
 People’s Democratic Republic of Algeria
 Ministry of Higher Education and Scientific Research

 IBN KHALDOUN UNIVERSITY OF TIARET

Dissertation

Presented to:

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
DEPARTEMENT OF COMPUTER SCIENCE

in order to obtain the degree of :

MASTER

Specialty: software engineer

Presented by:

 REBOUH Rosa

On the theme:

 Defended publicly on 11 / 06 / 2024 in Tiaret in front the jury composed of:

Mr BEKKI Khadir MAA Tiaret University Chairman

Mme HAMDANI Abdia MCB Tiaret University Supervisor
Mr HATTAB Noureddine MAA Tiaret University Examiner

2023-2024

 Web Service composition Model-Cheking

Acknowledgements

The first and foremost gratitude and thanks go to Allah, the Almighty, who
granted me the guidance and success to complete this humble work.

I extend my sincere thanks and appreciation to my supervisor, HAMDANI
Abdia, who offered me assistance and support and did not spare her time and

appreciated effort. I also thank Mr. BEKKI Khadir and Mr. HATTAB
Noureddine for their approval and evaluation of this work.

I then express my heartfelt thanks to all the individuals who helped me in
finishing this work. My gratitude especially goes to my mother, brother, and

sisters, who never stopped encouraging me.
Finally, I express my appreciation to all my teachers in the Computer Science

Department, Ibn Khaldoun University of Tiaret, for their dedication and
support throughout these years, Thank you.

Dedication

To my mother, my brother Ali (Mohammed), my sisters, and all their children,
I thank you for everything.

But I apologize, as I dedicate the fruit of my humble work to all the children
and martyrs of Gaza, the capital of Palestine.

REBOUH Rosa

Abstract
Analyzing and verifying a complex web service composition permit to give

answers about their correctness, reliability and safety. Indeed, (Model-Cheking :
"check on the model"), is a very well known method to verify the qualitative
(e.g.: stat accessibility, liveness, blocking, etc...) as well as the quantitative
properties (e.g.: time response) on the model. The Petri net formalism and
its extensions are widely used in the literature for their important number of
advantages as: (graphical and intuitive representations, an aboundants analysis
techniques...etc.). We are interested on the Petri net formalism as a modelling
tool, extended to time constraints. Because of the infite state space of the model,
many standards methods for the state space abstraction are used, gethering a
set of states sharing some properties and based on the State Class formalism.
(TINA: "TIme Network Analyzer") is one of the most known tool for this end.
Finally, analysing and verifying a qualitative and quantitative properties on the
model as well as on the system itself became possible.

Keywords: Analysis and verification, model-cheking, proprerties, Time
Petri Nets (TPN), state space abstraction, TINA.

Résumé
L’analyse et la vérification de la composition des services web permettent de

répondre aux questions liées, essentiellement, à la fiabilité et à la sûreté de fonc-
tionnement de ces derniers. En effet, (le Model-Cheking : "vérification du/sur
le modèle"), est une méthode très connue permettant de vérifier les propriétés
qualitatives (e.g: accessibilité d’un état, vivacité, bloquage, etc...) et/ou quan-
titatives (e.g: la réponse du temps borné) sur le modèle. Le formalisme des
réseaux de Petri et ses extensions sont largement utilisés dans la littérature, of-
frant un nombre considérables d’avantages citons: (sa représentation graphique
et intuitive, ses techniques abondantes d’analyses...etc.). Nous nous intéressons
aux réseaux de Petri comme outil de modélisation, étendu au temps. Cependant,
l’espace d’état est généralement infinit et de nombreuses méthdes sont utilisées
pour l’abstraction de l’espace d’états du modèle ceci consiste à regrouper un en-
semble d’états partageant les même propriétés basé sur le formalisme de classe
d’état. (TINA: "TIme Network Analyzer") est l’un des outils les plus connu
pour cela. Enfin, l’analyse et la vérification des propriétés qualitatives et quan-
titatives sur le modèle ,et bien évidement, sur le système en question devient
possibles.

Mots Clé: Analyse et vérification, model-cheking, propriétés, réseaux de
Petri Temporels (RdpT), abstraction de l’espace d’états, TINA.

Contents

1 Introduction 2
1.1 Context . 2
1.2 Background . 2
1.3 Research Objectives: . 3
1.4 Organization Of The Report . 4

2 Web Services Composition 5
2.1 Introduction . 5
2.2 Web services (WS) . 5

2.2.1 Why use web services? . 6
2.2.2 The basic characteristics of a Web services 6
2.2.3 Types of Web Services . 6
2.2.4 Architecture of Web Services 7
2.2.5 Advantages and Disadvantages of Web services 12

2.3 web services composition . 13
2.3.1 Definition of web services composition 13
2.3.2 The WSC lifecycle . 13
2.3.3 Orchestration and Choreography 16
2.3.4 Types of WSC . 17
2.3.5 Modeling service composition 17
2.3.6 Web service composition standards 19
2.3.7 Web Service Composition and BPEL 20

2.4 Conclusion . 21

3 Petri Nets 22
3.1 Introduction . 22
3.2 Petri Net model . 22

3.2.1 informal presentation . 22
3.2.2 History . 23
3.2.3 formel presentation . 23
3.2.4 Petri Nets properties . 25

3.3 Time Petri Net model [43] . 30
3.3.1 TPN Syntaxe . 30
3.3.2 TPN Example . 30
3.3.3 TPN Formal Semantics 31

3.4 PN and TPN APPLICATIONS 31
3.4.1 Computer Science and Software Engineering 31
3.4.2 Manufacturing and Operations Management 31

i

CONTENTS

3.4.3 Biological Systems and Bioinformatics 31
3.4.4 Telecommunications and Networking 32
3.4.5 Business Process Management 32
3.4.6 Embedded Systems and Cyber-Physical Systems 32
3.4.7 Education and Research 32

3.5 Advantages Timed Petri Nets . 33
3.6 Conclusion . 33

4 Web Services Composition Modeling 34
4.1 Introduction . 34
4.2 WSC modeling based on PN formalism 34

4.2.1 Time petri net based modeling of web service architecture 34
4.2.2 Modeling web services using G-nets 35
4.2.3 Definition 1. (G-net Service) 36
4.2.4 Petri nets model Timed Mop-ECATNet 39
4.2.5 Petri net-based algebra for modeling Web services 41

4.3 Others . 44
4.3.1 Enhanced Stacked Automata Model (ESAM) 44
4.3.2 model IMWSC . 45
4.3.3 Comparison of Modeling Approaches: Petri Nets and Others 48

4.4 Modelling approach base on TPN model:
WSCTPN . 49

4.5 Conclusion . 50

5 Case Study: (EC.WSC) 51
5.1 Introduction . 51
5.2 MODELLING of (EC.WSC) . 51

5.2.1 Description . 51
5.2.2 TPN model of EC.WSC 52
5.2.3 Input TINA . 54

5.3 CHECKING of (EC.WSC) . 55
5.3.1 The generated graphs . 56
5.3.2 Output of the case study with mode A: 68
5.3.3 Computing experiments 68
5.3.4 Discussion and comparaison 69

5.4 Conclusion . 71

6 Conclusion 72
6.1 Conclusion General . 72

7 Annex A: TINA TOOL 79

8 Annex B: LATEX TOOL 82
8.1 Latex . 82
8.2 Overleaf . 82

Page ii

List of Figures

2.1 High-level view of informational and complex services [9] 7
2.2 Three entities of Web Services architecture [11] 8
2.3 SOAP nodes [13] . 9
2.4 Types of the UDDI directory [12] 10
2.5 RESTful Conceptual Model . 10
2.6 GET Response for REST Server [17] 12
2.7 Phases involved in an explorative service composition 14
2.8 Phases involved in semi-fixed and fixed service composition . . . 15
2.9 Orchestration de service et chorégraphie de service [24] 16
2.10 Simple Example of Atomic Region 18

3.1 Example of a production net [36] 22
3.2 A simple example of a Petri net. It has four main parts: places,

arrows, functions, and tokens. Tokens are located in places and
move among them based on the directions of arrows and function
rules [38] . 23

3.3 simple examples of marking graph 25
3.4 example is 2-bounded [?] . 27
3.5 A manufacturing system’s Petri net model which is not conser-

vative [?] . 27
3.6 A nonlive Petri net. But it is strictly L1-live [?] 28
3.7 Transitions t1, t2, t3 and t4 are dead (LO-live), LI-live,L2-live, and

L3-live, respectively [?] . 28
3.8 The Petri net is reversible [42] . 29
3.9 The Petri net is nonreversible [42] 29
3.10 A TPN example [45] . 30

4.1 TPN specification modeling the basic architecture [49] 36
4.2 Example of G-net Services [50] 38
4.3 Timed Mop-ECATNets flexibility patterns, (a) timed Mop-ECATNet

control pattern of alternative tasks (b) timed Mop-ECATNet con-
trol pattern for parallel tasks (c) timed Mop-ECATNet control
pattern of sequential tasks (d) timed Mop-ECATNet control pat-
tern of iterative tasks [51] . 40

4.4 The GPS navigation as a timed Mop-ECATNet [51] 41
4.5 Service SM ||C1 (OCS ||C2 IP) [52] 43
4.6 Deterministic finite automata [53] 44
4.7 Non-deterministic finite automata [53] 45

iii

LIST OF FIGURES

4.8 Structure of IMWSC [54] . 46
4.9 A Scenario of Interaction of Services [54] 47
4.10 Modelling approach with WSCTPN 50

5.1 TPN of EC.WSC . 53
5.2 Case Study.ndr . 54
5.3 Case Study.net . 55
5.4 Tina options . 55
5.5 Markings (-M) . 56
5.6 The output (-M) . 56
5.7 The mark of each class mode -M 57
5.8 The properties of markings (-M) 57
5.9 Markings and LTL (-W) . 58
5.10 The output (-W) . 58
5.11 The mark of each class mode -W 59
5.12 Properties of markings and LTL (-W) 59
5.13 States E . 60
5.14 The output E . 60
5.15 The mark of each class mode -E 61
5.16 The properties of States E . 61
5.17 States and LTL (S) . 62
5.18 The output States and LTL (S) 62
5.19 the mark of each class mode -S 63
5.20 The properties of mode -S . 63
5.21 States and CTL* (A) . 64
5.22 The output States and CTL* (A) 64
5.23 The mark of each class mode -A 65
5.24 The properties of States and CTL* (A) 65
5.25 States and CTL* (U) . 66
5.26 The output states and CTL* (U) 66
5.27 The mark of each class mode -U 67
5.28 properties of States and CTL* (U) 67
5.29 Graphical description of the case study with mode A 68
5.30 Text description of the case study with mode A 68
5.31 Checking properties . 69

7.1 TINA application interface . 79
7.2 Textual description . 80
7.3 Edit->draw . 80
7.4 Textual and graphical description of net 81
7.5 Tina options . 81

8.1 The LaTeX and Overleaf working environment 82
8.2 Sign up with google . 83
8.3 Continue registering . 83
8.4 Create New project . 84
8.5 Project created . 84
8.6 Created code in Latex . 84
8.7 Recompile code in Latex . 85
8.8 Example of collaborate interactively on a document 85

Page iv

List of Tables

2.1 COMPARISON OF RESPONSE AND REQUEST IN SOAP AND
REST [17] . 12

4.1 Comparison of Petri Nets and Others 48

5.1 Description of some places in the EC.WSC system 54
5.2 Description of some Transitions in the EC.WSC system 54
5.3 Results of computing of the number of classes, edges (arcs) and

time CPU . 69

v

Acronyms

PN Petri Net

TINA Time Petri Net Analyzer

WSC Web Service Composition

XML Extensible Markup Language

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

J2EE Java 2 Platform, Enterprise Edition

CORBA Common Object Request Broker Architecture

.NET Microsoft’s software framework

UDDI Universal Description, Discovery, and Integration

SOA Service-Oriented Architecture

API Application Programming Interface

SOAP Simple Object Access Protocol

XHTML Extensible Hypertext Markup Language

XSLT Extensible Stylesheet Language Transformations

RSS Rich Site Summary or Really Simple Syndication

SVG Scalable Vector Graphics

WSDL Web Service Description Language

REST Representational State Transfer

CRUD Create, Retrieve, Update, Delete

BPEL Business Process Execution Language

BPMN Business Process Model and Notation

WSFL Web Service Flow Language

XPDL XML Process Definition Language

vi

WS-CDL Web Services Choreography Description Language

ACID Atomicity, Consistency, Isolation, and Durability

BPML Business Process Modeling Language

WSCI Web Service Choreography Interface

WSCL Web Service Conversation Language

BPEL4WS Business Process Execution Language for Web Services

BPM Business Process Management

TPN Timed Petri Nets

GNT General Net Theory

ACD Automatic Cash Dispensers

ESAM Enhanced Stacked Automata Model

EC.WSC E-commerce Web Service Composition

IoT Internet of Things

Chapter 1

Introduction

1.1 Context
In the modern web, web services have become an essential reality, exerting a
tremendous and escalating impact on daily computing tasks. They have trans-
formed the web into the largest, most accepted, and most dynamic distributed
computing platform ever. [1]
One of the main benefits of using web service technologies is the ability to com-
pose web services for added value. Web service composition involves mechanisms
that encourage collaboration among individual web services to develop inte-
grated functionalities, potentially reducing time and effort in development. [2]
Service composition encompasses all those processes that create added-value
services, called composite or aggregated services, from existing services. [1]

1.2 Background
In today’s digital world, web services have become a common and crucial aspect
of information technology and communications. They provide access to infor-
mation and facilitate interaction over the internet. Web services encompass a
set of functions or operations available online, accessible through specific proto-
cols. The significance of web service composition lies in the ability to integrate
and connect these services together to achieve a specific function or goal. This
requires a deep understanding of how these services integrate seamlessly and
effectively, ensuring their compatibility with each other.
The first step to star with doing Model cheking is to model, we find so many
formalism for this end and we choose the (PN: Petri Net) formalism as Van Der
Aalast said [3]: "Three Good Reasons for Using A Petri-Net.... ". Modeling
web service composition using Petri nets provides a powerful means to under-
stand and analyze the processes involved in web service composition. Petri nets
enable the representation of interactions between different services and compo-
nents visually and effectively. These models allow for the analysis of data flow,
process control, and identification of critical points and potential risks.
Petri nets are used to represent various components of web service composition,
such as individual services and the different operations occurring between them.

