is an abbreviation of (Picture Elements). The pixel is the smallest constituent 

element of a digital image; these are numerical values representative of light intensities. These 

values are in a two-dimensional matrix through which the image is processed [2]. 

I. 3. 2 Dimension (size) 

The dimension of a digital image represents the number of lines (denoted by 𝑁) of the matrix 

of pixels which represents the image multiplied by the number of columns (denoted by 𝑀) of this 

matrix. 𝑁 × 𝑀 (Figure I.3), This equation gives us the total number of pixels in an image [2]. 

 

Figure I.3: Example showing each of the image's dimensions and pixels 
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I. 3. 3 Resolution 

The resolution of a digital image is defined by the number of pixels per unit area in the image. 

The higher the number of pixels in the unit area, the higher the resolution of the image. represent 

the resolution by dpi (dots per inch) or PPI (Pixels Per Inch). one inch representing 2.54 cm [2]. 

I. 3. 4 Histogram 

A histogram is the distribution of pixel intensities in a digital image. with another form, is the 

number of pixels that represents each light intensity in the image. The horizontal axis of the graph 

represents variations in light intensity, while the vertical axis represents the number of pixels in the 

image. (Figure I.4) represents an image with its histogram [2]. 

 

Figure I.4: Example showing a grayscale image with its histogram 

RGB images are represented by four histograms (Figure I.5): 

 A histogram representing the luminance distribution. 

 A histogram representing the distribution of the values of the red components. 

 A histogram representing the distribution of the values of the green components. 

 A histogram representing the distribution of the values of the blue components. 

 

Figure I.5: Example showing an RGB image with its histogram 
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I. 3. 5  Luminance 

Luminance is the degree of pixel brightness in the image. It is defined as being the quotient of 

the luminous intensity of a surface by the apparent area of this surface. A good luminance presents 

a bright image, a good contrast, and the absence of parasites [2]. 

I. 3. 6 Contrast 

Contrast is the difference between dark regions and light regions in the image. The contrast 𝐶 

is defined by the ratio [3], and to calculate this last one this operation should be applied (see Eq 

I.1): 

𝐶 =  
𝐿1−𝐿2

𝐿1+𝐿2
                                                                   (I.1) 

With 𝐿1 and 𝐿2 are the degrees of the luminosity of two neighboring areas in the image. 

A high-contrasted image presents a dynamic distribution of gray values over the entire range of 

possible values, with very clear whites and deep blacks. On the contrary, a low-contrast image has 

low dynamics (Figure I.6). 

 

Figure I.6: An example represents the difference between a low-contrast (a) and high-contrast image (b) 

I. 3. 7 Depth  

Color Depth (bit depth) is measured by the number of bits per pixel (bpp). This value determines 

the number of distinct colors or grayscale levels in an image [2]. Common bpp values include: 

 2 bits/pixel = 2 colors (binary image) 

 8 bits/pixel = 256 colors (grayscale image) 

 16 bits/pixel = 65,536 colors (color image) 

 24 bits/pixel = 16,777,216 colors (color image) 

 32 bits/pixel = 4,294,967,296 colors (color image) 
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I. 3. 8 Contours and textures  

The boundaries between objects in an image are known as contours. Contours represent the 

edges where there is a significant difference in pixel values (grayscale levels). Areas where the 

pixel values are similar are commonly referred to as textures. The process of identifying the points 

that separate two textures in an image is called edge detection [2]. 

I. 3. 9 Noise 

In any digital image, the observed gray or color values have uncertainty. This uncertainty is due 

to the vagaries of counting the photons reaching each sensor. 

The measured color values are disturbed because the sensors pick up parasitic photons and are 

subject to electrostatic fluctuations during charging and discharging. 

When the sensor receives many photons from a well-lit scene, the noise is negligible compared 

to the actual photon flux. However, even in an image with sufficient exposure, dark pixels receive 

very few photons and are therefore "noisy". In short, noise is the sudden difference in the intensity 

of a pixel compared to neighboring pixels in the image [4]. Generally, two types of image noise 

that accumulate can be distinguished: 

 Chrominance noise, which is the color component of noisy pixels: it is visible as random 

colored spots. 

 Luminance noise, which is the light component of noisy pixels: it is visible as darker or 

lighter spots giving the image a grainy appearance 

I. 3. 10  Image weight 

The weight of the image determines according to the dimension and the depth, by counting the 

dimension (𝑁 ×  𝑀) of the image multiplied by its depth [4]. 

Example: For a 640x480 image in true colors (True colors): 

Number of pixels (dimension): 640 x 480 = 307200 pixels 

Weight of each pixel (depth): 24 bits = 3 bytes 

The weight of the image is equal to 307200 x 3 = 921600 bytes. 

I. 4 Digital Image Types 

Digital images are typically classified into four primary categories: 
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a) Binary Images 

One of the simplest digital image types are the binary images, they could be either white (1) or 

black (0), that is only take a single binary number for every element (Pixel) of image. Examples of 

this type are written. (Figure I.7) shows a binary image example [5].  

 

Figure I.7: Example of binary image 

b) Grayscale Images 

Are monochrome images that contain only luminance levels and contain no gradients, and the 

value of every one of the elements in the image determines the grayscale (0-255), and each of its 

elements represents 8 bits/ pixel. In certain applications such as Medical imaging is often 

represented as 12 bit / pixel or 16 bit/pixel. This increase in intensity levels is useful only when a 

small area of the image has a high intensity. In this case, details that may be difficult to see without 

this increase levels of intensity [5]. (Figure I.8) shows a grayscale image example. 

 

Figure I.8: Example of grayscale image 

c) Color Images 

These images are represented in a three bands monochromatic data format, each of which returns 

to the luminance in each of the red (R), green (G), and blue (B) colors using 8 bits per element, For 

each color pack bands, the color image is represented by (24bits) Total of the real colors in the 

picture is about 16 million equivalent (28)3 [5]. (Figure I.9) shows color image. 
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Figure I.9: Example of color image 

d) Multi-Spectral Images 

Multi-spectral images contain information beyond the limits of visual perception, containing 

data collected in several packages from infrared, ultraviolet (UV), or x-ray (satellite) images. These 

images are collected in several packages ranging from spectral package, one to three of these 

packets fall within the Visible Spectrum range, while the other beams are located in invisible areas 

[5]. Figure (I.10) shows Multi-Spectral image. 

 

Figure I.10: Example Multi-Spectral Image 

I. 5 Digital image formats 

Generally, there are two main categories of digital images, bitmap images which are formed 

from a group of adjacent pixels, and victor images that represent by a set of geometric shapes. It 

will be explained in detail as follows [4]: 

I. 5. 1 Raster (Bitmap) image 

Bitmap or raster image is an image composed of little blocks of color called pixels organized in 

rows and columns (matrix). Each pixel is assigned a color code and a location, and this is how to 

form a picture. When zooming in on a bitmap image, the individual pixels become visible (Figure 

I.11), resulting in a loss of quality. 
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This is commonly referred to as resolution-dependent since the quality or sharpness of the image 

depends on the resolution. This type is found in the domain of image processing and analysis. 

Common bitmap image file types include 

 JPEG or JPG (Joint Photographic Experts Group): this format, the most widely used 

on the Internet, allows images to be displayed in 16 million color modes. it can compress 

an image to 50 KB which takes 1MB, so it gives the smallest file size, with the least loss of 

quality. 

 Gif (Graphic Interchange Format): this format uses RGB encoding, the GIF format takes 

all 256 colors out of 16 million colors. 

 BMP (Windows Bitmap): this is the format is the native image format in the Microsoft 

Windows operating systems. It compressed the images and gives it with a good quality. 

 TIFF (Tag Image File Format): a format of excellent quality, but it presents compatibility 

problems due to the multiplicity of versions. There is also a compressed version, which 

provides very compact files without noticeable loss of quality. 

I. 5. 2 Vector image 

The vector image is an image based on geometrical formulas (line segments, polygons, circles, 

rectangles, etc.), instead of pixels, to represent images. and This gives it the freedom to edit it 

resizing and changing colors without any losing resolution, making them ideal for icons, logos, and 

web-based imagery. When zooming in on this type of image, a pure image without distortion is 

seen (Figure I.11). This makes vector images resolution independent since the image quality is not 

affected by size or resolution settings. 

To view this type of image on the computer screen, it must first be converted to bitmaps by 

changing the file type. This type of image is used in the domain of graphics and computer-aided 

design. Common vector image file types include: 

 SVG (Scalable Vector Graphics): this format was developed to be used to compress or 

stretched images without losing the quality, and the element files are small. 

 ESP (Postscript / Encapsulated Postscript): this is one of the best formats to export vector 

drawings, it encapsulates bitmaps and renders them in ESP format. 

 PDF (portable document format): this format preserves the layout of a document and 

makes it small. Also, this format is easy to deal with it, It can be viewed, printed, or 

electronically transmitted by uploading, downloading, or attaching it to a message or email. 

 AI (Adobe Illustrator): is the proprietary Adobe file type for vector images. 

Other common vector image file types include PDF, EPS, and SVG. Vector files do not lose 

resolution when compressed because they are built on a graph-like formula that is infinitely 

expandable. 
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Figure I.11: An example of a bitmap and victor image 

I. 6 Digital Image Processing 

Image processing refers to computer-based imaging where human involvement in the visual 

loop is integral. In simpler terms, it entails the examination and manipulation of images by 

individuals. Key topics within this domain include image restoration, enhancement, and 

compression. 

The continuum from image processing to computer vision lacks clear-cut boundaries. Within 

this spectrum, three types of computerized processes can be identified [6]: 

 Low-level processes: These encompass primitive operations such as noise reduction, 

contrast enhancement, and sharpening. 

 Mid-level processes: This category involves segmentation, which entails partitioning 

images into regions and objects. 

 High-level processes: These processes focus on recognizing objects within images. 

I. 6. 1 Purpose of Image processing 

Image processing serves five main objectives, each aimed at distinct outcomes [7]: 

 Visualization: Facilitates the observation of otherwise imperceptible objects. 

 Image sharpening and restoration: Enhances image quality to produce clearer visuals. 

 Image retrieval: Enables the search for specific images of interest. 

 Pattern measurement: Quantifies various objects within an image. 

 Image recognition: Identifies and distinguishes objects depicted in an image. 

I. 6. 2 Fundamental steps in Digital Image Processing: 

It is useful to categorize various image processing algorithms into broad subclasses to address 

different tasks and challenges. Oftentimes, it's beneficial to differentiate the nature of the task at 

hand. In essence, the steps involved in digital image processing can be illustrated as outlined below 

[6]. as shown in (Figure I.12). 
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Figure I.12: The fundamental Steps of Digital Image Processing 

a) Image Acquisition 

Image acquisition refers to the initial step in the process of digital image processing, as depicted 

in (Figure I.12). This phase involves obtaining digital images, which may vary from receiving 

images already in digital format to undergoing preprocessing tasks like scaling. 

b) Image Enhancement 

Image enhancement is a fundamental aspect of digital image processing, aimed at refining and 

improving image quality. The primary goal of enhancement techniques is to reveal obscured details 

or emphasize specific features within an image. A common example of enhancement is adjusting 

the contrast of an image to enhance its visual appeal. 

c) Image Restoration 

Image restoration involves improving the appearance of an image through objective techniques 

based on mathematical or probabilistic models of image degradation. Unlike enhancement, which 

is subjective and relies on human preferences, restoration aims to objectively restore the image to 

its original state. 

d) Color Image processing 

Color image processing involves the manipulation and analysis of digital images with color 

content. This field has become increasingly important due to the widespread use of digital images, 

particularly on the Internet. 
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e) Wavelets and Multiresolution Processing 

Wavelets form the basis for representing images at different levels of resolution. This concept 

is utilized in tasks such as image data compression and pyramidal representation, where images are 

progressively subdivided into smaller regions. 

f) Image compression 

Compression involves employing techniques to decrease the storage space needed to save an 

image or the bandwidth required to transmit it. Image compression is commonly encountered by 

computer users through file extensions like ".jpg", which utilize compression standards such as 

JPEG (Joint Photographic Experts Group). 

g) Morphological Image processing 

Morphological processing involves the utilization of tools to extract image components that aid 

in representing and describing shape characteristics.  

h) Segmentation 

Segmentation procedures involve dividing an image into its individual parts or objects. 

Autonomous segmentation, in particular, poses significant challenges in digital image processing. 

A robust segmentation procedure significantly enhances the likelihood of successfully solving 

imaging problems that necessitate the identification of individual objects. Conversely, unreliable 

or inconsistent segmentation algorithms typically lead to eventual failure. In general, the accuracy 

of segmentation directly influences the success of object recognition tasks. 

i) Representation and Description 

Representation and description entail the steps that typically follow the segmentation stage in 

image processing. This stage usually provides raw pixel data, representing either the boundary of 

a region (i.e., the pixels separating one image region from another) or all the points within the 

region itself. The decision of whether to represent the data as a boundary or a complete region 

depends on the focus of the analysis. Boundary representation is suitable for examining external 

shape characteristics like corners and inflections, while regional representation is preferred for 

analyzing internal properties such as texture or skeletal shape. In some cases, both representations 

are used together to provide complementary information. Selecting a representation is just one 

aspect of transforming raw data for subsequent computer processing. Additionally, a method must 

be defined for describing the data, highlighting features of interest.  
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Description, also known as feature selection, involves extracting attributes that provide 

quantitative information of interest or are fundamental for distinguishing between different classes 

of objects. 

j) Object recognition 

Object recognition refers to the process of assigning a label (e.g., "vehicle") to an object based 

on its descriptors. This process is integral to the field of digital image processing, as it enables the 

identification of individual objects within an image. 

k) Knowledge Base 

A knowledge base in the context of image processing serves as a repository of prior knowledge 

about the problem domain. This knowledge is encoded into the image processing system and can 

range from simple details about regions of interest within an image to more complex information 

such as lists of possible defects in a materials inspection problem or an image database containing 

high-resolution satellite images. The knowledge base guides the operation of processing modules 

and controls the interaction between these modules. It is represented as a separate component in 

image processing systems, distinct from the processing modules, and facilitates more efficient and 

accurate image analysis and interpretation. 

