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Abstract
The quantum computer is the future of the next generation of computers with his 

qualifications in the use of entanglement and superposition, and using it for machine 

learning what is called quantum machine learning in the quantum world, we will see a 

great change in the world of data science with good results in small data as well in very 

big data that classical computers can't handle, we have got the problem of water 

quality and apply we try to apply on it quantum machine learning algorithm that 

named VQC algorithm from Qiskit library we have to get the result that good with the 

data that we have.

والتراكب،              التشابك استخدام في مؤهلاته بفضل الحواسيب من القادم الجيل مستقبل هو الكمي  الحاسوب

      . علم            عالم في كبير+ا تغيير+ا سنشهد الكم عالم في الكمي الآلي بالتعلم يعرف فيما الآلي التعلم في  واستخدامه

التقليدية                 الحواسيب تستطيع لا التي جد+ا الكبيرة البيانات في وكذلك الصغيرة البيانات في جيدة نتائج مع  البيانات

خوارزمية.               باسم المعروفة الكمي الآلي التعلم خوارزمية تطبيق ونحاول المياه جودة مشكلة لدينا  VQCمعالجتها

مكتبة   .Qiskitمن لدينا         التي البيانات مع جيدة نتائج على للحصول
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Introduction

We will introduce a short introduction to quantum machine learning, quantum 

programming, and quantum computers. Research has been intensifying in recent years, 

starting with research about quantum computers. After that, we chose the title “Water 

Quality  Prediction Based on Quantum Machine  Learning"  because,  in  the  next  10 

years, potable water will be decreasing every day. So, we chose two themes: quantum 

computers and the revolution that many computer scientists predict will change the 

world, and the problem of water. We chose quantum computers for their speed and 

utility. We are still at the beginning of the quantum computer era, so in the next five 

years, more technology will emerge in this field, including programming languages and 

quantum computers with higher qubit numbers. 

We will see more development in machine learning for quantum computers and 

more  algorithms  in  this  category  of  science.  We  hope  to  find  more  solutions  and 

perform simulations of special problems in the real world that we cannot solve now. 

We expect to see more secure encryption technology with the end of RSA and the rise 

of  quantum  computers.  The  evolution  of  quantum  computers  mirrors  the  early 

development of classical computers in 1822. We started this research years ago, and we 

tried  multiple  quantum machine  learning  algorithms like  QNN, QSCV,  and VQC. 

However, some algorithms face challenges due to outdated libraries and technology.

We chose  potable   water and applied machine learning algorithms because, as 

We said in the last section,  potable  water is decreasing every day. Regions on Earth, 

like Africa, have problems with potable water. Many organizations are trying to find 

solutions.  With  dryness  and  random  consumption  of  groundwater,  countries  like 

Algeria  will  also  face  problems.  So,  we  chose  this  theme  to  find  some  scientific 

solutions to the water crisis.

We will present this paper in the following structure:

 Chapter  One: Discusses  quantum  computers,  including  all  technology  and 

quantum mechanisms.

 Chapter Two: Explores quantum machine learning and compares quantum and 

classical algorithms.

 Chapter  Three: Demonstrates  a  model  for  water  quality  prediction  using 

quantum machine learning algorithms and how to use it for the first time.

2



Introduction

We faced many problems in this  research,  including issues  with the  libraries 

used,  datasets,  and  available  technology.  We  asked,  "How  can  quantum  machine 

learning help humanity?" and specifically, "How can quantum machine learning and 

quantum computers determine if water is potable or not?"

By addressing these questions, we hope to advance the field of quantum machine 

learning and contribute to solving critical global issues such as water scarcity.
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Chapter I: Quantum Computing

1. Introduction:

Quantum  mechanics,  a  branch  of  physics,  traces  its  origins  to  a  series  of 

scientific discoveries in the late 19th century, and it has been actively evolving ever 

since. While the roots of quantum computing can be traced back to the 1980s, when 

physicists began actively exploring the potential of computing with quantum systems 

[1].

Quantum  computing  deals  with  the  manipulation  of  quantum  systems.  The 

physical  details  of  this  are dependent on the quantum computer’s  hardware design 

[1].in  this  chapter  presents  the  higher-level  abstractions  employed  in  quantum 

computing, beginning with the fundamental concept of a quantum state representing 

any  quantum  system.  We  will  explore  the  building  blocks  of  qubits  and  gates, 

Including the intriguing principles of superposition and entanglement. Furthermore, 

we will examine the processes of measuring quantum circuits and the pivotal role of 

quantum algorithms. Finally, we will introduce the powerful IBM Qiskit library, a vital 

tool for harnessing the potential of quantum computing.

5

Figure 1: Real Quantum Computer IBM
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1.1. History of quantum computing.

In 1982, the history of quantum computing took a significant turn with Richard 

Feynman's  lectures  on  the  potential  advantages  of  utilizing  quantum  systems  for 

computation[1].

Three years later, in 1985, David Deutsch published the concept of a "universal 

quantum computer," laying the theoretical foundation for this emerging field[1].

A breakthrough moment came in 1994 when Peter Shor presented an algorithm 

that  could  efficiently  find  the  prime  factors  of  large  numbers,  significantly 

outperforming classical  algorithms and potentially  undermining  the  foundations  of 

modern encryption. This algorithm, now known as Shor's algorithm, highlighted the 

immense potential of quantum computing [1].

In  1996,  Lov  Grover  introduced  an  algorithm  for  quantum  computers  that 

promised  more  efficient  database  searching,  now  referred  to  as  Grover's  search 

algorithm.  That  same year,  Seth  Lloyd proposed a  quantum algorithm capable  of 

simulating quantum-mechanical systems[1].

The  late  1990s  and  early  2000s  witnessed  several  significant  developments, 

including the founding of D-Wave Systems by Geordie Rose in 1999, the development 

of the idea for adiabatic quantum computing by Eddie Farhi at MIT in 2000, and the 

first  implementation of Shor's  algorithm by IBM and Stanford University in 2001, 

factoring 15 into its prime factors on a 7-qubit processor[1].

In  2010,  D-Wave  released  the  D-Wave  One,  the  first  commercial  quantum 

computer  (annealer),  marking  a  milestone  in  the  commercialization  of  quantum 

computing technology[1].

IBM made quantum computing available on the IBM Cloud in 2016, further 

democratizing access to this powerful technology[1].

In 2019, Google claimed to have achieved quantum supremacy, a term coined by 

John Preskill  in  2012 to  describe  the  ability  of  quantum systems to  perform tasks 

surpassing  those  in  the  classical  world,  signaling  a  significant  leap  forward  in  the 

capabilities of quantum computing[1].

6
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2. Double-slit experiment:

One of the most renowned experiments in physics is the double slit experiment. 

Originating with Thomas Young in 1799, this peculiar demonstration reveals that tiny 

particles that make up matter can exhibit wavelike behavior. Even more strangely, the 

very act of observing these particles seems to influence their behavior[2].

Picture a wall with two narrow openings or slits. Imagine throwing tennis balls 

at this wall - some will bounce off, while others pass through the slits. If there is a  

second wall behind the first, the balls going through the slits will strike it. Where do 

you think the ball marks will appear on the back wall? You might expect two vertical 

lines matching the slit patterns[2].

However, the diagram shows an unexpected pattern on the second wall viewed 

from the front. Rather than just two lines, there is an interference pattern of multiple 

bright and dark bars, much like the wave pattern seen when ripples from two sources 

overlap in water[2].

Now, envision shining a monochromatic light source (a single wavelength, like a 

laser) at a wall containing two narrow slits spaced approximately the same distance 

apart as the light's wavelength. Observe the diagram, which depicts the light wave and 

the wall from an overhead view, with the blue lines tracing the wave's peaks. As the 

wave passes through both slits, it divides into two new waves emanating from each 

7

Figure 2: The pattern you get from particles. [2]
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opening, which then intermingle. At points where a peak combines with a trough, the 

waves cancel each other out. However, where peaks intersect with peaks (marked by 

the crossing blue lines), the waves reinforce each other, producing areas of increased 

intensity. When this pattern of light strikes a second wall placed behind the first, an 

alternating  pattern  of  bright  and  dark  bands  emerges,  known  as  an  interference 

pattern.  The  bright  stripes  occur  precisely  where  the  wavefronts  are  constructively 

interfering and amplifying each other.[2]

The photograph depicts an actual interference pattern observed in experiments. 

It  exhibits  a  greater  number of  alternating light  and dark fringes compared to the 

simplified diagram, as the image captures more fine details. (For the sake of accuracy, 

the pattern also incorporates a diffraction pattern that would arise from a single slit 

aperture. However, we can set that nuance aside for this discussion.)[2].

8

Figure 3: An interference pattern.[2]
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Now,  let's  explore  the  quantum realm.  Envision  firing  electrons  at  our  wall 

containing the two slits, but initially blocking one of the openings. You'll observe that 

some of the electrons pass through the unobstructed slit and strike the second wall in a 

pattern reminiscent of the tennis ball scenario: the locations where they impact form a 

strip roughly matching the shape of the slit opening.[2].

Next, unblock the second slit. One might expect to see two distinct rectangular strips 

on the back wall, similar to the pattern observed with the tennis balls. However, the 

actual result  is  strikingly different:  the locations where the electrons strike the wall 

accumulate in a manner that recreates the interference pattern characteristic of wave 

behavior. This contradicts the notion that particles like electrons would simply pass 

through the slits and impact separately[2].

Fig 5

The image depicts the results from an actual double-slit experiment conducted 

with electrons. As an increasing number of electrons are fired through the dual slits, 

9

Figure 4: diffraction pattern real experiment [2]

Figure 5: Diffraction pattern [2]
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each successive frame captures the pattern they create upon striking the second wall. 

What  gradually  materializes  is  a  distinctive  striped  interference  pattern,  with 

alternating  bright  and  dark  bands  reminiscent  of  the  wave-like  behavior  observed 

when light passes through the same setup.[2].