2

CHAPTER 1. INTRODUCTION

The key elements in modeling web service composition using Petri nets include:
1- Places: Represent the current state of the system, such as the availability of
services and available data.
2- Transitions: Represent the operations or events that occur in the system,
such as service requests or process execution.
3- Arcs: Represent the relationships between places and transitions, indicating
how places affect transitions and vice versa.
Using these elements, a model of the web service composition process can be
created, providing a deeper understanding of system interactions, performance
analysis, and identifying potential issues. These models contribute to improving
the process of developing and composing web services and ensuring the delivery
of high-quality services to users. The goal is to ensure error-free system opera-
tion and deliver the expected results, thereby guaranteeing the system’s proper
functioning.
Modeling web service composition aids in understanding the complex interac-
tions between services and various components involved in the composition pro-
cess. By providing visual representation, these models facilitate system under-
standing and clarify how different elements interact with each other. We focused
on Petri nets because they are a powerful analytical tool used in various fields
to model and analyze processes. Petri nets enable the representation of system
processes using basic elements like places, transitions, and arcs, facilitating the
understanding of system interactions, performance analysis, and identification
of potential risks. Modeling web services using Timed Petri nets allows for the
visual representation of temporal processes and variables. Through this mod-
eling, performance analysis can be conducted, bottlenecks identified, and the
behavior of composite services optimized under various scenarios. Analyzing
web service composition through Timed Petri nets provides a precise under-
standing of service interactions and the impact of temporal factors on process
flow. This analysis helps in identifying bottlenecks and improving the perfor-
mance of composite services. As for the TINA (Time Petri Net Analyzer) tool,
it is a comprehensive toolkit designed for the analysis and enhancement of Web
Service Composition (WSC) and related web systems. TINA offers a diverse
range of tools, including a graphical editor for Petri nets, both time-based and
standard, as well as machines. Additionally, it provides tools for building graph-
ical representations and time models, along with structural and path analysis
tools, and verification tools for specified linguistic formulations of states and
events. These tools empower users to gain a deep understanding of service in-
teractions and the impact of temporal factors on WSC performance, enabling
the improvement of complex processes and service compatibility.

1.3 Research Objectives:
As part of the final project, our main objective is to show how modeling web ser-
vice composition could be done using Petri nets. thus, uncover potential system
errors and ensure the delivery of expected results. These goals aim to enhance
the quality and efficiency of web service composition processes, ensuring accu-
rate and effective service delivery. The project aims to enhance understanding,
improve performance, and address challenges in web service composition. We
work throw the following questions (objectives):

Page 3

CHAPTER 1. INTRODUCTION

1. How modeling web service composition using Petri net formalism

2. How TINA tool can be used to detect the main properties of such model(case
study) and

3. How can we understand and compare the different form of graphs gener-
ated by TINA tool and theirs propertises

4. Doing that, we accomplish our aim that must give some answers such that:
is our model correct? witch refers to MODEL CHEKING.

1.4 Organization Of The Report
This thesis is structured in five chapters besides a general introduction and a
general conclusion:

• Chapter 1: "Introduction" , this chapter is a brief introduction of what
is web services and web service composition to meet users’ needs with, a
general context, background, research objectives and report organization.

• Chapter 2: "Web Services Composition", in this chapter, we provide an
overview of the concept of web service, the concept of composition web
services, their types, etc.

• Chapter 3: "Petri Nets Formalism", genaralities definition and history of
the Petri net are presented in this chapter, syntax and semantics of the
model are also giving.

• Chapter 4: " Modeling Web Services Composition ", in this chapter we
present the most known formalisms used to model WSC using Peti Net
and extensions of it.

• Chapter 5 "Case Study", we apply the technique of ModelCheking on a
real case study "BOOKIG", thus modeling and analysing with experiment
results of the following case are presented in detail throw this chapter using
TINA tool.

• Chapter 6: Conclusion, The last part of this work summarizes the main
part of our work and draws the perspectives in general conclusion.

Our report ends with two importants ANNEXES :TINA tool used in the
modeling and analyzing case study and LATEX for editing chapters.

Page 4

Chapter 2

Web Services Composition

2.1 Introduction
A web service is a self-contained, self-describing, modular software component
that is accessible over the web. It can be published by service providers and
invoked by service requesters over the Internet. In recent years, there has been
growing interest in web services due to their significant potential in real-world
applications [4].

Although each individual web service holds value for users, its functionality
alone is limited. The true potential of web services is realized when multiple
services are combined to create more complex and powerful applications with
advanced features. This process is known as Web Service Composition (WSC)
[5].

Service composition is a fundamental technology in service-oriented comput-
ing, where existing services are reused as basic components to build new services
with advanced functionalities. This enables rapid software development and ef-
fective reuse of development outcomes [6].

2.2 Web services (WS)
A Web service is an interface that describes a collection of operations that are
networkaccessible through standardized XML messaging. A WS is described
using a standard, formal XML notion, called its service description. It covers
all the details necessary to interact with the service, including message formats
(that detail the operations), transport protocols and location.
The interface hides the implementation details of the service, allowing it to
be used independently of the hardware or software platform on which it is
implemented and also independently of the programming language in which
it is written. This allows and encourages Web Services-based applications to be
loosely coupled, component-oriented, cross-technology implementations. WS
fulfill a specific task or a set of tasks.
They can be used alone or with other Web Services to carry out a complex
aggregation or a business transaction. [7]

5

CHAPTER 2. WEB SERVICES COMPOSITION

2.2.1 Why use web services?
Web services facilitate relatively easy reuse and sharing of common logic with
clients as diverse as mobile, desktop, and web applications.
The broad scope of web services is possible because they rely on open standards
that are ubiquitous, interoperable across different computing platforms, and in-
dependent of underlying execution technologies.
All web services, at a minimum, use HTTP and leverage data exchange stan-
dards such as XML and JSON, as well as common media types. Beyond that,
web services use HTTP in two distinct ways. Some use it as an application
protocol to define standard service behaviors. Others simply use HTTP as a
transport mechanism to transmit data.
In any case, web services facilitate rapid application integration because, com-
pared to their predecessors, they are generally much easier to learn and imple-
ment. Due to their inherent interoperability and simplicity, web services facil-
itate the creation of complex business processes through service composition.
This involves a practice where composite services can be created by assembling
simpler services into workflows. [8]

2.2.2 The basic characteristics of a Web services
• Web services utilize XML messaging, defining data exchanges between

providers and users. They facilitate cross-platform integration of business
applications over the Internet.

• Developers can employ various programming languages and existing com-
ponents to build them. Unlike HTML-focused presentations, Web services
generate XML for universal accessibility.

• They consist of loosely coupled components, each exposing unique func-
tionality as a service. Utilizing industry-standard protocols like HTTP,
they’re easily accessible through corporate firewalls

• They’re compatible with diverse client types, ranging from simple requests
to complex transactions.

• Supported by platforms like J2EE, CORBA, and Microsoft .NET, they
offer extensive creation and deployment capabilities.

• They’re dynamically located and invoked through standardized registries
like UDDI and ebXML.

2.2.3 Types of Web Services
Topologically, web services can come in two flavours. Informational, or type I,
web services support only inbound operations. As such they always wait for
a request, process it and respond. This type is very common and is generally
stateless. Complex, or type II web services implement some form of coordination
between inbound and outbound operations and are almost always statefull, see
Figure 1.

Page 6

CHAPTER 2. WEB SERVICES COMPOSITION

Figure 2.1: High-level view of informational and complex services [9]

1. Informational Services: These services are characterized by their simplicity
and involve a series of simple interactions between services that provide
access to content (such as content services) or expose backend business
applications to other applications outside the firewall (such as business
process services). These simple services perform business tasks of the
"request-response" type and yield tangible results. Clients of these services
can assemble them to build new applications.

2. Complex Services: These services require business partnerships between
companies and comprehensive collaboration between operations. This in-
cludes exchanging long-term documents and transactions involving ad-
vanced security techniques and business process management. Business-
to-business collaboration relies on describing business agreements and mu-
tual service execution to complete multi-step business interactions. [9]

2.2.4 Architecture of Web Services
The architecture of web services aims to provide a standards-based platform
for SOA (Service-Oriented Architecture). It characterizes a set of specifications
that support an open platform based on XML for the description, discovery,
and interoperability of distributed and heterogeneous applications in the form of
services. [10] A typical Web Services architecture consists of three entities Figure
2: service providers, service users and service brokers (or service registries).

• Service Registry enables an enterprise to describe its businesses, services
and rules. Through a registry, businesses describe how they wish to under-
take transactions, search for other businesses that provide desired services
and integrate with these to undertake a transaction. The API (Appli-
cation Programming Interface) for registering services is called Universal
Discovery and Description Interface (UDDI).

• Service Providers publish their services through brokers who maintain
registries that clients can look up.

Page 7

CHAPTER 2. WEB SERVICES COMPOSITION

• Service Users (Human users or agents) search services in registries and
invoke these services using a Web Interface. Simple Object Access Protocol
(SOAP) is used to pass object information between applications. [11]

Figure 2.2: Three entities of Web Services architecture [11]

Standards Linked to Web Service Technologies and Protocols

1. Extensible Markup Language (XML):
is a general-purpose encoding language that organizes data in a structured
and machine-readable format. XML’s structure allows for extensibility,
enabling the definition of different languages with their own vocabularies
and rules, such as XHTML, XSLT, RSS, SVG, and more. The primary
goal of XML is to facilitate automated exchange of complex contents be-
tween diverse information systems or across various locations. [12]

2. The Simple Object Access Protocol (SOAP):
is a messaging protocol that allows applications to communicate using
HTTP and XML. It represents a fundamentally stateless paradigm of
one-way message exchange between nodes. By combining one-way ex-
changes with the functionalities provided by the underlying transport
protocol and/or application-specific information, SOAP can be used to
create more complex interactions such as request/response, multiple re-
quest/responses, etc.
There are three main types of SOAP nodes:
SOAP Sender: Generates and transmits a SOAP message.
SOAP Receiver: Receives and processes the SOAP message and can also
generate a SOAP response, message, or error accordingly.
SOAP Intermediary (Relay or Active): It acts as both a SOAP receiver
and sender. It receives and processes SOAP header blocks intended for it
and forwards the SOAP message to another SOAP receiver. This process
is illustrated in the figure below: [13]

3. Web Service Description Language (WSDL):
is a standard description language. This is the interface presented to users.
It indicates how to use the Web service and how to interact with it. WSDL

Page 8

CHAPTER 2. WEB SERVICES COMPOSITION

Figure 2.3: SOAP nodes [13]

is based on XML and makes it possible to precisely describe details con-
cerning the Web service such as protocols, ports used, operations that can
be performed, formats of input messages and output and the exceptions
that can be sent.

4. Universal Description, Discovery, and Integration (UDDI) of Web Ser-
vices:
is a directory of services. It provides the basic infrastructure for publish-
ing and discovering web services.
UDDI allows suppliers (companies) to present their services to customers.
For example, suppose there are two companies A and B. Company B pub-
lishes the services it offers in the directory using a WSDL file.
A customer of Company A searches the UDDI directory for available ser-
vices and then downloads WSDL files from that registry. Depending on
the information collected in the WSDL files, the client can invoke the web
service to obtain the desired information.
This information can be of three types, as shown in the figure:
1-The white pages which contain all the information (contact details, con-
tact details or even the description of a company) linked to the supplier
(company).
2-The yellow pages contain the Web services that the company offers with
the WSDL standard.
3-The green pages contain technical and precise information for a partic-
ular web service. [12]

Page 9

CHAPTER 2. WEB SERVICES COMPOSITION

Figure 2.4: Types of the UDDI directory [12]

5. Representational state transfer (REST)
REST or Representational State Transfer is based on a small set of widely-
accepted standards such as Hypertext Transfer Protocol (HTTP), Uni-
form Resource Identifier (URI), and Extensible Markup Language (XML).
REST requires far fewer development steps, toolkits, and execution en-
gines than SOAP. Conceptual model of RESTful shows in Figure 5.

Figure 2.5: RESTful Conceptual Model

A RESTful web service provides access to a resource, identified by UR
using HTTP. A resource is an abstraction of information. The HTTP
methods, PUT, GET, POST, and DELETE define a uniform interface
for accessing resources (i.e. Create, Retrieve, Update, Delete or CRUD).
HTTP is stateless request-response application protocol. Request and re-
sponse messages are comprised of a command (method), a header, and a
body. [14]
REST is most often used as a management API for CRUD to implement
interaction with resources in lightweight scalable services. A resource is
usually a data model object or a database table.
Benefits of REST:
• openness of interaction.
• simple implementation.
• data caching at the HTTP level.
• work with several formats of data presentation.

Page 10

CHAPTER 2. WEB SERVICES COMPOSITION

• stability due to the high level of abstraction.
Disadvantages of REST.
• lack of a unified standardized structure.
• high load on the network.
• excessive or insufficient information, which can lead to the need to send
an additional query.
Of all the specifications, REST implements the highest level of abstrac-
tion and is best suited for developing simpler CRUD API. It maintains a
balance of reliability and ease of use. [15]

6. APIs
The framework security APIs are called explicitly by security-aware appli-
cations and implicitly by security-unaware applications via interceptors.
Security APIs provide interfaces for access to the framework security ser-
vices. The framework supports standard, custom, and vendor security
APIs.

• Standard security APIs We encourage support for APIs based on open
standards or industry de facto standards. Examples of such standards
are the J2EE and COM+ security APIs These standards should be used
whenever possible because they are likely to provide the most stability
and the most portability across many different vendors’ products.

• Custom security APIs. Custom APIs may be implemented when an enter-
prise’s needs cannot be met by existing standard APIs. Custom APIs are
required especially when an enterprise uses a security service that is tai-
lored to its business, for example, a custom-rule-based entitlements engine
developed internally by an investment bank.

• Vendor security APIs. As a last resort, vendor-specific proprietary APIs
may be used where open standards have not yet been defined. We recom-
mend avoiding the use of proprietary security APIs in applications if at
all possible. Proprietary APIs make it very difficult for the developer or
administrator to switch security products. Although vendors may think
this is a great idea, we believe that security technology is changing much
too rapidly for an enterprise to be confined to any one product. As an
alternative, we recommend wrapping a vendor’s proprietary API with a
standard or custom API. [16]

Comparison of responses and requests from the use of SOAP and
REST

To compare the use of SOAP and REST, access to the backend built with
SOAP and REST will be carried out. The access used consists of POST, GET
and PUT. Testing is done by measuring the response and request from each
architecture by accessing the terminal, then the time given to serve the response
and request from the client to the server is calculated. Figure 6, shows that when
the client requests a request to the server using the terminal.
This Comparison uses a sample of 10 responses and requests with access used
consisting of POST, GET and PUT architectures on SOAP and REST. Table
II below are the results of the comparison tests carried out.

Page 11

CHAPTER 2. WEB SERVICES COMPOSITION

Figure 2.6: GET Response for REST Server [17]

Case
Sample

Response And Request

SOAP REST
1 2209 146
2 1809 154
3 1421 267
4 1749 128
5 2311 224
6 1852 265
7 1723 433
8 1982 198
9 2134 566
10 1876 432

Table 2.1: COMPARISON OF RESPONSE AND REQUEST IN SOAP AND
REST [17]

From the data obtained in Table 5.1, it shows that for web services that
use SOAP and REST, it can be seen that REST has a better performance than
SOAP, because it requires faster request and response time for web services. [17]

2.2.5 Advantages and Disadvantages of Web services
Web services offer several key advantages:

• Reusability: Web services allow wrapping existing functionalities and ex-
posing them as reusable services, thus promoting code and resource reuse.

