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Abstract
Functional differential equations occur in a variety of areas of biological, physical, and
engineering applications, and such equations have received much attention in recent years.
This work memoir the existence of solutions and random solutions for some implicit
fractional differential equations, involving both retarded and advanced arguments, with
generalized Caputo fractional derivative. Our results will be obtained by means of fixed
points theorems and by the technique of measures of noncompactness.

Rsume
Les quations diffrentielles fonctionnelles apparaissent dans divers domaines dapplica- tions
biologiques, physiques et dingnierie, et ces quations ont reu beaucoup dattention ces

dernires annes. Cette thse examine lexistence de solutions et de solutions alatoires pour
certaines quations diffrentielles fractionnaires implicites, impliquant la fois des arguments
retards et avancs, avec une drive fractionnaire gnralise de Caputo. Nos rsultats seront
obtenus au moyen de thormes de points fixes et par la technique des mesures de non
compacit.
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4 INTRODUCTION

0.1 Introduction

Fractional calculus is a generalization of differentiation and integration to arbitrary or-
der (non-integer) fundamental operator Dα

a+ where a, α ∈ IR. Several approaches to frac-
tional derivatives exist : Riemann-Liouville (RL), Hadamard, Erdélyi-Kober, Grunwald-
Letnikov (GL), Weyl and Caputo etc. The Caputo fractional derivative is well suitable
to the physical interpretation of initial conditions and boundary conditions. We refer
readers, for example, to the books [8, 28, 29, 34] and the references therein. In this thesis,
we always use the generalized Caputo derivative.

Fractional differential equations and inclusions appear in several areas such as engi-
neering, mathematics, bio-engineering, physics, viscoelasticity, electrochemistry, control,
etc. For current advances of fractional calculus, we refer the reader to the monographs
[1, 2, 29] and the references therein. In particular, time fractional differential equations
are used when attempting to describe transport processes with long memory. Recently,
considerable attention has been given to the existence of solutions of boundary value
problem and boundary conditions for implicit fractional differential equations and inte-
gral equations with Caputo and generalized Caputo derivative. See for example [6, 7, 16]
and references therein.

The differential equation with delay is a special type of functional differential equa-
tions. Delay differential equations arise in many biological and physical applications and it
often forces us to consider variable or state-dependent delays. The functional differential
equations with state-dependent delay have many important applications in mathematical
models of real phenomena and the study of this type of equations has received much
attention in recent years. We refer the reader to the monographs [11, 12, 19, 20].

The authors studied the existence and uniqueness of solutions for boundary value
problems of Hadamard-type fractional functional differential equations and inclusions
involving both retarded and advanced arguments;see [5, 14, 17] and the references therein.

The measure of noncompactness which is one of the fundamental tools in the theory of
nonlinear analysis was initiated by the pioneering articles of Kuratowski [32], Darbo [21]
and was developed by Bana’s and Goebel [9] and many researchers in the literature. The
applications of the measure of noncompactness can be seen in the wide range of applied
mathematics: theory of differential equations (see [4, 17, 18] and references therein).

Implicit differential equations involving the regularized fractional derivative were ana-
lyzed by many authors, in the last year ; see for instance[3, 10, 13, 17] and the references
therein.

Probabilistic functional analysis is an important mathematical area of research due to
its applications to probabilistic models in applied problems. Random differential equa-
tions, used in many on cases, to describe phenomena in biology, physics, engineering, and
systems sciences contain certain parameters or coefficients which have specific interpre-
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tations, but whose values are unknown. We refer the reader to the monographs [37, 36],
the papers [40, 38, 39] and references therein.

In the following we give an outline of our thesis organization consisting of four chapters.
The first chapter gives some notations, definitions, lemmas and fixed point theorems which
are used throughout this memoir.

In Chapter 2, we establish the existence of solutions for a class of problems for nonlin-
ear implicit generalized Caputo fractional differential equations(NIFDE) involving both
retarded and advanced arguments. Here results are discussed, the first is based on the
Banach contraction principle and Schauder’s , Schaefer’s fixed point theorems.

In Chapter 3, we establish the existence of solutions for a class of problems for nonlin-
ear implicit generalized Caputo fractional differential equations(NIFDE) involving both
retarded and advanced arguments in Banach space. Here results are discussed, is based
on the method associated with the technique of measures of non compactness and the
fixed point theorems of Darbo and Mönch.

In Chapter 4, we establish the existence of Random solutions For Mixed Fractional Dif-
ferential Equations with Retarded and Advanced Arguments. Here results are discussed,
is based on the Banach contraction principle, Schauder’s fixed point theorems.
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Chapter 1

Preliminaries

1.1 Notations and Definitions

Let (E, ‖.‖) be the Banach space. We denote by C([−r, β], E) the Banach space of
all continuous functions from [−r, β] into E equipped with the norm

‖x‖[−r,β] = sup{‖x(t)‖ : −r ≤ t ≤ β}

and C([a, T ], E) is the Banach space endowed with the norm

‖x‖[a,T ] = sup{‖x(t)‖ : a ≤ t ≤ T}.

Also, let E1 = C([a− r, a], E) , E2 = C([T, T + β], E)
and let the space

AC1(I) := {w : I −→ E : w′ ∈ AC(I)},

where

w′(t) = t
d

dt
w(t), t ∈ I,

AC(I, E) is the space of absolutely continuous functions on I,
C = {x : [a− r, T + β] 7−→ E : x |[a−r,a]∈ C([a− r, a]), x |[a,T ]∈ AC1([a, T ])

and x |[T,T+β]∈ C([T, T + β])}

be the spaces endowed, respectively, with the norms

‖x‖[a−r,a] = sup{‖x(t)‖ : a− r ≤ t ≤ a},

and

‖x‖[T,T+β] = sup{‖x(t)‖ : T ≤ t ≤ T + β},

‖x‖Ω = sup{‖x(t)‖ : a− r ≤ t ≤ T + β}.

7
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Let L1(I), be the Banach space of measurable functions v : I −→ E which are Bochner
integrable, equipped with the norm

‖v‖L1 =

∫ T

a

‖v(t)‖dt.

Consider the space Xp
c (a, b), (c ∈ IR, 1 ≤ p ≤ ∞) of those complex-valued Bochner

measurable functions f on [a, b] for which ‖f‖Xp
c
<∞, where the norm is defined by :

‖f‖Xp
c

=

(∫ b

a

|tcf(t)|pdt
t

) 1
p

, (1 ≤ p <∞, c ∈ IR).

In particular, where c = 1
p

the space Xp
c (a, b) coincides Lp(a, b) space, i.e., Xp

1
p

(a, b) =

Lp(a, b).
Denote by L∞(I, IR), the Banach space of essentially bounded measurable functions

u : I −→ IR equipped with the norm

‖f‖L∞ = inf{c ≥ 0; |f(x)| ≤ c a.e. on I}.

1.2 Fractional Calculus

Definition 1.1 ([28, 30, 31]): ( The Caputo-type generalized fractional integral)
Let α ∈ IR, c ∈ IR and g ∈ Xp

c (a, b), the Erdélyi-Kober fractional integral of order α is
defined by :

(ρIαa+g)(t) =
ρ1−α

Γ(α)

∫ t

a

sρ−1 (tρ − sρ)α−1 g(s)ds, t > a, ρ > 0 (1.1)

where Γ is the Euler gamma function defined by

Γ(α) =

∫ ∞
0

tα−1e−tdt, α > 0.

Definition 1.2 ([27]) The generalized fractional derivative, corresponding to the frac-
tional integral (1.1), is defined, for 0 ≤ a < t, by:

ρDα
a+g(t) =

ρ1−n+α

Γ(n− α)

(
t1−ρ

d

dt

)n ∫ t

a

sρ−1

(tρ − sρ)1−n+α
g(s)ds (1.2)

= δnρ (ρIn−αa+ g)(t),

where δnρ =
(
t1−ρ d

dt

)n
.