3. The qubits

A qubit,  short for quantum bit,  is  the fundamental  unit  of  information in a 

quantum computer system. It can be viewed as the quantum mechanical analogue to 

the classical binary bit used in conventional computers. More precisely, a qubit is a 

two-dimensional quantum system whose state can be expressed as a linear combination 

of two basis states as,[3].

|  =  |0  +  |1ϕ⟩ α ⟩ β ⟩

(1)

In this representation,  and  are complex numbers that satisfy the condition |α β α 

|2 + |  |β 2 = 1. The ket notation, also referred to as the Dirac notation, utilizes |0> = (1
0) 

and |1> = (01) as vectors representing the two basis states of a two-dimensional vector 

space commonly known as Hilbert space.  According to this notation, Equation (1) 

expresses the state of the qubit as a two-dimensional complex vector (α
β)[3].

10

Figure 6: A classical bit can be either 0 or 1. A qubit can be in a 
superposition of both 0 and 1 [4]
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3.1 Example:

The quantum state of a spinning coin can be represented as a superposition of 

the "heads" and "tails" states.  Assigning the ket vector |1> to represent the "heads" 

state and |0> to represent the "tails" state, the quantum state of the spinning coin can 

be expressed as a linear combination of these two basis vectors:[4]

|coin> = 
1

√2
 (|1> + |0>) (2)

What is the probability of getting heads?

The  amplitude  of  |1>  is   =  1  /  β √2,  so  |β|=(1/√2 )2=1/2.  Consequently,  the 

probability is 0.5, equivalent to 50% [4].

3.2. System of qubit

Quantum  bits,  or  qubits,  are  the  essential  elements  of  quantum  computing. 

Significantly, qubits can embody states of 0, 1, or a superposition of both [5]. A single 

qubit's  characteristics  can  be  understood  through  the  Bloch  sphere,  a  visual 

representation with geometric properties akin to the trigonometric unit circle.  Each 

point on the Bloch sphere signifies a unique potential superposition of a single qubit. 

Moreover, the upper and lower points on the sphere correspond to the two observable 

states of the qubit, denoted as |0  and |1  [4].⟩ ⟩

11

Figure 7: A tossed coin has a 50% chance 
of landing on heads or tails [4]
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A quantum computer consists of a multitude of qubits. Therefore, it is essential 

to understand how to construct the combined state of a qubit system based on the 

individual qubit states. The joint state of a qubit system is determined using the tensor 

product operation, denoted as . Mathematically, taking the tensor product of two⊗  

states is equivalent to taking the Kronecker product of their corresponding vectors. 

For instance, if we have two single qubit states | > =  ϕ (α
β) and | ’> =  ϕ (α '

β '), then the 

complete state of a system composed of two independent qubits can be expressed as[3],

| > ϕ ⊗ | ’>=ϕ (α
β)⊗(α '

β ')=(α α '

α β '

β α '

β β ')
(3)

In some cases, the  symbol may be omitted altogether when representing the⊗  

tensor product in order to simplify the notation. Instead, the states are enclosed within 

a single ket. For instance, |   |   can be abbreviated as |  , and |0   |0   |0ϕ⟩ ⊗ ϕ ′⟩ ϕϕ ′⟩ ⟩ ⊗ ⟩ ⊗ ⟩ 

can be shortened to |000 . When dealing with larger systems, the Dirac notation offers⟩  

a more concise method for calculating the tensor product by utilizing the distributive 

property of the Kronecker product. For a system consisting of, let's say, three qubits 

12

Figure 8: Quatnum Bits
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where each qubit is in the state  j =  j |0  +  j |1 , for j = 1, 2, 3, the combined stateγ α ⟩ β ⟩  

is:[3]

(4)

The measurement of all three qubits has the potential to yield any of the eight 

(23) possible bit-strings, which are linked to the eight basis vectors. These examples 

demonstrate  that  the  dimension  of  the  state  space  increases  exponentially  as  the 

number of qubits, denoted as n, grows, and the number of basis vectors is equal to 2n.

[3]

4. Superposition and entanglement.

4.1 Superposition:

Superposition,  a  fundamental  principle  in  quantum mechanics,  explains  how 

quantum systems can exist in multiple states simultaneously until they are observed. In 

our previous discussion, we examined this idea using examples such as the double-slit 

experiment and coin flip. To further explore this concept, let's consider Schr dinger'sö  

well-known thought experiment: a cat confined within a box alongside a vial of poison. 

As long as the box remains closed, the cat exists in a peculiar state where it is both alive 

and dead, representing the intriguing nature of superposition.[6]

13

|γ 1γ 2γ 3  = |γ 1   |γ 2   |γ 3 ⟩ ⟩ ⊗ ⟩ ⊗ ⟩ 
= α 1α 2α 3 |000  + α 1α 2 β 3 |001  + α 1 β 2α 3 |010  + α 1 β 2 β 3 |011  + β 1α 2α 3 |⟩ ⟩ ⟩ ⟩
100  + β 1α 2 β 3 |101  + β 1 β 2α 3 |110  + β 1 β 2 β 3 |111⟩ ⟩ ⟩ ⟩
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4.1.  Entanglement

Quantum entanglement is a natural occurrence that arises when multiple qubits 

exhibit correlation. This entanglement can lead to peculiar and beneficial outcomes, 

potentially enabling quantum computers to outperform classical computers in terms of 

speed.  By  entangling  qubits,  intricate  quantum  information  is  unveiled,  a  feature 

absent in the realm of classical computing. Such entanglement stands as a key asset of  

the quantum domain![4]

It was discovered that their states can be characterized by a two-dimensional 

complex vector, while the observables and evolution operators are represented by 2 × 

2 matrices. However, what happens when we consider two photons, two electrons, or 

two atoms? Or even three?[7]

One illustration of the peculiar nature of entanglement can be seen with the 

scenario of two fair coins. In a classical setting, after flipping two fair coins multiple 

times, you would observe the results HH, HT, TH, or TT, each happening with a 25% 

chance.[4]

14

Fig
ure 9: Erwin Schrodinger illustrated of Quantum superposition [6]
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By entangling these two fair  coins through quantum means,  it  becomes feasible  to 

generate a state represented as (1/ 2)(|H H> + |T T>) a√ s depicted in Figure 10.[4]

There exist numerous other varieties of entangled states, however, a well-known 

illustration is the Bell state. In the case of this entangled pair of coins being flipped, 

they are intertwined in a manner that permits only two potential measurement results: 

(1)  both coins  landing on heads,  or  (2)  both coins  landing on tails,  each outcome 

having an equal  probability of 50%. The combinations HT or TH would never be 

observed[4].

Additionally, in the scenario where the two entangled coins are placed far apart, 

one coin can be flipped and its outcome measured. If the measured coin shows heads, it 

indicates that the other coin will also land on heads. Conversely, if the measured coin 

shows tails, it means that the other coin will also land on tails. This phenomenon hints 

at the possibility of instantaneous transmission of information between the two coins, 

potentially surpassing the speed of light, which is considered the fastest speed in the 

Universe.In  accordance  with  Figure  11,  should  the  two  coins  be  flipped 

simultaneously,  they  mysteriously  manage  to  land on  the  same side  as  each  other 

despite the absence of any classical communication between them.[4]

 

Let  us 

15

Fig
ure 10: Two coins that are entangled [4]
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examine a scenario involving two electrons, assuming that they are sufficiently distant 

from each other to be identified as "electron 1" and "electron 2" without any confusion. 

Expressing the state of electron 1 can be done effortlessly as [7]:

| >ψ 1 = a|↑>1 + b|↓>1 with |a|2 + |b|2 = 1.

(5)

To  emphasize  our  reference  to  electron  1,  we  incorporate  a  subscript  "1". 

Likewise, we can express the state of electron 2 [7]:

| >φ 2 = c| >↑ 2 + d| >↓ 2 with |c|2 + |d|2 = 1.

(6)

We're asking about the condition of the combined system comprising these two 

electrons.

The states of the combined system can be generated by utilizing the states of the 

separate systems. Within the ket, the symbols and writing serve as convenient labels for 

measurement results. Consequently, when the spin of each electron in the z-direction is 

measured, there are four possible measurement outcomes [7]:

|electron 1 = , electron 2 = >,↑ ↑

|electron 1 = , electron 2 = >,↑ ↓

|electron 1 = , electron 2 = >,↓ ↑

|electron 1 = , electron 2 = >.↓ ↓

(7)

This procedure is not particularly convenient, hence, as an alternative, we could 

represent it as [7]:

|↑1 , ↑2> , |↑1 , ↓2> , |↓1 , ↑2> , |↓1 , ↓2>.

(8)

According to convention, the arrangement of the upward  ↑ and downward  ↓ 

arrows  is  predetermined,  and  the  comma  is  unnecessary.  This  can  be  further 

streamlined to [7]:

| > , | > , | > , | >.↑↑ ↑↓ ↓↑ ↓↓

(9)

The  four  quantum  states  are  meaningful  when  measuring  Sz  on  individual 

electrons. In quantum mechanics, superpositions of these states can be created [7]:

16
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| > = 1/2| > + 1/2| > + 1/2| > + 1/2| >.ψ ↑↑ ↑↓ ↓↑ ↓↓

(10)

Now, let us take into account that the electrons are in the states mentioned in 

(6.1) and (6.2). How can we represent this using the states from (6.5)? Initially, we 

analyze  the  probabilities  of  measuring  Sz  for  each  electron.  Due  to  the  complete 

independence of the electrons, their probabilities multiply [7]:

Pr ( ) = Pr (↑↑ ↑1 )  Pr (× ↑2 ) = |a|2 |c|2

Pr ( ) = Pr (↑↓ ↑1 )  Pr (× ↓2 ) = |a|2 |d|2

Pr ( ) = Pr (↓↑ ↓1 )  Pr (× ↑2 ) = |b|2 |c|2

Pr ( ) = Pr (↓↓ ↓1 )  Pr (× ↓2 ) = |b|2 |d|2

(11)

It is easy to verify that the probabilities add up to one[8]:

Pr ( ) + Pr ( ) + Pr ( ) + Pr ( ) = 1.↑↑ ↑↓ ↓↑ ↓↓

(12)

The spin state of two electrons that aligns with these probabilities is [7]:

| > = ac| > + ad| > + bc| > + bd| >.ψ ↑↑ ↑↓ ↓↑ ↓↓

(13)

However, this is merely the result of the two spin states [7]:

| >1 | >2 = (a| >ψ φ ↑ 1 + b| >↓ 1 )(c| >↑ 2 + d| >↓ 2 )

 ac| > + ad| > + bc| > + bd| >≡ ↑↑ ↑↓ ↓↑ ↓↓

(14)

Consequently,  the merging of two quantum systems can be accomplished by 

merging their states into a composite quantum system through the multiplication of 

states,  as  illustrated  above,  while  keeping  the  symbol  order  in  the  ket  intact. 