• Location transparency: Web services utilize a registry to store the location
of services, enabling clients to find and bind to a service without concern
for its physical location, thus offering flexibility in deployment.

• Composition: Developers can assemble applications from reusable, inde-
pendent services, regardless of the applications in which they are used,
thus promoting modularity and component reuse.

Page 12

CHAPTER 2. WEB SERVICES COMPOSITION

• Scalability and availability: Web services can be deployed in scalable and
highly available environments, leveraging techniques such as cluster de-
ployment and load balancing, enabling efficient handling of increasing de-
mand.

• Maintenance of investments in existing applications: Web services enable
the maintenance of investments in existing applications by wrapping these
applications in services, facilitating their replacement or upgrade in the
future.

• Reduced vendor dependency: By using open standards, web services allow
organizations to choose platforms based on their merits rather than relying
on a specific vendor, thus offering greater freedom of choice and flexibility.
[18]

Disadvantages:
All new technologies have problems and disadvantages that should be taken
into consideration before they are used. To try and assist you with identifying
if Web services is appropriate or not, the following list gives some issues you
should consider when selecting to use Web services:

• Binding to Web services dynamically requires that the contents of the
UDDI registry be trusted. Currently, only private UDDI networks can
provide such control over the contents.

• The SOAP server footprint is significant and the technology is relatively
new, so adding the Web service provider stack to existing enterprise sys-
tems can be a problem.

• Standards for integration of business processes, management of transac-
tions, and the awareness of the policies of interchanging partners are all
still under development. To realize the promise of Web services, these
types of standards should be available in implementation products. [19]

2.3 web services composition

2.3.1 Definition of web services composition
Indeed, a service composition refers to the process of combining the function-
alities of multiple services, either simple or compounded, within a single busi-
ness process to meet the complex demands that a single service cannot satisfy
them. [20] WSC requires a computer program to automatically select, integrate,
and invoke multiple Web services in order to achieve a user-defined objective. [21]

2.3.2 The WSC lifecycle
The service composition life-cycle consists of five phases, each contributing to
the process of describing, defining, scheduling, constructing, and executing com-
posite services:

Page 13

CHAPTER 2. WEB SERVICES COMPOSITION

1. Planning Phase: In this phase, a formal description of desired service
attributes and functionality is created using a service request language.
This description includes temporal and non-temporal constraints between
services, scheduling preferences, and information from a domain model.

Figure 2.7: Phases involved in an explorative service composition

2. Definition Phase: Composite services are defined abstractly using Web
Service Description Language (WSDL) and Business Process Execution
Language (BPEL). Abstract service component classes may also be em-
ployed during this phase.

3. Scheduling Phase: This phase determines how and when services will
run, composing abstract services, assessing their composability and con-
formance capabilities, correlating messages and operations, and synchro-
nizing and prioritizing their execution.

4. Construction Phase: The outcome of this phase is the construction of a
concrete composition of services ready for execution, based on a set of
desirable or available constituent services.

5. Execution Phase: Composite service bindings are implemented based on
scheduled composition specifications, and the services are executed ac-
cordingly.

Page 14

CHAPTER 2. WEB SERVICES COMPOSITION

Figure 2.8: Phases involved in semi-fixed and fixed service composition

Figure 8 depicts the service life-cycle phases required for an explorative service
composition. We assume that this procedure is initiated by a client who is
aware of the format of the input and the output parameters defined in the XML
schemas (document model) and the standard business process specifications for
a particular domain. The planner module checks the consistency of the request
with respect to the business process specification by finding appropriate paths
of activities (service operations) potentially satisfying the client request.
If the request is consistent with the domain model specifications, a set of activi-
ties is returned for further processing. The planner returns activity paths along
with the business process specification that could potentially satisfy the client
request. Subsequently, the service definition (definer) module constructs ab-
stract WSDL and BPEL service definitions for the planned activity sequences.
These are then passed to the scheduler module. The scheduler needs to interact
first with the service providers to be able invoke the service operations specified
in the abstract definitions. The scheduler makes the abstract definitions con-
crete by first appropriately invoking the UDDI enquiry API. For this purpose
the scheduler calls the enquiry UDDI operations to find and get detail of the
UDDI API to retrieve detailed information about the service port-types, ele-
ments and bindings of the services.
The scheduler searches the UDDI for the services required and uses the informa-
tion found in the UDDI registry to establish the particular invocation pattern
needed for the specific service being employed.
Subsequently, the scheduler correlates the constituent services and checks for
compatibility. Alternative service compositions, based on non-functional ser-
vice characteristics, such as performance, security and pricing models, are then

Page 15

CHAPTER 2. WEB SERVICES COMPOSITION

proposed to the client for selection and approval. Finally, once the selected ser-
vices are made concrete, they are stored in a service repository for future use
and passed to the executor module for execution.
Figure 8 depicts the phases required for semi-fixed and fixed service composition
that are the two service composition schemes used in conjunction with service
components. Semi-fixed and fixed service composition is a much simpler affair
when compared explorative service composition. Semifixed and fixed service
composition does not require any planning activities as the client provides com-
posite service definitions in the form of abstract service component classes that
are further processed by the scheduler. [22]

2.3.3 Orchestration and Choreography
Service orchestration can be seen as the implementation of a behavioral in-
terface. Both consider service composition from the viewpoint of a partici-
pant/service.
However, service orchestrations differ in their business objective, as they not
only focus on the observable behavior of a web service but also specify the in-
ternal steps required for executing the service.
BPEL and BPMN are reference languages for describing executable service or-
chestrations. Other languages for executable process languages include XLANG,
WSFL, XPDL, and BPML. [23]. Service orchestration always represents control
from the perspective of a single party (see Figure. 9(a)).
This differs from service choreography, which is more collaborative and allows
each involved party to describe its role in the interaction (see Figure. 9(b)).

Figure 2.9: Orchestration de service et chorégraphie de service [24]

Choreography represents a global description of the observable behavior of

Page 16

CHAPTER 2. WEB SERVICES COMPOSITION

each participating service in the interaction, defined by the public exchange of
messages, interaction rules, and agreements between two or more endpoints of
business processes.
Choreography is typically associated with interactions occurring between mul-
tiple web services rather than a specific business process executed by a single
party. The choreography mechanism is supported by the WS-CDL (Web Ser-
vices Choreography Description Language) standard. [24].

2.3.4 Types of WSC
Web service composition contains three methods are:

Manual/Static Composition

Building a conceptual work model is required before starting the composition
process. This model includes a set of tasks and their data dependencies. Each
task is linked to a real web service using a query. This type of composition
requires programming expertise and entails high costs, lacking flexibility and
consuming significant time.

Automatic/Dynamic Composition

A work model is automatically created and atomic services are selected. This
composition requires specifying various constraints including atomic service de-
pendencies and user preferences. Semantic web is utilized to give precise mean-
ing. This approach offers greater flexibility, rapid applicability, and can auto-
matically produce work models.

Semi-automatic/Dynamic or Static Composition

Operates similarly to automatic composition but selects different processes based
on varying conditions. Fixed processes and process implementations may be
variable, reflecting semi-automatic characteristics. [25]

2.3.5 Modeling service composition
Given the complexity of the web service composition process, it’s essential to
undergo modeling that addresses the various aspects of this process. The use of
tools, techniques, and concepts from task planning domain, such as workflows,
is valuable in this perspective. This is justified by the fact that a composed web
service can be perceived as a trans-organizational workflow, where processing
is distributed across the web and involves multiple complex operations and/or
several services. Indeed, the term "process definition" is employed to refer to a
composition schema, while "process example" denotes an individual and specific
execution (or instance) of a process definition.
Meanwhile, the term "orchestration schema" (or simply orchestration) pertains
to the portion of the composition schema specifying the order in which the differ-
ent composing services must be invoked. To characterize the service composition
model, the following aspects need to be defined:

Page 17

CHAPTER 2. WEB SERVICES COMPOSITION

• Component model: This defines the nature of the element to be composed.
It includes specifications such as XML messages and web service standards
like SOAP and WSDL.

• Orchestration model: This defines the abstractions and languages used
to specify the order in which services will be invoked and composed as
a whole. There are various possibilities with variations in the formalism
used, including: Activity diagrams ,Petri nets ,Pi calculus ,Activity hier-
archy ,Rule-based orchestration.
Each of these aspects plays a crucial role in modeling the service com-
position process, providing a structured approach to the composition of
services while considering their interactions and dependencies.

• Data Model and Data Access Model: It defines the types of data manipu-
lated (application-specific data, flow control data) and how these data are
exchanged between different components (Blackboard, explicit data flow).

• Service Selection Model: Defines how links (bindings) are established
(static, dynamic by reference, dynamic by query or dynamic selection of
operations) and how a specific service is chosen as a component.

• Transactions: The approach used by web services to handle transactions
involves allowing the definition of atomic regions in the orchestration
schema. An atomic region encompasses a set of activities that adhere
to the "all or nothing" property, as depicted in Figure 1.5, where the
ACID principles (Atomicity, Consistency, Isolation, and Durability) of
traditional transactions are relaxed.
In the context of web services, some processes are long-running, so re-
sources cannot be blocked for too long. Defining a specific compensation
activity for each atomic region will enable the release of the resource at the
end of the region. Additionally, each activity is linked to a compensation
activity that will be executed in case of problems.

Figure 2.10: Simple Example of Atomic Region

• Exception Handling: Defines how exceptional situations that may arise
during service execution are handled without abandoning the composed

Page 18

CHAPTER 2. WEB SERVICES COMPOSITION

service. Exceptions can have different causes such as system errors, errors
during application invocation, and rare situations that, despite the clear
semantics of the composed service, have not been addressed.
Transactions are a primary solution for exception management, but other
modeling and exception handling techniques exist such as: flow-based ap-
proach, Try-catch-throw approach, and rule-based approach. [26]

2.3.6 Web service composition standards
Business Process Modeling Language (BPML)

Is a language for the modeling of business processes and was designed to support
processes that a business process management system could execute. BPML and
WSCI share the same underlying process execution model; therefore developers
can use WSCI to describe public interactions among business processes and
reserve, for example, BPML for developing private implementations. However,
other coordination protocols than WSCI can be adopted.

Web Service Choreography Interface (WSCI)

It is an XML-based interface description language that describes the flow of
messages exchanged by a Web service participating in choreographed interac-
tions with other services. WSCI is a coordination protocol, in that it does not
address the definition and the implementation of the internal processes that
actually drive the message exchange. [27]

Web Service Conversation Language (WSCL)

WSCL is a light-weight interface specification language, with the goal "to define
the minimal set of concepts necessary to specify conversations". Like XLANG,
WSCL is specifically targeted at public workflow types. The minimalism of
WSCL certainly makes the language and any implementation of it very simple,
but at the same time restricts expressiveness of WSCL specifications. For in-
stance, concerning the organizational perspective, WSDL limits the number of
participants in an interorganizational workflow to two. Regarding the behavioral
perspective, WSCL does not support parallel activities nor timing constraints,
and transition conditions can only use the result type of a preceding activity for
decisions. Despite its limitations, the simplicity of WSCL qualifies the language
for a combination with WSDL in order to define stateful services. [28]

XLANG

XLANG is an XML block-structured specification which offers a set of flow con-
trol primitives in order to define the process model of the Web service. The
flow control primitives organize the operation execution exactly like the differ-
ent primitives that we meet in programming languages. An XLANG description
is always built on one or more WSDL description which supplies a set of op-
erations. It uses their operations as the basic elements in order to construct
the processes. An XLANG process is built by applying control primitives on
operations and XLANG subprocesses. Every flow control primitive represents

Page 19

CHAPTER 2. WEB SERVICES COMPOSITION

a specific execution order model to the XLANG processes and the WSDL op-
erations according to a specific semantic. In addition to flow control primitive
XLANG offers a set of primitives to structure the processes organization by
defining an execution context for a set of processes or transactions. [29]

Web Service Flow Language (WSFL)

The Web Services Flow Language (WSFL) is an XML language for the descrip-
tion of Web Services compositions. WSFL considers two types of Web Services
compositions:
• The first type specifies the appropriate usage pattern of a collection of Web
Services, in such a way that the resulting composition describes how to achieve
a particular business goal; typically, the result is a description of a business
process.
• The second type specifies the interaction pattern of a collection of Web Ser-
vices; in this case, the result is a description of the overall partner interac-
tions. [30]

Business Process Execution Language for Web Services (BPEL4WS)

The recently released business process management language BPEL4WS is a
high-level XMLbased language for stringing web services calls and other things
together. It specifies the behaviour of business processes that make use of web
services and of business processes that externalize their functionality as web
services. Business Process Management (BPM) even though draws roots from
workflow technologies is a standard that attempts to solve a much more general
class of problems, allowing also collaborations to be established among multiple
independently-managed processes. Therefore, BPEL4WS is a standard-based
language and its role is to provide process orchestration, meaning the combina-
tion of structured activities, as flow chart of the process to express arbitrarily
complex algorithms that represent the implementation of the service. This lan-
guage aims to the implementation of a process-oriented information system,
which is flexible and agile to changes and allows the reengineering of business
processes. [31]

2.3.7 Web Service Composition and BPEL
Web service composition involves combining existing web services to create a
value-added service. It encompasses two key aspects: specification using a com-
position language and execution through a suitable runtime environment. The
specification phase defines interactions between the composition and composed
services, as well as control and data flow around these interactions.
Business Process Execution Language (BPEL) is a process-oriented language
for web service composition, where a composite service is implemented using a
workflow process. BPEL, recently adopted as an OASIS standard, builds upon
BPEL 1.1 and is widely embraced by both research and industry. BPEL pro-
cesses are deployed on workflow engines, orchestrating invocations of partner
services according to the process specification.
In BPEL, key concepts include partners, variables, and activities. Partners rep-
resent entities interacting with the composite service, such as clients or other

Page 20

CHAPTER 2. WEB SERVICES COMPOSITION

web services. Partner links define connections between WSDL port types, spec-
ifying roles for the composition and its partners. Variables store data exchanged
between partners and process-specific data.
Activities are the units of work in BPEL, categorized into primitive (atomic)
and structured (composite) activities.
Primitive activities like receive, reply, and invoke handle basic messaging in-
teractions. The assign activity modifies variable content. Structured activities,
like sequence and flow, group other activities, organizing them based on control
flow patterns such as sequential execution or concurrency. [32]

2.4 Conclusion
In this chapter, the concept of web services and their significance were reviewed,
along with elucidating their key characteristics and types. Additionally, an
overview of the architectural structure and associated standards was provided.
Furthermore, the chapter also addressed the notion of web services composition,
including its types and standards.

Page 21

Chapter 3

Petri Nets

3.1 Introduction
An overview of Petri nets formalism (PN) [33] is presented in this chapter,
starting with a basic introduction and then delving into their core concepts
and notations. It also explores their applications, advantages, and limitations,
along with various extensions. Moreover, we focus on the time extension of this
formalism noted Time Petri Nets (TPN) [34] .