Definition 1.3 ([27, 33]) The Caputo-type generalized fractional derivative ρ
cD

α
a+ is de-

fined via the above generalized fractional derivative (1.2) as follows

(ρcD
α
a+g)(t) =

(
ρDα

a+

[
g(t)−

n−1∑
k=0

g(k)(a)

k!
(s− a)k

])
. (1.3)
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Lemma 1.4 ([27]) Let α, ρ ∈ IR+, then

(ρIαa+
CDα,ρ

a+ g)(t) = g(t)−
n−1∑
k=0

ck

(
tρ − aρ

ρ

)k
, (1.4)

and

(ρIαa+
RLDα,ρ

a+ g)(t) = g(t)−
n−1∑
k=1

ck

(
tρ − aρ

ρ

)k−α
, (1.5)

for some ck ∈ IR, n = [α] + 1.

Lemma 1.5 ([27]) If x > n, then we have[
ρIαa+

(
tρ − aρ

ρ

)β−1
]

(x) =
Γ(β)

Γ(β + α)

(
xρ − aρ

ρ

)α+β−1

. (1.6)

1.3 Random Operator

Let BR be the σ-algebra of Borel subsets of R. A mapping v : Ω → R is said to be
measurable if for any D ∈ BRm , one has

v−1(D) = {w ∈ Ω : v(w) ∈ D} ⊂ A.

To define integrals of sample paths of a random process, it is necessary to define a
jointly measurable map.

Definition 1.6 A mapping T : Ω × R → R is called jointly measurable if for any D ∈
BRm , one has

T−1(D) = {(w, v) ∈ Ω× E : T (w, v) ∈ D} ⊂ A×BR,

where A × BR is the direct product of the σ-algebras A and BR, those defined in Ω and
R, respectively.

Definition 1.7 A function T : Ω × R → R is called jointly measurable if T (·, u) is
measurable for all u ∈ R and T (w, ·) is continuous for all w ∈ Ω.

A mapping T : Ω × R → R is called a random operator if T (w, u) is measurable in
w for all u ∈ R, and it expressed as T (w)u = T (w, u). In this case we also say that
T (w) is a random operator on R. A random operator T (w) on E is called continuous
(resp. compact, totally bounded and completely continuous) if T (w, u) is continuous
(resp. compact, totally bounded and completely continuous) in u for all w ∈ Ω. The
details of completely continuous random operators in Banach spaces and their properties
appear in Itoh [26].
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Definition 1.8 [23] Let P(Y ) be the family of all nonempty subsets of Y and C be a
mapping from Ω into P(Y ). A mapping T : {(w, y) : w ∈ Ω, y ∈ C(w)} → Y is
called random operator with stochastic domain C, if C is measurable (i.e., for all closed
A ⊂ Y, {w ∈ Ω, C(w) ∩ A 6= ∅} is measurable) and for all open D ⊂ Y and all y ∈
Y, {w ∈ Ω : y ∈ C(w), T (w, y) ∈ D} is measurable. T will be called continuous if
every T (w) is continuous. For a random operator T, a mapping y : Ω → Y is called
a random (stochastic) fixed point of T if for P−almost all w ∈ Ω, y(w) ∈ C(w) and
T (w)y(w) = y(w), and for all open D ⊂ Y, {w ∈ Ω : y(w) ∈ D} is measurable.

Definition 1.9 A function f : I×C([−r, β], IR)×Ω→ IR is called random Carathéodory
if the following conditions are satisfied:

(i) The map (t, w)→ f(t, u, w) is jointly measurable for all u ∈ C([−r, β], IR)
and

(ii) The map u→ f(t, u, w) is continuous for all t ∈ I and w ∈ Ω.

1.4 Measure of Noncompactness and Auxiliary Re-

sults

Now let us recall some fundamental facts of the notion of Kuratowski measure of non-
compactness .

Definition 1.10 ([9]) Let E be a Banach space and ΩE the family of bounded subsets of
E. The Kuratowski measure of noncompactness is the map α : ΩE → [0,∞) defined by

α(B) = inf{ε > 0 : B ⊆ ∪ni=1Bi and diam(Bi) ≤ ε}.

The Kuratowski measure of noncompactness satisfies the following properties.

Lemma 1.11 ([22]) Let A and B bounded sets.

(1) α(B) = 0⇔ B is compact (B is relatively compact).

(2) α(cov(B)) = α(B),(cov(B) denote the convex hull of B)

(3) α(B) = α(B), (B denote the closure of B.)

(4) A ⊂ B ⇒ α(A) ≤ α(B).

(5) α(A+B) ≤ α(A) + α(B), where A+B = {x+ y : x ∈ A, y ∈ B}.

(6) α(λB) = |λ|α(B); λ ∈ IR, where λB = {λx : x ∈ B}.

(7) α(A ∪B) = max{µ(A), α(B)}.

(8) α(B + x0) = α(B) for any x0 ∈ E.
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Lemma 1.12 ([25]) Let V ⊂ C(I, E) is a bounded and equicontinuous set, then

(i) the function t 7−→ α(V (t)) is continuous on I, and

αC(V ) = max
t∈I

α(V (t)),

(ii)

α

(∫ T

a

x(s)ds : x ∈ V
)

=

∫ T

a

α(V (s))ds,

where
V (t) = {x(t) : x ∈ V }, t ∈ I.

and αC is the Kuratowski measure of noncompactness defined on the bounded sets
of C(I).

Theorem 1.13 ([17])(AscoliArzela) . Let A ⊂ C(I, E),A is relatively compact (i.e.A
is compact) if:
1. A is uniformly bounded i.e., there exists M > 0 such that

‖f(t)‖ < M for every f ∈ A and t ∈ I.
.
2.A is equicontinuous i.e., for every ε > 0, there exists δ > 0 such that for each t,t ∈ I,

|t− t| ≤ δ =⇒ ‖f(t)− f(t)‖ ≤ ε, for every f ∈ A.

.
3. The set {f(t) : f ∈ A; t ∈ I} is relatively compact in E.

1.5 Some Fixed Point Theorems

Theorem 1.14 ([24])(Schauder’s). Let X be a Banach space, D ⊂ X a nonempty
convex bounded closed set and let N : D 7−→ D be a completely continuous operator.
Then N has at least one fixed point.

Theorem 1.15 ([26]). Let X be a nonempty, closed convex bounded subset of the sep-
arable Banach space E and let N : Ω × X 7−→ X be a compact and continuous random
operator. Then the random equation N(w, u(w)) = u(w) has a random solution.

Theorem 1.16 ([24])(Schaefer’s ). Let X be a Banach space, and N : X 7−→ X be a
completely continuous operator. If the set

ξ = {x ∈ X : x = λNx, for some λ ∈ (0, 1)} is bounded,

then N has a fixed point.
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Lemma 1.17 (Darbo , [21]). Let D be a bounded, closed and convex subset of Banach
space X. If the operator N : D → D is a strict set contraction, i.e there is a constant
0 ≤ λ < 1 such that α(N(S)) ≤ λα(S) for any set S ⊂ D then N has a fixed point in D.

Theorem 1.18 (Mönch , [35]). Let D be a bounded, closed and convex subset of a
Banach space such that 0 ∈ D, and let N be a continuous mapping of D into itself. If the
implication

V = convN(V ) or V = N(V ) ∪ 0 =⇒ α(V ) = 0

holds for every subset V of D, then N has a fixed point.

.



Chapter 2

Nonlinear Neutral IFDE with
Retarded and Advanced Arguments

2.1 Introduction

In this chapter, we establish, the existence and uniqueness of solutions for implicit gener-
alized Caputo fractional differential equations with retarded and advanced arguments.

ρ
cD

α
a+(x(t)− k(t, xt)) = f(t, xt,ρc D

α
a+x(t)), for t ∈ I := [a, T ], 1 < α ≤ 2, (2.1)

x(t) = φ(t), t ∈ [a− r, a], r > 0 (2.2)

x(t) = ψ(t), t ∈ [T, T + β], β > 0, (2.3)

where ρ
cD

α
a+ is the Caputo type modification of the generalized fractional derivative, f :

I × C([−r, β], IR)× IR→ IR is a given function, φ ∈ C([a− r, a], IR) with φ(a) = 0 and
ψ ∈ C([T, T + β], IR) with ψ(T ) = 0. We denote by xt the element of C([−r, β]) defined
by:

xt(s) = x(t+ s) : s ∈ [−r, β]

here xt(·) represents the history of the state from time t− r up to time t+ β.