Subsequently, it can be proven that the state in (6.6) is identical to two electrons, each 

in the state [7]:

|ψ> = |ϕ> = 1/ 2 | > + 1/ 2 | >.√ ↑ √ ↓

(15)

5. Quantum gate

A quantum gate, also known as a quantum logic gate, is a basic quantum circuit 

that functions on a limited amount of Qubits.
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On the other hand, quantum logic involves different quantum gates such as the 

Feynman and Peres gates, along with the Toffoli gate, among others, as detailed in 

Table  1.  These  gates  play  a  crucial  role  in  building  quantum circuits.  The  2   2×  

Feynman gate, also known as the CNOT gate, behaves similarly to the XOR logic gate 

but with added features to guarantee reversibility. [9]

Name of the gates Gate symbol Matrix

Pauli-X (X) (NOT) [0 1
1 0]

Pauli-Y (Y) [0 −i
i 0 ]

Pauli-Z (Z) [1 0
0 −1]

Hadamard (H) 1/√2[0 1
1 0]

Controlled  Not  (CNOT, 

CX) [1000
0100
0001
0010

]
Toffoli  (CCNOT,  CCX, 

TOFF) [
10000000
01000000
00100000
00010000
00001000
00000100
00000001
00000010

]
Table 1: Basic quantum gates.

5.1.  The most used gates.

Let’s get what any of this gate do:
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There are three Pauli gates available: X, Y, and Z. According to Eq. 16, each 

gate changes the notation of the Pauli matrices as follows [8]:

X = [0 1
1 0], Y = [0 −i

i 0 ], Z = [1 0
0 −1]

(16)

The  Pauli  gates  operate  on  a  solitary  qubit  and  are  capable  of  generating 

superposed qubit states. The Pauli X gate functions similarly to the classical NOT gate 

on the basis states. In other words, it transforms the state |0> into |1> and vice versa[8].

X|0> = |1>; X|1> = |0>

The CNOT gate is equivalent to the XOR classical gate illustrated in Figure 18, 

which is identical to the classical NOT gate. Unitary rotation matrices, applied to a 

single qubit, are constructed using the Pauli gates. This is based on the information 

provided in reference [8]

X2 = Y2 = Z2 = I (17)

yields

Rx (  ) = exp i  X = cos(  )I + i sin  Xθ θ θ θ

R y (  ) = exp i  Y = cos(  )I + i sin  Yθ θ θ θ

Rz (  ) = exp i  Z = cos(  )I + i sin  Zθ θ θ θ

(18)

The  Hadamard  gate  holds  significant  importance  in  the  field  of  quantum 

computing. When a qubit is initially in a definite |0> or |1> state, the application of the 

Hadamard gate results in a superposition of both |0> and |1> states. In Figure 16, we 

demonstrate the utilization of a Hadamard gate on the qubit in the |0> state using the 

IBM Q simulator, followed by the measurement of the output [4].

19

Figure 12: CNOT quantum gate.[4]
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6. Measurements

The  final  quantum  state  is  prepared  from  the  initial  input  quantum  state 

through  the  utilization  of  qubits  and  gates,  as  discussed  in  the  previous  sections. 

However,  the process of computation requires an additional  crucial  step known as 

quantum measurement. This section focuses on quantum mechanics[9], specifically the 

transformation  of  quantum information  stored  in  a  quantum system into  classical 

information. For instance, measuring a qubit usually involves determining whether it is 

0 or 1, which corresponds to reading out a classical bit. It is important to note that 

measurement outcomes in quantum mechanics are probabilistic in nature [3].

In accordance with the given notation for inner products, the probability of observing 

the state |0  after measurement for the single qubit state mentioned in Equation (1) can⟩  

be  expressed  as  the  squared  absolute  value  of  the  overlap  | 0| |⟨ ϕ⟩ 2 Similarly,  the 

probability  of  obtaining  the  state  |1  after  measurement  is  | 1| |⟩ ⟨ ϕ⟩ 2.  Therefore,  the 

probabilities associated with measurements can be represented by the squared absolute 

values of the overlaps. Expanding on this concept, when measuring an n qubit state |

, the probability of obtaining the bit string |xϕ⟩ 1 . . . xn  is given by | x⟩ ⟨ 1 . . . xn | |ϕ⟩ 2  [3].

20

Figure 13: Applying a Hadamard gate and 
measuring on the IBM Q machine
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Now let's  examine  a  slightly  more  intricate  scenario  involving  measurement. 

Let's assume we have a three qubit state, denoted as |   ψ ⟩ but we choose to measure only 

the first qubit while keeping the other two qubits unaffected. What is the likelihood of 

observing a |0  in the first qubit? This probability can be determined by:[3]⟩

∑
( x2 x3 )∈ {0 ,1 }

|⟨0 x2 x3|ϕ ⟩|2

The system's state following this measurement will be determined through the 

normalization of the state,[3]

∑
( x2 x3 )∈ {0 ,1 }

⟨0 x2 x3|ϕ ⟩ │0 x2 x3 ˃

When we apply this framework to the state in Eq. (5), it becomes evident that 

the likelihood of obtaining |0  in the initial qubit will be 0.5. In the event that this⟩  

outcome is achieved, the system's ultimate state would then transition to |000 . [3]⟩

Alternatively, if we were to measure the state of |1  in the initial qubit, the resulting⟩  

state would be |111 . [3]⟩
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Figure 14: Irreversible 
measurement gate.[10]

Figure 15: Measurement of a single qubit [10]
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We can also calculate how subsystem measurements impact a state composed of 

n qubits. There are instances where measurements must be conducted using a basis 

other  than the  computational  basis.  To accomplish  this,  it  is  necessary  to  apply  a 

suitable  transformation  to  the  qubit  register  prior  to  measurement.  Further 

information on how to perform this  task is  provided in a later section that covers 

observables and expectation values.[3]

Measurement is a fundamental concept in quantum computing, which is often 

more  intricate  than  it  appears.  For  a  more  in-depth  comprehension  of  advanced 

concepts in this area, we suggest delving into pertinent books and articles [3, 5, 9, 11].

7. Quantum circuits.

We have encountered a few basic quantum circuits previously. Let's delve deeper 

into  the  components  of  a  quantum  circuit[11].In  this  section,  we  will  explain  the 

construction  and  interpretation  of  quantum circuits[3].  An  illustration  of  a  simple 

quantum circuit with three quantum gates can be seen in Figure 19. The circuit should 

be interpreted from left to right, with each line representing a wire within the quantum 

circuit.  These  wires  may  not  necessarily  correspond  to  physical  wires;  they  could 

symbolize the passage of time or the movement of a physical particle like a photon 

from one point to another in space[11]. Qubits are typically depicted as horizontal lines 

[3],  It  is  customary  to  assume  that  the  initial  state  inputted  into  the  circuit  is  a  

computational  basis  state,  often  the  state  comprising  all  |0>s.  While  this  rule  is 

occasionally  disregarded  in  quantum  computation  and  information  literature,  it  is 

considered good practice  to notify the reader when this  occurs[11].  Gates  are then 

depicted on the qubits they operate on.[3].
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It is important to observe that when formulating a mathematical expression for 

the  circuit,  the  gates  are  listed  from  right  to  left  according  to  their  sequence  of 

operation.[3].

The  principles  mentioned  above  can  be  effectively  demonstrated  through an 

example. Figure 20 showcases a circuit that is utilized to create an entangled two qubit  

state known as a Bell state starting from the initial state |00 [3].⟩

The circuit encodes the equation[3],

CNOT 12 ( H⊗ I ) │00˃= 1

√2
(│00˃+│11˃ )

Now, let us meticulously examine the process by which the circuit generates the 

Bell state. The circuit is read in a sequential manner, from left to right. The qubits are 

assigned numerical labels, beginning with the topmost qubit. Initially, the H gate is 

applied to the highest qubit, resulting in a modification of the system's state.[3],

( H⊗ I ) │00˃=( H │0˃ )⊗ ( I │0˃ )=
(│0˃+│1˃ )

√2
= 1

√2
(│00˃+│10˃ )

Subsequently, CNOT12 operates on both of these qubits. The filled-in dot on the 

first qubit indicates that this qubit serves as the control qubit for the CNOT operation. 
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Figure 17: Quantum circuit for preparing a Bell 
state

Figure 16: Circuit swapping two qubits, and an equivalent schematic symbol notation for 
this common and useful circuit. [3]
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The  symbol on the second qubit indicates that this qubit is the target of the NOT⊕  

gate  (which is  controlled by the  state  of  the  first  qubit).  The result  of  the  CNOT 

operation is then obtained.[3],

CNOT 12( 1

√2
(│00˃+│11˃ ))│10˃= 1

√2
(CNOT 12 │00˃+CNOT 12 │10˃ )= 1

√2
(│00˃+│11˃ )

A qubit's measurement is also represented by a unique gate featuring a meter 

symbol, as shown in Figure 21. The inclusion of this gate on a qubit indicates that the 

qubit should be measured in the computational basis.[3].

There  are  certain  characteristics  that  differentiate  classical  circuits  from 

quantum circuits. Firstly, quantum circuits are designed to be acyclic, meaning that 

feedback from one part of the circuit to another is not permitted. In contrast, classical 

circuits  allow  for  the  joining  of  single  wire  outputs  through  an  operation  called 

FANIN, resulting in a bitwise OR of the inputs. However, this operation is irreversible 

and non-unitary, making it unsuitable for quantum circuits. Additionally, the inverse 

operation, FANOUT, which produces multiple copies of a bit, is also prohibited in 

quantum  circuits.  Quantum  mechanics  dictates  that  the  copying  of  operations  is 

impossible, and we will explore an example of this in the upcoming qubit, rendering the 

FANOUT operation infeasible.[11]

8. Quantum algorithms.

We have now provided an introduction to all the fundamental elements essential 

for the exploration of practical quantum algorithms.[3].