Time Petri nets are one of the most widely used model for the specification
and verification of real-time systems. They extend Petri nets with temporal
intervals associated with transitions, specifying firing delay ranges for the tran-
sitions. [35]

3.2 Petri Net model

3.2.1 informal presentation
A Petri net is a graphical tool for the description and analysis of concurrent
processes which arise in systems with many components(distributed systems).
The graphics, together with the rules for their coarsening and refinement, were
invented in August 1939 by the German Carl Adam Petri – at the age of 13 –
for the purpose of describing chemical processes, such as Figure 1. [36]

Figure 3.1: Example of a production net [36]

An example of a Petri net is given in Figure 1. Places are typically drawn
as circles and transitions as bars or rectangular boxes. [37]

22

CHAPTER 3. PETRI NETS

Figure 3.2: A simple example of a Petri net. It has four main parts: places,
arrows, functions, and tokens. Tokens are located in places and move among
them based on the directions of arrows and function rules [38]

3.2.2 History
The theory of Petri nets has developed from the work of Carl Adam Petri, A.
W. Holt, Jack Dennis, and many others. In his thesis in Germany [39], Petri
developed a new model of information flow in systems, based on the concepts
of asynchronous and concurrent operations by the different parts of a system.
Petri’s ideas came to the attention of a group of researchers at Applied Data
Research, Inc., who were working on the Information Systems Theory Project
[40] led by Anatol Holt.
Holt developed the theory of "systemics" [41], which was concerned with the
representation and analysis of systems and their behavior. This early theory
helped provide the notation and representation for Petri nets and showed how
Petri nets could be applied to the modeling and analysis of systems of concurrent
processes.

3.2.3 formel presentation
A classical Petri net (PN) is a directed bipartite graph with two types of nodes,
called places and transitions. The nodes are connected via directed arcs and
connections between two nodes of the same type are not allowed. Places are
represented by circles and transitions by rectangles.

PN Syntax

Formally, the syntax of the PN model is defined as follows:
Definition 1 An PN is given by the tuple (P, T,B, F,M0) where:

• P and T are respectively two non empty disjoint sets of places and tran-
sitions;

• ; B and F are respectively the backward and the forward incidence func-
tions B : P × T −→ N = {0, 1, 2, ..}; F : P × T −→ N ;

• M0 is the initial marking function that associates with each place a number
of tokens M0 : P −→ N ;

Page 23

CHAPTER 3. PETRI NETS

PN Semantics

Before laying down the formal semantics of the model. We introduce, first, some
notations:
Let R := (P, T,B, F,M0) be a PN and

- We call a marking the function, noted M that associates with each place
a number of tokens, M : P −→ N;

- A transition t is said to be enabled for the marking M, if ∀p ∈ P,B(p, t) ≤
M(p); the number of tokens in each input place of t is greater or equal to the
valuation of the arc connecting this place to the transition t. Thereafter, we
denote by E(M) the set of transitions enabled for the marking M .

- Let M be a marking; two transitions ti and tj enabled for M are said to
be conflicting for M , if ∃p ∈ P, B(p, ti) + B(p, tj) > M(p). Hence, we note
Conf(M) the relation built on E(M)2 such that (ti, tj) ∈ Conf(M), iff ti and
tj are in conflict for the marking M .

PN Marking Graph

If the Petri net is structurally limited and its state space is limited (i.e. its
markings are finite) it is possible to construct the marking graph for the net.
Different algorithms can be used to construct the marking graph. In simple
terms the marking graph represents all the possible states of the Petri net. The
reachability tree or better known coverability tree for a restricted Petri net is
easily constructed. The directed graph obtained from the Petri net can be used
for different forms of analysis, which is often overlooked. This type of graph
can become quite large if the Petri net has over one hundred states. A possible
solution is to reduce the Petri net model and eliminate ambiguity.
The marking graph or reachability tree is a simple directed graph or digraph
where the nodes or vertices represent a marking whilst the directed edges rep-
resent the transitions used to reach a particular marking. The reachability tree
can be drawn as a marked directed graph of the form G = (V, E), where E =
edges representing transitions and V= States or markings. There are various
forms of the marking graph having different names but in essence they are simi-
lar. The delay of a transition can be represented on the edges. For the marking
graph an adjacency matrix can be constructed.
Examples:
Some simple examples illustrating the four conversion methods are given. A
specific Petri net is taken and a corresponding directed graph is constructed
using each one of the four methods. It can be assumed that the structural re-
duction rules previously defined have been applied as required. These are quite
simple to comprehend and are self explanatory. Note that the resulting graph
can obviously be drawn as required, i.e. the node or edge layout could be drawn
aesthetically in different ways for visualization e.g. using rounded or flat edges,
circles for nodes, etc. Figure 3.1(a) shows a Petri net, complete with its marking
graph Figure 3.1(b) and a compacted or reduced form of marking graph Figure
3.1(c).
Below the reduced marking graph the adjacency matrix for the marking graph
has been given. For the marking graph in Figure 3.1(a), the adjacency ma-
trix is easily constructed. It is assumed that edges represent transitions. For

Page 24

CHAPTER 3. PETRI NETS

the marking graph in 3.1(a) the adjacency matrix can be constructed, given in
3.1(d).

Figure 3.3: simple examples of marking graph

3.2.4 Petri Nets properties
Petri nets as mathematical tools possess a number of properties. These proper-
ties, when interpreted in the context of the modeled system, allow the system
designer to identify the presence or absence of the application domain specific
functional properties of the system under design. Two types of properties can
be distinguished: behavioral and structural properties.

The behavioral properties are these which depend on the initial state, or
marking, of a Petri net.
The structural properties, on the other hand, do not depend on the initial mark-
ing of a Petri net. These properties depend on the topology, or net structure,
of a Petri net. In this section, we provide an overview of some of the most
important, from practical point of view, behavioral properties. The focus on
the behavioral properties is dictated by the space limitations of this tutorial.
An extensive description of the structural properties, and the analysis meth-
ods can be found in [42]. The behavioral properties discussed in this section
are reachability, boundedness, conservativeness(bounded), liveness, reversibility
and home state. Descriptions of other properties such as coverability, persis-
tence, synchronic distance, and faimess can also be found in [42].

Page 25

CHAPTER 3. PETRI NETS

Reachability

An important issue in designing distributed systems is whether a system can
reach a specific state, or exhibit a particular functional behavior. In general, the
question is whether the system modeled with Petri nets exhibits all desirable
properties, as specified in the requirements specification, and no undesirable
ones.
In order to find out whether the modeled system can reach a specific state as a
result of a required functional behavior, it is necessary to find such a sequence
of firings of transitions which would result in transforming a marking M0 to Mi,
where Mi represents the specific state, and the sequence of firings represents the
required functional behavior. It should be noted that real systems may reach a
given state as a result of exhibiting different permissible patterns of functional
behavior.
In a Petri net model, this should be reflected in the existence of specific sequences
of transitions firings, representing the required functional behavior, which would
transform a marking M0 to the required marking Mi. The existence in the Petri
net model of additional sequences of transitions firings which transform M0 to
Mi indicates that the Petri net model may not be reflecting exactly the struc-
ture and dynamics of the underlying system.
This may also indicate the presence of unanticipated facets of the functional be-
havior of the real system, provided that the Petri net model accurately reflects
the underlying system requirements specification. A marking Mi, is said to be
reachable from a marking M0 if there exists a sequence of transitions firings
which transforms a marking M0 to Mi. A marking M1 is said to be immedi-
ately reachable from a marking M0 if a firing of an enabled transition in M0

results in marking M1. For instance, in the Petri net model of the multirobot
assembly system, the state in which robot arm R1 performs tasks in the common
workspace, with robot arm R2 waiting outside, is represented by the marking
vector M1 = (0, 1, 0, 1, 0, 0, 1, 3, 0)T . Mi can be reached from the initial mark-
ing M0, where M0 = (1, O, 0, 1.0, 0, 1, 3) by the following sequence of transitions
firings–t1t2t4 . The marking M1 = (0, 1, 0, 1, 0, 0, 1, 3, 0)T , which represents the
state of the system in which robot arm R1 waits for the access to the common
workspace and robot arm R2 performs tasks outside the commom workspace,
is immediately reachable from the initial marking M0 when transition t1 fires.
It should be noted that in M0 transitions t1, and t4 are both enabled. The set
of all possible markings reachable from M0 is called the reachability set. and
denoted by R(M0). Thus the problem of identifying the existence of a specific
state Mi, the system can take on, can be redefined as the problem of finding if
Mi ∈ R(M0). [42]

Boundedness and Safeness
In a Petri net, places are often used to represent information storage areas in
communication and computer systems, product and tool storage areas in manu-
facturing systems, etc. It is important to be able to determine whether proposed
control strategies prevent from the overflows of these storage areas. The Petri
net property which helps to identify the existence of overflows in the modeled
system is the concept of boundedness.
Example:
The petri net in example is 2-bounded show figure 4. [?]

Page 26

CHAPTER 3. PETRI NETS

Figure 3.4: example is 2-bounded [?]

Conservativeness

Tokens in a Petri net may represent resources. The number of which in a real
system is typically fixed, then the number of tokens in a Petri net model of this
system should remain unchanged irrespective of the marking the net takes on.
When Petri nets are used to represent resource allocation systems, conservation
is an important property.

Figure 3.5: A manufacturing system’s Petri net model which is not conservative
[?]

Liveness

The concept of liveness is closely related to the deadlock situation, which
has been situated extensively in the context of computer operating systems.
A Petri net modeling a deadlock-free system must be live. This implies that for
any reachable marking M, it is ultimately possible to fire any transition in the
net by progressing through some firing sequence. This requirement, however,
might be too strict to represent some real systems or scenarios that exhibit
deadlock-free behavior. For instance, the initialization of a system can be mod-
eled by a transition (or a set of transitions) which fire a finite number of mes.
After initialization, the system may exhibit a deadlock-free behavior, although
the Petri net representing this system is no longer live as specified above. For
this reason, different levels of liveness for transition t, and marking Mo, were
introduced.

Page 27

CHAPTER 3. PETRI NETS

Example :
The Petri net shown in Figure 6 is strictly L1-live since each transition can be
fired exactly once in the order of t2, t4, t5, t1 and t3. The transitions t1, t2,
t3 and t4 in Figure 7 are LO-live (dead), L1-live, L2-live and L3-live, respec-
tively. [?]

Figure 3.6: A nonlive Petri net. But it is strictly L1-live [?]

Figure 3.7: Transitions t1, t2, t3 and t4 are dead (LO-live), LI-live,L2-live, and
L3-live, respectively [?]

Reversibiliiy and Home State

An important issue in the operation of real systems, such as manufacturing
systems, process control systems, etc., is the ability of these systems for an error
recovery. These systems are required to return from the failure states to the
preceding correct states. This requirement is closely related to the reversibility
and home state properties of a Petri net. A Petri net, for the initial marking
M0, is said to be reversible if for each marking M in R(M0), M0 is reachable
from M . The home state property is less restrictive, and more. practical, then
the reversibility property of ;I Petri net. A Petri net state M; is said to be a
home state if for each marking M in R(M0), R(Mi) is reachable from M . The
Petri net shown in Figure 8 is reversible. The Petri net shown in Figure 9 is
nonreversible. [42]

Page 28

CHAPTER 3. PETRI NETS

Figure 3.8: The Petri net is reversible [42]

Figure 3.9: The Petri net is nonreversible [42]

Page 29

CHAPTER 3. PETRI NETS

3.3 Time Petri Net model [43]
Time Petri Net (TPN) is a temporel extension of the standard (PN) where
transitions are labelled by two temporal constraints that indicate their earliest
and latest firing times.

3.3.1 TPN Syntaxe
Definition 2 An TPN is given by the tuple (R, Is) where: R is a Peti Net;

Is is the delay interval mapping function; Is : T −→ Q+×Q+∪{+∞} , where
Q+ is a set of null or positive rational values. We write Is(t) = [x0(t), y0(t)].
This gives the static time interval within which the transition t can fire, such
that 0 ≤ x0(t) ≤ y0(t);

3.3.2 TPN Example
Let us consider the PN example shown in Figure 3, presented in [44,45]

Figure 3.10: A TPN example [45]

Page 30

CHAPTER 3. PETRI NETS

3.3.3 TPN Formal Semantics
Definition 3: A reachable state, noted e, of a TPN is a tuple e = (M,V),
where
M is the reachable marking and
V is the function that associates with each enabled transition its dynamic firing
interval V (t) := [x(t), y(t)]. We note e0 = [M0, V0] the initial state, where:
V0(t) := [x0(t), y0(t)].

The initial state of our TPN example is given by (M0, V0) such that V0 :
t0 7→ [2, 3]; t1 7→ [1, 2]; t2 7→ [0, 1]; t5 7→ [2, 2]; t6 7→ [0, 2].

Important: le reachability graph for a TPN model needs more complex al-
gorithms then the standard Marking graph becacuse of the temporal constraints
added to transitions. Moreover, the obtained graph is in general infinit (com-
binatory explosion). An important number of methods were proposed in the
litterature to investigate this problem, for more detail reed [46], [47]. In our
work, we are not investigated each algorithm, we are only using them throw
TINA TOOL and discuss the advantages and desavantages and make compara-
ison (see chapter case study).

3.4 PN and TPN APPLICATIONS
The scope of using Petri nets is broad, spanning various domains and applica-
tions due to their versatility and expressive power. Here are some key scopes of
use for Petri nets:

3.4.1 Computer Science and Software Engineering
• Modeling and analyzing concurrent and distributed systems.

• Designing and verifying communication protocols.

• Specifying and simulating software workflows and business processes.

• Detecting deadlocks and race conditions in concurrent programs.

• Modeling and analyzing real-time systems.

3.4.2 Manufacturing and Operations Management
• Modeling and optimizing manufacturing processes, such as assembly lines

and production systems.

• Scheduling and resource allocation in manufacturing environments.

• Analyzing workflow and logistics in supply chain management. Designing
and controlling automated systems and robotics.

3.4.3 Biological Systems and Bioinformatics
Modeling biochemical reactions and metabolic pathways. .Analyzing gene regu-
latory networks and signal transduction pathways. .Studying cellular processes,
such as cell division and apoptosis. .Predicting the behavior of biological sys-
tems under different conditions.

Page 31

CHAPTER 3. PETRI NETS

3.4.4 Telecommunications and Networking
• Modeling and analyzing network protocols and architectures.

• Evaluating the performance and reliability of communication networks.

• Designing and optimizing routing algorithms.

• Simulating and testing network congestion control mechanisms.

3.4.5 Business Process Management
• Modeling and optimizing business processes and workflows.

• Analyzing resource utilization and bottlenecks in organizational systems.

• Identifying opportunities for process improvement and automation.

• Supporting decision-making in workflow management systems.