2.2 Existence Results for the NIFDE with Retarded

and Advanced Arguments

Lemma 2.1 Let 1 < α ≤ 2, φ ∈ C([a − r, a], IR) with φ(a) = 0, ψ ∈ C([T, T + β], IR)
with ψ(T ) = 0 and h : I → IR be a continuous function. Then the linear problem

ρ
cD

α
a+x(t) = h(t), for a.e. t ∈ I := [a, T ], 1 < α ≤ 2, (2.4)

x(t) = φ(t), t ∈ [a− r, a], r > 0 (2.5)

13
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x(t) = ψ(t), t ∈ [T, T + β], β > 0, (2.6)

has a unique solution, which is given by

x(t) =



φ(t), if t ∈ [a− r, a],

k(t, xt)−
∫ T

a

G(t, s)h(s)ds, if t ∈ I

ψ(t), if t ∈ [T, T + β],

(2.7)

where

G(t, s) =
ρ1−α

α(α)


(tρ − aρ)(T ρ − cρ)α−1cρ−1

(T ρ − aρ)
− cρ−1(tρ − cρ)α−1, a ≤ c ≤ t ≤ T,

(tρ − aρ)(T ρ − cρ)α−1cρ−1

(T ρ − aρ)
, a ≤ t ≤ c ≤ T.

(2.8)

Here G(t, s) is called the Green function of the boundary value problem (2.4)-(2.6).
Proof. From (1.4), we have

x(t) = c0 + c1

(
tρ − aρ

ρ

)
a+ρ Iαa+h(s), c0, c1 ∈ IR, (2.9)

therefore

x(a) = c0 = 0,

x(T ) = c1

(
T ρ − aρ

ρ

)
+
ρ1−α

Γ(α)

∫ T

a

(T ρ − cρ)α−1sρ−1h(s)ds,

and

c1 = − ρ2−α

(T ρ − arho)α(α)

∫ T

a

(T ρ − sρ)α−1sρ−1h(s)ds.

Substitute the value of c0 and c1 into equation (2.9), we get equation (2.7).
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x(t) =



φ(t), if t ∈ [a− r, a],

k(t, xt)−
∫ T

a

G(t, s)h(s)ds, if t ∈ I

ψ(t), if t ∈ [T, T + β],

where G is defined by equation(2.8), the proof is complete.

Lemma 2.2 Let f : I×C[−r, β]×IR −→ IR be a continuous function. A function x ∈ C
is solution of problem (2.1)− (2.3) if and only if x satisfies the following integral equation

x(t) =



φ(t), if t ∈ [a− r, a],

k(t, xt)−
∫ T

a

G(t, s)h(s)ds, if t ∈ I

ψ(t), if t ∈ [T, T + β],

where h ∈ C(J) satisfies the functional equation

h(t) = f(t, xt, h(t)).

The following hypotheses will be used in the sequel:

(H1) The function f : I×C[−r, β]×IR −→ IR and k : I×C[−r, β] −→ IR are continuous.

(H2) There exist S > 0 , P > 0 , 0 < S < 1 such that

|f(t, u, v)− f(t, ū, v̄)| ≤ S‖u− ū‖[−r,β] + S|v − v̄|

and
|k(t,m)− k(t, m̄)| ≤ P‖m− m̄‖[−r,β]

for any u, ū,m, m̄ ∈ C([−r, β]) and v, v̄ ∈ IR.

(H3) There exists q, b ∈ L∞([a, T ], IR+) such that

|f(t, u, v)| ≤ q(t) for a.e. t ∈ I, and each u ∈ C([−r, β]) and v ∈ IR,

and
|k(t, u)| ≤ b(t) for a.e. t ∈ I, and each u ∈ C([−r, β])

Set
q∗ = ess sup

t∈I
q(t)
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and
b∗ = ess sup

t∈I
q(t)

G̃ = sup

{∫ T

a

|G(t, s)|ds, t ∈ I
}
.

(H4) For each bounded set DN in C, the set {t −→ k(t, xt) : x ∈ DN} is equicontinuous
in C(I, IR) .

Now, we state and prove our existence result for (2.1)-(2.3) based on the Banach con-
traction principle.

Theorem 2.3 Assume (H1) and (H2) hold. If

(P +
SG̃

(1− S)
) < 1, (2.10)

then the problem (2.1)-(2.3) has a unique solution.

Proof: Let the operator L : C −→ C defined by

(Lx)(t) =



φ(t), if t ∈ [a− r, a],

k(t, xt)−
∫ T

a

G(t, s)hx(s)ds, if t ∈ I

ψ(t), if t ∈ [T, T + β].

(2.11)

By Lemma 2.2 it is clear that the fixed points of L are solutions (2.1)-(2.3) .
Let x1, x2 ∈ C. If t ∈ [a− r, a] or t ∈ [T, T + β] then

|(Lx1)(t)− (Lx2)(t)| = 0.

For t ∈ I, we have

|(Lx1)(t)− (Lx2)(t)| ≤ |k(t, xt1)− k(t, xt2)|+
∫ T

a

|G(t, s)||hx1(s)− hx2(s)|ds, (2.12)

and by (H2) we have

|hx1(t)− hx2(t)| = |f(t, xt1,
ρ
c D

α
a+x1(t))− f(t, xt2,

ρ
c D

α
a+x2(t))|

≤ S‖x1 − x2‖[−r,β] + S|hx1(t)− hx2(t)|.

Then

|hx1(t)− hx2(t)| ≤
S

(1− S)
‖x1 − x2‖[−r,β]. (2.13)
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By replacing (2.15) in (2.12) we obtain,

|(Lx1)(t)− (Lx2)(t)| ≤ P‖x1 − x2‖[−r,β] +
S

(1− S)

∫ T

a

|G(t, s)|‖x1 − x2‖[−r,β]ds

≤ (P +
SG̃

(1− S)
)‖x1 − x2‖[−r,β].

Therfore ,For each t ∈ I, we have

|(Lx1)(t)− (Lx2)(t)| ≤

(
P +

SG̃

1− S

)
‖x1 − x2‖[−r,β]. (2.14)

Thus

‖Lx1)− Lx2‖c ≤

(
P +

SG̃

1− S

)
‖x1 − x2‖C . (2.15)

We now prove an existence result for (2.1)-(2.3) by using the Schauder’s fixed point
theorem.

Theorem 2.4 Assume that the hypotheses (H1) and (H3) hold. Then problem (2.1)-(2.3)
has at least one solution.

Step 1. L is continuous. Let {xn} be a sequence such that xn −→ x in C. If t ∈ [a−r, a]
or t ∈ [T, T + β] then

|(Lxn)(t)− (Lx)(t)| = 0.

For t ∈ I, we have

|(Lxn)(t)− (Lx)(t)| ≤ |k(t, xtn)− k(t, xt)|+
∫ T

a

|G(t, s)||hn(s)− h(s)|ds, (2.16)

where
hn(t) = f(t, xtn, hn(t)),

and
h(t) = f(t, xt, h(t)).

Since xn −→ x, and by (H1) we get hn(t) −→ h(t) and k(t, xtn) −→ k(t, xt) as n −→ ∞
for each t ∈ I.
By (H3) we have for each t ∈ I,

|hn(t)| ≤ q∗. (2.17)

Then,

|G(t, s)||hn(t)− h(t)| ≤ |G(t, s)| [|hn(t)|+ |(t)|]
≤ 2q∗|G(t, s)|.
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For each t ∈ I the functions s 7−→ 2q∗|G(t, s)| are integrable on [a, t], then by Lebesgue
dominated convergence theorem, equation (2.16 ) implies

|(Lxn)(t)− (Lx)(t)| −→ 0 as n −→∞,

and hence
‖L(xn)− L(x)‖C −→ 0 as n −→∞.

Consequently, N is continuous.
Let the constant R be such that:

R ≥ max
{
q∗G̃, ‖φ‖[a−r,a], ‖ψ‖[T,T+β]

}
, (2.18)

and define
DR = {x ∈ C : ‖x‖C ≤ R}.