8.2  Quantum algorithms

A quantum algorithm consists of three basic steps[3]:

 The data can be encoded, either classically or quantumly, into the state of a 

group of input qubits[3].
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Figure 18: The 
measurement gate
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 A series of quantum gates implemented on this group of input qubits[3].

 At the conclusion, one or more of the qubits are measured to acquire a result 

that can be interpreted in a classical manner[3].

In this review, we will elucidate the execution of these three stages for a diverse 

range of quantum algorithms[3].

8.2.1 Deutsh’s Algorithm

Deutsch's quantum algorithm, as explained in this section, necessitates just one 

invocation  of  a  black  box  for  Uf  in  order  to  solve  the  problem.  Conversely,  any 

classical algorithm mandates two invocations of a classical black box for Cf, with one 

for each input value. The crucial aspect of Deutsch's algorithm lies in its nonclassical  

capability to place the second qubit of the input into a superposition within the black 

box. [12]

The quantum circuit illustrating the Deutsch algorithm can be found in Figure 

22 It is important to highlight that a key component of the Deutsch algorithm is the 

oracle Uf gate, depicted in Figure 22.b.[8],

In order to minimize the number of queries to the function f,  which takes a 

single bit as input and produces a single bit as output, we must ascertain whether f is 

constant (always yielding the same output) or balanced (returning 0 for one input and 

1 for the other). [13]
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Figure 19: Quantum circuit for the Deutsch algorithm. b The 
action of the U f gate, also called the oracle. [10]
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By  utilizing  the  circuit  depicted  in  Figure  22.a,  Deutsch's  problem  can  be 

resolved through a single inquiry to the oracle.  In the event that f  is  constant,  the 

outcome will be 0; however, if f is balanced, the result will be 1. This assertion can be 

readily substantiated by considering the state immediately prior to the activation of the 

oracle gate. [13].

When the input is |x>|y>, Uf will generate |x>|f (x)  y>, Therefore, if  |y> = |⊕

0>, t, applying Uf will result in |x>|f (x)>. The algorithm applies Uf to the two-qubit 

state |+>  | >, where the first qubit is a superposition of the two values in the domain−  

of f, and the third qubit is in the superposition | > = 12 (|0>  |1>). This yields the− √ −  

following outcome.

U f (│−˃│+˃ )=U f (1
2

(│0˃+│1˃ ) (│0˃−│1˃ ))
¿ 1

2
(│0˃ (│0⊕ f (0 ) ˃−│1⊕ f (0 ) ˃ ) )+│1˃ (│0⊕ f (1 ) ˃−│0⊕ f (1 ) ˃ )

When f ( x )=0 ,
1

√2
¿ becomes 

1

√2
¿ when  f ( x )=1 ,

1

√2
¿ becomes 

1

√2
¿ Therefore

U f ¿[12].

When f is constant, the value of ( 1)f (x) i− is simply a global phase that holds no 

physical  meaning. Therefore,  the state can be represented as  |+>| >. On the other−  

hand,  when  f  is  not  constant,  the  term  (-1)f  (x)  negates  one  of  the  terms  in  the 

superposition, resulting in the state | >| >. up to a global phase. By applying the− −  

Hadamard transformation H to the first qubit and measuring it, we can determine the 

outcome with certainty. In the first case, we obtain |0> and in the second case, we 

obtain |1>. This allows us to determine whether f is constant or not with certainty by 

making a single call to Uf. This marks our first example of a quantum algorithm that 

surpasses any classical algorithm in performance. [12]

Readers may find it surprising that this algorithm achieves success with absolute 

certainty. Quantum mechanics is commonly associated with its probabilistic nature, 

leading people to mistakenly assume that anything involving quantum means must be 

probabilistic.  Furthermore,  there  is  a  tendency  to  believe  that  anything  displaying 

distinct  quantum  properties  must  also  be  probabilistic.  However,  our  study  of 

quantum  analogs  to  classical  computations  has  already  revealed  that  the  first 
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expectation is not valid. The algorithm for Deutsch's problem serves as evidence that 

even processes that are inherently quantum can defy probabilistic behavior. [12]

8.2.2 Advanced Algorithms

There are advanced algorithms you can see and search about:

 Deutsch-Jozsa’s algorithm 

 Grover’s algorithm

 Shor’s algorithm

 Variational algorithms

9. IBM Qiskit.

Qiskit is a quantum computing library that has been developed by IBM as an 

open-source project. It provides users with the ability to write and execute programs on 

either  IBM's  quantum processors  or  a  local  simulator,  eliminating  the  need  for  a 

graphical  interface.  This  is  particularly  advantageous  when  dealing  with  a  large 

number of qubits, as the graphical interface becomes less practical. Currently, Qiskit 

allows  users  to  access  quantum processors  with  up to  16  qubits,  although smaller 

processors are also available. Qiskit is a highly robust software development kit (SDK) 

that consists of multiple components designed to address various challenges associated 

with practical quantum computing. These components, known as Terra, Aer, Aqua, 

and Ignis, are responsible for different aspects of quantum software development. In 

this  section,  we will  provide  a  brief  overview of  how to program simple  quantum 

circuits  using  Qiskit.  For  a  more  comprehensive  understanding  of  Qiskit  and  its 

extensive capabilities,  we recommend visiting the official website at www.qiskit.org. 

[12]

For our objectives,  Qiskit  can be considered as  a Python library utilized for 

executing quantum circuits. A typical Qiskit code consists of two main components: 

circuit  design  and  execution.  During  the  circuit  design  stage,  we  instantiate  a 

QuantumCircuit  object  with  the  necessary  number  of  qubits  and  classical  bits. 

Subsequently,  gates  and measurements are incorporated into this  initialized circuit. 

Gates and measurements are executed in Qiskit as functions of the QuantumCircuit 

class. Once the circuit is designed, we must select a backend for circuit execution. This 

can either be a simulator known as the qasm_simulator or one of IBM's quantum 
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processors. To utilize a quantum processor, it is essential to input your IBM Q account 

details into Qiskit. Illustrated in Figure 24 is a straightforward code for constructing 

the Bell state. This code represents the Qiskit rendition of the circuit depicted in Figure 

23, with an additional measurement at the conclusion to validate our outcomes. [3]

28

Figure 20: Quantum circuit for preparing a Bell 
state
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10. Quantum computer platform

The next few years will witness a significant transformation in various sectors 

due to the advent of quantum computing. However, the availability of commercially 

viable quantum computers is extremely limited, and the high-performance models are 

exorbitantly priced for most businesses. Additionally, these advanced machines often 

require bulky refrigeration units, further adding to the cost and complexity. To address 

these  challenges,  cloud-based  quantum  computing  has  emerged  as  a  promising 

solution. [23]

It  offers  developers,  researchers,  and  businesses  a  convenient  platform  to 

develop and test  quantum algorithms using real  quantum computers  or  simulators 

accessible  through  the  cloud.  This  type  of  service,  known as  quantum-as-a-service 

(QaaS),  is  provided by several  major IT companies as well  as a few smaller firms. 

While corporate users may find the access costly, some providers offer free access to 
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Figure 21: Qiskit code to create and measure a Bell state. Source: 
www.qiskit.org
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researchers, fostering innovation and collaboration in the quantum computing field 

[23], and this are the most popular Quantum computer platform in the market now:

 IBM Quantum

 Google Quantum AI

 Amazon Bracket

 Microsoft Azure Quantum

 Alibaba Cloud

 D-Wave Leap

 Xanadu Cloud

 QuTech Inspire

11. Conclusion.

This  chapter  introduced  us  to  the  exciting  field  of  quantum  computing 

programming.  We  learned  about  the  history  of  quantum  computing  and  its  key 

components like qubits, gates, and circuits. Understanding these basics helps us use 

powerful quantum algorithms and tools such as IBM Qiskit. As we finish this chapter, 

it's clear that quantum computing has the potential to revolutionize how we approach 

complex problems and push the limits of technology. Quantum computing opens up 

new possibilities for solving challenges that were previously unsolvable.
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1. Introduction

While machine learning algorithms are used to compute immense quantities of 

data, quantum machine learning utilizes qubits and quantum operations or specialized 

quantum  systems  to  improve  computational  speed  and  data  storage  done  by 

algorithms in a program [24].

Following  the  emergence  of  quantum  computers,  a  faction  of  computer  scientists 

began  experimenting  with  running  machine  learning  algorithms  on  these  quantum 

platforms. Within this chapter, we delve into the realm of Quantum Machine Learning 

(QML), exploring its algorithms, and various models within the field.

2. Classical Machine learning

Two  primary  avenues  exist  for  machines  to  learn:  learning  from  data  and 

learning through interaction.  There  are  four broad categories  of  learning methods: 

supervised learning, unsupervised learning, reinforcement learning, and deep learning 

[25, 26]. The theory underlying machine learning is a pivotal subdiscipline that draws 

from both artificial intelligence and statistics, with roots extending back to the earliest 

work on artificial  neural  networks and AI in  the  1950s  [27,  28].  In 1959,  Arthur 

Samuel offered a famous definition of machine learning as "the field of study that gives 

computers the ability to learn without being explicitly programmed" [29]. 

Within  the  theory  of  machine  learning,  the  concept  of  "learning"  is  generally 

categorized into three types (refer to Figure 25) that encompass the broad range of 

approaches:  supervised learning,  unsupervised learning,  and reinforcement learning. 

[29]

In  supervised  learning,  a  machine  outputs  a  function from a  training  set  of 

labeled data points. The goal of supervised learning is to determine the relationship 

between the input and output and to predict the output for the new data or the input 

values. The prediction probability distribution function (PPDCL) is composed of three 

steps:  model  selection,  model  learning,  and inference.  In unsupervised learning,  the 

algorithm is provided with data that lacks labels. The training set consists of input 

values,  and  the  objective  is  to  uncover  hidden  patterns  within  the  unlabeled 

information derived from the input data. Clustering is one example of unsupervised 

problems.  Dimensionality  reduction  involves  a  three-step  process  in  unsupervised 
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learning, which includes model selection, learning, and the generation of new samples 

[5, 8]. Reinforcement learning serves as an intermediary approach between supervised 

and unsupervised learning due to the absence of an immediate correct output for a 

given input, yet it still involves a form of guidance. Instead of obtaining the desired 

output for every input, the algorithm receives feedback from the environment. This 

feedback plays a crucial role in assessing the impact of the chosen steps on the output,  

whether they have been beneficial or detrimental [8].