I. 7 Medical Imaging 

Digital image processing is used in medical imaging to enhance images, detect abnormalities, 

and aid in diagnosis. Medical imaging encompasses a wide array of imaging modalities, each 

offering unique insights into different aspects of the human body. From X-rays and computed 

tomography (CT) scans to magnetic resonance imaging (MRI) and ultrasound, enabling healthcare 

professionals to visualize anatomical structures and physiological processes with unprecedented 

detail and precision. 

I. 7. 1 Medical images modalities 

Medical imaging encompasses various modalities, each offering unique insights into the human 

body. From ionizing radiation to sound waves and magnetic fields, these modalities capture 

intricate details of organs and tissues, aiding in diagnosis and treatment planning. 

a) X-Ray 

X-rays employ ionizing radiation to capture images of the internal structure of the body by 

directing beams through tissues. The extent of absorption varies based on tissue density. Medical 
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imaging using X-ray radiation encompasses three primary types: conventional X-ray imaging, 

angiography, and fluoroscopy (see Figure I.13) [8]. 

 

Figure I.13 X-Ray Lungs Radiography 

b) Ultrasound 

Commonly referred to as medical sonography or ultrasonography, this imaging technique 

utilizes high-frequency sound waves to generate internal body images. By emitting sound waves 

into the body and capturing the returning echoes, the ultrasound machine translates them into visual 

images (see Figure I.14) [8]. 

 

Figure I.14 Ultrasound Echography 

c) Computed tomography (CT) 

Often termed as a CT scan, Computed Tomography (CT) is an imaging method that merges 

numerous X-ray images captured from diverse angles to generate highly detailed cross-sectional 

internal images (see Figure I.15) [8]. 
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Figure I.15 Computed Tomography Scan 

d) Magnetic resonance imaging (MRI) 

Magnetic Resonance Imaging (MRI) employs radio waves and a magnetic field to produce 

intricate images of organs and tissues. This radiation type captures images of soft tissues while 

excluding bones, offering detailed insights into anatomical structures [8]. 

I. 7. 2 Medical Image File Formats 

Medical image file formats play a crucial role in the storage and management of diagnostic 

imaging data. These formats are tailored to meet specific needs, whether for multidimensional data 

representation, neuroimaging informatics, or versatile data manipulation. Here, we delve into four 

prominent file formats: Analyze, NIFTI, Minc, and DICOM. Each format offers unique features 

and advantages, addressing distinct requirements in medical imaging. 

a) Analyze 

Analyze 7.5 is a file format developed in the late 1980s for medical imaging post-processing, 

primarily used by the Analyze software from the Mayo Clinic in Rochester, MN, USA. It served 

as the standard for over a decade, known for its ability to store multidimensional data, including 

3D or 4D volumes (with temporal information). Each Analyze 7.5 volume comprises two binary 

files: an ".img" file containing voxel raw data and a ".hdr" file containing metadata like pixel 

dimensions, voxel size, and data type. The header, with a fixed size of 348 bytes, is structured in 

the C programming language and requires specialized software for reading and editing. Despite 

being considered "old," Analyze 7.5 remains widely used and supported by various processing 

software packages, viewers, and conversion utilities [9]. 
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b) NIFTI 

NIFTI (Neuroimaging Informatics Technology Initiative) is a file format introduced in the early 

2000s by a committee at the National Institutes of Health. It was designed to address the limitations 

of the Analyze format while retaining its benefits, primarily for neuroimaging data. NIFTI 

enhances Analyze by utilizing previously unused fields in the header to store additional 

information, such as image orientation, thus mitigating ambiguities in brain studies. It also 

introduces support for data types not present in Analyze, like unsigned 16-bit. Typically saved as 

a single ".nii" file, NIFTI merges both the header and pixel data, with header sizes varying 

depending on storage configurations. It provides two methods for image volume orientation, 

enabling mapping to the scanner frame of reference and alignment to a standard coordinate system. 

Widely adopted in neuroimaging research, NIFTI has become the default format for many software 

packages and utilities, offering compatibility with various viewers and analysis tools [9]. 

c) Minc 

The Minc file format, originating from the Montreal Neurological Institute (MNI) in 1992, was 

designed to offer versatility in medical imaging data storage. Initially based on NetCDF (Network 

Common Data Format), the first version, Minc1, provided a foundation for subsequent 

developments. To address limitations in handling large data files and incorporate new features, 

Minc transitioned to Hierarchical Data Format version 5 (HDF5), resulting in Minc2. This 

transition rendered Minc2 incompatible with Minc1. Primarily utilized by software tools from the 

MNI Brain Imaging Center, including viewers and processing software libraries, Minc format 

facilitates flexible data manipulation. Additionally, utilities facilitating conversion between Dicom, 

Nifti formats, and interconversion between Minc1 and Minc2 have been developed by the MNI 

Brain Imaging Center [9]. 

d) DICOM 

DICOM, established by the American College of Radiology and the National Electric 

Manufacturers Association, emerged as the cornerstone of medical imaging departments, despite 

its 1993 inception. Renowned for its pivotal role in enhancing access, exchange, and usability of 

diagnostic medical images, DICOM transcends mere file format status to encompass a 

comprehensive network communication protocol. By merging pixel data seamlessly with 

procedural metadata, DICOM ensures that images retain intrinsic clinical meaning. The DICOM 

header encapsulates exhaustive details of the image acquisition protocol and patient information, 

rendering each image self-descriptive and facilitating software-driven replication of acquisition 

protocols. While DICOM exclusively stores pixel values as integers, it accommodates diverse 

metadata types, utilizing linear transformations to scale voxel values to real-world units. 

Additionally, DICOM supports compressed image data through encapsulation, offering 
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compatibility with a spectrum of compression schemes, including JPEG, RLE, JPEG-LS, and 

JPEG-2000, thereby ensuring interoperability and versatility across medical imaging systems [9]. 

I. 8 Computer Vision 

I. 8. 1 What is computer vision? 

Computer vision, a subset of artificial intelligence (AI), utilizes machine learning and neural 

networks to enable computers and systems to extract meaningful insights from digital images, 

videos, and visual inputs. It empowers them to provide recommendations or take actions upon 

detecting defects or anomalies. If AI grants computers the capacity to think, computer vision equips 

them with the ability to observe and comprehend visual data. 

Comparable to human vision, computer vision operates similarly, although humans possess a 

significant advantage. Human sight benefits from a lifetime of context to distinguish objects, assess 

distances, detect motion, and identify abnormalities in images. In contrast, computer vision trains 

machines to perform these tasks, relying on cameras, data, and algorithms instead of human 

anatomical components like retinas, optic nerves, and a visual cortex. Despite this difference, 

computer vision can rapidly analyze thousands of products or processes per minute, detecting 

imperceptible defects or anomalies and thereby exceeding human capabilities [10]. 

I. 8. 2 How does computer vision work  

Computer vision relies heavily on data to train its algorithms, which iteratively analyze the data 

until they can distinguish patterns and ultimately recognize images. For instance, training a 

computer to identify automobile tires requires feeding it extensive datasets of tire images and 

related items to learn the nuances and recognize tires, particularly those without defects [10]. 

Two primary technologies are instrumental in achieving this: deep learning, a subset of machine 

learning, and convolutional neural networks (CNNs). Machine learning employs algorithmic 

models that enable computers to autonomously understand the context of visual data. With 

sufficient data input, the computer learns to differentiate between various images without explicit 

programming. 

A CNN aids machine learning or deep learning models in visual perception by segmenting 

images into pixels, which are then labeled or tagged. It utilizes these labels to perform convolutions, 

a mathematical operation combining two functions to produce a third, and subsequently makes 

predictions about the visual content. The neural network iteratively refines its predictions, assessing 

their accuracy until they align with reality, akin to human perception. 
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Similar to how humans perceive distant images, a CNN initially identifies sharp edges and basic 

shapes before refining its understanding through iterative prediction cycles. While CNNs are adept 

at understanding individual images, recurrent neural networks (RNNs) serve a similar function in 

video applications, helping computers comprehend the relationships between frames in a sequence. 

I. 8. 3 Image Processing Vs. Computer Vision 

a) Image processing 

Image Processing involves enhancing images by adjusting various parameters and features. It is 

a subset of Computer Vision. In this field, transformations are applied to an input image, resulting 

in an output image. Common transformations include sharpening, smoothing, and stretching [11]. 

b) Computer vision: 

Computer vision involves creating explicit, meaningful descriptions of physical objects based 

on their images. The output of computer vision includes descriptions, interpretations, or 

quantitative measurements of structures in the 3D scene. Techniques such as image processing and 

pattern recognition contribute to achieving these goals [11]. 

c) Difference between Image Processing and Computer Vision: 

The difference between image processing and computer vision is summarized in the table 

(Table I.1) [11]. 

Table I.1: Difference between Image Processing and Computer Vision  

Image Processing Computer Vision 

Image processing is mainly focused on processing 

the raw input images to enhance them or preparing 

them to do other tasks 

Computer vision is focused on extracting 

information from the input images or videos to 

have a proper understanding of them to predict the 

visual input like human brain. 

Image processing uses methods like Anisotropic 

diffusion, Hidden Markov models, Independent 

component analysis, Different Filtering etc. 

Image processing is one of the methods that is 

used for computer vision along with other 

Machine learning techniques, CNN etc. 

Image Processing is a subset of Computer Vision. Computer Vision is a superset of Image 

Processing. 

Examples of some Image Processing applications 

are- Rescaling image (Digital Zoom), Correcting 

illumination, Changing tones etc. 

Examples of some Computer Vision applications 

are- Object detection, Face detection, Hand 

writing recognition etc. 

 



Chapter I : Artificial Vision 

22 

 

I. 9 Conclusion 

In this chapter, image processing within the context of computer vision has been explored, 

emphasizing its role in mimicking human vision and enabling automated recognition. Looking 

forward, the prospects of digital image processing appear promising, with potential applications 

spanning healthcare, education, defense, transportation, and urban development.
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II. 1 Introduction 

Artificial Intelligence (AI) revolutionizes modern technology by enabling machines to perform 

tasks requiring human intelligence. This chapter explores foundational AI concepts, including 

Machine Learning (ML) and Artificial Neural Networks (ANNs), with a focus on Deep Learning 

(DL). It aims to offer insights into AI's theoretical foundations, practical applications, and evolving 

technologies. 

II. 2 Artificial intelligence 

II. 2. 1 Definition 

Artificial Intelligence (AI) can be defined as the interdisciplinary science and engineering of 

developing systems and machines capable of performing tasks that would typically require human 

intelligence. These tasks include but are not limited to visual perception, speech recognition, 

decision-making, and language translation. Originating from the foundational perspectives of 

pioneers like Marvin Minsky, who described AI as "the science of machines that perform tasks 

requiring intelligence when executed by humans," and John McCarthy, who emphasized AI as "the 

science and engineering of making intelligent machines and computer programs," the field has 

evolved to incorporate a broad spectrum of technologies and methodologies. These include 

machine learning, natural language processing, deep learning, and cognitive computing, which 

enable machines to mimic and potentially exceed human cognitive functions [12]. 

II. 2. 2 Types of artificial intelligence 

There are four types of artificial intelligence: reactive machines, limited memory, theory of mind 

and self-awareness.  

a) Reactive Machine AI :  

Reactive machines are AI systems with no memory and are designed to perform a very specific 

task. Since they can’t recollect previous outcomes or decisions, they only work with presently 

available data. Reactive AI stems from statistical math and can analyze vast amounts of data to 

produce a seemingly intelligence output [12].  

Example of Reactive Machine AI : 

 IBM Deep Blue: IBM’s chess-playing supercomputer AI beat chess grandmaster Garry 

Kasparov in the late 1990s by analyzing the pieces on the board and predicting the probable 

outcomes of each move. 
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b) Limited Memory AI : 

Unlike Reactive Machine AI, this form of AI can recall past events and outcomes and monitor 

specific objects or situations over time. Limited Memory AI can use past- and present-moment data 

to decide on a course of action most likely to help achieve a desired outcome. However, while 

Limited Memory AI can use past data for a specific amount of time, it can’t retain that data in a 

library of past experiences to use over a long-term period. As it’s trained on more data over time, 

Limited Memory AI can improve in performance [12]. 

Examples of Limited Memory AI : 

 Generative AI: Generative AI tools such as ChatGPT, Bard and DeepAI rely on limited 

memory AI capabilities to predict the next word, phrase or visual element within the content 

it’s generating 

 Virtual assistants and chatbots: Siri, Alexa, Google Assistant, Cortana and IBM Watson 

Assistant combine natural language processing (NLP) and Limited Memory AI to understand 

questions and requests, take appropriate actions and compose responses 

 Self-driving cars: Autonomous vehicles use Limited Memory AI to understand the world 

around them in real-time and make informed decisions on when to apply speed, brake, make a 

turn, etc. 

c) Theory of Mind AI : 

Theory of Mind AI is a functional class of AI that falls underneath the General AI. Though an 

unrealized form of AI today, AI with Theory of Mind functionality would understand the thoughts 

and emotions of other entities. This understanding can affect how the AI interacts with those around 

them. In theory, this would allow the AI to simulate human-like relationships. Because Theory of 

Mind AI could infer human motives and reasoning, it would personalize its interactions with 

individuals based on their unique emotional needs and intentions. Theory of Mind AI would also 

be able to understand and contextualize artwork and essays, which today’s generative AI tools are 

unable to do [12]. 

d) Self-Aware AI 

Self-Aware AI is a kind of functional AI class for applications that would possess super AI 

capabilities. Like theory of mind AI, Self-Aware AI is strictly theoretical. If ever achieved, it would 

have the ability to understand its own internal conditions and traits along with human emotions and 

thoughts. It would also have its own set of emotions, needs and beliefs [12]. 
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II. 2. 3 Artificial intelligence applications in medicine 

AI has the potential to improve medical practice in a variety of ways, including accelerating the 

rate of research and assisting clinicians in making more informed decisions. Here are a few 

applications for artificial intelligence: 

a) AI in disease detection and diagnosis :  

Unlike humans, AI never needs to sleep. Machine learning models could be used to observe the 

vital signs of patients receiving critical care and alert clinicians if certain risk factors increase. 