It is clear that DR is a bounded, closed and convex subset of β.

Step 2. L(DR) ⊂ DR.

Let x ∈ DR we show that Lx ∈ DR.
If t ∈ [a− r, a], then

|L(x)(t)| ≤ ‖φ‖[a−r,a] ≤ R,

and if t ∈ [T, T + β], then
|L(x)(t)| ≤ ‖ψ‖[T,T+β] ≤ R.

For each t ∈ I, we have

|(Lx)(t)| ≤ |k(t, xt)|+
∫ T

a

|G(t, s)||h(s)|ds.

By (H3), we have

|(Lx)(t)| ≤ b∗ + q∗
∫ T

a

|G(t, s)|ds

≤ b∗ + q∗G̃

≤ R,

from which it follows that for each t ∈ [a− r, T + β], we have |Lx(t)| ≤ R, which implies
that ‖Lx‖c ≤ R. Consequently,

L(DR) ⊂ DR.

Step 3: L(DR) is bounded and equicontinuous.
By Step 2 we have L(DR) is bounded.
Let t1, t2 ∈ I = [a, T ], t1 < t2, and x ∈ DR then

|(Lx)(t2)− (Lx)(t1)| ≤ |k(t2, x
t)− k(t1, x

t)|+
∫ T

a

|G(t2, s)−G(t1, s)|h(s)|ds

≤ |k(t2, x
t)− k(t1, x

t)|+ q∗
∫ T

a

|G(t2, s)−G(t1, s)|ds.
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By (H4) and as t1 −→ t2 the right hand side of the above inequality tends to zero.
As consequence of Step 1 to Step 3, together withe the Arzela-Ascoli theorem, we can
conclude that N is continuous and completely continuous. From Schauder’s theorem, we
conclude that N has a fixed point with is a solution of the problem (2.1)-(2.3).

We prove an existence result for the (2.1)-(2.3) problem by using the Schaefer’s fixed
point theorem.

Theorem 2.5 Assume that (H1) and
(H4) There exist d, q,m, b ∈ C(J, IR) with m∗ = sup

t∈I
m(t) < 1 such that

|f(t, u, v)| ≤ d(t) + q(t)‖u‖[−r,β] +m(t)|v| where t ∈ I, u ∈ C([−r, β], IR) and v ∈ IR.

And

|k(t, u)| ≤ b(t) where t ∈ I, u ∈ C([−r, β], IR) and v ∈ IR.

If

q∗G̃

(1−m∗)
< 1, (2.19)

then problem (2.1)-(2.3) has at least one solution.

Proof. Consider the operator L defined in (2.11). We shall show that L satisfies the
assumption of Schaefer’s fixed point theorem. As shown in Theorem 4.4, we see that the
operator L is continuous, and completely continuous.
Now it remains to show that the set

ξ = {x ∈ C : x = λLx, for some λ ∈ (0, 1)} is bounded.

Let x ∈ ξ, then x = λLy for some 0 < λ < 1. Thus for each t ∈ I we have

x(t) = λ

(
k(t, xt)−

∫ T

a

G(t, s)hx(s)ds

)
, (2.20)

where

hx(t) = f(t, xt, hx(t)).

By (H4), we have for each t ∈ I

|hx(t)| ≤ d(t) + q(t)‖x‖[−r,β] +m(t)|hx(t)|
≤ d∗ + q∗‖x‖[−r,β] +m∗|hx(t)|

Thus

|hx(t)| ≤
1

1−m∗
(
d∗ + q∗‖x‖[−r,β]

)
.
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This implies, by (2.20) that for each t ∈ I we have

|x(t)| ≤ b∗ +

∫ T

a

|G(t, s)| 1

1−m∗
(
d∗ + q∗‖x‖[−r,β]

)
ds

≤ b∗ +

(
d∗ + q∗‖x‖[−r,β]

)
G̃

(1−m∗)
.

Then

‖x‖[−r,β] ≤ b∗ +
d∗G̃

(1−m∗)
+
q∗G̃‖x‖[−r,β]

(1−m∗)
.

Thus [
1− q∗G̃

(1−m∗)

]
‖x‖[−r,β] ≤ b∗ +

d∗G̃

(1−m∗)
.

Finally, by (2.19) we have

‖x‖[−r,β] ≤
b∗ + d∗G̃

(1−m∗)[
1− q∗G̃

(1−m∗)

] = b0.

If t ∈ [a− r, a], then
|x(t)| ≤ ‖φ‖[a−r,a] ≤ b1,

and if t ∈ [T, T + β], then
|x(t)| ≤ ‖ψ‖[T,T+β] ≤ b2.

From which it follows that for each t ∈ [a−r, T+β], we have |x(t)| ≤ max {b2, b1, b0}, which
implies that ‖x‖C ≤ max {b2, b1, b0}, this implies that ξ is bounded As a consequence of
Schaefer’s fixed point theorem, L admits a fixed point which is a solution of the problem
(2.1)-(2.3).

2.2.1 Examples

Example 1: Consider the boundary value problem of implicit generalized Caputo frac-
tional differential equation:

x(t) = et−2 − 1, t ∈ [1, 2],

1
2
cD

3
2

2+x(t) =
1

10et+2
(

1 + |xt|+
∣∣∣ 12cD 3

2

2+x(t)
∣∣∣) +

sin(t)

ln(t2 + 1)
, t ∈ I = [2, 4]

x(t) = t− 4, t ∈ [4, 6].

(2.21)
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Set

f(t, u, v) =
1

10et+2(1 + |u|+ |v|)
+

sin(t)

ln(t2 + 1)
k(t, u) = 0, t ∈ [2, 4], u ∈ C([−r, β])

k(t,u)=0 and v ∈ IR, α = 3
2
, ρ = 1

2
, r = 1, β = 2. For each u, ū ∈ C([−r, β]), v, v̄ ∈ IR

and t ∈ [2, 4], we have

|f(t, u, v)− f(t, ū, v̄)| ≤
∣∣∣∣ 1

10et+2(1 + |u|+ |v|)
− 1

10et+2(1 + |ū|+ |v̄|)

∣∣∣∣
≤ 1

10et+2
(|u− ū|+ |v − v̄|)

≤ 1

10et+2

(
‖u− ū‖[−r,β] + |v − v̄|

)
.

Therefore, (H2) is verified with S = S = 1
10e4

.
For each t ∈ I we have

∫ T

a

|G(t, s)|ds ≤ 1

Γ(α)

(
tρ − aρ

T ρ − aρ

)∫ T

a

∣∣∣∣∣
(
T ρ − sρ

ρ

)α−1

sρ−1

∣∣∣∣∣ ds

+
1

Γ(α)

∫ t

a

∣∣∣∣∣
(
tρ − sρ

ρ

)α−1

sρ−1

∣∣∣∣∣ ds.
Then ∫ T

a

|G(t, s)|ds ≤ 2

Γ(α + 1)

(
T ρ − aρ

ρ

)α
.

Therefore

G̃ ≤ 2

Γ(α + 1)

(
T ρ − aρ

ρ

)α
.

The condition

P +
SG̃

(1− S)
≤ 2

1
10e4

(1− 1
10e4

)Γ(5
2
)

(
2− 2

1
2

1
2

) 3
2

≈ 0.0035008

< 1,

is satisfied with T = 4, a = 2 and α = 3
2
. Hence all conditions of Theorem 2.3 are satisfied,

it follows that the problem (2.21) admit a unique solution defined on I.
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Example 2: Consider the boundary value problem of implicit generalized Caputo frac-
tional differential equation:

x(t) = et − 1, t ∈ [−1, 0],

1
2
cD

3
2

0+x(t) =
sin(2t)

(
2 + |xt|+

∣∣∣ 12cD 3
2

0+x(t)
∣∣∣)

20et+4
(

1 + |xt|+
∣∣∣ 12cD 3

2

0+x(t)
∣∣∣) , t ∈ I = [0, e]

x(t) = ln(t)− 1, t ∈ [e, 4],

(2.22)

with

f(t, u, v) =
sin(2t) (2 + |u|+ |v|)
10et+2(1 + |u|+ |v|)

, k(t, u) = 0 t ∈ I = [0, e], u ∈ C([−r, β]) and v ∈ IR

α =
3

2
, ρ =

1

2
, r = 1, β = 4− e.