3. Quantum Machine Learning Algorithm. 

Quantum computing involves the manipulation of quantum systems to carry out 

information processing. By harnessing the unique property of quantum states to exist 

in  a  superposition,  it  becomes  possible  to  significantly  enhance  the  speed  and 

complexity of computations.[29], Quantum Machine Learning, or QML, is a unique 

quantum software  application that  combines  quantum hardware  architectures  with 

classical and quantum machine learning algorithms [33]. Quantum machine learning 

involves the development of quantum algorithms to address common machine learning 

problems  by  applying  the  power  of  quantum  computing  [29].  Quantum  machine 

algorithms  are  primarily  executed  through  supervised  and  unsupervised  learning 

methods. Within the realm of quantum clustering, the utilization of quantum Lloyd's 

algorithm proves instrumental in addressing k-means clustering challenges [34],  The 

centroid  distance  in  the  cluster  is  calculated  using  a  repetitive  method.  Quantum 
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algorithms offer a speed advantage over traditional machine learning algorithms in 

accelerating this process. [32]

3.1 Quantum neural network (QNN)

Quantum neural networks have emerged as a novel advancement that exploits 

the  principles  of  quantum mechanics  to execute  specific  computations with greater 

efficiency compared to classical neural networks. These networks are built upon the 

foundation of quantum computing, a cutting-edge paradigm that employs quantum 

bits (Qubits) to encode information and carry out computations [35]

Quantum  neural  networks  aim  to  utilize  quantum  entanglement  and 

superposition for information processing in a distinct manner. These networks possess 

the  capability  to  execute  specific  tasks  at  a  significantly  faster  rate  compared  to 

classical neural networks, particularly for challenges involving extensive parallelism or 

intricate quantum phenomena.[35]

3.1.1 Basics of Quantum Neural Networks

1- Quantum Bits (Qubits)

2- Quantum Gates

3- Quantum Circuits

4- Quantum Neurons

5- Quantum Layer and Architecture

6- Quantum Training

7- Hybrid Approaches

8- Applications

3.1.2 Quantum Circuit Architectures for QNNs

Quantum circuit architectures are essential components in the development and 

deployment of quantum neural networks (QNNs), which are machine learning models 

that  harness  the  principles  of  quantum  mechanics  for  specific  purposes.  The 

architecture of a quantum circuit determines how qubits are interconnected and the 

specific operations performed on them. Here are a few commonly used quantum circuit 

architectures for QNNs:[35]

 Variational Quantum Circuit (VQC)

 Quantum Convolutional Neural Network (QCNN)
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 Quantum Recurrent Neural Network (QRNN)

 Quantum Boltzmann Machine (QBM)

 Quantum Autoencoder (QAE)

Quantum  computers  hold  great  power  because  they  are  capable  of  faster 

computation than their classical counterparts. On that lens, it is important to analyze 

whether  quantum  neural  networks  hold  a  similar  power.  IBM  describes  how  the 

capabilities  of  a  neural  network can be described through “effective  dimension”,  a 

measure of how useful and non-redundant the neural network is. Then, it was found 

that  the quantum neural  networks produced noticeably higher effective dimensions 

and produced lower loss quicker. Even though there is so much more we don’t know 

about how quantum neural networks might perform comparatively, these results are 

promising — just like in other fields of computation, machine learning could be by the 

power of quantum. [36]

3.2 Quantum support vector machine (QSVM)

In this study, we present two Support Vector Machine (SVM) classifiers that 

operate on classical data and leverage the quantum state space as the feature space, 

thereby achieving a quantum advantage. we use a non-linear mapping of the data to a 

quantum state represented as  : Φ x⃗    | (∈ Ω → Φ x⃗)>< (Φ x⃗)|, c.f. Figure 25(a).[41]

We employ both classifiers  on a superconducting quantum processor.  In the 

initial method, we utilize a variational circuit, as described in references [37, 38, 39, 40],  

to generate a separating hyperplane within the quantum feature space. Conversely, in 
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the second approach, we leverage the quantum computer to directly estimate the kernel 

function of the quantum feature space and subsequently implement a conventional 

Support Vector Machine (SVM). Achieving a quantum advantage in either approach 

crucially hinges on the inability to classically estimate the kernel. This remains valid 

even  when  employing  intricate  variational  quantum  circuits  as  classifiers.  The 

experiment's main focus is to dissociate the feasibility of hardware implementation of 

the  classifier  from  the  challenge  of  choosing  a  suitable  feature  map  for  practical 

datasets. The dataset in question is deliberately structured to enable 100% successful 

classification as a means of verifying the methodology. [41]

The  experimental  setup  comprises  five  interconnected  superconducting 

transmons, with only a pair being utilized for the purposes of this study, as illustrated 

in Figure 29(a). Two co-planar waveguide (CPW) resonators serve as quantum buses 

to facilitate connectivity within the device. Furthermore, each qubit is equipped with 

an extra CPW resonator dedicated to control and readout functions. The entanglement 

within  our  system  is  established  through  CNOT  gates,  leveraging  cross-resonance 

interactions [42] Additionally, individual qubit operations are utilized as basic building 

blocks. The quantum processing unit is connected to the mixing chamber plate of a 

dilution refrigerator for thermal stability. [41]
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FIG. 2. Experimental implementations

3.2.1 Quantum feature map:

The concept of a feature map can be defined as follows: Consider a Hilbert space 

denoted as F, which is referred to as the feature space. Let X represent an input set, 

and x be a sample taken from this input set. A feature map is essentially a mapping 

function  : X  F that transforms inputs into vectors within the Hilbert space. Theseφ →  

resulting vectors, denoted as (x)  F are commonly known as feature vectors. [43]φ ∈

Feature maps are of great significance in the field of machine learning as they facilitate 

the transformation of various types of input data into a space that possesses a clearly 

defined metric. Typically, this space has a significantly higher dimension compared to 

the original input data. When the feature map is a nonlinear function, it alters the 

relative  positioning  of  data  points,  as  illustrated  in  Figure  27.  Consequently,  this 

transformation can greatly  simplify  the  classification of  datasets  within the  feature 

space. It is worth noting that feature maps are closely linked to kernels [44].

We  will  demonstrate  that  classifiers  utilizing  quantum  circuits,  like  the  one 

depicted in Figure 29(c), do not offer a quantum advantage compared to a traditional 

support vector machine when the feature vector kernel  K( x⃗, z⃗) = | < (Φ x⃗) | (Φ z⃗) > |2 is 

overly  simplistic.  For  instance,  a  classifier  employing  a  feature  map  that  solely 

produces product states can be readily implemented classically. To surpass classical 
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methods, it  is  necessary to employ a map based on circuits that are challenging to 

simulate classically. Given that quantum computers are not expected to be classically 

simulable, there exists a wide array of (universal) circuit families to select from. In this  

context, we suggest utilizing a circuit that performs effectively in our experiments and 

is not excessively deep. We define a feature map on n-qubits created by the unitary UΦ 

(x⃗) = UΦ(x⃗) H ⊗n UΦ(x⃗) H ⊗n , where H represents the conventional Hadamard gate.

[41]

U Φ ( x⃗ )=exp(i ∑S⊆ [n ]
φS ( x⃗ ))∏i∈ s

Z i

The gate represented by a diagonal matrix in the Pauli Z - basis, as shown in Figure 1  

(b), will operate on the initial state | 0>. The data is encoded using the coefficients φS (x⃗

)  R, to  ∈ x⃗∈Ω.  A diagonal unitary UΦ(x⃗) can be utilized if it can be implemented 

efficiently. This is particularly applicable when dealing with interactions of weight |S|

2 . Computing the inner-product between two states produced by a circuit with a≤  

single diagonal layer UΦ(x⃗) is #P - hard [45]. However, within the context of additive 

error approximation in experiments, it is possible to efficiently simulate a single layer 

preparation circuit  using uniform sampling in  classical  computing [46],  Calculating 

inner products using circuits that involve two basis transformations and diagonal gates 

is considered challenging, especially when accounting for potential additive errors. For 

further details, please refer to the supplementary material.[41]

3.2.2 Quantum kernel estimation:

The second classification method solely relies on the utilization of a quantum computer 

to approximate the kernel K( x⃗ i ,  x⃗ j ) = | < (Φ x⃗ i) | (Φ x⃗ j) > |2 or all the labeled training 
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data x⃗ j  T . Subsequently, the classical optimization problem, is employed to acquire∈  

the optimal Lagrange multipliers αi and support vectors NS.These support vectors Ns 

enable the construction of the classifier, as indicated in equation (21). In order to apply 

the classifier to a new datum  s⃗  S, it is necessary to estimate the kernel  K(∈ x⃗ i ,  s⃗) 

between s⃗ and the support vectors in i  N∈ S We explore two approaches to estimate 

this overlap within our specific framework.[41]

~m ( x⃗ )=sign(∑i∈N s

α i y j K ( x⃗i , s⃗ )+b) (21)

The swap test is commonly employed to estimate the fidelity between two states 

[47]. This particular circuit, though, does not belong to the category of short depth 

circuits  on  a  quantum  computing  architecture  with  geometrically  local  gates.  It 

necessitates a series of controlled SWAP operations, commonly referred to as Fredkin 

gates, all contingent upon the state of a single ancilla qubit. A highly commendable 

protocol  was  recently  formulated  in  [48].  The  conventional  swap  test  has  been 

extensively  studied  by  the  authors,  who  have  discovered  various  techniques  for 

optimizing its performance. In the context of our algorithm, where only the fidelity 

value is required, the authors suggest a circuit design that maintains a constant depth. 

This proposal is detailed in section III.C of reference [23], and it relies on the 

parallel execution of pairs of CNOT gates [41].