While medical devices like heart monitors can track vital signs, AI can collect the data from those 

devices and look for more complex conditions, such as sepsis. One IBM client has developed a 

predictive AI model for premature babies that is 75% accurate in detecting severe sepsis [13]. 

b) Personalized disease treatment :  

Precision medicine could become easier to support with virtual AI assistance. Because AI 

models can learn and retain preferences, AI has the potential to provide customized real-time 

recommendations to patients around the clock. Rather than having to repeat information with a new 

person each time, a healthcare system could offer patients around-the-clock access to an AI-

powered virtual assistant that could answer questions based on the patient's medical history, 

preferences and personal needs [13]. 

c) AI in medical imaging :  

AI is already playing a prominent role in medical imaging. Research has indicated that AI 

powered by artificial neural networks can be just as effective as human radiologists at detecting 

signs of breast cancer as well as other conditions. In addition to helping clinicians spot early signs 

of disease, AI can also help make the staggering number of medical images that clinicians have to 

keep track of more manageable by detecting vital pieces of a patient's history and presenting the 

relevant images to them [13]. 

d) Clinical trial efficiency : 

A lot of time is spent during clinical trials assigning medical codes to patient outcomes and 

updating the relevant datasets. AI can help speed this process up by providing a quicker and more 

intelligent search for medical codes. Two IBM Watson Health clients recently found that with AI, 

they could reduce their number of medical code searches by more than 70% [13]. 
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e) Accelerated drug development :  

Drug discovery is often one of the longest and most costly parts of drug development. AI could 

help reduce the costs of developing new medicines in primarily two ways: creating better drug 

designs and finding promising new drug combinations. With AI, many of the big data challenges 

facing the life sciences industry could be overcome [13].  

II. 3 Machine learning 

II. 3. 1 Definition 

Machine learning, as elucidated by various scholars including Arthur Samuel, Tom Mitchell, 

and Ethem Alpaydin, is a discipline within computer science aimed at empowering computers to 

acquire knowledge and improve task performance through experience rather than explicit 

programming. It involves training computer programs to optimize performance metrics by 

leveraging example data or past encounters, thereby enabling them to intelligently execute tasks 

beyond conventional numerical computations [14]. 

II. 3. 2 Machine learning approaches 

Machine Learning algorithms are mainly divided into four categories: Supervised learning, 

Unsupervised learning, Semi-supervised learning, and Reinforcement learning [15], as shown in 

(Figure II.1). 

 

Figure II.1: Various types of machine learning techniques 
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a) Supervised machine learning  

The primary approach in practical machine learning is supervised learning. In supervised 

learning, there are input variables (𝑋) and an output variable (𝑌), and an algorithm is used to learn 

the mapping function from the input to the output (see Eq II.1). 

𝑌 =  𝑓(𝑋)                                                             (II.1) 

The objective is to approximate the mapping function so well that when new input data (𝑋) is 

available, the output variables (𝑌) can be predicted for that data. It's termed supervised learning 

because the algorithm learns from a training dataset under the guidance of a teacher. The correct 

answers are known, and the algorithm iteratively makes predictions on the training data, receiving 

corrections from the teacher. Learning ceases when the algorithm reaches an acceptable level of 

performance. Supervised learning problems can be categorized into regression and classification 

problems [16]. 

 Classification: In classification problems, the output variable represents categories, such as 

red or blue, or disease and no disease. 

 Regression: Regression problems involve output variables that are real values, such as dollars 

or weight. 

Common problems derived from classification and regression include recommendation and time 

series prediction, respectively. Some popular supervised machine learning algorithms include: 

 Linear regression for regression problems. 

 Random forest for classification and regression problems. 

 Support vector machines for classification problems. 

b) Unsupervised machine learning 

Unsupervised learning involves having only input data (𝑋) without corresponding output 

variables. The objective of unsupervised learning is to model the underlying structure or 

distribution in the data to gain insights into the data [16].  

These methods are termed unsupervised learning because, unlike supervised learning, there are 

no correct answers or teachers to guide the algorithms. Algorithms are left to their own devises to 

uncover and present the meaningful structure in the data. Unsupervised learning problems can be 

categorized into clustering and association problems. 
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 Clustering: Clustering involves identifying inherent groupings in the data, such as 

grouping customers by their purchasing behavior. 

 Association: Association rule learning entails discovering rules that describe significant 

portions of the data, such as identifying patterns like people who buy A also tend to buy B. 

Some popular unsupervised learning algorithms include: 

 k-means for clustering problems. 

 Apriori algorithm for association rule learning problems. 

c) Semi-supervised learning 

Semi-supervised learning addresses scenarios where there's a large volume of input data (𝑋) 

with only some data labeled (𝑌), falling between the realms of supervised and unsupervised 

learning. A classic example is a photo archive where only a fraction of images are labeled (e.g., 

dog, cat, person), while the majority remain unlabeled. Many real-world machine learning 

problems fall into this category due to the expense or time required for labeling, often necessitating 

access to domain experts. Conversely, collecting and storing unlabeled data is relatively 

inexpensive and straightforward [16]. 

In semi-supervised learning, unsupervised techniques can be employed to unveil and understand 

the structure within the input variables. Additionally, supervised learning techniques can be utilized 

to generate predictions for the unlabeled data, leveraging these predictions as training data for the 

supervised learning algorithm. This trained model can then be applied to make predictions on new, 

unseen data. 

d) Reinforcement learning 

Reinforcement learning (RL) constitutes a subset of machine learning, focusing on how 

intelligent agents can acquire decision-making abilities and take actions within an environment to 

optimize cumulative rewards. It draws inspiration from the trial-and-error learning process 

observed in humans and animals [17]. 

In RL, an agent interacts with its environment, learning to make decisions based on feedback 

received in the form of rewards or penalties. By taking actions within the environment, the agent 

receives a reward signal indicating its performance. The objective is for the agent to learn a policy 

-a mapping from states to actions- that maximizes the anticipated cumulative reward over time. 

RL entails a delicate balance between exploration and exploitation. Initially, the agent explores 

the environment through random or exploratory actions to understand various outcomes. As it 
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accumulates knowledge, the agent transitions to exploiting its learned policy, prioritizing actions 

expected to yield higher rewards. 

II. 4 Neural networks 

By inspiration, a Neural Network (NN) is simulated from the human brain. it has somewhat an 

ability of distinguishing between things. 

II. 4. 1 Biological Inspiration 

The brain is mainly constituted by neurons to realize signal exchange and information 

processing. It is estimated that there are nearly 100 billion neurons in the human central nervous 

system. The neuron can receive, integrate, conduct and output the excitement. Structurally, it can 

be divided into three parts: dendrite, cell body and axon [18]. As shown in the image (Figure II.2) 

[19]. 

 

Figure II.2: Neuron 

 Dendrites are composed of several thin extensions that form the dendritic tree (Figure II.2). 

The fundamental purpose of dendrites is to acquire, continuously, stimuli from several other 

neurons (connectors) or from the external environment, which is the case of some neurons in 

contact with the environment (also called sensory neurons) [20]. 

 The cell body is responsible for processing all the information that comes from the dendrites, 

to produce an activation potential that indicates if the neuron can trigger an electric impulse 

along its axon [20]. 

 The axon is composed of a single extension whose mission is to guide the electrical impulses 

to other connecting neurons, or to neurons directly connected to the muscular tissue (efferent 

neurons). The axon termination is also composed of branches called synaptic terminals [20]. 

 The synapses are the connections which enable the transfer of electric axon impulses from a 

particular neuron to dendrites of other neurons, as illustrated in (Figure II.2) It is important to 

note that there is no physical contact between the neurons forming the synaptic junction, so the 
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neurotransmitter elements released on the junction are in charge of weighting the transmission 

from one neuron to another [20]. 

II. 4. 2 Artificial Neural Networks (ANN) 

The basic concept of Artificial Neural Networks (ANNs) is partially inspired by how the human 

brain functions. (Figure II.3) shows artificial neural networks architecture. Neural networks are 

multi layers networks that consist of a single input layer, one or multi hidden layers and one output 

layers. The input to neural networks is a set of input values. The goal of neural networks is to 

predict and classify those values into predefined categories [18]. 

 

Figure II.3: Artificial neural networks architecture 

The computational components or processing units, called artificial neurons, are simplified 

models of biological neurons. These models were inspired by the analysis of how a cell membrane 

of a neuron generates and propagates electrical impulses (Hodgkin and Huxley 1952). 

The artificial neurons used in artificial neural networks are nonlinear, usually providing 

continuous outputs, and performing simple functions, such as gathering signals available on their 

inputs, assembling them according to their operational functions, and producing a response 

considering their innate activation functions [20]. 

Each neuron from a network can be implemented as shown in (Figure II.4) [19]. The multiple 

input signals coming from the external environment (application) are represented by the set 

{𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛}, analogous to the external electrical impulses gathered by the dendrites in the 

biological neuron. 

The weighing carried out by the synaptic junctions of the network are implemented on the 

artificial neuron as a set of synaptic weights {𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛}. 

Analogously, the relevance of each of the {𝑥𝑖} neuron inputs is calculated by multiplying them 

by their corresponding synaptic weight  {𝑤𝑖}, thus weighting all the external information arriving 
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to the neuron. Therefore, it is possible to verify that the output of the artificial cellular body, 

denoted by 𝑍, is the weighted sum of its inputs. 

 

Figure II.4: The artificial neuron 

Considering (Figure II.4), it is possible to see that the artificial neuron is composed of seven 

basic elements, namely: 

 Input signals (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) are the signals or samples coming from the external 

environment and representing the values assumed by the variables of a particular application. 

The input signals are usually normalized in order to enhance the computational efficiency of 

learning algorithms. 

 Synaptic weights (𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛) are the values used to weight each one of the input 

variables, which enables the quantification of their relevance with respect to the functionality 

of the neuron. 

 Linear aggregator (∑) gathers all input signals weighted by the synaptic weights to produce 

an activation voltage. 

 Activation threshold or bias (𝑏) is a variable used to specify the proper threshold that the 

result produced by the linear aggregator should have to generate a trigger value toward the 

neuron output. 

 Activation potential (𝑍) is the result produced by the difference between the linear aggregator 

and the activation threshold. If this value is positive, i.e. if 𝑢 ≥  𝑏, then the neuron produces 

an excitatory potential; otherwise, it will be inhibitory. 

 Activation function whose goal is limiting the neuron output within a reasonable range of 

values, assumed by its own functional image.  

 Output signal (𝑎) consists on the final value produced by the neuron given a particular set of 

input signals, and can also be used as input for other sequentially interconnected neurons. 

The two following expressions synthesize the result produced by the artificial neuron (Eq II.2, II.3):  

𝑢 =  ∑ 𝑤𝑖 . 𝑥𝑖 −  𝜃 𝑛
𝑖=1                                                              (II.2) 



Chapter II: Artificial Intelligence 

33 

 

𝑎 = 𝑔(𝑢)                                                                         (II.3) 

II. 4. 3 Global architecture: 

Neural networks are organized in various layers [21]: 

 Input layer: the input layer neurons receive the information supposed to explain the problem 

to be analyzed; 

 Hidden layer: the hidden layer is an intermediate layer allowing neural networks to model 

nonlinear phenomena. This said to be “hidden” because there is no direct contact with the 

outside world. The outputs of each hidden layer are the inputs of the units of the following 

layer; 

 Output layer: the output layer is the last layer of the network; it produces the result, the 

prediction. 

II. 4. 4 Activation Functions 

Activation functions decide whether a neuron should be activated or not by calculating the 

weighted sum and further adding bias to it. They are differentiable operators for transforming input 

signals to outputs, while most of them add nonlinearity [22]. Some of the popular activation 

functions are described below along with their other characteristics. 

a) Binary Step Function: 

A binary step function is a threshold-based activation function. If the input value is above or 

below a certain threshold [23], the neuron is activated and sends exactly the same signal to the next 

layer (see Figure II.5) [24]. 

Function (see Eq II.4): 

𝑓(𝑧)  =  1 𝑖𝑓 𝑧 >  0 𝑒𝑙𝑠𝑒 0 𝑖𝑓 𝑧 <  0                                                 (II.4) 

 

Figure II.5: Binary step activation function 

Derivative: 
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The gradient of the step function is zero, which causes a hindrance in the back propagation 

process. That is, the derivative of 𝑓(𝑧) with respect to 𝑥, it comes out to be 0. 

b) Linear Activation Functions:  

It takes the inputs, multiplied by the weights for each neuron, and creates an output signal 

proportional to the input. In one sense, a linear function is better than a step function because it 

allows multiple outputs, not just yes and no (see Figure II.6) [24]. 

Function (see Eq II.5): 

𝑓(𝑧) = 𝑎 ∗ 𝑧                                                                      (II.5) 

‘a’ in this case can be any constant value. 