Condition (H4) is satisfied for each u,∈ C([−r, β]) , v ∈ IR and t ∈ [0, e]:

|f(t, u, v)| ≤ 2 + |u|+ |v|
20et+4

≤ 1

20et+4

(
2 + |v|+ ‖u‖[−r,β]

)
.

Therefore, (H4) is verified with

d(t) =
1

10et+4
, q(t) = m(t) =

1

20et+4
and m∗ =

1

20e4
< 1.

Condition:

q∗G̃

(1−m∗)
≤ 2

1
20e4

(1− 1
20e4

)Γ(5
2
)

(
e

1
2

1
2

) 3
2

≈ 0.0082575

< 1,

is satisfied with T = e, a = 0 and α = 3
2
. Hence all conditions of Theorem 2.5 are satisfied,

it follows that the problem (2.22) has at least one solution on I.



Chapter 3

Nonlinear Neutral IFDE with
Retarded and Advanced Arguments

3.1 Introduction

In this chapter, we establish, the existence of solutions for implicit generalized Caputo
fractional differential equations in Banach space with retarded and advanced arguments.

3.2 Existence Results for the NIFDE with Retarded

and Advanced Arguments in Banach Spaces

ρ
cD

α
a+

(
x(t)− k(t, xt)

)
= f(t, xt,ρc D

α
a+x(t)), t ∈ I := [a, T ], 1 < α ≤ 2, (3.1)

y(t) = φ(t), t ∈ [a− r, a], r > 0 (3.2)

y(t) = ψ(t), t ∈ [T, T + β], β > 0, (3.3)

where ρ
cD

α
a+ is the generalized Caputo fractional derivative, (E, ‖ · ‖) is a real Banach

space and f : I × C([−r, β], E) × E → E is a given function, φ ∈ C([a − r, a], E) with
φ(a) = 0 and ψ ∈ C([T, T + β,E) with ψ(T ) = 0.
We denote by xt the element of C([−r, β]) defined by:

xt(s) = x(t+ s) : s ∈ [−r, β]

here xt(·) represents the history of the state from time t− r up to time t+ β.

To prove the existence of solutions to (3.1)–(3.3), we need the following auxiliary
Lemma.

23
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Lemma 3.1 Let f : I ×C[−r, β]×E −→ E be a continuous function. A function x ∈ C
is solution of problem (3.1)− (3.3) if and only if x satisfies the following integral equation

x(t) =



φ(t), if t ∈ [a− r, a],

k(t, xt)−
∫ T

a

G(t, s)h(s)ds, if t ∈ I

ψ(t), if t ∈ [T, T + β],

where h ∈ C(I) satisfies the functional equation

h(t) = f(t, xt, h(t)),

and

G(t, s) =
ρ1−α

Γ(α)


(tρ − aρ)(T ρ − sρ)α−1sρ−1

(T ρ − aρ)
− sρ−1(tρ − sρ)α−1, a ≤ s ≤ t ≤ T,

(tρ − aρ)(T ρ − sρ)α−1sρ−1

(T ρ − aρ)
, a ≤ t ≤ s ≤ T.

The following hypotheses will be used in the sequel:

(H1) The function f : I×C[−r, β]×E −→ E and k : I×C[−r, β] −→ E are continuous.

(H2) There exist d, q,m ∈ C(I, IR) with m∗ = sup
t∈I

m(t) < 1 such that

‖f(t, u, v)‖ ≤ d(t) + q(t)‖u‖[−r,β] +m(t)‖v‖, u ∈ C([−r, β], E), v ∈ E, t ∈ I,

and
‖k(t, u)‖ ≤ b(t) for a.e. t ∈ I, and each u ∈ C([−r, β], E)

(H3) for each bounded set B ⊂ C, and for each t ∈ I, we have

α(f(t, B1, B2)) ≤ q(t) sup
t∈[−r,β]

α(B1) +m(t) sup
t∈[−r,β]

α(B2),

and
α(k(t, B1)) ≤ b(t) sup

t∈[−r,β]

α(B1),

for any bounded sets, B1 ⊂ C([−r, β]), B2 ⊂ E.
Set

q∗ = sup
t∈I

q(t), m∗ = sup
t∈I

m(t), b∗ = sup
t∈I

b(t), G̃ = sup

{∫ T

a

|G(t, s)|ds, t ∈ I
}
.
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(H4) For each bounded set DN in C, the set {t −→ k(t, xt) : x ∈ DN} is equicontinuous
in C(I, E)

We prove an existence result for the (3.1)-(3.3) problem, by using the Darbo fixed point
theorem.

Theorem 3.2 Assume that the hypotheses (H1)− (H3) hold. If

b∗ +
q∗G̃

1−m∗
< 1, (3.4)

then problem (3.1)-(3.3) has at least one solution.

Proof. Let the operator N : C −→ C defined by

(Nx)(t) =



φ(t), if t ∈ [a− r, a],

gx(s)−
∫ T

a

G(t, s)hx(s)ds, if t ∈ I

ψ(t), if t ∈ [T, T + β].

(3.5)

By Lemma 3.1 it is clear that the fixed points of N are solutions (3.1)-(3.3).
Step 1: N is continuous. Let {xn} be a sequence such that xn −→ x in C. If t ∈ [a−r, a]
or t ∈ [T, T + β] then

‖(Nxn)(t)− (Nx)(t)‖ = 0.

For t ∈ I, we have

‖(Nxn)(t)− (Nx)(t)‖ ≤ ‖gn(s)− g(s)‖ −
∫ T

a

|G(t, s)|‖hn(s)− h(s)‖ds, (3.6)

where

hn(t) = f(t, xtn, hn(t))

and

gn(t) = k(t, xtn).

Since xn −→ x, bx (H1) we get hn(t) −→ h(t) as n −→∞ for each t ∈ I.
And let η > 0, such that, for each t ∈ I, we have ‖hn(t)‖ ≤ η and ‖h(t)‖ ≤ η.
Therefore

|G(t, s)|‖hn(t)− h(t)‖ ≤ |G(t, s)| [‖hn(t)‖+ ‖h(t)‖]
≤ 2η|G(t, s)|.
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For each t ∈ I the function s 7−→ 2η|G(t, s)| is integrable on [a, t] , then by Lebesgue
dominated convergence theorem, equation (3.6 ) implies

‖(Nxn)(t)− (Nx)(t)‖ −→ 0 as n −→∞,

and hence

‖N(xn)−N(x)‖C −→ 0 as n −→∞.

Thus N is continuous.
Let the constant R be such that:

R ≥ max
{
b∗ + AG̃, ‖φ‖[a−r,a], ‖ψ‖[T,T+β]

}
, (3.7)

and define

DR = {x ∈ C : ‖x‖C ≤ R}.

It is clear that DR is a bounded, closed and convex subset of C.

Step 2: N maps DR into itself.
Let x ∈ DR we show that Nx ∈ DR.
If t ∈ [a− r, a], then

‖N(x)(t)‖ ≤ ‖φ‖[a−r,a] ≤ R,

and if t ∈ [T, T + β], then

‖N(x)(t)‖ ≤ ‖ψ‖[T,T+β] ≤ R.

For each t ∈ I, we have

‖(Nx)(t)‖ ≤ ‖k(t, xt)‖+

∫ T

a

|G(t, s)|‖h(s)‖ds.