3.4.6 Embedded Systems and Cyber-Physical Systems
• Modeling and verifying embedded control systems.

• Designing and analyzing cyber-physical systems, such as smart grids and
autonomous vehicles.

• Ensuring safety and reliability in safety-critical systems.

• Simulating and testing control algorithms and feedback loops.

3.4.7 Education and Research
• Teaching concepts of concurrency,

• formal methods, and system modeling.

• Conducting research in the fields of formal verification,

• discrete event systems, and concurrent programming.

• Developing new methodologies and extensions for Petri nets to address
specific application domains.

• Collaborating with interdisciplinary teams to apply Petri nets in novel
contexts and problem domains.

Page 32

CHAPTER 3. PETRI NETS

3.5 Advantages Timed Petri Nets
Timed Petri nets offer the following advantages:
Suitable and precise framework:Provides a suitable and precise framework
for accurately describing dynamic systems and generating basic statistical pro-
cesses reliably.
Simplicity and power:Relies on few but powerful concepts, making it easy to
learn and develop strong analytical methods.
Automation capability:Analysis of timed Petri nets can be automated, with
several software tools available for this purpose.
Modeling accuracy:Allows for precise representation of non-product form fea-
tures such as priorities, synchronization, branching, and blocking.
Logical and quantitative models:Can be used for both logical and quantita-
tive modeling, allowing for the specification and validation of functional/logical
properties as well as performance properties using the same modeling language.
Simulation readiness:Serves as a ready simulation model when state explo-
sion problems occur or when underlying statistical models are not amenable
to tractable mathematical analysis, facilitating simulation for both logical and
quantitative property analysis.

3.6 Conclusion
In conclusion, we reaffirm the importance of Petri nets as an effective tool for
modeling and analyzing dynamic systems, where we provided their definition,
practical examples of their usage, and analyzed the areas of their application.
We also explored the versatile and robust nature of these networks, shedding
light on their computational and analytical capabilities.

Petri nets have constituted a powerful tool enabling researchers, engineers,
and practitioners to tackle complex challenges and design efficient and reliable
systems. Additionally, we briefly introduced timed Petri nets, providing an
explanation along with some examples and characteristics, thus deepening our
understanding of this valuable tool and its diverse applications across various
fields. We will see in next chapter the importance of TPN for web service
modelling.

Page 33

Chapter 4

Web Services Composition
Modeling

4.1 Introduction
The idea behind web service composition is that many sub tasks, already defined
as web services, can be used together to accomplish a larger task. Realization
of this larger task will be the resulting composite web service. [48] There are
various approaches to modeling the processes of web service composition, in-
cluding thoses based on Petri nets formalism. In this chapter, we present the
modelling methods used for web service composition, the first part is dedicated
to methods based on PN model, the second part present other methods found in
the literature. Finally we give a formal approach based on TPN model modeling
web service composition used in the case study.

4.2 WSC modeling based on PN formalism
In this section we give a related work on WSC modeling based on PN formalism
and its extensions.

4.2.1 Time petri net based modeling of web service archi-
tecture

This model represents an architecture comprising M servers Seri and one feder-
ation server (Ser) for handling composite web service requests. Requests arrive
periodically within a defined time interval. Each request invokes M elementary
web services (Reqi), with each service being handled by its corresponding server.
The response time of each elementary service is within a specified range. After
all sub-requests are executed, the results are merged by the federation server to
generate the final response within a defined time frame.

34

CHAPTER 4. WEB SERVICES COMPOSITION MODELING

Definition

Time Petri Nets (TPNs) are used in computer science to model systems such as
parallel processing, distributed systems, and computer networks due to their in-
tuitive and efficient nature. TPNs consist of places (circles) representing events
or resources, and transitions (rectangles) representing actions or processes. Each
place holds tokens indicating its current state or availability.
In TPNs with multi-server semantics, multiple instances of a transition can be
enabled simultaneously, reflecting concurrent activity. This extends the model-
ing capability to scenarios where parallelism or concurrency is significant.
TPNs can include read arcs and priority arcs for enhanced modeling. Read arcs,
depicted with a full disk, allow modeling of priorities by inhibiting a transition
until a specific place has sufficient tokens. Priority arcs from one transition to
another enforce sequencing constraints, ensuring a transition cannot occur until
another has completed.
Firing a transition in TPNs consumes tokens from its input places connected
by regular arcs, reflecting the consumption of resources or fulfillment of prereq-
uisites for the action.
Overall, TPNs leverage these features to provide a powerful framework for ana-
lyzing system behaviors and verifying properties such as timing constraints and
resource allocation in complex systems.

Example

The basic architectural modeling is presented through a Time Petri net as shown
in Figure 1. For clarity, only two servers are depicted among the M servers
available.
The place "Req," marked with one token, represents the number of composite
requests generated in each period. The transition "Arrival" signifies the arrival
of a composite request into the system. The places AdmSer1,.., AdmSerm

represent the admission of the elementary queries of the composite request.
Elementary queries are modeled here by tokens produced following the firing of
the transition Arrival. The execution of each elementary request is performed in
mutual exclusion by the related server. We use the place Me1, ..Mem to design
this mechanism. Each firing of respectively the transitions Ser1,..,Serm needs
to consume the oldest token in respectively the places AdmSer1,.., AdmSerm

and produces a token in respectively the place Res1, ..Resm; this denotes the
results of handling the m sub-request. Finally, the firing of the transition merge
denotes the execution of the federation component which requires to consume
the oldest token in each place of Res1, ..Resm once they are all provided. The
marking of the place NReQSuc denotes the number of composite requests that
have been successfully handled by the system. [49]

4.2.2 Modeling web services using G-nets
A model for designing web services using G-Net utilizes Petri Nets to represent
the behavior of Discrete Event Dynamic Systems. G-Net consists of autonomous
modules interconnected in a loosely coupled manner, resembling a distributed
system. Each operation within the service corresponds to a method in G-Net,

Page 35

CHAPTER 4. WEB SERVICES COMPOSITION MODELING

Figure 4.1: TPN specification modeling the basic architecture [49]

linked to a Petri-Net segment in its Information System (IS). Consequently, the
state of the service is represented by the positions of tokens within G-Net.

Definition

4.2.3 Definition 1. (G-net Service)
A G-net service is a G-Net S (GSP,IS) where:

• GSP (MS, AS) is a special place that represents the abstraction of the
service where:

- MS is a set of executable methods in the form
of < MtdName > < description >={[P1: description; ...; Pn: description]
(< InitPL >) (< GoalPls >)} where < MtdName > and < description
> are the name and the description of the method respectively. < P1 :
description;; Pn : description > is a set of arguments for the method,
< InitPL > is the name of the initial place for the method and < GoalPls
> is(are) the name(s) of the goal place(s) for the method.
- AS is a set of attributes in the form of <attribute-name >= < type >
where <attribute-name> is the name of the attribute and <type>is the
type of the attribute.

Page 36

CHAPTER 4. WEB SERVICES COMPOSITION MODELING

• IS (P,T,W,F,Trc, Tra, L) is the internal structure of the service, a modi-
fied predicate/transition net, where:
- P = NP ∪ ISP ∪GP is a finite and non empty set of places where NP
is a set of normal places denoted by circles, ISP is the set of instantiated
switch places denoted by ellipses used to interconnect G-Nets, GP is the
set of goal places denoted by double circles used to represent final state of
method’s execution.
- T is a set of transitions.
- W is a set of directed ares W ⊆ (P × T) ∪ (T × P).
- F is an application that associates a description to certain elements of
W.
- Trc is an application that associates a condition to certain transitions
(called selectors of transition), this condition is a logical formula con-
structed from variables which appeared in the inscriptions of adjacent
input-ares.
- Tra is an application that associates an action to certain transitions, this
action is a sequence of affectations of values to variables.
- L : P → O ∪ {τ} is a labeling function where O is a set of operation
names and τ is a silent operation.

Definition 2. (Web Service)
A Web service is a tuple where:

• NameS is the name of the service used as its unique identifier.

• Desc is the description of the provided service. It summarizes what func-
tionalities the service offers.

• Loc is the server in which the service is located.

• URL is the invocation of the Web service.

• CS is a set of the component services of the Web service, if CS = {NameS}
then S is a basic service, otherwise S is a Composite service.

• SGN = (GSP,IS) is the G-Net modeling the dynamic behavior of the
service.

The concept of G-Net service and Web service being presented, we show in the
next section how Web services

can be incrementally composed. We recall that we use G- Nets as a means
to offer a flexible and powerful algebra.

Example

In Figure 2, there is an illustrative example of two services: "Customer" and
"Automatic Cash Dispensers (ACD)," represented by G-Nets. The "Customer"
represents the behavior of an individual who wishes to use the automatic cash
dispenser for operations such as balance inquiries and cash withdrawals. This
requires a valid magnetic card and a secret code. Two cases to consider:

Page 37

CHAPTER 4. WEB SERVICES COMPOSITION MODELING

Figure 4.2: Example of G-net Services [50]

• If it concerns an application for credit, the machine displays the account
balance, whereupon it redisplays the operations table.

• If it concerns funds withdrawal application, the machine displays a win-
dow related to this operation, which allows the client to introduce the
sum he wants to withdraw. After the validation, the validity of the sum
is automatically checked by the machine. If the sum is not sufficient; the
machine would make an indication on the screen, it redisplays the opera-
tions table. In the case of the availability of funds, it will distribute the
banknotes representing the inserted sum.

However, If the confidential code is entered incorrectly three times consecu-
tively, the ACD will capture the magnetic card for security reasons, as it may
indicate that the card user is unauthorized. The retrieval of the card involves
special processing not detailed in this example. Additionally, the customer has
the option to cancel any operation at any time before validation.
The ISP notation facilitates specifying the interconnections between different
G-Nets. In Figure 1’s example, ISP integrates ACD’s methods (validity, code,
display-op, oper, withdrawal) into Customer’s IS to define a client-server rela-
tionship.

Page 38

CHAPTER 4. WEB SERVICES COMPOSITION MODELING

The significance of the using attributes:

• V: indicates either the card is valid or not.

• C: indicates either the confidential code is valid or not.

• B: indicates either the card is blocked or not.

• A-exist: indicates either the sum to withdraw is available in the account
or not.

• I: represents the number of successive errors during the introduction of
the confidential code (at each incorrect attempt the machine increment
by 1 the number I, if the introduced code is accepted the machine affect
the value 0 to I).

• N: represents the confidential code.

• A: represents the sum to withdraw.

• OP: represents the type of the operation (withdraw if OP==1 or credit
consultation if OP==2). [50]

4.2.4 Petri nets model Timed Mop-ECATNet
The elementary Mop-ECATNets model integrates time constraints, but solely in
the form of timeouts. Elapse of timers triggers adaptation processes modifying
the structure of the lower-level controlled net.
Furthermore, Mop-ECATNets do not address the fact that the controlled net
may contain alternative executions that fulfill the required functionality.

Definition

Mop-ECATNets enhance Petri nets by incorporating complex data structures
and synchronization constraints through distinct condition-action distinctions
in firing transitions. Timed Mop-ECATNets extend this further with timed
patterns, where Meta places control and monitor transitions of lower-level nets.
These nets associate waiting durations with Meta place tokens and firing dura-
tions with lower-level transitions.
The essential meaning of these patterns is as follows:
• The pattern of Figure 3.(a) Meta transitions fire only when all input Meta
places’ tokens are unavailable, controlling alternative tasks.
• The second pattern of Figure 3.(b) Meta transitions control parallel tasks,
firing when at least one input Meta place token becomes unavailable.
• The pattern of Figure 3.(c) Sequential task control: Meta transitions fire if an
input Meta place token becomes unavailable before completing all tasks.
• In the pattern of Figure 3.(d), Iterative task control: Meta transitions fire
if an input place token becomes unavailable, regenerating another token in the
same input Meta place.

Page 39

CHAPTER 4. WEB SERVICES COMPOSITION MODELING

Figure 4.3: Timed Mop-ECATNets flexibility patterns, (a) timed Mop-
ECATNet control pattern of alternative tasks (b) timed Mop-ECATNet control
pattern for parallel tasks (c) timed Mop-ECATNet control pattern of sequential
tasks (d) timed Mop-ECATNet control pattern of iterative tasks [51]

Example

Let’s consider the GPS navigation web service, its Timed Mop-ECATNet model
is depicted in Figure 4. Meta places are annotated with waiting durations and
transition of invoked web services are annotated with treatment duration. Send
and receive operations are modelled by the regular transitions of the lower level
component. The execution of GPS service starts by firing the transition t1 that
represents the reception of client request, then the firing of the transition t2
launches two parallel execution threads to calculate, the GPS coordinates and
the kind of travel information. In case of failure, the meta transition mt is fired
and a third alternative web service is invoked to determine GPS coordinates
and the kind of travel information (the transition ti4). Finally, the process is
concluded by invoking the service that returns travel information after receiving
the GPS coordinates and the kind of travel information. [51]

Page 40

CHAPTER 4. WEB SERVICES COMPOSITION MODELING

Figure 4.4: The GPS navigation as a timed Mop-ECATNet [51]

4.2.5 Petri net-based algebra for modeling Web services
The presented algebra provides a systematic framework for generating enhanced
Web services by leveraging pre-existing ones as foundational components.

Definition

They describe the syntax and informal semantics of service algebras below.
These architectures were chosen to enable compilations of common and ad-
vanced web services. The service set can be defined as follows in a BNF-like
technique:

S ::= ϵ | X | S(⊙·)S | S ⊕ S | S ⋄ S | µS
| S || c S | (S | S)⇝ S
[S(p, q) : S(p, q)] | Ref(S, a, S)Ref(S, a, S)

where:
ϵ represents an empty service, i.e, a service which performs no operation.

• X represents a service constant, used as an atomic or basic service in this
context.
• S1 ⊙· S2 represents a composite service that performs the service S1 followed
by the service S2, i.e.,

Page 41

CHAPTER 4. WEB SERVICES COMPOSITION MODELING

is an operator of sequence.

S1⊕ S2

• S1 ⊕S2 represents a composite service that behaves as either service S1
or service S2. Once one of them executes its first operation the second service

is discarded, i.e., is an alternative (or a choice) operator.
S ⋄S represents a composite service that performs either the service S1 followed
by the service S2, or S2 followed by S1, i.e., ⋄
is an unordered sequence (or an arbitrary sequence) operator.