 

Figure II.6: Linear activation function 

Derivative (see Eq II.6): 

𝑓′(𝑧)  =  𝑎                                                                        (II.6) 

c) Non-Linear Activation Functions: 

 Sigmoid 

Sigmoid takes a real value as input and outputs another value between 0 and 1. The larger the 

input (more positive), the closer the output value will be to 1, whereas the smaller the input (more 

negative), the closer the output will be to 0 (see Figure II.7) [24]. 

Function (see Eq II.7): 

𝑓(𝑧) =
1

1+𝑒−𝑧                                                                    (II.7) 

 



Chapter II: Artificial Intelligence 

35 

 

 

Figure II.7: Sigmoid activation function 

Derivative (see Eq II.8): 

𝑓′(𝑧) =  𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑧) ∗ (1 − 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑧))                                        (II.8) 

 Tanh (Hyperbolic Tangent) 

The tanh function is very similar to the sigmoid function. The only difference is that it is 

symmetric around the origin. The range of values in this case is from -1 to 1. Thus the inputs to the 

next layers will not always be of the same sign (see Figure II.8) [24]. The 𝑡𝑎𝑛ℎ function is defined 

as (see Eq II.9) 

Function: 

𝑓(𝑧) =  𝑡𝑎𝑛ℎ(𝑧) =
2

1+𝑒−2𝑧 − 1                                                    (II.9) 

 

Figure II.8: Tanh activation function 

Derivative (see Eq II.10): 

𝑡𝑎𝑛ℎ′(𝑧) = 1 − 𝑡𝑎𝑛ℎ(𝑧)2                                                   (II.10) 

 ReLU (Rectified Linear unit) 

A recent invention which stands for Rectified Linear Units. The formula is deceptively simple: 

𝑚𝑎𝑥(0, 𝑧). Despite its name and appearance, it is not linear and provides the same benefits as 

Sigmoid but with better performance (see Figure II.9) [24]. 

Function (see Eq II.11): 
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𝑓(𝑧) = 𝑚𝑎𝑥(0, 𝑧)                                                          (II.11) 

 

Figure II.9: ReLu activation function 

For the negative input values, the result is zero, that means the neuron does not get activated. 

Since only a certain number of neurons are activated, the ReLU function is far more 

computationally efficient when compared to the sigmoid and tanh function. 

Derivative (see Eq II.12): 

  𝑓′(𝑧) = 1,   𝑧≥0
            = 0,   𝑧<0

                                                                 (II.12) 

 Softmax 

The softmax function is a function that turns a vector of K real values into a vector of K real 

values that sum to 1. The input values can be positive, negative, zero, or greater than one, but the 

softmax transforms them into values between 0 and 1, so that they can be interpreted as 

probabilities. If one of the inputs is small or negative, the softmax turns it into a small probability, 

and if an input is large, then it turns it into a large probability, but it will always remain between 0 

and 1 (see Figure II.10) [24]. 

Function (see Eq II.13): 

𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝑘

𝑗=1

                                                                     (II.13) 
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Figure II.10: Softmax activation function 

II. 4. 5 Optimizers 

Optimizers are algorithms or methods used to minimize an error function (loss function) or to 

maximize the efficiency of production. Optimizers are mathematical functions, which are 

dependent on model’s learnable parameters (i.e. Weights & Biases). Optimizers help to know how 

to change weights and learning rate of neural network to reduce the losses [25]. 

a) Gradient Descent 

Gradient descent is an optimization algorithm based on a convex function and tweaks its 

parameters iteratively to minimize a given function to its local minimum. Gradient Descent 

iteratively reduces a loss function by moving in the direction opposite to that of steepest ascent. It 

is dependent on the derivatives of the loss function for finding minima. Uses the data of the entire 

training set to calculate the gradient of the cost function to the parameters, which requires large 

amount of memory and slows down the process (see Figure II.11) [25]. 

The gradient descent calculates the slope of the landscape, which is the derivative of the function 

at this point with respect to the weights, as shown in Eq. (II.14). 

𝑤 =  𝑤 − 𝑙𝑟. ∇𝑤𝐿(𝑤)                                                      (II.14) 
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Figure II.11: Gradient Descent Optimization Process. 

An important parameter in Gradient Descent is the size of the steps, determined by the learning 

rate hyperparameter. If the learning rate is too small, then the algorithm will have to go through 

many iterations to converge, which will take a long time (Figure II.12) [26].  

Figure II.12: The learning rate is too small 

Alternatively, if the learning rate is too high, then the algorithm might leap across the minimum 

and land on the other side, potentially at a higher point than before. This could cause the algorithm 

to diverge, with values increasing progressively, and it might fail to find an optimal solution (see 

Figure II.13) [26]. 

 

Figure II.13: The learning rate is too high 



Chapter II: Artificial Intelligence 

39 

 

b) Stochastic Gradient Descent (SGD) 

SGD is a basic algorithm and widely used in ML algorithms. Instead of calculating the gradient 

over all training examples and updating the weights (Figure II.14) [26], the SGD updates the 

weights of each training example xi, yi, as shown in Eq. (II.14) [27]. 

𝑤 =  𝑤 − 𝑙𝑟. ∇𝑤𝐿(𝑥𝑖, 𝑦𝑖 , 𝑊)                                                     (II.15) 

 

Figure II.14: Stochastic Gradient Descent 

c) Mini-Batch Gradient Descent 

It is a combination of the concepts of SGD and batch gradient descent. It simply splits the 

training dataset into small batches and performs an update for each of those batches. This creates 

a balance between the robustness of stochastic gradient descent and the efficiency of batch gradient 

descent. it can reduce the variance when the parameters are updated, and the convergence is more 

stable. the Mini-Batch Gradient Descent updates the weights, as shown in Eq. (II.16) [27]. 

𝑤 =  𝑤 −  𝑙𝑟 ·  𝛻𝑤𝐿( 𝑥(𝑖:𝑖+𝑛); 𝑦(𝑖:𝑖+𝑛), 𝑊)                              (II.16) 

d) Stochastic Gradient Descent with Momentum: 

In this approach, a momentum term is added to the regular SGD to overcome the limitations of 

the gradient descent algorithm, i.e., a gradient descent with a momentum. By using the principle of 

momentum from physics, the SGD is forced to continue moving in the same direction as those in 

the previous time steps (see Figure II.15) [27]. This momentum is accomplished by introducing 

two new variables, namely, velocity and friction, as given by Eqs. (II.17) and (II.18), respectively. 

𝑣𝑡 + 1 =  𝑝𝑣𝑡 + ∇wL(x, w)                                                 (II.17) 

𝑤 =  𝑤 − lr . vt + 1                                                         (II.18) 
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Figure II.15: Stochastic Gradient Descent with (left) and without (right) momentum 

e) RMS-Prop (Root Mean Square Propagation) 

The sizes of gradients vary by weight and change over time, hence the difficulty in selecting a 

single global LR. This aspect is addressed by RMSProp by retaining a moving average of the 

squared gradient and altering the weight updates by this magnitude [27]. The gradient updates are 

elaborated as shown in Eqs. (II.19) and (II.20). 

𝑣𝑡 =  𝛿𝑣𝑡−1 + (1 −  𝛿)(∇𝑤𝐿(𝑥, 𝑦, 𝑤𝑡))2                                           (II.19) 

𝑤 =  𝑤 −  𝑙𝑟.
1

√𝑣𝑡+𝑒
⊙ (∇𝑤𝐿(𝑥, 𝑦, 𝑤𝑡))2                                          (II.20) 

f) Adam (Adaptive Moment Estimation) 

Adam is a first-order gradient-based optimization technique for stochastic objective functions 

based on adaptive lower-order moment estimates. Instead of using the usual SGD approach, Adam 

is used to iteratively update the network weights depending on the training data [27]. Adam stems 

from evolutionary moment calculation and algorithm features as shown in Eqs. (II.21), (II.22), and 

(II.23). 

𝑚𝑡 =  𝛿𝑚𝑡 + (1 −  𝛿1)(∇𝑤𝐿(𝑥, 𝑦, 𝑤𝑡))                                        (II.21) 

𝑣𝑡 =  𝛿2𝑣𝑡−1 + (1 −  𝛿2)(∇𝑤𝐿(𝑥, 𝑦, 𝑤𝑡))2                                   (II.22) 

𝑤 =  𝑤 −  𝑙𝑟.
𝑚𝑡

√𝑣𝑡+𝑒
                                                          (II.23) 

II. 5 Deep learning 

II. 5. 1 Definition 

Deep learning is a sub-field of machine learning dealing with algorithms inspired by the 

structure and function of the brain called artificial neural networks (see Figure II.16 ) [28]. In other 

words, it mirrors the functioning of our brains. Deep learning algorithms are similar to how nervous 

system structured where each neuron connected each other and passing information [29]. 
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Figure II.16: The relation between AI, machine learning and deep learning 

II. 5. 2 The difference between ML and DL 

Machine learning and deep learning both fall under the category of artificial intelligence, while 

deep learning is a subset of machine learning. Therefore, deep learning is a part of machine 

learning, but it is different from traditional machine learning methods [30]. 

The table below (Table II.1) shows the key differences between deep learning and machine 

learning [31]. 

Table II.1: The key differences between Machine Learning and Deep Learning 

Machine Learning Deep Learning 
Machine Learning is a superset of Deep Learning Deep Learning is a subset of Machine Learning 

The data represented in Machine Learning is quite 

different compared to Deep Learning as it uses 

structured data 

The data representation used in Deep Learning is 

quite different as it uses neural networks(ANN). 

Machine learning consists of thousands of data 

points. 
Big Data: Millions of data points. 

Outputs: Numerical Value, like classification of 

the score. 

Anything from numerical values to free-form 

elements, such as free text and sound. 

Uses various types of automated algorithms that 

turn to model functions and predict future action 

from data. 

Uses a neural network that passes data through 

processing layers to, interpret data features and 

relations. 

Algorithms are detected by data analysts to 

examine specific variables in data sets. 

Algorithms are largely self-depicted on data 

analysis once they’re put into production. 

Machine Learning is highly used to stay in the 

competition and learn new things. 

Deep Learning solves complex machine-learning 

issues. 

Training can be performed using the CPU (Central 

Processing Unit). 

A dedicated GPU (Graphics Processing Unit) is 

required for training. 

More human intervention is involved in getting 

results. 

Although more difficult to set up, deep learning 

requires less intervention once it is running. 

Machine learning systems can be swiftly set up 

and run, but their effectiveness may be 

constrained. 

Although they require additional setup time, deep 

learning algorithms can produce results 

immediately (although the quality is likely to 
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improve over time as more data becomes 

available). 

Its model takes less time in training due to its 

small size. 

A huge amount of time is taken because of very 

big data points. 

Humans explicitly do feature engineering. 

Feature engineering is not needed because 

important features are automatically detected by 

neural networks. 

Machine learning applications are simpler 

compared to deep learning and can be executed on 

standard computers. 

Deep learning systems utilize much more 

powerful hardware and resources. 

The results of an ML model are easy to explain. 
The results of deep learning are difficult to 

explain. 

Machine learning models can be used to solve 

straightforward or a little bit challenging issues. 

Deep learning models are appropriate for 

resolving challenging issues. 

Banks, doctor’s offices, and mailboxes all employ 

machine learning already. 

Deep learning technology enables increasingly 

sophisticated and autonomous algorithms, such as 

self-driving automobiles or surgical robots. 

Machine learning involves training algorithms to 

identify patterns and relationships in data. 

Deep learning, on the other hand, uses complex 

neural networks with multiple layers to analyze 

more intricate patterns and relationships. 

Machine learning algorithms can range from 

simple linear models to more complex models 

such as decision trees and random forests. 

Deep learning algorithms, on the other hand, are 

based on artificial neural networks that consist of 

multiple layers and nodes. 

Machine learning algorithms typically require less 

data than deep learning algorithms, but the quality 

of the data is more important. 

Deep learning algorithms, on the other hand, 

require large amounts of data to train the neural 

networks but can learn and improve on their own 

as they process more data. 

Machine learning is used for a wide range of 

applications, such as regression, classification, and 

clustering. 

Deep learning, on the other hand, is mostly used 

for complex tasks such as image and speech 

recognition, natural language processing, and 

autonomous systems. 

Machine learning algorithms for complex tasks, 

but they can also be more difficult to train and 

may require more computational resources. 

Deep learning algorithms are more accurate than 

machine learning algorithms. 

II. 6 Convolutional neural networks 

Convolutional neural networks or CNNs, are a specialized kind of neural network for processing 

data that has a known, grid-like topology. Examples include time-series data, which can be thought 

of as a 1D grid taking samples at regular time intervals, and image data, which can be thought of 

as a 2D grid of pixels. Convolutional networks have been tremendously successful in practical 

applications. The name “convolutional neural network” indicates that the network employs a 

mathematical operation called convolution. Convolution is a specialized kind of linear operation. 

Convolutional networks are simply neural networks that use convolution in place of general matrix 

multiplication in at least one of their layers [32]. 
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The design of the Convolutional Neural Network is motivated by the discovery of the visual 

mechanism; the visual cortex presents in the brain. The visual cortex contains many cells that are 

responsible for detecting light in the small, layered sub-region of the visual field, called the 

receptive plane. These cells act as local filters above the input space, and the more complex cells 

have larger receptive fields [33].  

In the Convolutional Neural Network (CNN) algorithm applied to the image, the image input 

will pass through several layers until it is finally classified into one class group. This layer includes 

the Convolutional layer, Pooling Layer, and Fully Connected Layer (Heaton, 2015). While the 

learning process is divided into two parts: forward propagation and back propagation.  

The convolution layer in CNN performs the functions performed by cells in the visual cortex. 