By (H2) we have for each t ∈ I

‖h(t)‖ ≤ d(t) + q(t)‖x‖[−r,β] +m(t)‖h(t)‖
≤ d∗ + q∗‖x‖[−r,β] +m∗‖h(t)‖
≤ d∗ + q∗R +m∗‖h(t)‖,

and

‖k(t, u)‖ ≤ b(t)

≤ b∗

where

b∗ = sup
t∈I

b(t), d∗ = sup
t∈I

d(t), q∗ = sup
t∈I

q(t) and m∗ = sup
t∈I

m(t).
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Then

‖h(t)‖ ≤ d∗ + q∗R

1−m∗
= A. (3.8)

By (3.8), for t ∈ I, we have

‖(Nx)(t)‖ ≤ b∗ + A

∫ T

a

|G(t, s)|ds

≤ b∗ + AG̃

≤ R,

from which it follows that for each t ∈ [a− r, T +β], we have ‖Nx(t)‖ ≤ R, which implies
that ‖Nx‖[−r;β] ≤ R. This proves that N transforms the set DR into itself.
Step 3: N(DR) is bounded and equicontinuous.
Since N(DR) = {N(x) : x ∈ DR} ⊂ DR and DR is bounded, then N(DR) is bounded.
Now, let t1, t2 ∈ I = [a, T ], t1 < t2, and x ∈ DR then

‖(Nx)(t2)− (Nx)(t1)‖ ≤ ‖k(t2, x
t2)− k(t1, x

t1)‖+

∫ T

a

|G(t2, s)−G(t1, s)|‖h(s)‖ds

≤ ‖k(t2, x
t2)− k(t1, x

t1)‖+ A

∫ T

a

|G(t2, s)−G(t1, s)|ds.

By (H4) as t1 −→ t2 the right hand side of the above inequality tends to zero.
Step 4: The operator N : DR 7−→ DR is a strict set contraction.
Let V ⊂ DR if t [a− r, a], then

α(N(V )(t)) = α(N(x)(t), x ∈ V )

= α(φ(t))

= 0,

also if t [T, T + β], then

α(N(V )(t)) = α(N(x)(t), x ∈ V )

= α(ψ(t))

= 0.

And if t ∈ I, we have

α(N(V )(t)) = α(N(x)(t), x ∈ V )

≤
{
α(g(t)) +

∫ T

a

|G(t, s)|α(h(s))ds, x ∈ V
}
.
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By (H3) we have

α(h(s), x ∈ V ) = α({f(s, x(s), h(s)), x ∈ V })
≤ q(t)α({x(s), x ∈ V }) +m(t)α({h(s), x ∈ V })
≤ q∗α({x(s), x ∈ V }) +m∗α({h(s), x ∈ V }),

and

α(g(t), x ∈ V ) = α({k(t, x(t)), x ∈ V })
≤ b(t)α({x(s), x ∈ V })
≤ b∗α({x(s), x ∈ V }).

Then

α({h(s), x ∈ V }) ≤ q∗

1−m∗
α({x(s), x ∈ V }). (3.9)

Thus

α(N(V )(t)) ≤ b∗α({x(s), x ∈ V }) +
q∗

1−m∗

∫ T

a

|G(t, s)|α({x(s), x ∈ V })ds

≤

(
b∗ +

q∗G̃

1−m∗

)
αc(V ).

Therefore

αc(NV ) ≤

(
b∗ +

q∗G̃

1−m∗

)
αc(V ).

So by (3.4) the operator N is a set contraction. And thus, by Theorem 1.17, N has a
fixed point, which is solution to problem (3.1)− (3.3) .

We prove an existence result for the (3.1)-(3.3) problem, by using the Mönch’s fixed
point theorem.

Theorem 3.3 Assume that (H1)− (H3) hold. If

b∗ +
q∗G̃

1−m∗
< 1, (3.10)

then problem (3.1)− (3.3) has at least one solution.

Proof: Consider the operator N defined in (3.5). According to Theorem 3.2, the operator
N(DR) is bounded into itself, and equicontinuous.
Now let V be a subset of DR such that V ⊂ conv(N(V ) ∪ {0}). Since V is bounded and
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equicontinuous, the function t 7−→ v(t) = α(V (t)) is continuous on [a − r, T + β]. By
(H1)− (H3), Lemma 1.12, and the properties of measure α, for each t ∈ I, we have

v(t) ≤ α(N(V )(t) ∪ {0})
≤ α ({(Nx)(t), x ∈ V })

≤ b∗αc(V ) +

∫ T

a

|G(t, s)| q∗

1−m∗
α(V (s))ds

≤

(
b∗ +

q∗G̃

1−m∗

)
αc(V ).

Thus

αc(V ) ≤

(
b∗ +

q∗G̃

1−m∗

)
αc(V ).

From (3.10 ), we get αc(V ) = 0, that is α(V (t)) = 0 for each t ∈ I.
For t ∈ [a− r, a], we have

v(t) = α(φ(t))

= 0.

Also for t ∈ [T, T + β] we have

v(t) = α(ψ(t))

= 0,

then V (t) is relatively compact in E. In view of Ascoli-Arzela theorem, V is relatively
compact in DR. Applying Theorem 1.18, we conclude that N has a fixed point which is
a solution of the problem (3.1)− (3.3).
An Example :
Let

E = l1 =

{
x = (x1, x2, . . . , xn, . . .),

∞∑
k=1

|xn| <∞

}
,

be the Banach space with the norm

‖x‖E =
∞∑
k=1

|xn|.

Consider the boundary value problem of implicit generalized Caputo fractional differential
equation 

x(t) = ln(t)− 1, t ∈ [e, 4],

3
cD

3
2

2+xn(t) = f(t, xtn,
3
c D

3
2

2+xn(t)), t ∈ I = [2, e]

x(t) = 1
2
t− 1, t ∈ [−1, 2],

(3.11)
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here T = e, a = 2, α =
3

2
, ρ = 3.

Set
x = (x1, x2, . . . , xn, . . .), f = (f1, f2, . . . , fn, . . .)

f(t, xt,3c D
3
2

2+x(t)) =
cos(t) + ‖xt‖C([−3,4−e]) + ‖3

cD
3
2

2+x(t)‖

2et−2
(

1 + ‖xt‖C([−3,4−e]) + ‖3
cD

3
2

2+x‖E
) , k(t, xt)

For each x ∈ E and t ∈ [2, e] , we have

‖f(t, x(t),3c D
3
2

2+x(t))‖ ≤ 1

2et−2

(
cos(t) + ‖xt‖C([−3,4−e]) + ‖3

cD
3
2

2+x(t)‖
)
,

hence. (H2) is satisfied with m∗ = q∗ = 1
2

.
For each t ∈ I we have∫ T

a

|G(t, s)|ds ≤ 1

Γ(α)

(
tρ − aρ

T ρ − aρ

)∫ T

a

∣∣∣∣∣
(
T ρ − sρ

ρ

)α−1

sρ−1

∣∣∣∣∣ ds
+

1

Γ(α)

∫ t

a

∣∣∣∣∣
(
tρ − sρ

ρ

)α−1

sρ−1

∣∣∣∣∣ ds,
then ∫ T

a

|G(t, s)|ds ≤ 2

Γ(ν + 1)

(
T ρ − aρ

ρ

)ν
.

Therefore

G̃ ≤ 2

Γ(ν + 1)

(
T ρ − aρ

ρ

)ν
.

Condition (3.4) holds, indeed,

q∗G̃

1−m∗
≤ 2

Γ(3
2

+ 1)

(
e

3
2 − 2

3
2

3

) 3
2

≈ 0.61549

< 1.

Hence all conditions of Theorem 3.2 are satisfied. It follows that the problem (3.11) has
at least one solution.



Chapter 4

Random Solutions For Mixed
Fractional Differential Equations
with Retarded and Advanced
Arguments

4.1 Introduction

In this chapter, we study the existence of random solutions for a class of problem in-
volving both generalized Caputo and generalized Riemann-Liouville fractional derivatives
differential equations with retarded and advanced arguments:

RLDα,ρ
a+ (CDδ,ρ

a+(x(t, w)−
m∑
i=1

(ρIνia gi(t, x
t(w), w))) = f(t, xt(w), w), for t ∈ I := [a, T ],

(4.1)

x(t, w) = φ(t, w), t ∈ [a− r, a], r > 0 (4.2)

x(t, w) = ψ(t, w), t ∈ [T, T + β], β > 0, (4.3)

where 0 < α, δ ≤ 1, RLDα,ρ
a+ ,

CDδ,ρ
a+ is the generalized RL and generalized Caputo and

(as it is, respectively) fractional derivative, ρIνia+ represents the generalized RL integral
with νi > 0 f : I × C([−r, β], IR) × Ω → IR and gi : I × C([−r, β], IR) × Ω → IR, with
gi(T, x

T (w)) = gi(a, x
a(w)) = 0, i = 1, 2, . . . ,m, is a given function, φ ∈ C([a − r, a], IR)

with φ(a) = 0 and ψ ∈ C([T, T + β], IR) with ψ(T ) = 0. We denote by xt the element of
C([−r, β]).
we denote by xt the element of C([−r, β]) defined by:

xt(s) = x(t+ s), s ∈ [−r, β].