This particular circuit, as shown in Figure 31.a, calculates the expectation value <  |ψ

<  |SWAP|  >| >  in  a  direct  manner.  The  algorithm's  operation  can  beφ ψ φ  

comprehended in the following manner:[41]

The SWAP gate is  recognized as  both a unitary gate and a Hermitian observable, 

denoted as SWAP† = SWAP with eigenvalues ±1. The expectation value when acting 
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on two product states is given by < |<  |SWAP| >| > = | <  |  > |ψ φ ψ φ φ ψ 2 . This gate can 

be broken down into a product of two qubit swap gates, SWAP = ∏
k=1

n

 =1 SWAPsktk all 

operating in parallel. [41]

In order to calculate the expectation value,  it  is  necessary to diagonalize the 

complete gate. This can be achieved by diagonalizing the individual two-qubit swap 

gates.  It  is  observed  that  SWAPij =  CNOTi j→  CNOTj i→  CNOTi j→ .  Additionally,  by 

utilizing the circuit identity CNOTj i→  = Hj CZji Hj , it can be deduced that SWAPij can 

be diagonalized by  CNOTj i→  Hj and possesses  eigenvalue ( 1)x− i xj.  For the entire 

circuit depicted in Figure S5.a, the initial step involves applying a transversal set of 

CNOT gates across both registers. This is followed by a single layer of Hadamard gates 

H on the top register.  Subsequently,  the output is  sampled and the average of the 

boolean function is calculated.[41]

f ( s , t )=(−1 )( s1 t1+...+sn tn ) (22)

The results are documented. The bits produced on the upper register are denoted by s 

 {0, 1}∈ n, whereas t  {0, 1}∈ n represents the output sequence on the lower register.[41]

│Φ x⃗ ( x⃗ )>¿U Φ ( x⃗ ) H
⊗n U Φ ( x⃗ ) H

⊗n │0>¿⊗n¿ Where U Φ ( x⃗ )=exp(i ∑S⊆ [n ]
ϕ s ( x⃗ )∏

i∈S

Z i) (23)

The effectiveness of this approach is applicable to any input states | >, | >ψ φ  

Nevertheless, our states possess a specific structure and are exclusively produced by the 

unitary  equation  (23)  illustrated  in  Figure  31.  Explicitly  expressing  the  kernel  as 

K ( y⃗ , x⃗ )=|⟨Φ ( y⃗ )|Φ ( x⃗ ) ⟩|2
=|⟨0n|U Φ ( y⃗ )

† U Φ ( y⃗ )|0n ⟩|n

 The method of measuring can be determined 

by  applying  the  circuit  to U Φ ( y⃗ )
† U Φ ( y⃗ ) to  the  state  |0n>,  as  shown  in  Fig  31.b. 

Subsequently, the resulting state  U Φ ( y⃗ )
† U Φ ( y⃗ ) |0n> should be sampled R times in the Z 

basis. By recording the number of observed zero (0, . . . , 0) bit-strings and dividing it 

by the total number of shots R, the frequency ν(0,...,0) = #{(0, . . . , 0)}R 1−  provides an 

estimator for K( y⃗ , x⃗) with a sampling error ~є=O ( R−1/2 ).[41]

An  approximate  estimation  for  the  operator  norm  ||  ·  ||  of  the  discrepancy 

between the resulting estimator  and the true kernel matrix K can be determined by ||K̂�

K  ||  ||K  ||− K̂� ≤ − K̂� F. In this context, ||A||F=√∑
ij

|A ij|
2
 represents the Frobenius norm of 
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matrix A. By considering the largest sampling error  ~є among all matrix entries and 

setting ||K  ||− K̂� F  ≤ ~є|T|, where both matrices of the training set T have dimensions |T |  

 |T |,  a  rough upper bound can be obtained.  Consequently,  in order to ensure a×  

maximum deviation of є with a high level of confidence, a total of R = O(є 2−  |T |2  ) 

shots need to be drawn for each matrix entry. Taking into account the symmetry of the 

K matrix and the trivial diagonals, it is necessary to estimate |T |(|T |  1)2− 1−  matrix 

entries. Therefore, the overall sampling complexity is expected to scale as O(є 2−  |T |4 ). 

For a more meticulous analysis of the statistical error, one could employ one of the 

matrix-concentration results [49].

LD=∑
i

α i −
1
2∑i , j

α i α j y i y j x⃗i∘ x⃗ j (24)

The optimization problem, equation (24), is solely concave if the matrix K  0 is≥  

positive semi-definite. It is possible that shot noise and other errors in the experiment 

can result  in a  that is  no longer positive semi-definite.  This occurrence has beenK̂�  

observed multiple times in our experiments. One potential approach to address this 

issue  is  a  technique  outlined  in  [50],  where  an  optimization  problem is  utilized  to 

identify the nearest positive semi-definite K-matrix in trace norm to  that adheres toK̂�  

the constraint. Nevertheless, in our experiments, we have determined that this method 

is  unnecessary  as  the  performance  has  been  nearly  optimal  even  without  its 

implementation.[41]

3.2.3 Quantum Variational classification

The initial classification procedure consists of four sequential stages. Initially, 

the  data  x⃗   undergoes  a  transformation  into  a  quantum  state  through  the∈ Ω  

utilization of the feature map circuit  UΦ(x⃗) depicted in Figure 28(b) with respect to a 

reference state | 0>n. In addition, the feature state undergoes the application of a brief 

depth quantum circuit W(θ⃗), as depicted in Figure 29(b). This circuit, consisting of l 

layers,  is  characterized  by  the  parameter  θ⃗  R∈ 2n(l+1) ,  which  will  be  subject  to 

optimization during the training process. Subsequently, a binary measurement {My} is 

performed  on  the  state  W ( θ⃗ )U
Φ (θ⃗ ) |0>n for  the  purpose  of  addressing  a  two-label 

classification problem, where y  {+1, 1}. The measurement is conducted through∈ −  

measurements in the Z-basis, where the resulting bit-string z  {0, 1}∈ n is inputted into 
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a selected boolean function f  :  {0,  1}n  {+1,  1}.  The measurement  operator  is→ −  

represented as My = 2 1 (1 + yf ),  where we have defined  − f = ∑
z∈ {0 ,1 }n

f ( z )|z>¿ z|.  The 

probability of observing outcome y is denoted as p y ( x⃗ )=⟨Φ ( x⃗ )|W † ( θ⃗ ) M y W ( θ⃗ )|Φ ( x⃗ ) ⟩. Next, 

in order to determine the decision rule, R repeated measurement shots are conducted 

to acquire the empirical distribution p̂�y (x⃗). A label (m̃ x⃗) = yis assigned p̂�y (x⃗) > p̂� y−  (x⃗) 

 y− b. Here, a bias parameter b  [ 1, 1] is introduced, which is subject to optimization∈ −  

during the training process.[41]

The circuit U Φ ( x⃗ ) for the feature map, along with the boolean classifier, allows us 

to optimize the parameters ( θ⃗, b). In order to carry out this optimization process, it is 

necessary to establish a cost function. We define the empirical risk Remp(θ⃗) as the error 

probability Pr ( (m̃ x⃗)  m(≠ x⃗)), which represents the average incorrect label assignment 

across the samples in the training set T.[41]

Remp ( θ⃗ )= 1
|T|∑⃗x∈T

Pr (~m ( x⃗ ) ≠ m ( x⃗ ) )

In  the  case  of  binary  classification,  the  probability  of  error  in  assigning  the 

incorrect  label  can  be  determined  using  the  binomial  cumulative  density  function 

(CDF) of the empirical distribution p̂�y (x⃗). Refer to the supplementary material for the 

detailed derivation. When the number of samples (shots) R is significantly large R >> 

1, the binomial CDF can be approximated by a sigmoid function sig(x) = (1 + e x )−

1.. The approximate probability of incorrectly assigning the label m(− x⃗) = y can be 

calculated using this approximation.[41]

Pr (~m ( x⃗ ) ≠ m ( x⃗ ) ) ≈ sig( √R (1
2

−(~p y ( x⃗ ) − yb
2 ))

√2 (1−~p y ( x⃗ ) )~p y ( x⃗ ) )
The experiment  consists  of  two phases:  initially,  the  classifier  is  trained and 

optimized  (θ⃗,  b)Spall's  SPSA  [51,  52]  stochastic  gradient  descent  algorithm  has 

demonstrated  excellent  performance  in  the  presence  of  noise  in  experimental 

conditions. Once the parameters have converged to (θ⃗*, b*) , the circuit can be utilized 

as a classifier.  Subsequently,  during the categorization stage,  the classifier  allocates 

tags to unmarked data s⃗∈S based on the decision rule (m̃ s⃗).[41]
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The quantum variational classifier W (θ⃗) is implemented in our superconducting 

quantum processor, with 5 different depths (l = 0 through l = 4), as depicted in Figure 

29(b). It is anticipated that increasing the depth will result in a higher success rate for 

classification. The binary measurement is derived from the parity function f = Z 1 Z2 . 

For each depth, we train three distinct data sets, with each training set comprising 20 

data points per label.  Figure 30(b) showcases one of these data sets, along with the 

corresponding training set used. Figure 30(a) illustrates the optimization empirical risk 

Remp (θ⃗) for two different training sets and depths. In all experiments conducted in this 

study, we employed a technique for error mitigation that relies on first-order zero-noise 

extrapolation [53, 50] To obtain an estimate with zero noise, we executed a duplicate of 

the circuit on a time scale that was slowed down by a factor of 1.5, as described in the 

supplemental  material.  This  technique  is  applied  at  each  trial  step,  and  it  is  the 

mitigated cost function that is utilized by the classical optimizer. The empirical risk 

shown in Figure 30(a) demonstrates convergence to a lower value for depth  l  = 4 

compared to l = 0, albeit with a greater number of optimization steps. While error 

mitigation does not significantly enhance the results for depth 0 - as the noise in our 

system  is  not  the  limiting  factor  in  that  scenario-,  it  does  provide  substantial 

improvement  for  larger  depths.  Although  Pr( (m̃ x⃗)   m  (≠ x⃗))  explicitly  in-larager 

depths. Although Pr( (m̃ x⃗)  m (≠ x⃗)) explicitly accounts for the number of experimental 

shots taken, we set R = 200 to avoid gradient problems, despite having taken 2000 

shots in the actual experiment.[41]

Upon  completion  of  each  training  session,  we  utilize  the  trained  set  of 

parameters (θ⃗*, b* = 0) to classify 20 distinct test sets. These test sets are randomly 

selected for each data set. The classification experiments are conducted with 10,000 

shots, which is significantly higher than the 2,000 shots used during training. To ensure 

accuracy, the classification of each data point is error-mitigated and repeated twice. 