In general, the convolutional layer of the convolution layer will detect the edge feature of the image, 

then the subsampling layer will reduce the dimensions of the feature obtained from the convolution 

layer, and finally forwarded to the output node through forward propagation process, and the 

predicted data class is finally determined by Softmax method on dense layer or fully connected 

layer (see Figure II.17) [34]. 

 

Figure II.17: CNN architecture 

II. 6. 1 The different layers of a CNN 

a) Convolutional Layer 

The first layer to be passed by the input data is the convolution layer. As the name suggests, this 

layer plays an important role in how CNN works. This layer has several parameters that must be 

determined by the researcher [33].  

Convolution Layer can significantly reduce model complexity through optimizing output. 

Accordingly, some parameters for this optimization are called hyper parameters consisting of the 

number of Filters, the size of Filter, Stride, Padding and activation functions (see Figure II.18) [32].  
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Filter size parameters (𝑓), image size (𝑤), magnitude of shift (𝑠) and padding (𝑝) must be 

combined in order to make the value of the step count or the value of the step variable being an 

integer (see Eq II.24). 

𝑠𝑡𝑒𝑝𝑠 =  
𝑤−𝑓+2𝑝

𝑠
+ 1                                                        (II.24) 

 

Figure II.18: Convolution operation 

b) Pooling layer 

In simple terms this layer is responsible for down sampling so that the size of the input data will 

be smaller. The literature mentions that this layer is not affected by the training phase. This is 

because this layer has no weight as any other layer [33].  

This layer has several parameters that are static, the parameters are spatial extend and stride 

parameters. Illustration of down sampling on this layer can be seen in (Figure II.19) [35]. 
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Figure II.19: Pooling operation performed by choosing a 2x2 window 

The purpose of using pooling or subsampling layer is to reduce the data volume and complexity 

of the data that will enter in the next layer. The window size used in the subsampling process 

determines how much information is omitted. There are two main types of pooling [36]: 

Max Pooling selects the maximum element from each of the windows of the feature map. Thus, 

after the max-pooling layer, the output would be a feature map containing the most dominant 

features of the previous feature map. 

Average Pooling computes the average of the elements present in the region of the feature map 

covered by the filter. It simply averages the features from the feature map. 

c) Fully-Connected Layer 

This layer is a layer that has interconnected neurons. In this layer the feature maps of the 

previous layer (Pooling layer) will be decomposed into a node. The way this layer works is the 

same as the forward propagation process in ANN, so in this layer there is also a weight that connects 

between neurons. These weights will change with the training done on the network. Like neurons 

on artificial neural networks, neurons on this Dense layer must also have an activation function, in 

the Deep Learning and Neural Network mentioned that the activation functions that can be used in 

neurons in this layer are very diverse as ReLU, Sigmoid or hyperbolic activation function [33]. 

II. 6. 2 CNN known models 

a) LeNet 

LeNet-5, introduced by Yann LeCun et al. in 1998 [36], was one of the pioneering CNN 

architectures. It was designed for handwritten digit recognition and consisted of two convolutional 

layers, followed by average pooling, fully connected layers, and a softmax output layer. LeNet-5's 

lightweight architecture and efficient use of shared weights laid the foundation for modern CNNs 

[37], influencing subsequent developments in the field (see Figure II.20) [38]. 
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Figure II.20: LeNet 

b) AlexNet 

AlexNet developed by Alex Krizhevsky et al. in 2012 [39], made significant strides in image 

classification. It won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012 

and achieved a significant improvement over previous methods. AlexNet featured a deeper 

architecture with multiple convolutional layers, introduced the concept of ReLU activations, and 

employed techniques like dropout for regularization. Its success paved the way for the resurgence 

of deep learning in computer vision [37]. 

c) VGG 

VGGNet, proposed by Karen Simonyan and Andrew Zisserman in 2014 [40], introduced deeper 

architectures with up to 19 layers. VGGNet's key characteristic was the consistent use of 3x3 

convolutional filters throughout the network, which enabled better modeling of complex visual 

patterns. The VGGNet architecture is known for its simplicity and effectiveness, and it has served 

as a baseline for subsequent CNN models [37]. 

d) ResNet 

ResNet developed by Kaiming He et al. in 2015 [41], brought significant advancements in 

training very deep neural networks. ResNet introduced the concept of residual connections, 

allowing information to bypass certain layers and alleviating the vanishing gradient problem. This 

breakthrough enabled the successful training of CNNs with 50, 100, or even more layers. ResNet's 

skip connections revolutionized deep learning architectures and enabled the training of extremely 

deep and accurate networks [37]. 

II. 6. 3 Transfer learning 

Transfer learning for machine learning is when existing models are reused to solve a new 

challenge or problem. Transfer learning is not a distinct type of machine learning algorithm, instead 
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it’s a technique or method used whilst training models. The knowledge developed from previous 

training is recycled to help perform a new task. The new task will be related in some way to the 

previously trained task, which could be to categorise objects in a specific file type. The original 

trained model usually requires a high level of generalisation to adapt to the new unseen data [42]. 

Transfer learning means that training won’t need to be restarted from scratch for every new task. 

Training new machine learning models can be resource-intensive, so transfer learning saves both 

resources and time. The accurate labelling of large datasets also takes a huge amount of time. The 

majority of data encountered by organisations can often be unlabelled, especially with the extensive 

datasets required to train a machine learning algorithm. With transfer learning, a model can be 

trained on an available labelled dataset, then be applied to a similar task that may involve unlabelled 

data (see Figure II.21) [43]. 

 

 

Figure II.21: Training from scratch vs Transfer Learning 

II. 7 Conclusion 

In conclusion, Artificial Intelligence emerges as a transformative force, driving innovation 

across industries. This chapter provides a comprehensive overview, emphasizing Machine 

Learning's role in enabling systems to learn from data and Deep Learning's mimicry of human 

neural processes. The distinctions between these technologies highlight AI's versatility and 

potential in solving real-world challenges. As AI evolves, it promises to revolutionize efficiency, 

productivity, and innovation. The next chapter will explore the state of the art in AI.
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III. 1 Introduction 

Automated lung segmentation in computed tomography (CT) images is a crucial step in the 

early diagnosis and treatment of lung diseases. Due to the complex and variable nature of lung 

morphology, developing robust and accurate segmentation algorithms remains a significant 

challenge. Traditional methods, such as morphological techniques and thresholding, have shown 

limitations in generalization and computational efficiency. In contrast, deep learning approaches, 

particularly Convolutional Neural Networks (CNNs), have demonstrated substantial promise in 

addressing these challenges due to their ability to learn intricate patterns from data. This chapter 

reviews state-of-the-art methods in lung segmentation, with a focus on recent advancements in 

deep learning architectures such as U-Net, Mask R-CNN, and Residual U-Net, which have 

significantly enhanced segmentation accuracy and efficiency. 

III. 2 Related work 

III. 2. 1 The work of Bhattacharjee, A., et al. 

This research introduces a refined U-Net segmentation model tailored for lung segmentation, 

addressing the complexities posed by anatomical variations. The model was trained on a modest 

dataset of 240 images, highlighting its ability to achieve robust segmentation with limited training 

data. Key innovations include structural modifications to the original U-Net architecture, 

incorporating batch normalization and dropout layers to prevent overfitting, along with additional 

filters for dimensionality reduction. These adjustments result in superior segmentation 

performance, outperforming both the baseline U-Net model and contemporary techniques. 

Noteworthy achievements include an accuracy of 98.3%, a binary cross-entropy loss of 0.04, and 

high scores for Intersection over Union (IoU) and Dice Similarity Coefficient (DSC). This research 

contributes a potent semantic segmentation framework tailored specifically for lung segmentation, 

offering excellent performance even with limited CT image data (see Figure III.1) [44]. 
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Figure III.1 The proposed U-Net architecture for lung segmentation 

III. 2. 2 The work of Qinhua, Hu., et al. 

This study presents an advanced approach for automating lung segmentation in CT images, 

utilizing the power of Convolutional Neural Network (CNN) Mask R-CNN, enhanced by 

supervised and unsupervised machine learning techniques, including Bayes, Support Vector 

Machine (SVM), K-means, and Gaussian Mixture Models (GMMs). The method achieves 

exceptional accuracy (97.68 ± 3.42%) with an average runtime of 11.2 seconds when employing 

Mask R-CNN with the K-means kernel. Comparative analysis against existing methodologies 

confirms the superiority of the proposed approach in both accuracy and computational efficiency. 

The innovation lies in the comprehensive integration of transfer learning, erosion and dilation 

strategies, clustering for precise region mapping, and a guiding kernel factor within the Mask R-

CNN architecture. This holistic approach minimizes the dependence on extensive training data 

while maximizing segmentation performance, distinguishing it from traditional methods reliant on 

preprocessing or semi-automatic procedures (see Figure III.2) [45]. 
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Figure III.2 Figure Mask R-CNN flowchart 

III. 2. 3 The work of Khanna, A., et al. 

This research introduces a deep Residual U-Net convolutional neural network for automated 

lung segmentation in CT images, addressing challenges such as irregular lung shapes, low contrast, 

and fuzzy boundaries. By integrating residual learning with the U-Net architecture, the model 

enhances feature extraction and segmentation accuracy. The approach employs data augmentation 

techniques to improve generalization and a connected component-based method to reduce false 

positives. Experimental results show that the proposed method achieves Dice Similarity 

Coefficients of 98.63%, 99.62%, and 98.68% on the LUNA16, VESSEL12, and HUG-ILD 

datasets, respectively, outperforming existing methods. This robust and precise segmentation 

framework holds promise for improving early diagnosis and treatment of lung diseases, with 

potential applications in clinical decision-making and computer-aided diagnosis systems. Future 

research aims to further enhance generalization through generative adversarial networks and extend 

the model to other medical imaging domains (see Figure III.3) [46]. 
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Figure III.3 Overview of the proposed Residual U-Net based CNN architecture for lung CT segmentation. 

III. 2. 4 Results 

The table below (Table III.1) summarizes the results of various state-of-the-art methods for 

automated lung segmentation in CT images. These methods, which include modifications to U-Net 

architectures, Mask R-CNN with machine learning techniques, and deep Residual U-Nets, 

demonstrate significant advancements in segmentation accuracy and efficiency across different 

datasets. The performance metrics highlight the effectiveness and precision of these approaches in 

handling the complexities of lung segmentation (Table III.1). 

Table III.1 Comparative Analysis of Recent Studies on Lung Segmentation Using AI Techniques 

DOI Authors Title Dataset Results 

10.1109/ACTS53447.2021.9708

190 

Ananya 

Bhattacharje

e, Tripti 

Goel, R 

Murugan, 

Badal Soni 

Semantic 

segmentatio

n of lungs 

using a 

modified U-

Net 

architecture 

through 

limited 

Computed 

240 training 

images and 

tested on 240 

testing images 

of Lung Image 

Database 

Consortium 

and Image 

Database 

Resource 

DSC : 

96.29% 

Accuracy : 

98.3% 

Jaccard 

coefficient : 

93.63% 

Loss : 

0.03% 
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Tomograph

y images 

Initiative 

(LIDCIDRI) 

 

10.1016/j.artmed.2020.101792 Qinhua Hua, 

Luís 

Fabrício de 

F. Souzab, 

Gabriel 

Bandeira 

Holandab, 

Shara S.A. 

Alvesc, 

Francisco 

Hércules dos 

S. Silvab, 

Tao Hand, 

Pedro P. 

Rebouças 

Filhob 

An effective 

approach 

for CT lung 

segmentatio

n using 

mask 

region-

based 

convolution

al neural 

networks 

998 images of 

39 lung 

computed 

tomography 

(CT) exams in 

Digital 

Imaging and 

Communicatio

ns in Medicine 

(DICOM) 

format. 

DC : 97.33 

± 3.24 

Segmentati

on time (s): 

11.24 ± 

2.57 

10.1016/j.bbe.2020.07.007 Anita 

Khanna, 

Narendra D. 

Londhe, S. 

Gupta, 

Ashish 

Semwal. 

A deep 

Residual U-

Net 

convolution

al neural 

network for 

automated 

lung 

segmentatio

n in 

computed 

tomography 

images 

Publicly 

available 

benchmark 

datasets, 

namely 

LUNA, 

VESSEL12, 

and HUG-ILD 

DSC: 98.63 

± 0.1  

JI : 97.32 ± 

0.2  

Recall : 

98.61 ± 0.3 

III. 2. 5 Conclusion 

The reviewed works highlight the evolution and effectiveness of deep learning techniques in the 

domain of lung segmentation. Bhattacharjee et al. presented a modified U-Net model that achieves 

high accuracy with minimal training data, incorporating batch normalization and dropout layers to 
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prevent overfitting. Hu et al. introduced a Mask R-CNN approach augmented by various machine 

learning techniques, excelling in both accuracy and computational efficiency. Khanna et al. 

developed a deep Residual U-Net that integrates residual learning with the U-Net architecture, 

demonstrating superior performance across multiple datasets. These advancements underscore the 

potential of deep learning models to overcome traditional limitations, providing robust and precise 

segmentation solutions essential for clinical decision-making and further medical imaging 

applications.
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IV. 1 Introduction 

This chapter describes the experimental setup and realization of our proposed models for lung 

segmentation in CT images. It details the tools and libraries used, the dataset, preprocessing steps, 

network architectures, implementation, and results. Additionally, it covers the development of a 

web application, Lung Vision, for managing medical images, patients, and segmenting scans using 

the developed machine learning models. 

IV. 2 Tools and Libraries 

IV. 2. 1 Python 

Python is a powerful and easy-to-learn programming language with efficient high-level data 

structures and a straightforward approach to object-oriented programming. Its elegant syntax and 

dynamic typing, combined with its interpreted nature, make it ideal for scripting and rapid 

application development across many platforms [47]. 