31
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4.2 Existence of Solutions

Lemma 4.1 Let 1 < α ≤ 2, φ ∈ C([a − r, a], IR) with φ(a) = 0, ψ ∈ C([T, T + β], IR)
with ψ(T ) = 0 and h : I → IR be a continuous function. Then the linear problem

RLDα,ρ
a+ (CDδ,ρ

a+x(t)−
m∑
i=1

(ρIνia gi(t, x
t))) = h(t), for a.e. t ∈ I := [a, T ], 1 < α ≤ 2, (4.4)

x(t) = φ(t), t ∈ [a− r, a], r > 0 (4.5)

x(t) = ψ(t), t ∈ [T, T + β], β > 0, (4.6)

has a unique solution, which is given by

x(t) =



φ(t), if t ∈ [a− r, a],

∑m
i=1(ρIνia gi(t, x

t, w))−
∫ T

a

G(t, s)h(s)ds, if t ∈ I

ψ(t), if t ∈ [T, T + β],

(4.7)

where

G(t, s) =
ρα+δ−1sρ−1

Γ(α + δ)



(
(tρ − aρ)(T ρ − sρ)

(T ρ − aρ)

)α+δ−1

− (tρ − sρ)α+δ−1
, a ≤ s ≤ t ≤ T,

(
(tρ − aρ)(T ρ − sρ)

(T ρ − aρ)

)α+δ−1

, a ≤ t ≤ s ≤ T.

(4.8)

Here G(t, s) is called the Green function of the boundary value problem (4.4)-(4.6).
Proof. To obtain the integral equation modeled by the BVP(4.7), we apply the gener-
alization Riemann-Liouville fractional integral of order to both sides of (1.5), and we
get

cDδ
a+(x(t)−

m∑
i=1

(ρIνia gi(t, x
t)) =ρ Iαa+h(s) + c1

(
tρ − aρ

ρ

)α−1

. (4.9)

Next, applying the generalization Caputo fractional integral of order β to both sides of
(1.4), we have

x(t)−
m∑
i=1

(ρIνia gi(t, x
t) =ρ Iα+δ

a+ h(s) + cρ1I
δ
a+

(
tρ − aρ

ρ

)α−1

+ c2, (4.10)

where c1 and c2 ∈ IR. By using lemma (1.6) , we get
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x(t) =
m∑
i=1

(ρIνia gi(t, x
t(w)) +ρ Iα+δ

a+ h(s) + c1
Γ(α)

Γ(α + δ)

(
tρ − aρ

ρ

)δ+α−1

+ c2, (4.11)

therefore

x(a) = c2 = 0,

x(T ) = c1
Γ(α)

Γ(α + δ)

(
T ρ − aρ

ρ

)α+δ−1

+
1

Γ(α + δ)

∫ T

a

(
T ρ − sρ

ρ

)α+δ−1

sρ−1h(s)ds,

and

c1 = − ρδ+α−1

(T ρ − aρ)δ+α−1
Γ(α)

∫ T

a

(T ρ − sρ)δ+α−1sρ−1h(s)ds.

Substitute the value of c1 and c2 into equation (4.11), we get equation (4.7).

x(t) =



φ(t), if t ∈ [a− r, a],

∑m
i=1(ρIνia gi(t, x

t(w))−
∫ T

a

G(t, s)h(s)ds, if t ∈ I

ψ(t), if t ∈ [T, T + β],

where G is defined by equation (4.8), the proof is complete.

Lemma 4.2 Let f : I × C[−r, β]× IR −→ IR be a continuous function.
A function x ∈ C is a random solution of problem (4.1)− (4.3) if and only if x satisfies

the following integral equation

x(t, w) =



φ(t, w), if t ∈ [a− r, a],

∑m
i=1(ρIνia gi(t, x

t(w))−
∫ T

a

G(t, s)h(s, w)ds, if t ∈ I

ψ(t, w), if t ∈ [T, T + β],

where h ∈ C(I) satisfies the functional equation

h(t) = f(t, xt, w).
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The following hypotheses will be used in the sequel:

(H1) The function f, gi : I×C[−r, β]×Ω −→ IR, i = 1, 2, . . . ,m are random Caratheodory.

(H2) There exist measurable functions p, bi I :−→ L∞(Ω, IR+), i = 1, 2, . . . ,m

|f(t, u1, w)− f(t, u2, w)| ≤ p(t, w)‖u1 − u2‖[−r,β],

and
|g(t, u1, w)− g(t, u2, w)| ≤ bi(t, w)‖u1 − u2‖[−r,β],

for t ∈ I, w ∈ Ω and each ui, vi ∈ IR, i = 1, 2

(H3) There exist measurable functions p, ki I :−→ L∞(Ω, IR+), i = 1, 2, . . . ,m such that

|f(t, x, w)| ≤ p(t, w)(‖x‖[−r,β] + 1), t ∈ I, x ∈ C([−r, β], IR) w ∈ Ω.

and
|gi(t, x, w)| ≤ ki(t, w)‖x‖[−r,β], t ∈ I, x ∈ C([−r, β], IR)and w ∈ Ω.

Set
p∗ = ess sup

t∈I
p(t)

G̃ = sup

{∫ T

a

|G(t, s)|ds, t ∈ I
}
.

Now, we state and prove our existence result for Equations (4.1)-(4.3) based on the
Banach contraction principle.

Theorem 4.3 Assume (H1) and (H2) hold. If

m∑
i=1

bi(w)

Γ(νi + 1)

(
tρ − aρ

ρ

)νi
+ G̃p∗(·, w) < 1, (4.12)

then the problem (4.1)-(4.3) has a unique solution.

Proof: Let the operator T : C −→ C defined by

(Tx)(t, w) =



φ(t), if t ∈ [a− r, a],

∑m
i=1(ρIνia gi(t, x

t(w))−
∫ T

a

G(t, s)hx(s, w)ds, if t ∈ I

ψ(t), if t ∈ [T, T + β].

(4.13)
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By Lemma 4.2 it is clear that the fixed points of T are solutions (4.1)-(4.3) .
Let x1, x2 ∈ Ω. If t ∈ [a− r, a] or t ∈ [T, T + β] then

|(Tx1)(t, w)− (Tx2)(t, w)| = 0.

For t ∈ I, we have

|(Tx1)(t, w)−(Tx2)(t, w)| ≤
m∑
i=1

(ρIνia |gi(t, xt1(w))−gi(t, xt2(w))|+
∫ T

a

|G(t, s)||hx1(s)−hx2(s)|ds,

(4.14)
by (H2) we obtain,

|(Tx1)(t, w)− (Tx2)(t, w)| ≤
m∑
i=1

(ρIνia bi(t, w)‖x1 − x2‖[−r,β]) + p∗(·, w)

∫ T

a

|G(t, s)|‖x1 − x2‖[−r,β]ds

≤

(
m∑
i=1

b∗i (·, w)

Γ(νi + 1)

(
tρ − aρ

ρ

)νi
+ G̃p∗(·, w)

)
‖x1 − x2‖[−r,β].

Therefore, for each t ∈ I, we have

|(Tx1)(t, w)− (Tx2)(t, w)| ≤

(
m∑
i=1

b∗i (·, w)

Γ(νi + 1)

(
tρ − aρ

ρ

)νi
+ G̃p∗(·, w)

)
‖x1 − x2‖C .

Thus

‖Tx1(·, w)− Tx2(·, w)‖C ≤

(
m∑
i=1

bi(w)

Γ(νi + 1)

(
tρ − aρ

ρ

)νi
+ G̃p∗(·, w)

)
‖x1 − x2‖C .