The success ratios obtained from each of the two classifications are then averaged. In 

Figure  29(c),  we  present  the  classification  results  obtained  through  our  quantum 

variational approach. It is evident that the classification success improves as the circuit 

depth increases, as depicted in Figure 30(c). For depths greater than 1, the success rates 

approach  values  close  to  100%.  Remarkably,  this  high  classification  success  is 
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maintained up to depth 4, despite the presence of decoherence caused by the 8 CNOTs 

in both the training and classification circuits, for l = 4 [41].

3.2.4 What is the advantage of QSVM over the classical SVM?

Quantum support vector machines (QSVMs) offer several potential advantages 

over classical support vector machines (SVMs), primarily due to the inherent 

properties of quantum computation. Some of these advantages include:

1. Increased computational power: 

Quantum computers can potentially perform certain types of calculations much 

faster than classical computers. QSVMs leverage quantum algorithms, such as 

quantum parallelism and quantum superposition, to process information in parallel, 

which can lead to faster classification times for large datasets.

2. Ability to handle high-dimensional data efficiently:

Quantum computers are well suited for processing high-dimensional data due to 

their inherent parallelism and the ability to represent and manipulate large amounts of 

information simultaneously. This can be particularly advantageous for tasks where the 

number of features or dimensions is very high, such as in natural language processing 

or image recognition.

3. Potential for improved generalization: 

QSVMs may offer improved generalization performance compared to classical 

SVMs in certain scenarios. Quantum algorithms could potentially find more optimal 
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hyperplanes for separating classes in high-dimensional feature spaces, leading to better 

generalization to unseen data.

4. Capability for quantum data representation:

QSVMs can exploit quantum states to represent data, which can provide a richer 

and more expressive representation compared to classical data encoding methods. This 

could potentially lead to better classification performance, especially for certain types 

of quantum data or problems where quantum effects play a significant role.

5. Opportunities for quantum speedup: 

While quantum speedup is not guaranteed for all problems, QSVMs offer the 

potential  for  significant  speedup in  certain  cases,  particularly  for  specific  quantum 

algorithms and problem instances. This could enable QSVMs to outperform classical 

SVMs for certain types of classification tasks.

3.2.5 Steps for Developing a QSVM Model:

Building  an  effective  quantum SVM (QSVM) model  involves  several  crucial 

steps,  taking  into  account  the  specific  challenges  and  considerations  related  to 

quantum machine learning:

1. Quantum Data Preparation

2. Quantum Kernel Selection

3. Quantum Learning Algorithm Selection

4. Quantum QSVM Model Training

5. Model Evaluation

6. Model Tuning and Improvement

7. Model Deployment and Usage

3.2.6 Types of Quantum Kernels for QSVMs:

In quantum support vector machines (QSVMs), kernels play a crucial role by 

allowing an implicit projection of quantum states into an infinite-dimensional feature 

space. Choosing the appropriate quantum kernel is essential for the performance of the 

quantum SVM model.

Here are some of the most common types of quantum kernels:

3.2.6.1. State Overlap Kernel:
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The state overlap kernel calculates the similarity between two quantum states by 

measuring their overlap.

It is simple to implement and interpret, but may not effectively capture non-

linear relationships between quantum states.

Formula: K( 1, 2) = 1 | 2  where 1 and 2 are quantum states.ψ ψ ⟨ψ ψ ⟩ ψ ψ

3.2.6.2. Fidelity Kernel:

The fidelity kernel calculates the fidelity between two quantum states, measuring 

their proximity in terms of trace distance.

It is more robust to quantum noise than the state overlap kernel and can capture 

more complex non-linear relationships.

Formula:  K( 1,  2)  =  F( 1,  2)^2  where  F( 1,  2)  is  the  fidelity  between  theψ ψ ψ ψ ψ ψ  

quantum states 1 and 2.ψ ψ

3.2.6.3. Trace Distance Kernel:

The trace distance kernel  calculates  the trace distance between two quantum 

states, measuring their difference in terms of the trace of density matrices.

It is even more robust to quantum noise than the fidelity kernel and can capture even 

more complex non-linear relationships.

Formula: K( 1, 2) = 1 - ||Tr( 1 2)||_1 where 1 and 2 are the density matrices ofψ ψ ρ ρ ρ ρ  

the quantum states 1 and 2, and ||.||_1 is the trace norm.ψ ψ

3.2.6.4. Kernels Based on Quantum Circuits:

More  advanced  quantum kernels  can  be  constructed  using  specific  quantum 

circuits.

These kernels can capture complex non-linear relationships by exploiting the power of 

quantum transformations.

Examples: kernels based on quantum gates, kernels based on quantum measurements.

3.2.6.5. Hybrid Kernels:

Hybrid kernels  can be combined from different  types of  quantum kernels  to 

leverage their respective strengths.

This can allow capturing a wide range of non-linear relationships in quantum data.

3.2.6.6 Choosing the Quantum Kernel:

46



Chapter II: Quantum Machine Learning.

The choice of the appropriate quantum kernel  depends on the nature of the 

quantum  data,  the  classification  task,  and  the  available  resources.d  the  available 

resources.

3.2.7 Data Representation for QSVM Learning:

3.2.7.1 Vector Representation:

Each data point is transformed into a vector in a feature space. The dimension 

depends on the number of features of the data. Feature extraction techniques are used 

for the transformation.

3.2.7.2 Kernel Representation:

A  kernel  function  is  used  to  calculate  the  similarity  between  data  points. 

Projection  into  an  infinite-dimensional  feature  space.  Crucial  choice  of  the  kernel 

function for performance.

3.2.7.3 Constraint Representation:

Learning a hyperplane to separate the classes. Minimization of a quadratic cost 

function under constraints. Constraints for the correct ranking of support points.

3.2.7.4 Important Considerations: 

Normalization  of  data  for  a  uniform  scale.  Feature  selection  for  the  most 

relevant ones. Appropriate choice of kernel according to the data and task.

3.2.7.5 Hilbert Space:

Crucial role in QSVM theory, but no explicit representation of data. Internal 

workings of the kernel and mathematical properties. Hilbert space to define geometric 

concepts  in  infinite  dimensions.  Dot  product  and  linear  algebra  techniques  for 

learning.

3.2.7.6 In summary:

Vector or kernel representation for QSVM learning. Choice of representation 

and parameters tailored to the problem. Hilbert space important for kernel theory and 

properties.

4. Validation model

There  exist  various  model  validation  techniques,  and  the  selection  of  the 

appropriate  one  relies  on  the  nature  of  your  data  and  the  objectives  you  aim  to 
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accomplish with your machine learning model. The following are the prevailing model 

validation techniques [54]:

1. Train and Test Split or Holdout

2. Resubstitution

3. K-Fold Cross-Validation

4. Random Subsampling

5. Bootstrapping

6. Nested Cross-Validation

5. Performance Metrics

Classification metrics evaluate the effectiveness of machine learning algorithms 

in classifying data into distinct categories. Their primary objective is to allocate a given 

data point to a specific predefined category [55]:

1. Accuracy

Accuracy= TP+TN
TP+FP+TN+FN

2. Confusion Matrix

3. Precision and Recall

 
Precision= TP

TP+TF

Recall= TP
TP+FN

4. F1-score

 
F 1 Score= 2

1
Precision

+ 1
Recall

=2∗ Precision∗ Recall
Precision+Recall

5. Area Under the Receiver Operating Characteristic Curve (AU-ROC)

6. Conclusion

In  summary,  quantum machine  learning  tries  to  use  quantum computers  to 

make machine learning algorithms better. This chapter looked at quantum versions of 

popular algorithms like support vector machines (QSVM). It  discussed how to run 

these  quantum algorithms  on  real  quantum hardware  like  superconducting  qubits. 

Experiments showed that using deeper, more complex quantum circuits improved the 

performance of the QSVM, allowing it to correctly classify data points with near 100% 
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accuracy  in  some  cases.  However,  to  truly  get  better  performance  than  classical 

computers, the quantum algorithms need to implement feature maps that are very hard 

for normal computers to simulate. The chapter also covered ways to validate and test 

quantum machine learning models, like cross-validation. It explained metrics used to 

measure  a  model's  performance,  such  as  accuracy,  precision,  and  recall.  While 

quantum machine learning is still a new field, it has the potential to enhance machine 

learning  capabilities  in  the  future  when  large,  powerful  quantum  computers  are 

available.
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1. Introduction

In the previous chapter, we delved into the fundamentals of machine learning 

and quantum computing. We modeled several QNN circuits as our initial algorithm, 

and then attempted to use Qiskit's QSVM, which encountered some issues with the 

library. Moving forward, we will apply these concepts to a practical example: a water 

quality model.  This model will  utilize the VQC (variational quantum classification) 

method, as detailed in Chapter II.3.2.3. We will streamline our dataset and implement 

the model using the VQC library from Qiskit, programming with Qiskit circuits and 

Python.  Additionally,  we  will  discuss  traditional  machine  learning  libraries,  their 

advancements, and the challenges we face.