 

Figure IV.1 Python logo 

IV. 2. 2 Google Colaboratory 

Google Colaboratory (Colab) is a hosted Jupyter Notebook service that requires no setup to use 

and provides free access to computing resources, including GPUs and TPUs. Colab is especially 

well-suited for machine learning, data science, and education [48]. 
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Figure IV.2 Google Colaboratory 

IV. 2. 3 Anaconda Navigator 

Anaconda Navigator is a desktop graphical user interface (GUI) included in the Anaconda 

Distribution that allows users to launch applications and manage conda packages, environments, 

and channels without using the command line interface (CLI). It is available for Windows, macOS, 

and Linux [49]. 

 

Figure IV.3 Anaconda navigator 
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IV. 2. 4 Jupyter Notebook 

Jupyter Notebook is a user-friendly notebook authoring tool that is part of Project Jupyter. It 

enables the creation and sharing of computational notebooks, which are interactive documents 

combining computer code, text descriptions, data, rich visualizations, and interactive controls [50]. 

 

Figure IV.4 Jupyter notebook 

IV. 2. 5 TensorFlow 

TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, 

flexible ecosystem of tools, libraries and community resources that allows researchers to push the 

state-of-the-art in ML and developers easily build and deploy ML-powered applications [51]. 

 

Figure IV.5 TensorFlow logo 

IV. 2. 6 Keras 

Keras is a deep learning API written in Python, running on top of the machine learning platform 

TensorFlow. It was developed with a focus on enabling fast experimentation. allowing researchers 

to go from idea to result as quickly as possible [52]. 

 

Figure IV.6 Keras logo 
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IV. 2. 7 OpenCV 

OpenCV (Open Source Computer Vision Library) is an open-source computer vision and 

machine learning software library. It provides a common infrastructure for computer vision 

applications and accelerates the use of machine perception in the commercial products [53]. 

 

Figure IV.7 OpenCV logo 

IV. 2. 8 Visual Studio Code 

Visual Studio Code is a lightweight but powerful source code editor available for Windows, 

macOS, and Linux. It comes with built-in support for JavaScript, TypeScript, and Node.js and has 

a rich ecosystem of extensions for other languages and runtimes [54]. 

 

Figure IV.8 Visual Studio Code 

IV. 2. 9 Django 

Django is a high-level Python web framework that encourages rapid development and clean, 

pragmatic design. Built by experienced developers, it takes care of much of the hassle of web 

development, allowing developers to focus on writing their applications [55]. 
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Figure IV.9 Django logo 

IV. 2. 10 PostgreSQL 

PostgreSQL is a powerful, open source object-relational database system that uses and extends 

the SQL language combined with many features that safely store and scale the most complicated 

data workloads. It has a history of more than 35 years of active development [56]. 

 

Figure IV.10 PostgreSQL pgAdmin4 

IV. 2. 11 React.js 

React.js is a JavaScript library developed by Facebook for building user interfaces, particularly 

single-page applications. It enables developers to create reusable UI components that manage their 

own state and efficiently update and render the right components in response to data changes [57]. 

 

Figure IV.11 React logo 
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IV. 2. 12 Draw.io 

draw.io is a free online diagram software that allows users to create various types of diagrams 

and charts, such as flowcharts, network diagrams, UML diagrams, ER diagrams, BPMN diagrams, 

and circuit diagrams. It can be used in the browser or as a desktop app [58]. 

 

Figure IV.12 Draw.io 
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IV. 3 Experiments 

The goal of this thesis is to develop robust approaches for the preprocessing and semantic 

segmentation of medical images, specifically focusing on lung diseases. In this research, we 

propose a two-step approach combining object detection and segmentation to enhance the accuracy 

and efficiency of medical image analysis. 

IV. 3. 1 Datasets 

The dataset used in this study comprises 140 computed tomography (CT) exams, each 

representing a distinct patient and covering six organ classes: liver, lungs, bladder, kidney, bones, 

and brain. The dataset, formatted in Neuroimaging Informatics Technology Initiative (NIFTI), was 

obtained from the CT-ORG dataset for multiple organ segmentation in computed tomography. The 

patient demographic includes 62.5% male and 37.5% female [59], with some exhibiting metastatic 

diseases originating from cancers in the breast, colon, bones, and lungs. The data are divided into 

119 training volumes and 21 testing volumes. For this study, we only used volumes that contain 

the full lungs because some scans only cover half of the chest, focusing on informative slices based 

on the provided lung mask (lungs = 3). Each exam contains approximately 200 images, resulting 

in a dataset of 5,930 images, each 512 × 512 pixels in size. We conducted experiments on 500 

randomly selected images, using 400 for training and 100 for testing, corresponding to an 80% 

training and 20% testing split. 

 

Figure IV.13 Example of CT lung detection and segmentation by image morphology. Lung mask overlaid in 

blue. Rendered by 3D Slicer. 
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IV. 3. 2 Preprocessing 

Preprocessing is a crucial part of our fully automated segmentation pipeline, designed to 

streamline the process without requiring any user intervention (see Figure IV.14). The steps 

involved are: 

a) Thresholding:  

To isolate lung tissues and exclude irrelevant structures, the Hounsfield unit (HU) values are 

selected within the range of -1000 to -200. This range effectively captures the lung parenchyma 

and air-filled spaces, ensuring that only relevant anatomical features are included for further 

analysis. This step helps in emphasizing the lung region and improving the segmentation process. 

b) Normalization: 

Subsequently, normalization is applied to standardize the pixel values across the dataset. By 

scaling the pixel values to the range [0-1], normalization ensures uniformity and facilitates 

consistent processing across different images. 

c) Conversion to Grayscale: 

To simplify subsequent analysis and enhance visualization, the images are converted to 

grayscale. This conversion reduces complexity by representing each pixel with a single intensity 

value, streamlining further processing steps. 

 

Figure IV.14 Comparison of Original and Preprocessed CT Images 

IV. 3. 3 Environment 

In our academic research, because of the unavailability of resources and the high cost associated 

with acquiring advanced graphic cards, we initially attempted to utilize the GPU resources provided 
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by Google Colab. However, due to limitations in the available resources (a 12GB NVIDIA Tesla 

K80 GPU with a usage cap of 12 hours), coupled with the significant volume of data, we 

encountered frequent session crashes, restarts, and subsequent instability. To address this 

challenge, we shifted our experimentation to a desktop computer powered by a Ryzen 5600G 

processor and equipped with 16GB of RAM. Our software environment remained consistent, 

utilizing Python version 3.8 and employing the Keras and TensorFlow libraries for model 

development and experimentation. 

IV. 3. 4 Direct Approaches 

a) U-Net 

The U-Net architecture was first introduced by Olaf Ronnenberger et al. in 2015, its application 

focuses on biomedical image segmentation. They improve the architecture of the so-called "fully 

convolutional network" by changing and extending it so that it can work with fewer training images 

and produce more precise segmentations. As its name implies, it is an architecture that has a 

symmetrical "U" shape, as shown in (Figure IV.15), and is constituted by two fundamental parts. 

On the left side of the "U", there is the contraction path, also known as the encoder. This path is 

formed by several blocks which are based on convolutional processes that capture the context of 

the input image. The left path, the expansion path, or also called decoder is used to allow precise 

localization by means of transposed convolutions. Both paths are concatenated by skip connections, 

the skip connection combines the spatial information of the encoder with the decoder to retain good 

spatial information. The network is essentially a stack of convolutional and maximum density 

layers with activation and loss functions. As a result, it is an end-to-end fully convolutional 

network, meaning that it has only convolutional layers and no dense layers, allowing it to accept 

images of any size. The u-net architecture performs effectively in a variety of biomedical 

segmentation applications [60]. 
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Figure IV.15 Structure of the U-Net architecture proposed by Ronnenberger et al. 

b) Attention U-Net 

Ozan Oktay et al. proposed for the first time attention gates (AGs) in the context of U-Net. 

(Figure IV.16) shows the diagram of the architecture. The objective of applied AGs to a neural 

network model is to highlight only the relevant features that are need to train the proposed model 

(Figure IV.17). Incorporating AGs into a common CNN architecture, such as the U-Net model, 

does not require heavy computational resources, on the contrary, it reduces those wasted on 

irrelevant activations and provides better network generalization. Traditional approaches like 

cascaded framework lead to overuse and redundancy of computing resources and model 

parameters; for example, all models in the cascade repeatedly extract similar low-level features. 

Attention U-Net learn to remove unimportant areas in the input image and to focus important 

structures that are helpful for a particular task without additional supervision. By reducing feature 

activations in unnecessary regions, AGs increase model sensitivity, and accuracy for dense label 

predictions. In this method, the use of an external organ localization model can be avoided while 

yet achieving good prediction accuracy. AGs have been shown to be quite useful for tissue/organ 

identification and localization [61]. 
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Figure IV.16 Structure of the attention U-Net architecture proposed by Ozan Oktay et al. 

 

Figure IV.17 Schematic of the Attention Gate 

IV. 4 Proposed Approaches 

In this section, we present two advanced approaches designed for the segmentation of lung 

regions in CT images. Both approaches begin with lung detection using the YOLOv8 algorithm 

and proceed to segmentation, with Approach 1 utilizing the U-Net framework and Approach 2 

employing the Attention U-Net. These integrated approaches leverage state-of-the-art deep 

learning techniques to enhance segmentation accuracy and efficiency, making them suitable for 

clinical applications in diagnosing and treating lung diseases. 

IV. 4. 1 YOLOv8 Object Detection 

As a pivotal component of our proposed approaches, YOLOv8 is an advanced object detection 

model that builds on the architecture of YOLOv5, incorporating significant improvements. 
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Introduced as the latest in the YOLO (You Only Look Once) series, YOLOv8 focuses on enhancing 

detection accuracy and efficiency. The architecture features a new C2f module (cross-stage partial 

bottleneck with two convolutions), replacing the previous CSPLayer to better combine high-level 

features with contextual information. YOLOv8 utilizes an anchor-free model with a decoupled 

head, which processes objectness, classification, and regression tasks independently, allowing for 

more specialized and accurate results. The output layer employs the sigmoid function for objectness 

scores and the softmax function for class probabilities, enhancing the model's prediction 

capabilities. Additionally, YOLOv8 incorporates CIoU and DFL loss functions for bounding box 

regression and binary cross-entropy for classification loss, which improve performance, especially 

with smaller objects. YOLOv8's versatility is reflected in its command line interface (CLI) usage, 

PIP package installation, and multiple integrations for labeling, training, and deployment. YOLOv8 

demonstrates significant improvements over its predecessors. (Figure IV.18) shows the detailed 

architecture of YOLOv8 [62]. 

 

Figure IV.18 YOLOv8 Architecture 
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IV. 4. 2 YOLOv8 with U-Net (Approach 1) 

Our initial approach to lung segmentation aims to efficiently and accurately identify and 

segment lung regions from CT images. The method encompasses a multi-step process integrating 

cutting-edge techniques: 

a) Lung Detection with YOLOv8: 

Preprocessed images are fed into the pre-trained YOLOv8 model, which is renowned for its 

exceptional object detection capabilities. YOLOv8 efficiently identifies lung regions within the 

images, generating bounding boxes to delineate these areas. This bounding box information serves 

as a region of interest (ROI), highlighting the specific areas containing the lungs. Subsequently, 

pixels within these bounding boxes are selectively retained for further processing, while 

background pixels are eliminated. This meticulous selection ensures that only relevant lung region 

pixels are retained, optimizing subsequent analysis and segmentation tasks. 

b) Lung Segmentatio using U-Net: 

This approach employs the U-Net architecture for segmentation (Figure IV.19), which is 

particularly effective for biomedical image segmentation tasks. U-Net has a symmetrical "U" 

shape, comprising a contraction path (encoder) on the left and an expansion path (decoder) on the 

right. The encoder captures the context of the processed images through convolutional processes, 

while the decoder enables precise localization via transposed convolutions. Skip connections 

between the encoder and decoder combine spatial information, retaining high-resolution features. 

For training, the U-Net model uses an input shape of (512, 512, 1), with a learning rate of 1e-4, a 

batch size of 16, and 50 epochs. The model is compiled with the Dice loss function and the Adam 

optimizer, and the metrics include dice_coef, IoU, Recall, and Precision. Training incorporates 

callbacks such as ModelCheckpoint, ReduceLROnPlateau, TensorBoard, and EarlyStopping to 

enhance performance and prevent overfitting. 

In summary, Approach 1 integrates preprocessing steps, lung detection using YOLOv8, and 

final segmentation with U-Net. This combination leverages object detection and deep learning 

segmentation techniques, providing an effective and robust approach for lung segmentation in CT 

images. The automation of these steps ensures consistency and efficiency, making the approach 

suitable for clinical applications and aiding in the early diagnosis and treatment of lung diseases. 
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Figure IV.19 Approach 1 Architecture 

IV. 4. 3 YOLOv8 with Attention U-Net (Approach 2) 

Our second proposed approach for lung segmentation also uses advanced deep learning 

techniques, with the following steps: 

a) Lung Detection using YOLOv8: 

Leveraging the pre-trained YOLOv8 model, the system conducts lung detection on uploaded 

CT scans. Preprocessed images are fed into the YOLOv8 model, which promptly identifies lung 

regions and produces bounding boxes to demarcate these areas, serving as regions of interest 

(ROIs). The subsequent processing selectively retains pixels within these bounding boxes while 

eliminating background pixels, ensuring focused consideration of relevant lung region pixels. This 

meticulous selection process enhances the accuracy and efficiency of subsequent segmentation 

tasks by prioritizing the areas of interest identified by YOLOv8. 

b) Lung Segmentation using Attention U-Net: 

Approach 2 utilizes the Attention U-Net architecture (see Figure IV.20), an enhancement of the 

traditional U-Net with attention mechanisms. These mechanisms focus on relevant regions in the 

input image (processed images), improving segmentation accuracy, particularly in complex scenes. 