• µS represents a service that performs a certain number of times the service S,
i.e., µ represents an iteration operator.
• S1 ||c S2 represents a composite service that performs the services S1 and S2
independently from each other with possibilities of communication over the set
C of pairs of operations, that is, kC is a parallel operator with communication.
•(S1|S2) ⇝ S3represents a composite service that waits for the execution of
one service (among the services S1 and S2) before activating the subsequent
service S3, i.e., ⇝ is a discriminator operator.
Note that S1 and S2 are performed in parallel and without communication.
[S1(p1, q1) : Sn(pn, qn)] is a composite service that dynamically selects one ser-
vice provider among n available services S1, ..., Sn and executes it. It behaves
as follows: first a request is sent by a composer to n available service providers
of a given trading community through their entry access points p1, ..., pn. Then
based on the received responses, from their exit access points q1, ..., qn, and
according to given ranking criteria (e.g. price, delivery date/time, or a combi-
nation of both) the best service provider is chosen. Finally the needed operations
are performed. [:] is an operator of selection.
• Ref(S1, a, S2) represents a composite service that behaves as S1 except for
operations in S1 with label a that are replaced by the non empty service S2.
Ref is a refinement operator. The proposed algebra verifies the closure property.
It guarantees that each result of an operation on services is a service to which
we can again apply algebra operators. We are thus able to build more com-
plex services by aggregating and reusing existing services through declarative
expressions of service algebra.

Example

Figure 5 shows a Web service composed of three basic services, OCS representing
an Online Computer Store and SM and IP, representing respectively the Sony
Monitors and the Intel Processors. Upon reception of an order rec ord PC for a
computer from a customer, OCS starts, in parallel, the outsourced services SM
to order a monitor and IP to order a processor by performing the operations
send ord mon and send ord pr respectively. The set of communication elements
are C1 = f(send ord mon, rec ord mon), (send del mon, rec del mon)g and C2
= f(send ord pr, rec ord pr), (send del pr, rec del pr)g. Once the requested
items are received, OCS performs the assemble PC operation. Note that, for
the sake of simplicity and clarity, not all the operations of the scenario (e.g,
delivery and billing) are represented and labels are used instead of names for
the transitions. [52]

Page 42

CHAPTER 4. WEB SERVICES COMPOSITION MODELING

Figure 4.5: Service SM ||C1 (OCS ||C2 IP) [52]

Page 43

CHAPTER 4. WEB SERVICES COMPOSITION MODELING

4.3 Others

4.3.1 Enhanced Stacked Automata Model (ESAM)
A new model was proposed to verify composed web services using ESAM. ESAM
is a combination of Amend Muller Automata and Pushdown Automata, making
it suitable for both deterministic and non-deterministic systems.

Definition

An automaton is a mathematical model that represents system behavior using a
discrete number of inputs and outputs. In deterministic systems, upon receiving
an input, it transitions to a single state, whereas in nondeterministic systems,
the same input can lead to multiple states.

Example

Figure 6 shows the example of deterministic finite automata .it contains six
states namely Q0, Q1, Q2, Q3, Q4 and Q5. Giving input “a” to Q0 it goes to
Q1state only. Double circle is represented as final state. On receiving an input
“a”, it does not go to more than one state.

Figure 4.6: Deterministic finite automata [53]

The Figure 7 shows the transition diagram for the non - deterministic Sys-
tem. It contains six states namely Q0, Q1, Q2, Q3, Q4 and Q5. Giving an input
a to Q0 it goes to Q1, Q3 and Q4states. Double circle is represented as final
state. Deterministic system avoids the problem like reachability and emptiness
to an extend of 40 to 50Timed automata and Interface Automata. Whereas non-
deterministic System avoids the problems like Reachability, Emptiness, Dead
Transition, and Deadlock at 95 to 99

Page 44

CHAPTER 4. WEB SERVICES COMPOSITION MODELING

Figure 4.7: Non-deterministic finite automata [53]

4.3.2 model IMWSC
IMWSC is a framework used to represent the process of invoking web services,
where web services are software applications accessible over the network.

Definition

Formally, an IMWSC is a septuple ⟨Service, Proc,Activity, L,Message,Ra, F ⟩,
where:

• Service denotes a set of web services;

• Proc is a set of processes;

• Activity is a set of activities;

• L is a set of sequences of activities;

• Message is a set of messages that are exchanged by services;

• Ra ⊆ Activity ×Activity is a binary relation;

• F is a sextuple ⟨fp, fpS , fpU , faP , faT , fmA⟩, where:

– fpT : Proc → {c, b} is a mapping that describes the type of each
process (composite or basic);

– fpS : Proc → {} Service is a mapping that describes the type of each
process (composite or atomic);

– fpU : Proc → Proc is a mapping that associates a process with a
composite process;

– faP : Activity → Proc is a mapping that associates each activity
with a process;

– faT : Activity → Proc {ii, io, ei, eo, ex}is a mapping that describes
the type of each activity (internal input, internal output,
environmental input, environmental output, execute).f_mA: Message
→ Activity is a mapping that associates each message with an activ-
ity;

–– fmA: Message → Activity is a mapping that associates each message
with an activity;

Page 45

CHAPTER 4. WEB SERVICES COMPOSITION MODELING

We let proc = {proc} for Proc. Let con = {a ∈ Activity|a ∧ a ∈
aP and fp(a) ∈ pT}. c ⊆ Activity × Activity be a partial order relation
over Activity, defined as: c = {(a1, a2)|a1, a2 ∈ Activity ∧ aP1 = aP2 ∧
(a1 happens earlier than a2)}. An element proc in Proc is constructed
by the following g. proc = α | 1 || proc1 proc2 | proc1 p proc2, where: α ∈
Activity; proc1, proc2 ∈ Proc.

– α is a new process that performs proc1 and proc2 independently;
– 1 || proc1 proc2 is a new process that performs proc1 and proc2 se-

quentially.
– proc1 p proc2.

Figure. 8 presents an illustration of the structure of IMWSC. In Figure.
8, a service is visualized by a circle. interaction of services is visualized by
a pair of parallel arrows (with opposite directions); the interaction process
Definition, i.e., the definition of an instance of IMWSC, is visualized by a
rectangle.

Figure 4.8: Structure of IMWSC [54]

Example

They investigated the application of IMWSC in a simple scenario. There
are three services involved in this scenario:

1. The Client Service, which need to find out some useful information
(for convenience, client here is considered as a service).

2. The Response Service, which is responsible for dealing with informa-
tion inquiry requests.

3. The Information Service, which acts as a database and providing the
useful information.

The business process of this scenario is introduced briefly as follows:
1. The Response Service receives a request from the Client Service which
need to find out some useful information;
2. The Response Service contacts the Information Service and relay the

Page 46

CHAPTER 4. WEB SERVICES COMPOSITION MODELING

information inquiry request;
3. The Response Service answers the questions to the Client Service.
Fig. 3 presents an illustration of the structure of this scenario, where

– A service is visualized by a rectangle (with round angles);

– A state of a service is visualized by a circle (the initial and the ter-
minative states of a service are visualized by icons, respectively);

– A transition between states is visualized by an arrow (with curve
line), from the source state to the target state;

– The supply channels of services in this scenario is visualized by a pair
of parallel arrows (with opposite directions) [54].

Figure 4.9: A Scenario of Interaction of Services [54]

Page 47

CHAPTER 4. WEB SERVICES COMPOSITION MODELING

4.3.3 Comparison of Modeling Approaches: Petri Nets
and Others

Approaches Modeling
Scope

Complexity
Handling

Semantic
Clarity

Expressiveness

Petri net A broader
application
scope be-
yond web
service com-
position,
covering
areas like
parallel
processing,
distributed
systems, etc.

May suffer
from state
explosion

Might be
lacking.

Offer ex-
pressive
modeling
capabilities.

ESAM Are more
tailored
towards
specific do-
mains.

Offer meth-
ods to
handle
complexity
through
precise
represen-
tations or
hierarchical
composi-
tions.

Might be
lacking .

Offer ex-
pressive
modeling
capabilities.

IMWSC Are more
tailored
towards
specific do-
mains.

Offer meth-
ods to
handle
complexity
through
precise
represen-
tations or
hierarchical
composi-
tions.

Stands
out for its
emphasis
on seman-
tic clarity,
ensuring
correct
preservation
of behavior-
related
information.

Provides a
specialized
and poten-
tially more
focused ap-
proach.

Table 4.1: Comparison of Petri Nets and Others

Through comparison, we can conclude that each model has its own dis-
tinct properties that make it suitable for modeling web services in different
ways.

Page 48

CHAPTER 4. WEB SERVICES COMPOSITION MODELING

4.4 Modelling approach base on TPN model:
WSCTPN

We introduce, in the following, the WSCTPN model which is a particular
case of an TPN.

Definition A WSCTPN is a tuple (RT, pb, pe), such that:
- RT = (P, T,B, F,M0, Is) is a Time Petri Net .
- pb is a special place of P called the beginning place of the WSCTPN ,
and we have: •pb = ∅ and M0(pb) ̸= 0;
- pe is a special place of P called the ending place of the workflow, and we
have: pe• = ∅ and M0(pe) = 0 ; where: •x denotes the set of input transi-
tions connected to the place x while x•: gives the set of output transitions
connected to x .

The place pb denotes the source of the net while the place pe the sink of the
net. The WSCTPN should verify that there exists a run from the initial
marking including the place pb to a final marking including the place pe ;
we say that the net is strongly connected.

The WSCTPN model of the whole WSC can be obtained by the following
approach:

1. First we create the places pe and pb.

2. A single WS: Each elementary unit:(task) is mapped into a transi-
tion t ∈ T and an input place p ∈ P . For time constraints a time
interval is associated with each transition’s task I(t) = [x(t), y(t)],
thus, defining the earliest and the latest time delay of the task. If
no time constraint are imposed, we have I(t) = [0,+∞]. Otherwise
with I(t) = [0, 0] the task t cannot be delayed and must occur as
soon as the input place is marked (See Fig.5.(x)). If the task is the
first in the process then its input place is pb. If it is the last in the
workflow then its output place is pe.

3. Sequence: In the example of Figure 5.a, tasks t1 and t2 are exe-
cuted sequentially, representing precedence constraints of task (WS)
execution;

4. Choice: In Figure 5.b, t1 and t2 are in conflict and can never occur
both;

5. Concurrency : In Figure 5.c, tasks are in concurrency; they occur in
parallel and are not in conflict. Their execution can be governed by
synchronization rules that are expressed in the form of rendezvous.

Page 49

CHAPTER 4. WEB SERVICES COMPOSITION MODELING

(x)

Figure 4.10: Modelling approach with WSCTPN

In the next chapter, we present a case-study to highlight the expression
power of the the WSCTPN model in modelling web service composition
systems.

4.5 Conclusion

In this chapter, we examined the modeling of web service composition
using Petri nets, as well as other models such as ESAM and IMWSC.
Examples were provided for each model to illustrate how they are used in
representing the processes of web service composition. Finally, a compre-
hensive comparison was conducted between these models.

Page 50

Chapter 5

Case Study: (EC.WSC)

5.1 Introduction

In this concrete chapter, we delve into a case study revolving around the
E.COMMERCE WEB SERVICE COMPOSITION: (EC.WSC) system, a
well-known example in the literature. This study aims to illustrate the
"MODELCHEKING" process of (EC.WSC) system using Time Petri Net
(TPN) models. E-commerce stands as one of the most significant web
applications, encompassing online sales, booking, and payment processes.
Through this study, we seek to analyze complex operations, ensuring the
integration and efficiency of services using advanced analytical tools like
the TINA framework.

5.2 MODELLING of (EC.WSC)

5.2.1 Description

E-commerce (EC) is the product/service sale for articles of different caté-
gories via the Internet. Moreover, (EC) is one of the most known web
service in hole world (exp: Aliexpress, Amazon, ...etc). (EC) web service
may include ordering, booking, payment and delivery of goods/services.
We call (EC.WSC) the e- commerce web service composition of compo-
nent and is presented in Figure 1.

We now discuss our (EC.WSC) system where seller (S1) and (S2) may
trade with one (in our case) or a several buyers (B) at the same time (see
experiments later).
Our seller (S1) may have more than one home/appartement/ car for sale,
wheras the seller (S2) may have more than one home/appartement/car
for booking. We call product the set : home/appartement/car. Once the
booking process finished the product became free and can be a part of the
next process (either booking or buying), witch is not possible in the case
of selling products.

51

CHAPTER 5. CASE STUDY: (EC.WSC)

We use the theoretical process of modelling based on Time Petri Net
(TPN) formalism described in the previous chapter. First, the process
start at transition start-EC.WSC at [0, 2], three parallel sub-process are
ready to begin: seller (S1) seller (S2) and buyer (B). The seller (S1)
presents a selling offer represented by transitions (selling-offer) at [0, 3]
and the seller (S2) presents a booking offer presented by (booking-offer)
at [0, 3]. In parallel the client reads the offers and choose either buying or
booking process: booking-process and buying-process transitions.

If the client choose the booking process with transition :booking, the pay-
ment is requiered with a credit card : transition: booking-payement. Oth-
erwise, he chooses selling with transition: selling, then the payement of
buying is requiered transition: selling-payement. In both sub process the
payment can be refuse if any problem with the credit card (exp : no signif-
icant account balance) palces booking-refuse and selling-refuse, otherwise,
both process (booking or selling) finishe and the EC.WSC finishes as well
: transition Finish-EC.WSC.

5.2.2 TPN model of EC.WSC

Using the modeling process of the last chapter we can extract some basic
structures :

– First we create the places pe and pb of our EC.WSC.

– A single WS: elementary units:(task) S1 and seller-offer, S2 and
bookig-offer...etc.

– Sequence: In our case study of Figure 1, tasks seller-offer and selling-
process resp (booking-offer and booking-process) are executed se-
quentially, representing precedence constraints of task (WS) execu-
tion.

– Choice: In Figure 1, accept and refuse payments (s-payment or b-
payments) are in conflict and can never occur both.

– Concurrency: In Figure 1, tasks seller-offer and bookig-offer are in
concurrency; they occur in parallel and are not in conflict.

First, we represent the system for the case study using a Time Petri Net
as illustrated in the following figure 1:

Page 52

CHAPTER 5. CASE STUDY: (EC.WSC)

Figure 5.1: TPN of EC.WSC

In the following tables, we extract some of the places and transitions found
in Figure 1 with their description within the system:

Page 53

CHAPTER 5. CASE STUDY: (EC.WSC)

number
places

descriptions places

p1 Beginning of the e-commerce web ser-
vice composition process.

p4 The customer reads the offers and
chooses.

p12 Payment for booking using a credit
card.

p17 Completion of the e-commerce web ser-
vice composition process.

Table 5.1: Description of some places in the EC.WSC system

number
transi-
tions

descriptions transitions

t2 The seller presents a sales offer
t3 The customer presents a booking offer.
t10 The client chooses the booking process.
t11 Payment for the purchase using a credit

card.

Table 5.2: Description of some Transitions in the EC.WSC system

5.2.3 Input TINA

To start modeling the EC.WSC system case study using the TINA (Time
Petri Net Analyzer) tool, we will first enter the various components of the
system into TINA as illustrated in the following figure :

Figure 5.2: Case Study.ndr

This Figure 2 represents a graphical description of the case study and
Figure 3 represents a textual description.