2. Dataset Description and Preprocessing Phase

We obtained one datasets, one containing 3277 observations [56], sourced from 

Kaggle. In order to clean the data, we need to remove rows with missing variables. The 

dataset is illustrated in Figure 33. These datasets differ in terms of the number of rows,  

columns, and the volume of data they contain.[57]

3. Data Encoding Phase

In the encoding phase of the proposed model, the classical data that has been 

processed  is  converted  into  a  quantum  format  that  can  be  utilized  as  input  for 

quantum algorithms. To accomplish this, one commonly employed method is through 

the utilization of feature maps, with the ZFeatureMap being a well-known technique 

for encoding classical data into a quantum state. The ZFeatureMap circuit applies a 

series of Z rotations to the qubits  based on the binary representation of the input 
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features. Specifically, the number of Z rotations applied to each qubit is determined by 

the Hamming weight of the corresponding feature, which refers to the count of non-

zero  bits  in  the  binary  representation  of  the  feature.  Subsequently,  the  resulting 

quantum state can be employed as input for the quantum kernel in the VQC, enabling 

the model to operate on the data within a quantum space. [57]

The VQC has the potential to leverage the benefits of quantum computing in 

classification  tasks  by  encoding  classical  data  into  a  quantum  state  through  the 

ZZFeatureMap  circuit.  These  advantages  encompass  the  efficient  classification  of 

high-dimensional data and the possibility of enhancing classification performance by 

utilizing quantum interference within feature space. [57]

4. Classification Phase

After preprocessing the dataset, the subsequent stage in constructing a machine-

learning model involves the classification phase. During this phase, the preprocessed 

data is utilized to train a model capable of effectively categorizing new instances. The 

preprocessed dataset is partitioned into a training set (70%) and a testing set (30%) for 

this purpose. The training set is employed to train the VQC algorithm using a quantum 

kernel  that  transforms  the  input  numerical  data  into  a  feature  space  of  higher 

dimensions. To enhance the efficiency of the mapping process, the ZFeatureMap with 

a single repetition and a GPU backend is utilized. Following the training of the VQC 

model, it becomes possible to predict the class labels of new, unseen data. The primary 

objective of the classification phase is to develop a reliable and precise model capable 

of accurately classifying new data. The quantum component of the proposed model is 

illustrated in Figure 34, This figure demonstrates that the cleaned or processed data 

serves as input for the data encoder and VQC circuit. Furthermore, it reveals that each 

feature is represented by a qubit.[57]
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5. Evaluation Phase

In this phase, the performance of the overall proposed intelligent model based 

on the VQC algorithm is assessed using various metrics. The initial metric is accuracy,  

which measures the proportion of correctly classified samples out of all the samples. A 

high accuracy value indicates that the model is performing well. [57]

Accuracy = (T P + T N )/(T P + F N + T N + F P) (25)

6. Implementation Phase in Qiskit

     Within this segment, we shall outline the procedures necessary to operationalize the 

final sections on an actual quantum computer, showcasing each step in the process. 

Initially, the procedure commences with the installation of a series of libraries: 

Name Version

qiskit 1.0>

scikit-learn Last version

qiskit-machine-learning Last version

pylatexenc Last version

pandas Last version

qiskit_algorithms Last version
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qiskit-Aer Last version

qiskit-ibm-provider Last version

     To execute the installation process, simply execute the following command in your 

interpreter, labeled as Figure 35.

After the installation process is complete, your dataset stored in a CSV file will  

be imported and undergo a cleaning process. 

After importing the data, use MinMaxScaler from scikit-learn can be utilized for 

this task. When used without any specific parameters, it effectively achieves the desired 

outcome by scaling and mapping the data onto a specified range [59],  and use the 

features are separated from the labels. The Sklearn library's train_test_split function is 

then utilized to split the data into 80% training and 20% testing sets. This division 

allows our model to learn from the training data in order to make predictions on new, 

unseen data. Refer to figure 08 for a visual representation of this process.

    After dividing the data, we commence the process by creating our ZZFeatureMap.

Now we add RealAmplitudes circuit is a heuristic trial wave function used as 

Ansatz  in  chemistry applications or  classification circuits  in  machine learning.  The 

circuit consists of alternating layers of YY rotations and CXCX entanglements. The 

entanglement pattern can be user-defined or selected from a predefined set. It is called 
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Fig
ure 31: installation qiskit

Fig
ure 32: Uplead dataset

Figure 33: train_test_split function
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RealAmplitudes since the prepared quantum states will only have real amplitudes, the 

complex part is always 0.[58] 

After defining the quantum circuit architecture for the classifier, we select an 

optimization  algorithm  to  facilitate  the  training  process.  This  step  mirrors  the 

approach taken in classical deep learning frameworks. To accelerate the training, we 

opt for a gradient-free optimizer,  which can significantly reduce the computational 

overhead. However, Qiskit provides a range of optimizers, and you are free to explore 

alternative options that may better suit your specific requirements.[59] 
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Figure 34: ZZFeatureMap

Fig
ure 35: RealAmplitudes



Chapter III: The Water quality Classification Model.

In  the  subsequent  stage,  the  determination  of  the  training  location  for  our 

classifier is established. The options available are training on a simulator or a genuine 

quantum computer. In this case, we will opt for a simulator. To accomplish this, we 

generate  an  instance  of  the  Sampler  primitive,  which  serves  as  the  benchmark 

implementation based on statevector. By utilizing qiskit runtime services, it is feasible 

to create a sampler that is supported by a quantum computer.[59]

Here  is  an  example  of  how  to  determine  the  authenticity  of  a  quantum 

computer, Firstly, it is essential to showcase the availability of all quantum computers. 

The IBM token ID can be obtained from the IBM Quantum platform, as illustrated in 

Figure 40. The API token is a crucial component in accessing the platform's resources.
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Figure 36: Optimizers

Figure 37: Sampler

Fig
ure 39: API token from IBM web site

Figure 38: Register and show all quantum computer
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In  the  upcoming  configuration,  we  will  select  the  quantum  computer. 

Unfortunately, quantum computers are limited for free users to 300 circuits and 10 

minutes of use, while our data set contains over 3700 elements. 

Afterwards, a callback function will  be generated to execute the function for 

each evaluation of the objective function, involving two variables: the current weights 

and the corresponding value of the objective function at those weights.

In the subsequent stage, the VQC function is established by incorporating all the 

necessary parameters.  Subsequently,  we proceed with the fitting process,  and upon 

completion, we calculate the duration of this iteration.
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Figure 41: Qiskit pricing plans

Figure 42: callback function 
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Finally, in the last stage, we evaluate the accuracy of both the training 

and testing processes, yielding the final outcome.

7. Experimental Results and Discussion

In  this  section,  the  performance  of  the  proposed  water  quality  classification 

model is evaluated and tested.  We obtain a line plot (Fig. 49) depicting the objective 

function value over multiple iterations during the model's optimization and training 

process. To assess the model's significance, we apply a score function from the Qiskit 

library that provides us with accuracy scores. 
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Figure 44: The accuracy of both the training and testing processes

Fig
ure 43: VQC function 
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The  model's  performance  was  neither  particularly  not  good,  achieving  an 

accuracy of 58% on the test set and 59% on the training set. However, the available 

data  was  limited,  and  the  model  was  not  ideally  suited  for  this  specific  task.  We 

explored other promising models like VQC, but they did not work due to some issues 

with the library, potentially due to constraints in the available data. Additionally, we 

considered using other datasets, but the free Google Colab instance's RAM limit of 

12GB posed a limitation. 

8. Conclusion 

In this chapter, we have explored the potential of using Variational Quantum 

Classification (VQC) for water quality classification. Despite the promising theoretical 

advantages  of  quantum  computing,  our  experimental  results  showed  that  the 

performance of the proposed model was suboptimal, achieving an accuracy of 58% on 

the test set and 59% on the training set. Several factors contributed to this outcome, 

including the limited amount of available data, the specific nature of the task, and 

computational constraints associated with using free resources on Google Colab.

The model's performance was not ideal for the specific task at hand, and we 

faced challenges such as library compatibility issues and data constraints. Nevertheless, 

this study provides valuable insights into the practical application of quantum machine 

learning for water quality classification and highlights areas for improvement in future 

research.
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Figure 45: Model's performance
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Overall,  while  the  current  implementation  of  the  VQC  model  did  not  meet 

expectations,  it  lays  the  groundwork  for  further  exploration  and  refinement  of 

quantum machine learning techniques in this domain.
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This dissertation has explored the promising intersection of quantum computing 

and machine learning to address the critical issue of water quality prediction. With the 

increasing  scarcity  of  potable  water,  innovative  solutions  are  essential.  Quantum 

computing,  with  its  unparalleled  computational  capabilities,  offers  a  revolutionary 

approach to complex problem-solving.

Initially,  we  provided  an  in-depth  overview  of  quantum  computing 

fundamentals, including key concepts like superposition, entanglement, and quantum 

gates. These principles enable quantum computers to outperform classical counterparts 

in certain computational tasks, setting the stage for advancements in various fields.

The focus then shifted to quantum machine learning, particularly emphasizing 

algorithms such as Quantum Neural Networks (QNN) and Quantum Support Vector 

Machines (QSVM). These quantum algorithms promise significant improvements over 

classical  machine  learning  techniques  due  to  their  ability  to  handle  complex  data 

structures and computations more efficiently.

A practical  implementation of  these  concepts  was  demonstrated through the 

development  of  a  water  quality  prediction  model  using  Variational  Quantum 

Classification (VQC). This model, implemented on IBM's Qiskit platform, involved a 

meticulous  process  of  data  preprocessing,  quantum  data  encoding,  and  algorithm 

application. Despite the innovative approach, the experimental results yielded modest 

accuracy rates of 58% on the test set and 59% on the training set. These outcomes 

underscore the current challenges in the nascent field of quantum machine learning, 

such as data limitations, library compatibility issues, and computational constraints 

associated with using free resources.

Despite  these  challenges,  the  study highlights  the  feasibility  and potential  of 

quantum machine learning in solving real-world problems. The findings underscore the 

necessity  for  further  research  to  overcome  existing  limitations  and  improve  the 

robustness and accuracy of quantum models.

In  conclusion,  this  dissertation  has  laid  a  foundational  framework  for 

integrating quantum machine learning into environmental  science applications.  The 

exploration of VQC for water quality prediction represents a significant step towards 

harnessing the power of quantum computing. While the results are preliminary, they 
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offer  valuable  insights  and  set  the  stage  for  future  advancements.  As  quantum 

technology  progresses,  we  anticipate  the  development  of  more  sophisticated  and 

accurate models, contributing significantly to global challenges such as water quality 

monitoring and prediction. The continued exploration and refinement in this field are 

crucial  and  hold  immense  potential  for  transformative  impacts  on  science  and 

technology.
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