The architecture maintains the same U-shaped structure with a contraction path, expansion path, 

and skip connections, but integrates attention gates to highlight important features. This approach 
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follows the same training setup as Approach 1, using an input shape of (512, 512, 1), a learning 

rate of 1e-4, a batch size of 16, and 50 epochs. The model is compiled with the Dice loss function 

and the Adam optimizer, using dice_coef, IoU, Recall, and Precision as metrics. The same set of 

callbacks is used to optimize training. 

In summary, Approach 2 integrates preprocessing steps, lung detection using YOLOv8, and 

final segmentation with Attention-UNet. By incorporating attention mechanisms into the U-Net 

architecture, this model enhances segmentation accuracy and robustness, particularly in 

challenging cases. The automation of these steps ensures consistency and efficiency, making the 

approach suitable for clinical applications and aiding in the early diagnosis and treatment of lung 

diseases. 

 

Figure IV.20 Approach 2 Architecture 

IV. 5 Results and discussion 

This section outlines the experimental setup and presents the results. The results are divided into 

two parts. The first part discusses the outcomes and analysis of the approaches proposed by our 

methodology. In the second part, we compare our approaches with three related works. 

IV. 5. 1 Performance metrics 

The performance of the models was evaluated using the following metrics: 
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a) Dice Coefficient (Dice):  

Measures the overlap between the predicted and ground truth masks. It is particularly useful for 

evaluating segmentation models, providing a measure of how well the predicted mask matches the 

ground truth mask. The Dice Coefficient is calculated using the formula:  

𝐷𝑆𝐶 =  
2 ×|𝐴∩𝐵|

|𝐴|+|𝐵| 
                                                                      (IV.1) 

Where |𝐴 ∩ 𝐵| is the intersection of the predicted (A) and ground truth (B) masks, and |𝐴| and 

|𝐵| are the sizes of the predicted and ground truth masks. 

b) Intersection over Union (IoU): 

 Evaluates the overlap between the predicted and ground truth regions by calculating the ratio 

of the intersection to the union of the regions. Intersection is defined as the area of overlap between 

the predicted and ground truth regions, while union is defined as the total area covered by both the 

predicted and ground truth regions. The IoU is calculated using the formula: 

𝐼𝑜𝑈 =  
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑈𝑛𝑖𝑜𝑛
                                                                    (IV.2) 

c) Precision: 

 Quantifies the ability of a model to correctly predict positive samples out of all the samples 

predicted as positive. It focuses on minimizing false positives and is calculated using the formula: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                (IV.3) 

Where TP is the number of true positive samples and FP is the number of false positive 

samples. 

d) Recall:  

Measures the proportion of actual positive samples that are correctly identified by the model. It 

focuses on minimizing false negatives and is calculated using the formula:  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                   (IV.4) 

Where TP is the number of true positive samples and FN is the number of false negative samples. 
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e) Dice Loss: 

Is a loss function used during model training that is based on the Dice Coefficient. It is defined 

as: 

𝐿𝐷𝑖𝑐𝑒 = 1 − 𝐷𝑆𝐶                                              (IV.5) 

Where DSC is the Dice Coefficient. Dice Loss helps optimize the model to maximize the Dice 

Coefficient, thus improving the segmentation performance. 

These metrics provide a comprehensive evaluation of the model's performance in image 

segmentation tasks, ensuring a robust assessment of its ability to accurately predict the segmented 

regions compared to the ground truth. 

IV. 5. 2 Results obtained for approach 1  

The performance of the approach was tracked over 50 epochs, with key metrics such as Dice 

Coefficient, Intersection over Union (IoU), Loss, Learning Rate (lr), Precision, Recall, and their 

corresponding validation metrics recorded. The results provide insights into the approach training 

progress, convergence, and overall performance. Here we discuss these metrics in detail, focusing 

on trends, convergence behaviors, and the final model performance. 

a) Dice Coefficient and IoU 

The plots shown in (Figure IV.21) of the Dice Coefficient and IoU reveals a clear trajectory of 

model performance improvement over the training epochs. The Dice Coefficient, a measure of 

overlap between predicted and ground truth masks, shows a consistent upward trend, starting from 

0.2075 at epoch 0 and reaching 0.9900 by epoch 49. This steady increase indicates that the model 

Figure IV.21 Approach 1 Training and Validation Dice Coefficient and IOU Over Epochs 
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progressively refined its predictions to closely match the ground truth. Similarly, the validation 

Dice Coefficient mirrors this trend, rising to 0.9788 at epoch 49, suggesting strong generalization 

to unseen data. However, the rate of improvement in validation Dice Coefficient tapers off after 

epoch 30, indicating a convergence point. The IoU metric follows a parallel pattern, confirming 

the model's enhanced ability to accurately predict the overlap between predicted and actual 

segments over time. These trends collectively demonstrate the model's robust learning and 

generalization capabilities. 

  

 

b) Loss 

The training loss consistently decreased from 0.7925 at epoch 0 to 0.00998 at epoch 49, 

indicating the model's progressively improved accuracy in predictions. Similarly, the validation 

loss followed a decreasing trend, although it exhibited some fluctuations, such as a higher loss at 

epoch 43. These fluctuations can be attributed to model adjustments and changes in the learning 

rate. By epoch 49, the validation loss had decreased to 0.01012, closely aligning with the training 

loss and suggesting minimal overfitting. See (Figure IV.22) 

c) Precision and Recall 

The precision and recall plots demonstrate the model's performance and balance between true 

positive identification and sensitivity. Training precision increased significantly from 0.1254 to 

0.9916 over the epochs, indicating the model's growing ability to correctly identify true positives. 

Figure IV.22 Approach 1 Training and Validation Loss Over Epochs 
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Similarly, validation precision followed this upward trend, peaking at 0.9945, showcasing the 

model's robust performance on new data. Training recall remained consistently high, starting near 

1 and ending slightly lower at 0.9895, reflecting a balanced performance with high sensitivity. 

Validation recall also exhibited high consistency, concluding at 0.9871, further confirming the 

model’s robustness and its ability to maintain a balance between precision and recall. See (Figure 

IV.23) 

 

d) Detailed Epoch Analysis 

Early Epochs (0-9): Initial epochs show rapid improvements in Dice Coefficient and IoU, 

indicating that the model is learning fundamental features and structure. Loss decreases 

significantly, showing effective learning. 

Middle Epochs (10-30): During these epochs, there are consistent improvements in both 

training and validation metrics, though the rate of improvement starts to plateau, indicating the 

model is nearing its optimal performance. 

Late Epochs (31-49): The metrics stabilize, with slight fluctuations but overall showing minor 

improvements. This phase suggests the model has largely converged and is fine-tuning its 

parameters. 

Figure IV.23 Approach 1 Training and Validation Recall and Precision Over Epochs 



Chapter IV: Experiments and Realization 

75 

 

e) Convergence and Overfitting 

The close alignment between training and validation metrics throughout the epochs, particularly 

in the later stages, suggests good model generalization and minimal overfitting. The slight 

fluctuations in validation loss and precision are typical in training processes and do not indicate 

significant overfitting. 

f) Final Appraoch Performance 

By the end of the training at epoch 49, this approach demonstrates high performance across all 

metrics shown in the table (Table IV.1): 

Table IV.1 Performance Metrics Results of Approach 1 

Approach 1 

Dice 

Coefficient 
IoU Loss Precision Recall 

train val train val train val train val train val 

0.9900 0.9893 0.9802 0.9788 0.00998 0.01012 0.9916 0.9934 0.9895 0.9871 

These results indicate that the model is highly effective at segmenting the target features with 

excellent accuracy and robustness. 

g) Conclusion 

The detailed analysis of the approach's performance metrics over 50 epochs reveals a well-trained 

model with strong generalization capabilities. The consistent improvements and eventual 

stabilization of the metrics suggest that the model has effectively learned the task and is unlikely 

to benefit from further training under the current settings. Future work could explore fine-tuning 

the learning rate or introducing advanced regularization techniques to push the performance 

boundaries even further. 

IV. 5. 3 Results obtained for approach 2 

Analyzing the performance metrics of the second approach over the 50 epochs, we can observe 

several trends and points of interest: 

a) Dice Coefficient and IoU: 

The Dice coefficient and IoU metrics exhibit a consistent upward trajectory across epochs 

(Figure IV.24), with the Dice coefficient initially hovering around 0.198 and ultimately peaking 

near 0.989, and the IoU starting at 0.111 and reaching approximately 0.979. This consistent 

improvement indicates a steady enhancement in the appraoch's segmentation quality throughout 
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training. Similarly, the validation metrics mirror this trend, with the validation Dice increasing 

from 0.195 to 0.989 and the validation IoU improving from 0.108 to 0.979. The close 

correspondence between the training and validation metrics implies robust generalization 

capabilities of the appraoch, reinforcing its reliability beyond the training dataset. 

 

b) Loss: 

The loss steadily decreases from an initial value of 0.801 to a remarkably low 0.011, 

underscoring the approach's improved performance and increasingly accurate predictions as 

training progresses. Similarly, the validation loss diminishes from 0.806 to 0.010, affirming the 

approach's ability to generalize effectively and perform well on unseen data, without succumbing 

Figure IV.24 Approach 2 Training and Validation Dice Coefficient and IOU Over Epochs 

Figure IV.25 Approach 2 Training and Validation Loss Over Epochs 
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to overfitting. This consistent reduction in both training and validation loss reflects the approach's 

capacity to learn and adapt to the dataset while maintaining its predictive accuracy across various 

scenarios (see Figure IV.25). 

c) Precision and Recall: 

Precision initially starts at a relatively low level but undergoes a substantial increase over the 

course of training, ultimately maintaining high values towards the conclusion of the epochs. 

Meanwhile, recall remains consistently high throughout, signifying the model's adeptness at 

correctly identifying the majority of relevant instances within the dataset. Across the epochs, both 

precision and recall show significant improvement, with precision reaching approximately 0.996 

and recall around 0.987 by the end of the training process. This progression underscores the 

approach's increasing ability to make precise predictions while effectively capturing relevant 

instances, culminating in a high-performing and reliable system (Figure IV.26). 

 

d) Detailed Epochs Analysis 

Early Epochs (0-10): In the early epochs, there are rapid improvements observed. For instance, 

the Dice coefficient rises from 0.198 to 0.722, and IoU from 0.111 to 0.567. The sharp decrease in 

loss indicates quick learning by the model during this phase. Validation metrics show a similar 

trend, albeit with a slight lag compared to training metrics. 

Mid Epochs (11-30): As the training progresses, the pace of improvement slows down but 

remains consistent. The Dice coefficient rises from 0.737 to 0.985, and IoU from 0.587 to 0.971, 

Figure IV.26 Approach 2 Training and Validation Recall and Precision Over Epochs 
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showing continued enhancement. While the loss continues to decrease, the rate of decrease 

becomes more gradual over time. However, validation metrics closely track the training metrics, 

suggesting effective generalization of the approach's performance beyond the training data. 

Late Epochs (31-50): The metrics reach a plateau, exhibiting only marginal improvements. The 

Dice coefficient stabilizes around 0.988, while IoU stabilizes around 0.978, suggesting a 

convergence in performance. Concurrently, loss values also stabilize at exceptionally low levels. 

The close alignment between training and validation metrics signifies that the approach has 

achieved a state of near-optimal performance without notable overfitting, highlighting its 

robustness and effectiveness in generalizing to unseen data. 

e) Final Approach Performance 

By the end of the training at epoch 49, the approach 2 demonstrates high performance across all 

metrics shown in the table (Table IV.2): 

Table IV.2 Performance Metrics Results of Approach 2 

Approach 2 

Dice 

Coefficient 
IoU Loss Precision Recall 

train val train val train val train val train val 

0.9889 0.9868 0.9780 0.9740 0.01113 0.01261 0.9912 0.9960 0.9878 0.9795 

 

f) Conclusion: 

Approach 2 demonstrates strong performance and generalization ability. The steady 

improvement across all key metrics suggests that the approach has been effectively trained. High 

precision and recall further indicate the model's robustness and reliability in practical segmentation 

tasks. 

IV. 5. 4 Results comparison table 

In this section, we conducted a comparative analysis of the performance of our two proposed 

approaches Approach 1 (YOLOv8 with U-Net) and Approach 2 (YOLOv8 with Attention U-Net) 

against the direct approaches : U-Net and Attention U-Net. The evaluation was based on a 

comprehensive set of metrics including Dice coefficient, Intersection over Union (IoU), loss, 

precision, and recall. The results presented correspond to the 49th epoch for each approach (Table 

IV.3). 
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Table IV.3 Results Comparison Table 

Approach 

Dice 

Coefficient 
IoU Loss Precision Recall 

train val train val train val train val train val 

U-Net 0.9830 0.9882 0.9668 0.9767 0.01699 0.01142 0.9840 0.9937 0.9838 0.9848 

Attention 

U-Net 
0.9812 0.9874 0.9635 0.9752 0.0187 0.01220 0.9825 0.9918 0.9820 0.9854 

YOLOv8 

U-Net 
0.9900 0.9893 0.9802 0.9788 0.00998 0.01012 0.9916 0.9934 0.9895 0.9871 

YOLOv8 

Attention 

U-Net 

0.9889 0.9868 0.9780 0.9740 0.01113 0.01261 0.9912 0.9960 0.9878 0.9795 

 

a) Dice Coefficient and IoU: 

Among the segmentation approaches evaluated, U-Net attained a Dice coefficient of 0.983 and 

an Intersection over Union (IoU) of 0.967. Attention U-Net achieved slightly lower scores, with a 

Dice coefficient of 0.981 and an IoU of 0.964. YOLOv8 U-Net exhibited the highest performance, 

boasting a Dice coefficient of 0.990 and an IoU of 0.980, surpassing all other approaches. YOLOv8 

Attention U-Net also delivered outstanding results, with a Dice coefficient of 0.989 and an IoU of 

0.978, demonstrating its effectiveness in segmentation tasks. 

b) Loss: 

In terms of loss, U-Net incurred a value of 0.017, while Attention U-Net registered a marginally 

higher loss at 0.019. YOLOv8 U-Net demonstrated the most efficient performance in this aspect, 

achieving the lowest loss of 0.010. Conversely, YOLOv8 Attention U-Net experienced a slightly 

elevated loss of 0.011. These findings illustrate the varying degrees of efficiency among the 

approaches in minimizing loss during the segmentation process. 

c) Precision and Recall: 

In terms of precision and recall, U-Net achieved values of 0.984 and 0.984, respectively. 