Page 54

CHAPTER 5. CASE STUDY: (EC.WSC)

Figure 5.3: Case Study.net

5.3 CHECKING of (EC.WSC)

CHECKING (EC.WSC), means that we use output TINA TOOL and
resd the (graphical/textual) generated files. The graphical description for
the case study (in .ndr format for Time Petri Nets) in TINA by selecting
tools->state space analysis, where the following window appears:

Figure 5.4: Tina options

In this window, we select in the elements building->state classes preserv-
ing and also output->verbose. In our study, we’ll concentrate on six state
classes preserving:

1. Markings (M).

2. Markings and LTL (W).

3. States E.

4. States and LTL (S).

Page 55

CHAPTER 5. CASE STUDY: (EC.WSC)

5. States and CTL* (A).

6. States and CTL* (U).

Remark:
The equivalence between states is different when considering the CTL* (A)
construction or the CTL* (U) construction (inclusion or/and equality).

5.3.1 The generated graphs

Markings (-M)

First, we select "Markings (-M)" and "verbose".

Figure 5.5: Markings (-M)

When we click on OK, we obtain the following:

Figure 5.6: The output (-M)

Page 56

CHAPTER 5. CASE STUDY: (EC.WSC)

And here is the mark of each class:

Figure 5.7: The mark of each class mode -M

The properties of markings (-M):

Figure 5.8: The properties of markings (-M)

Page 57

CHAPTER 5. CASE STUDY: (EC.WSC)

Markings and LTL (-W)

First, we select "Markings and LTL (-W)" and "verbose" .

Figure 5.9: Markings and LTL (-W)

When we click on OK, we obtain the following:

Figure 5.10: The output (-W)

Page 58

CHAPTER 5. CASE STUDY: (EC.WSC)

And here is the mark of each class:

Figure 5.11: The mark of each class mode -W

The properties of markings and LTL (-W):

Figure 5.12: Properties of markings and LTL (-W)

Page 59

CHAPTER 5. CASE STUDY: (EC.WSC)

States E

First, we select "States E." and "verbose" .

Figure 5.13: States E

When we click on OK, we obtain the following:

Figure 5.14: The output E

Page 60

CHAPTER 5. CASE STUDY: (EC.WSC)

And here is the mark of each class:

Figure 5.15: The mark of each class mode -E

The properties of States E:

Figure 5.16: The properties of States E

Page 61

CHAPTER 5. CASE STUDY: (EC.WSC)

States and LTL (S)

First, we select "States and LTL (S)" and "verbose" .

Figure 5.17: States and LTL (S)

When we click on OK, we obtain the following:

Figure 5.18: The output States and LTL (S)

Page 62

CHAPTER 5. CASE STUDY: (EC.WSC)

And here is the mark of each class:

Figure 5.19: the mark of each class mode -S

The properties of States and LTL (S):

Figure 5.20: The properties of mode -S

Page 63

CHAPTER 5. CASE STUDY: (EC.WSC)

States and CTL* (A)

First, we select "States and CTL* (A)" and "verbose" .

Figure 5.21: States and CTL* (A)

When we click on OK, we obtain the following:

Figure 5.22: The output States and CTL* (A)

Page 64

CHAPTER 5. CASE STUDY: (EC.WSC)

And here is the mark of each class:

Figure 5.23: The mark of each class mode -A

The properties of States and CTL* (A):

Figure 5.24: The properties of States and CTL* (A)

Page 65

CHAPTER 5. CASE STUDY: (EC.WSC)

States and CTL* (U)

First, we select "Markings and CTL* (U)" and "verbose" .

Figure 5.25: States and CTL* (U)

When we click on OK, we obtain the following:

Figure 5.26: The output states and CTL* (U)

Page 66

CHAPTER 5. CASE STUDY: (EC.WSC)

And here is the mark of each class:

Figure 5.27: The mark of each class mode -U

The properties of States and CTL* (U):

Figure 5.28: properties of States and CTL* (U)

Page 67

CHAPTER 5. CASE STUDY: (EC.WSC)

5.3.2 Output of the case study with mode A:

1. Graphical description

Figure 5.29: Graphical description of the case study with mode A

2. Text description

Figure 5.30: Text description of the case study with mode A

In the same way, we can obtain different construction implemented in
TINA in the next table.

5.3.3 Computing experiments

TINA tool generate a many graphs, the most known and importants one
for our case (cheking) are: (M) mode, (E) mode, (W) mode, (S) mode,
and (A) and (U) modes. We are not investigated the algorithms in this
experiments, we are comparing results of computing of the number of
classes, edges (arcs) and time CPU.

Page 68

CHAPTER 5. CASE STUDY: (EC.WSC)

Examples computing (M) (E) (W) (S) (A) (U)

Case 1:
Classes 39 39 39 39 39 39
Arcs 18 18 18 18 18 18
CPU 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s

Case 2:
Classes 30 31 34 41 41 48
Arcs 39 39 39 39 39 39
CPU 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s

Table 5.3: Results of computing of the number of classes, edges (arcs) and time
CPU

Remark:
Case:1 means the following values of transitions t1 = [0, 1]; t2 = [0, 0];
t3 = [0, 0]. Whereas, the Case:2 means the values t1 = [0, 1]; t2 = [0, 3];
t3 = [0, 3] of transitions.

5.3.4 Discussion and comparaison

Figure 5.31: Checking properties

All constructions have the same number of classes, arcs and CPU time
for case 1. In case 2 (when transitions values are modified), the number
of classes change and became bigger, the reason is that the A mode some
classes can split to more then one class due to the atomic properties.

When the example is not too important(2 seller and 1 buyer), we can see
easily that it takes a tiny time execution (0.00s). For reachabiliy analy-
sis, using the generated graphs, we can easily verify any linear or atomic
properties. For reachability, we can see that the marking (stat) S1S2B1 is
reachable. For safty, we can see that the graphs have no deadlock.

Finaly, the properties using TINA can be checked directly see figure on
top right.

Page 69

Marking EC.WSC :

 t Start-EC.WSC

 t selling-offer t booking-offer

 t Read--offer,Chose

 t buying -process t Booking-process

 t B_ paymt

 t S_ paymt

 t Refuse_S_p

 t Accept_S_p t Refuse_B_p t Accept_B_p

 t Product_Selling t Free_ Product

 t Finish-EC.WSC

The EC.WSC marking graph

Pe

S1 S2 B

B-(R,Ch)
S1-Selling
Product

B-(R,Ch)
S2-Booking
Product

Booking
C.card

Pe

Booking
-

Paymen

End-
Payment

Product

booking
- Accept

Buying
C.card

Selling-
Payment

selling-
Accept

CHAPTER 5. CASE STUDY: (EC.WSC)

5.4 Conclusion

In this chapter we choose the EC.WSC case study, a topical and current
system nowadays. We use TPN formalism for modelling and TINA tool
for checking properties (linear or atomics). TINA can generate a many
graphs a cording to different algorithms and needs. We use the 8 most
important modes in our work.

Page 71

Chapter 6

Conclusion

6.1 Conclusion General

Web services and web service composition are powerful technologies with
the potential to transform applications, hardware, and software resources
into standardized, reusable, and dynamically integrated software compo-
nents [1]. As web services are increasingly recognized as key drivers of
online activities, their significance in achieving seamless and efficient inte-
gration between various systems and software components becomes ever
more apparent.
The growing challenges in the technology world demand innovative so-
lutions to meet the increasingly complex user needs. Since a single web
service may not suffice to meet all user needs, web service composition has
been developed to integrate multiple individual services into a composite
service that addresses complex user requirements [55]. This composition
should prioritize efficiently and effectively meeting users’ functional re-
quests.
Web services play a crucial role in the IT world, contributing to the in-
tegration between different systems and facilitating interaction between
applications through standard web protocols. Web service composition
can be performed in various ways using different models to ensure effec-
tive integration and high performance. Our study was comprehensive,
reviewing various models used in web service composition, including Petri
nets and time Petri nets.
To analyze and model web service composition, we utilized Petri nets,
which are powerful tools for modeling and analyzing complex processes.
Petri nets provide a robust mathematical framework to represent flows and
concurrent processes in distributed systems, helping to detect errors and
improve performance. Additionally, we employed time Petri nets (TPNs),
which extend traditional Petri nets by incorporating the time dimension.
This extension allows us to model time-dependent systems and analyze
the temporal performance of processes, providing a more comprehensive
understanding of system behavior in various operational environments.
Using the TINA tool for analyzing time Petri net models, we examined

72

CHAPTER 6. CONCLUSION

and analyzed web service composition in our case study. Our study fo-
cused on the EC.WSC system where the seller provides both sales and
booking services to the buyer. The results demonstrated the significant
effectiveness of this approach in ensuring the correctness and performance
of composite services. The use of the TINA tool proved highly effective in
analyzing time Petri net models, ensuring high and accurate performance
of integrated services.
In this work, we relied on two main tools: TINA and LaTeX. We used
TINA, the Time Petri Net Analyzer, for modeling and analyzing the com-
position of web services. TINA provides powerful capabilities for con-
structing and verifying time Petri nets, which is essential for ensuring
the correctness and performance of web services. Additionally, we used
LaTeX, a high-quality typesetting system, for creating and editing PDF
documents. LaTeX is particularly useful for producing technical and sci-
entific documentation with professionalism and precision.
The use of time Petri nets and the TINA tool provides a solid framework
for analyzing and developing composite web services, paving the way for
further research and development in this vital field. By delving deeper into
the use of these tools, we can achieve a more comprehensive and detailed
understanding of the web service composition process, ensuring effective
integration and high performance in various operational environments.

Future Work:
For future work, several directions can be explored to expand the research
and deepen our understanding of web service composition and the utiliza-
tion of available tools:
Expand Application Scope: Investigate the usage and applications of web
services in other domains such as workflow, task scheduling, and the In-
ternet of Things (IoT). This direction can provide a deeper understanding
of how service compositions can be adapted to meet the requirements of
these new areas.
Select Additional Tools: Choose and explore additional tools for system
analysis and modeling, such as Romero, RT Studio, and Oris, to broaden
the analytical capabilities and leverage more features and available tech-
nologies.
Expand Modeling: Extend the work to explore other extensions of the
Petri net model, such as Timed Petri Nets (TPN) with Rendezvous tech-
nique, to better understand complex service compositions and interactions
between them.
By directing work towards these directions, we can contribute to the de-
velopment of understanding and knowledge in the field of web service
composition, providing a strong foundation for future research endeavors.
This expansion can open new horizons for innovation and improvement in
the design and analysis of web services, ensuring that user needs are met
more efficiently and effectively.

Page 73

Bibliography

[1] Angel Lagares Lemos, Florian Daniel, Boualem Benatallah. Web ser-
vice composition: a survey of techniques and tools. ACM Computing
Surveys (CSUR), vol. 48, no. 3, pp. 1–41, 2015. ACM New York, NY,
USA.

[2] Hongxia Tong, Jian Cao, Shensheng Zhang, Minglu Li. A distributed
algorithm for web service composition based on service agent model.
IEEE Transactions on Parallel and Distributed Systems, vol. 22, no.
12, pp. 2008–2021, 2011. IEEE.

[3] Wil Aalst. Three Good Reasons for Using A Petri-Net-Based Work-
flow Management System. In Engineering and Computer Science, vol.
11, pp. 161–182, 1998. ISBN 978-1-4613-7512-8. doi: 10.1007/978-1-
4615-5499-810.

[4] Guobing Zou, Yixin Chen, Y. Yang, Ruoyun Huang, You Xu. AI
planning and combinatorial optimization for web service composition
in cloud computing. In Proc international conference on cloud com-
puting and virtualization, pp. 1–8, 2010.

[5] Mahboobeh Moghaddam, Joseph G. Davis. Service selection in web
service composition: A comparative review of existing approaches.
Web services foundations, pp. 321–346, 2013. Springer.

[6] Antonio Bucchiarone, Annapaola Marconi, Marco Pistore, Heorhi
Raik. A context-aware framework for dynamic composition of process
fragments in the internet of services. Journal of Internet Services and
Applications, vol. 8, pp. 1–23, 2017. Springer.

[7] Heather Kreger et al. Web services conceptual architecture (WSCA
1.0). IBM software group, vol. 5, no. 1, pp. 6–7, 2001.

[8] Robert Daigneau. Service Design Patterns: fundamental design so-
lutions for SOAP/WSDL and restful Web Services. Addison-Wesley,
2012.

[9] Michael P. Papazoglou, Jean-jacques Dubray. A survey of web service
technologies. University of Trento, 2004.

[10] Mohammad Hammoudeh, Ajlan Al-Ajlan. Implementing web services
using PHP soap approach. International Association of Online Engi-
neering, 2020.

[11] Z. Aziz, C. J. Anumba, Darshan Ruikar, P. Carrillo, D. Bouchlaghem.
Intelligent wireless web services for construction—A review of the

74

BIBLIOGRAPHY

enabling technologies. Automation in Construction, vol. 15, no. 2, pp.
113–123, 2006. Elsevier.

[12] Bery Leouro MBAIOSSOUM, Adoum Haroun ADOUM, Lang DION-
LAR. Conception d’une plateforme numérique de suivi des dossiers.
Afrique SCIENCE, vol. 19, no. 1, pp. 107–117, 2021.

[13] Festim Halili, Erenis Ramadani et al. Web services: a comparison of
soap and rest services. Modern Applied Science, vol. 12, no. 3, pp.
175, 2018. Canadian Center of Science and Education.

[14] Digvijaysinh Rathod. Performance evaluation of restful web services
and soap/wsdl web services. International Journal of Advanced Re-
search in Computer Science, vol. 8, no. 7, pp. 415–420, 2017.

[15] D.V. Kornienko, S.V. Mishina, S.V. Shcherbatykh, M.O. Melnikov.
Principles of securing RESTful API web services developed with
python frameworks. In Journal of Physics: Conference Series, vol.
2094, no. 3, pp. 032016, 2021. IOP Publishing.

[16] Bret Hartman, Donald J. Flinn, Konstantin Beznosov, Shirley
Kawamoto. Mastering web services security. John Wiley & Sons,
2003.

[17] Imam Ahmad, Emi Suwarni, Rohmat Indra Borman, Farli Rossi,
Yessi Jusman et al. Implementation of RESTful API Web Services
Architecture in Takeaway Application Development. In 2021 1st In-
ternational Conference on Electronic and Electrical Engineering and
Intelligent System (ICE3IS), pp. 132–137, 2021. IEEE.

[18] James McGovern, Sameer Tyagi, Michael Stevens, Sunil Mathew.
Java web services architecture. Elsevier, 2003.

[19] Mark Endrei, Jenny Ang, Ali Arsanjani, Sook Chua, Philippe Comte,
Pål Krogdahl, Min Luo, Tony Newling. Patterns: service-oriented ar-
chitecture and web services. IBM Corporation, International Techni-
cal Support Organization, 2004.

[20] Zaki Brahmi, Afef Selmi. Coordinate system-based trust-aware web
services composition in edge and cloud environment. The Computer
Journal, vol. 66, no. 9, pp. 2102–2117, 2023. Oxford University Press.