Attention U-Net exhibited slightly lower precision and recall metrics, recording values of 0.983 

and 0.982, respectively. YOLOv8 U-Net emerged as the top performer in this regard, showcasing 

the highest precision and recall values of 0.992 and 0.990. Similarly, YOLOv8 Attention U-Net 

delivered exceptional results, with precision and recall values of 0.991 and 0.988, demonstrating 

its effectiveness in accurately identifying relevant instances within the dataset. 
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d) Validation Metrics: 

The validation metrics generally followed similar trends to the training metrics for all 

approaches, indicating good generalization ability. 

e) Discussion: 

Model Performance: Among the approaches evaluated, YOLOv8 U-Net and YOLOv8 

Attention U-Net outperformed traditional U-Net and Attention U-Net in terms of Dice coefficient, 

IoU, loss, precision, and recall. This suggests that integrating YOLOv8 architecture with U-Net 

significantly improves segmentation performance. 

Trade-offs: While YOLOv8 U-Net achieved the lowest loss and highest Dice coefficient, it's 

essential to consider the trade-offs between precision and recall. YOLOv8 Attention U-Net, despite 

slightly lower performance metrics, still maintains a balance between precision and recall, making 

it a robust choice for segmentation tasks. 

Generalization: The validation metrics closely mirrored the training metrics for all approaches, 

indicating that they generalize well to unseen data. This suggests that the approaches have learned 

meaningful representations from the training data. 

f) Conclusion: 

In conclusion, the integration of YOLOv8 architecture with U-Net, particularly in the Attention 

U-Net variant, shows promising results for medical image segmentation tasks. While traditional 

U-Net and Attention U-Net remain competitive, the YOLOv8-based variants demonstrate superior 

performance across multiple evaluation metrics, making them favorable choices for practical 

segmentation applications. 

IV. 5. 5 State of the art comparison table 

Our proposed approaches in comparison to existing state of the art methods (Table IV.4): 

Table IV.4 Our Proposed Approaches Vs State of the Art 

Approach 

Dice 

Coefficient 
IoU Loss Precision Recall 

train val train val train val train val train val 

YOLOv8 U-

Net 
0.9900 0.9893 0.9802 0.9788 0.00998 0.01012 0.9916 0.9934 0.9895 0.9871 

YOLOv8 

Attention U-

Net 

0.9889 0.9868 0.9780 0.9740 0.01113 0.01261 0.9912 0.9960 0.9878 0.9795 
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State of Art: 

Bhattacharjee, 

A., et al. 

0.9630 0.9882 0.9668 0.9767 0.01699 0.01142 0.9840 0.9937 0.9838 0.9848 

State of Art: 

Qinhua, Hu., 

et al. 

0.9812 0.9874 0.9635 0.9752 0.0187 0.01220 0.9825 0.9918 0.9820 0.9854 

State of Art: 

Khanna, A., et 

al. 

0.9863 0.9863 N/A N/A N/A N/A N/A N/A N/A N/A 

 

The results indicate that both our approaches YOLOv8 U-Net and YOLOv8 Attention U-Net 

outperform the state-of-the-art approaches in terms of Dice coefficient, IoU, loss, precision, and 

recall. YOLOv8 U-Net achieves the highest Dice coefficient and IoU, indicating superior 

segmentation accuracy. Additionally, it demonstrates lower loss values compared to the state-of-

the-art methods, showcasing better optimization during training. Both YOLOv8 variants also 

exhibit higher precision and recall, suggesting more accurate identification of relevant instances 

within the dataset. However, further analysis is required to compare the generalization ability and 

computational efficiency of these approaches against the state-of-the-art methods. 

IV. 6 Web Application Development  

Lung Vision is a web application designed for managing medical images, patients, and scans, 

with integrated functionalities for segmenting scans using the developed machine learning models. 

The application is built using Django for the backend, PostgreSQL for the database, and React.js 

for the frontend. 

IV. 6. 1 Architecture 

In our system architecture (Figure IV.27), Django serves as the backend framework, responsible 

for managing user authentication, data handling, and facilitating the deployment of machine 

learning models utilized for image segmentation tasks. The backend is further equipped with a 

REST API, enabling seamless communication with the frontend. PostgreSQL serves as the 

database management system, offering robust storage capabilities for patient data, scan metadata, 

and segmentation results. Its implementation ensures data integrity and supports the execution of 

complex queries essential for efficiently managing medical records. On the frontend, React.js is 

employed to develop a responsive and interactive user interface. Leveraging React.js, users can 

effortlessly upload medical images, access patient records, and visualize segmentation outcomes, 

thereby enhancing the overall user experience. 
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Figure IV.27 Architectural Overview of the Lung Vision Web Application 

IV. 6. 2 Features 

The proposed system encompasses a range of features designed to facilitate efficient and secure 

management of medical data while enabling advanced analysis and visualization capabilities. The 

key features of the system are outlined below: 

User Authentication: A robust user authentication system is implemented to ensure secure 

login and registration processes. Authentication mechanisms are designed to safeguard sensitive 

medical information and comply with relevant privacy regulations. 

Patient Management: The system provides comprehensive CRUD (Create, Read, Update, 

Delete) operations for managing patient records. This includes functionalities for adding new 

patients, updating existing records, retrieving patient information, and removing outdated data. 

Scan Management: Users can upload, view, and manage CT scans within the system. The 

platform supports the seamless uploading of medical images, facilitating easy access and retrieval 

of scan data for analysis and review. 
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Segmentation: Leveraging state-of-the-art machine learning models developed as part of this 

research, the system offers advanced segmentation capabilities. Lung regions within CT scans can 

be accurately segmented using the developed ML models, enabling precise delineation of 

anatomical structures and pathological regions. 

Data Visualization: The system incorporates interactive visualization tools for exploring 

segmentation results and patient data. Visualizations allow users to gain insights into medical 

imaging data, facilitating interpretation and analysis. Interactive features enable users to 

manipulate and explore data dynamically, enhancing understanding and decision-making. 

These features collectively empower healthcare professionals with tools for efficient 

management, analysis, and visualization of medical data. By integrating advanced machine 

learning algorithms for segmentation and providing intuitive visualization capabilities, the system 

facilitates enhanced clinical decision-making and patient care. 

IV. 6. 3 UML Diagrams 

In this section, we provide a comprehensive overview of the Lung Vision Web Application's 

architecture and functionality through Unified Modeling Language (UML) diagrams. These 

diagrams serve as visual aids to understand the system's structure, interactions, and processes. We 

commence with the Use Case Diagram (Figure IV.28), offering a high-level depiction of the 

system's functionalities from a user's perspective. Following this, the Class Diagram (Figure IV.29) 

provides insight into the system's object-oriented design, showcasing the classes, attributes, and 

relationships within the application. Finally, the Sequence Diagram (Figure IV.30) illustrates the 

step-by-step interactions between various components during the segmentation process, 

elucidating the system's dynamic behavior. Together, these UML diagrams offer a comprehensive 

understanding of the Lung Vision Web Application's architecture and functionality, facilitating 

effective system comprehension and development. 
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a) Use Case Diagram 

 

Figure IV.28 Use case diagram of the Lung Vision Web Application 
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b) Entity Relationship Diagram 

 

Figure IV.29 Entity Relationship Diagram of the Lung Vision Web Application 
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c) Sequence Diagram 

 

Figure IV.30 Sequence diagram of the segmentation 

IV. 6. 4 Graphical User Interface (GUI) 

In this section, we present the user interface of the Lung Vision web application, highlighting 

its key features and functionalities. The following UI captures provide an overview of the 

application’s interface and user experience. 

a) User Authentication 

The login screen allows users to securely log into the application. Users must provide their 

credentials to access the system (see Figure IV.31). 
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Figure IV.31 User Authentication - Login Screen 

b) Dashboard 

The dashboard provides an overview of the application's status and key metrics. Doctors can 

see the number of active patients, total patients, and a list of all patients (see Figure IV.32). 

 

 

Figure IV.32 Dashboard Screen 
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c) Patient Management 

The patient management interface enables users to perform CRUD operations on patient 

records. This includes adding new patients, updating existing records, and deleting records if 

necessary (see Figure IV.33). 

d) Scan Management 

Users can upload and manage CT scans through this interface. The uploaded scans are displayed 

in a list format, allowing users to easily access and view them (see Figure IV.34). 

Figure IV.33 Patient Managment Screens 
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e) Segmentation 

The segmentation feature allows users to select a scan and apply machine learning approaches 

(U-Net, Attention U-Net, YOLOv8 with UNet, YOLOv8 with Attention UNet) to segment lung 

regions. The results are displayed interactively (see Figure IV.35). 

Figure IV.34 Scan Management Screens 
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Figure IV.35 Segmentation Screen 

f) Workspace 

The workspace interface provides tools for users to interact with the uploaded scans. Users can 

adjust contrast, brightness, calculate distances between points, zoom, rotate, and save their 

adjustments (see Figure IV.36). 
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Figure IV.36 Workspace Screen 

IV. 7 Conclusion 

In this chapter, we presented the experimental setup, realization, and results of our proposed 

models for lung segmentation in CT images. We utilized state-of-the-art deep learning techniques, 

including YOLOv8 for lung detection and U-Net/Attention U-Net for segmentation. Additionally, 

we introduced Lung Vision, a web application designed to manage medical images and segment 

scans using the developed models. Our models demonstrated high accuracy and robustness, making 

them suitable for clinical applications and aiding in the early diagnosis and treatment of lung 

diseases. Future work will focus on further improving the models performance and extending their 

applicability to other organ segmentation tasks.
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General Conclusion 

This thesis centers on advancing the preprocessing and semantic segmentation of medical 

images, with a focus on lung diseases, utilizing cutting-edge AI techniques. It starts by providing 

a deep dive into artificial vision, elucidating its pivotal role in medical imaging and paving the way 

for subsequent research endeavors. Building upon this foundation, the exploration extends into the 

broader realm of artificial intelligence, underscoring its transformative potential in automating and 

refining medical image analysis, particularly in diagnosing lung ailments. A critical review of the 

current state of the art highlights both the strengths and limitations of existing segmentation 

methodologies, guiding the thesis towards addressing key research gaps. The experimental phase 

showcases the efficacy of integrating advanced AI models, such as YOLOv8 and U-Net, for precise 

lung segmentation from CT scans. Furthermore, the development of Lung Vision, a user-friendly 

web application, underscores the practical implementation of AI in clinical workflows, promising 

enhanced patient care through more accurate diagnosis and treatment planning. 

Key Contributions 

This thesis has made several key contributions to the field of medical image analysis: 

 Advanced Preprocessing Techniques: The research introduced effective preprocessing steps, 

including cropping, normalization, and grayscale conversion, which enhanced the quality and 

consistency of the CT images used for segmentation. 

 Innovative AI Models: The development and integration of YOLOv8 with U-Net and 

Attention-UNet models provided a novel approach to lung segmentation, achieving high 

accuracy and efficiency. 

 Practical Application through Lung Vision: The creation of Lung Vision demonstrated the 

practical applicability of the research, offering a comprehensive tool for medical professionals 

to manage and analyze lung images effectively. 

 Comprehensive State-of-the-Art Analysis: The thorough review of existing methodologies 

provided valuable insights and identified gaps, guiding the research towards addressing specific 

challenges in lung image segmentation. 

Implications and Future Work 

The findings of this research have significant implications for the field of medical imaging and 

AI. The proposed methodologies can enhance early diagnosis and treatment of lung diseases, 

potentially improving patient outcomes. The integration of these techniques into clinical workflows 

through applications like Lung Vision can streamline processes and reduce the burden on 

healthcare professionals. 
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Future work could focus on further refining the AI models to handle more complex cases and 

expanding their application to other organs and diseases. Additionally, extensive clinical trials and 

collaborations with healthcare institutions will be essential to validate and improve the robustness 

and generalizability of the proposed solutions. 

Conclusion 

In conclusion, this thesis has successfully demonstrated the potential of AI techniques in 

preprocessing and semantic segmentation of medical images of lung diseases. By combining 

advanced AI models with practical applications, this research has paved the way for more accurate, 

efficient, and user-friendly tools in medical imaging. The comparative analysis of the proposed 

models (YOLOv8 with U-Net and YOLOv8 with Attention U-Net) against traditional 

segmentation models (U-Net and Attention U-Net) over 49 epochs demonstrated that the YOLOv8-

based models significantly outperformed the traditional models across several key metrics. 

YOLOv8 U-Net achieved the highest Dice coefficient (0.990) and IoU (0.980), as well as the 

lowest loss (0.010), indicating superior segmentation performance. Both YOLOv8 models also 

demonstrated higher precision and recall, underscoring their robust performance and generalization 

capabilities. These contributions offer a solid foundation for future advancements in the field, 

promising significant benefits for both patients and healthcare provider.
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