[21] Guobing Zou, Qiang Lu, Yixin Chen, Ruoyun Huang, You Xu, Yang
Xiang. QoS-aware dynamic composition of web services using numer-
ical temporal planning. IEEE Transactions on Services Computing,
vol. 7, no. 1, pp. 18–31, 2012. IEEE.

[22] Jian Yang, Mike P. Papazoglou. Service components for managing the
life-cycle of service compositions. Information Systems, vol. 29, no. 2,
pp. 97–125, 2004. Elsevier.

[23] Yasmine Charif, Nicolas Sabouret. Dynamic service composition en-
abled by introspective agent coordination. Autonomous agents and
multi-agent systems, vol. 26, pp. 54–85, 2013. Springer.

[24] Quan Z. Sheng, Xiaoqiang Qiao, Athanasios V. Vasilakos, Claudia Sz-
abo, Scott Bourne, Xiaofei Xu. Web services composition: A decade’s
overview. Information Sciences, vol. 280, pp. 218–238, 2014. Elsevier.

Page 75

BIBLIOGRAPHY

[25] Dr. K. Jayarajan. WEB SERVICES COMPOSITION METHODS
AND TECHNIQUES: A REVIEW.

[26] Ali KHEBIZI. Prise en Compte des Contraintes lors de la Découverte
et de l’Orchestration des Services Web. 2009.

[27] Florian Daniel, Barbara Pernici.

[28] Martin Bernauer, Gerti Kappel, Gerhard Kramler, Werner Rets-
chitzegger. Specification of interorganizational workflows-A compari-
son of approaches. Interaction, vol. 2, pp. c1, 2003.

[29] Serge Haddad, Tarek Melliti, Patrice Moreaux, Sylvain Rampacek.
Modelling Web Services Interoperability. In ICEIS (4), pp. 287–295,
2004.

[30] Frank Leymann et al. Web services flow language (WSFL 1.0), 2001.

[31] D. Papakonstantinou, V. Koufi, G. Vassilacopoulos. A SERVICE-
ORIENTED ELECTRONIC MEDICAL RECORD ARCHITEC-
TURE. INFORMATION COMMUNICATION TECHNOLOGIES
IN HEALTH.

[32] Anis Charfi, Rainer Berbner, Mira Mezini, Ralf Steinmetz. On the
Management Requirements of Web Service Compositions. Emerging
Web Services Technology, Volume II, pp. 97–109, 2008. Springer.

[33] Carl Adam Petri. Communication with Automata [Kommunikation
mit Automaten], 1962. University of Bonn.

[34] Philip Meir Merlin. A study of the recoverability of computing systems,
1975.

[35] Bernard Berthomieu, François Vernadat. Time Petri Nets Analysis
with TINA. In QEST, vol. 6, pp. 123–124, 2006.

[36] Carl Adam Petri, Wolfgang Reisig. Petri net. Scholarpedia, vol. 3, no.
4, pp. 6477, 2008.

[37] Richard Johnsonbaugh. Discrete Mathematics and Its Applications,
Sixth Edition: Petri Nets (Chapter 11), 2007. https://condor.
depaul.edu/~rjohnson/dm6th/petri.pdf.

[38] Alireza Bahramian, Fatemeh Parastesh, Viet-Thanh Pham, Tomasz
Kapitaniak, Sajad Jafari, Matjaž Perc. Collective behavior in a two-
layer neuronal network with time-varying chemical connections that
are controlled by a Petri net. Chaos: An Interdisciplinary Journal of
Nonlinear Science, vol. 31, no. 3, 2021. AIP Publishing.

[39] P. I., C. A. Kommunikation mit Automaton. Schriften des Rheinlsch-
Westfal-ischen Instituts für Instrumentelle Mathematik an der Uni-
versitat Bonn, Heft 2, Bonn, W. Germany, 1962. Translation: C. F.
Greene, Supplement 1 to Tech. Rep. RADC-TR-65-337, Vol. 1, Rome
Air Development Center, Griffiss Air Force Base, N.Y., 1965.

[40] A. W. Holt, H. Saint, R. M. Shapiro, S. Warshall. Final report of
the information system theory project. Tech. Rep. RADC-TR68-305,
Rome Air Development Center, Griffiss Air Force Base, N. Y., Sept
1968.

Page 76

https://condor.depaul.edu/~rjohnson/dm6th/petri.pdf
https://condor.depaul.edu/~rjohnson/dm6th/petri.pdf

BIBLIOGRAPHY

[41] A. W. Holt, F. Commoner. Events and condition. Applied Data Re-
search, N.Y., 1970. Also in Record Project MAC Conf. Concurrent
Systems and Parallel Computatmn, (Chapters I, II, IV, and VI)
ACM, N.Y., 1970, pp. 3-52.

[42] Richard Zurawski, MengChu Zhou. Petri Nets and Industrial Appli-
cations: A Tutorial. Pennsylvania State Univ., University Park, PA,
USA, 1994.

[43] Chander Ramchandani. Analysis of asynchronous concurrent systems
by timed petri nets. PhD thesis, Massachusetts Institute of Technol-
ogy, USA, 1973. http://hdl.handle.net/1721.1/13739.

[44] Abdia Hamdani, Abdelkrim Abdelli. Time Petri net with rendezvous.
In 4th International Conference on Control, Decision and Informa-
tion Technologies, CoDIT 2017, Barcelona, Spain, April 5-7, 2017,
pp. 126–131, IEEE, 2017. https://doi.org/10.1109/CoDIT.2017.
8102578.

[45] Abdia Hamdani, Abdelkrim Abdelli. Towards modelling and analyz-
ing timed workflow systems with complex synchronizations. J. King
Saud Univ. Comput. Inf. Sci., vol. 32, no. 4, pp. 491–504, 2020.
https://doi.org/10.1016/j.jksuci.2019.08.007.

[46] Bernard Berthomieu, François Vernadat. State class constructions for
branching analysis of time Petri nets. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems,
pp. 442–457, Springer, 2003.

[47] Hanifa Boucheneb, U. Alger, Gérard Berthelot. Towards a simpli-
fied building of time Petri Nets reachability graph. In Proceedings
of the 5th International Workshop on Petri Nets and Performance
Models, PNPM 1993, Toulouse, France, October 19-22, 1993, pp.
46–47, IEEE Computer Society, 1993. https://doi.org/10.1109/
PNPM.1993.393436.

[48] Roy Grønmo, Ida Solheim. Towards Modeling Web Service Composi-
tion in UML. WSMAI, vol. 4, pp. 72–86, 2004.

[49] Abdelkrim Abdelli, Walid Serrai, Lynda Mokdad, Youcef Hammal.
Time Petri Nets for performance evaluation of composite web services
architectures. In 2015 IEEE Symposium on Computers and Commu-
nication (ISCC), pp. 122–127, IEEE, 2015.

[50] Sofiane Chemaa, Raida Elmansouri, Allaoua Chaoui. Web services
modeling and composition approach using object-oriented Petri nets.
arXiv preprint arXiv:1304.2080, 2013.

[51] Fateh Latreche, Faiza Belala. A layered Petri net model to formally
analyse time critical web service composition. International Journal
of Critical Computer-Based Systems, vol. 7, no. 2, pp. 119–137, 2017.
Inderscience Publishers (IEL).

[52] Rachid Hamadi, Boualem Benatallah. A Petri net-based model for
web service composition. In Proceedings of the 14th Australasian
database conference-Volume 17, pp. 191–200, 2003.

Page 77

http://hdl.handle.net/1721.1/13739
https://doi.org/10.1109/CoDIT.2017.8102578
https://doi.org/10.1109/CoDIT.2017.8102578
https://doi.org/10.1016/j.jksuci.2019.08.007
https://doi.org/10.1109/PNPM.1993.393436
https://doi.org/10.1109/PNPM.1993.393436

BIBLIOGRAPHY

[53] Danapaquiame Nagamouttou, Ilavarasan Egambaram, Muthuman-
ickam Krishnan, Poonkuzhali Narasingam. A verification strategy for
web services composition using enhanced stacked automata model.
SpringerPlus, vol. 4, pp. 1–13, 2015. Springer.

[54] Li Bao, Weishi Zhang, Xiong Xie. A Formal Model for Abstracting
the Interaction of Web Services. J. Comput., vol. 5, no. 1, pp. 91–98,
2010. Publisher: Citeseer.

[55] Dongjin Yu, Lei Zhang, Chengfei Liu, Rui Zhou, Dengwei Xu. Auto-
matic Web service composition driven by keyword query. World Wide
Web, vol. 23, pp. 1665–1692, 2020. Publisher: Springer.

[56] TINA TOOL. LAAS/CNRS. http://projects.laas.fr/tina/
/home.php. Date: July 5, 2021.

[57] Peter Jansson. Writing Science with LATEX. Stockholm University,
2019. Book.

[58] Swetha Priyanka Katta and others. A Comparative Study of Overleaf
and Cocalc using Usability Heuristics, 2022.

Page 78

http://projects.laas.fr/tina//home.php
http://projects.laas.fr/tina//home.php

Chapter 7

Annex A: TINA TOOL

TINA (TIme petri Net Analyzer) is a toolbox for the editing and
analysis of Petri Nets, with possibly inhibitor and read arcs, Time Petri
Nets, with possibly priorities and stopwatches, and an extension of Time
Petri Nets with data handling called Time Transition Systems. TINA has
been developed in the OLC, then VerTICS, research groups of LAAS/CNRS.
General Petri nets information can be found on the Petri Nets World site.

The Tina application interface appears like this:

Figure 7.1: TINA application interface

The TINA toolbox includes the tools:
nd (NetDraw): Editor and GUI for Petri nets, Time Petri Nets and
Automata.
Handles graphically or textually described nets or automata. Interfaced
with analysis tools below. Includes drawing facilities for nets and au-
tomata and a stepper simulator for nets.
tina: Construction of reachability graphs.
From nets described in textual or graphical form, produces transition sys-
tems abstracting their behavior in human readable form or in various
formats for available model checkers and equivalence checkers.depending
on options retained, it builds: The coverability graph of a Petri net, by

79

the Karp and Miller technique.
The marking graph of a bounded Petri net.
Partial marking graphs of a Petri net.
Various state space abstractions for Time Petri nets (state class graphs).
Depending on the option selected, the construction perserves markings,
states, LTL properties, or CTL* properties of the concrete state space of
the Time Petri net.

Operating modes: nd edits either Time Petri nets or automata, depend-
ing on command line flags, the file loaded, or options selected. The tools
button provides specific analysis tools. In each case, descriptions may be
textual or graphical:

1. Textual descriptions are in .net (resp .aut) format. They are con-
verted into graphical form by Edit->draw. Text editing bindings are
those of the tk text widget.

Figure 7.2: Textual description

Figure 7.3: Edit->draw

80

2. Graphical descriptions are in .ndr (resp .adr) format. They are con-
verted into textual form by Edit->textify. [56]

Figure 7.4: Textual and graphical description of net

tina options:
Choose "Construction" and "Output," then adjust the options. Set the
parameters as shown in the following figure and click "OK" to generate
the output.

Figure 7.5: Tina options

81

Chapter 8

Annex B: LATEX TOOL

8.1 Latex

LaTeX was created by scientists for scientists, and it is widely used by
publishers for journals, books, and even theses. Having practical knowl-
edge of LaTeX should be part of every scientist’s toolkit. [57] The LaTeX
working environment is shown in the following image:

Figure 8.1: The LaTeX and Overleaf working environment

8.2 Overleaf

Overleaf is an online LaTeX editor “https://www.overleaf.com/” that is
used to create and edit scientific documentation. Overleaf has a built-in
rich-text editor, so it does not require any coding experience. The creation
and modification of the document’s content don’t require any considerable
skills.
By maintaining the document in a single location throughout its entire
lifespan, it optimizes and facilitates the research writing and publishing
processes. The document is safely stored in the cloud so that whenever it’s
their turn, the writers, editors, auditors, and users can all read, change,
or provide feedback on the article using just a browser. With the help

82

of Overleaf, the writing and publication of scientific research are being
moved into cloud, which allows it to be done more quickly, easily, and
publicly. Many people can work together on a single task simultaneously,
and documents are synchronized so that this is possible. [58]
There are two options for running LaTeX tools: online or offline. These
options are not mutually exclusive; you might need to work in both ways.
In this thesis, we chose to work with the online platform Overleaf, which
I also recommend to anyone, whether beginner or experienced, as all you
need is a web browser and an internet connection. [57] As shown in the
following pictures:

Figure 8.2: Sign up with google

Figure 8.3: Continue registering

83

After registering for LaTeX, you create a New Project as shown in the
following image:

Figure 8.4: Create New project

Figure 8.5: Project created

Figure 8.6: Created code in Latex

84

Figure 8.7: Recompile code in Latex

One of the advantages of Overleaf is that it allows multiple people to
collaborate interactively on a document. [57] as shown in the following
image:

Figure 8.8: Example of collaborate interactively on a document

The disadvantage, of course, is that you cannot work on your documents
without internet access. Given how much it has simplified many tasks for
me, I highly recommend beginners to register and use Overleaf. [57]

85

	Introduction
	Context
	Background
	Research Objectives:
	Organization Of The Report

	Web Services Composition
	Introduction
	Web services (WS)
	Why use web services?
	The basic characteristics of a Web services
	Types of Web Services
	Architecture of Web Services
	Advantages and Disadvantages of Web services

	web services composition
	Definition of web services composition
	The WSC lifecycle
	Orchestration and Choreography
	Types of WSC
	Modeling service composition
	Web service composition standards
	Web Service Composition and BPEL

	Conclusion

	Petri Nets
	Introduction
	Petri Net model
	informal presentation
	History
	formel presentation
	Petri Nets properties

	Time Petri Net model Ram-73
	TPN Syntaxe
	TPN Example
	TPN Formal Semantics

	PN and TPN APPLICATIONS
	Computer Science and Software Engineering
	Manufacturing and Operations Management
	Biological Systems and Bioinformatics
	Telecommunications and Networking
	Business Process Management
	Embedded Systems and Cyber-Physical Systems
	Education and Research

	Advantages Timed Petri Nets
	Conclusion

	Web Services Composition Modeling
	Introduction
	WSC modeling based on PN formalism
	Time petri net based modeling of web service architecture
	Modeling web services using G-nets
	Definition 1. (G-net Service)
	Petri nets model Timed Mop-ECATNet
	Petri net-based algebra for modeling Web services

	Others
	Enhanced Stacked Automata Model (ESAM)
	 model IMWSC
	Comparison of Modeling Approaches: Petri Nets and Others

	Modelling approach base on TPN model: WSCTPN
	Conclusion

	Case Study: (EC.WSC)
	Introduction
	MODELLING of (EC.WSC)
	Description
	 TPN model of EC.WSC
	Input TINA

	CHECKING of (EC.WSC)
	The generated graphs
	Output of the case study with mode A:
	Computing experiments
	Discussion and comparaison

	Conclusion

	Conclusion
	Conclusion General

	Annex A: TINA TOOL
	Annex B: LATEX TOOL
	Latex
	Overleaf