Hence, by the Banach contraction principle, T has a unique fixed point which is a unique
random solution of the problem (4.1)-(4.3).

We now prove an existence result for (4.1)-(4.3) by using the Schauder’s fixed point
theorem.

Theorem 4.4 Assume that the hypotheses (H1) and (H3) hold. Then problem (4.1)-(4.3)
has at least one solution.

Step 1. T is continuous. Let {xn} be a sequence such that xn −→ x in C. If t ∈ [a−r, a]
or t ∈ [T, T + β] then

|(Txn)(t, w)− (Tx)(t, w)| = 0.

For t ∈ I, we have

|(Txn)(t, w)− (Tx)(t, w)| ≤
m∑
i=1

(ρIνia |gi(t, xtn(w), w)− gi(t, xt(w), w)|)

+

∫ T

a

|G(t, s)||hn(s, w)− h(s, w)|ds,
(4.15)
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where
hn(t) = f(t, xtn, w),

and
h(t) = f(t, xt, w).

Since xn −→ x, and by (H1), we get hn(t) −→ h(t) and gi(t, x
t
n, w) −→ gi(t, x

t, w),
i = 1, 2, . . . ,m as n −→∞ for each t ∈ I.
By (H3) we have for each t ∈ I,

|hn(t)| ≤ l1, |gn(t)| ≤ l2. (4.16)

Then,

|G(t, s)||hn(t)− h(t)| ≤ |G(t, s)| [|hn(t)|+ |h(t)|]
≤ 2l|G(t, s)|,

and∣∣∣∣(tρ − sρρ

)νi∣∣∣∣ |gi(t, xtn(w), w)− gi(t, xt(w), w)| ≤
∣∣∣∣(tρ − sρρ

)νi∣∣∣∣ [|gi(t, xtn(w), w)|

+ |gi(t, xt(w), w)|
]

≤ 2l2

∣∣∣∣(tρ − sρρ

)νi∣∣∣∣ .
For each t ∈ I the functions s 7−→ 2l|G(t, s)| and s 7−→ 2l2

∣∣∣∣(tρ − sρρ

)νi∣∣∣∣ are integrable

on [a, t], then by Lebesgue dominated convergence theorem and (H1), equation (4.15 )
implies

|(Txn)(t, w)− (Tx)(t, w)| −→ 0 as n −→∞,
and hence

‖T (xn)− T (x)‖C −→ 0 as n −→∞.
Consequently, T is continuous.

Let the constant R(w) be such that:

R(x) ≥ max


p∗G̃

1−
(∑m

i=1

ki(w)

Γ(νi + 1)

(
tρ − aρ

ρ

)νi
+ p∗G̃

) , ‖φ(·, w)‖[a−r,a], ‖ψ(·, w)‖[T,T+β]

 ,

(4.17)
and define

BR(w) = {x ∈ Ω : ‖x(·, w)‖C ≤ R(w)}.
It is clear that DR(w) is a bounded, closed and convex subset of C.
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Step 2. T (BR(w)) ⊂ BR(w).

Let x ∈ BR(w) we show that Tx ∈ BR(w).
If t ∈ [a− r, a], then

|T (x)(t, w)| ≤ ‖φ(·, w)‖[a−r,a] ≤ R(w),

and if t ∈ [T, T + β], then

|T (x)(t, w)| ≤ ‖ψ(·, w)‖[T,T+β] ≤ R.

For each t ∈ I, we have

|(Tx)(t, w)| ≤
m∑
i=1

(ρIνia |gi(t, xt(w), w)|) +

∫ T

a

|G(t, s)||h(s, w)|ds.

By (H3), we have

|(Tx)(t, w)| ≤
m∑
i=1

(ρIνia kiR(w)) + p∗(R(w) + 1)

∫ T

a

|G(t, s)|ds

≤ R(w)

(
m∑
i=1

ki(w)

Γ(νi + 1)

(
tρ − aρ

ρ

)νi
+ p∗G̃

)
+ p∗G̃

≤ R(w),

from which it follows that for each t ∈ [a − r, T + β], we have |Tx(t)| ≤ R(w), which
implies that ‖Tx‖C ≤ R(w). Consequently,

T (BR(w)) ⊂ BR(w).

Step 3: T (BR(w)) is bounded and equicontinuous.
By Step 2 we have T (BR(w)) is bounded.
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Let τ1, τ2 ∈ I = [a, T ], τ1 < τ2, and x(·, w) ∈ BR(w) then

|(Tx)(τ2, w)− (Tx)(τ1, w)| ≤
m∑
i=1

|ρIνia (gi(τ2, x
τ2(w), w)− gi(τ1, x

τ1(w), w))|

+

∫ T

a

|G(τ2, s)−G(τ1, s)||h(s, w)|ds

≤ R(w)
m∑
i=1

∣∣∣∣∣ ki(w)

Γ(νi + 1)

∫ τ2

a

(
τ ρ2 − sρ

ρ

)νi−1

sρ−1ds

− ki(w)

Γ(νi + 1)

∫ τ1

a

(
τ ρ1 − sρ

ρ

)νi−1

sρ−1ds

∣∣∣∣∣
+ p∗(R(w) + 1)

∫ T

a

|G(τ2, s)−G(τ1, s)|ds

≤ R(w)
m∑
i=1

∣∣∣∣∣ ki(w)

Γ(νi + 1)

∫ τ1

a

((
τ ρ2 − sρ

ρ

)νi−1

−
(
τ ρ1 − sρ

ρ

)νi−1
)
sρ−1ds

+
ki(w)

Γ(νi + 1)

∫ τ2

τ1

(
τ ρ2 − sρ

ρ

)νi−1

sρ−1ds

∣∣∣∣∣
+ p∗(R(w) + 1)

∫ T

a

|G(τ2, s)−G(τ1, s)|ds

= R(w)
m∑
i=1

∣∣∣∣ ki(w)

Γ(νi + 1)

(
2

(
τ ρ2 − τ

ρ
1

ρ

)νi
+

(
τ ρ1 − aρ

ρ

)νi
−

(
τ ρ2 − aρ

ρ

)νi)∣∣∣∣
+ p∗(R(w) + 1)

∫ T

a

|G(τ2, s)−G(τ1, s)|ds

As τ1 −→ τ2 the right hand side of the above inequality tends to zero. As consequence
of Step 1 to Step 3, together withe the Arzela-Ascoli theorem, we can conclude that T
is continuous and completely continuous. From Schauder’s theorem, we conclude that T
has a fixed point with is a random solution of the problem (4.1)-(4.3).

Example :
We equip the space IR∗− := (−∞, 0) with the usual σ-algebra consisting of Lebesgue mea-
surable subsets of IR∗−. Consider the boundary value problem of involving both generalized



4.2. EXISTENCE OF SOLUTIONS 39

Caputo and generalized Riemann-Liouville fractional differential equation:

x(t, w) = 1
1+w2 (t2 − 1), t ∈ [1, 2],

LRD
3
4
,ρ

0+ (CD
3
4
,ρ

0+ (x(t, w)−
∑2

i=1(ρIνia gi(t, x
t(w))))) =

sin(t)(xt(w) + 1)

100(w2 + 1)
t ∈ I = [0, 1]

x(t) = t
1+w

, t ∈ [−1, 0].

(4.18)
Set

f(t, xt(w)) =
sin(t)(xt(w) + 1)

100(w2 + 1)
, t ∈ [0, 1], u ∈ C([−r, β]),

and

gi(t, x
t(w)) =

cos(t)xt(w)

10i(w2 + 1)
, t ∈ [0, 1], u ∈ C([−r, β]), i = 1, 2.

And νi = 2i+1
2
, α = 3

4
= δ, ρ = 1, r = 1, β = 1. For each x1, x2 ∈ C([−r, β]), v, v̄ ∈ IR

and t ∈ [0, 1], we have

|f(t, x, w)− f(t, x̄, w)| ≤
∣∣∣∣sin(t)(x+ 1)

100(w2 + 1)
− sin(t)(x̄+ 1)

100(w + 1)

∣∣∣∣
≤ sin(t)

100(w2 + 1)
‖x− x̄‖[−1,1],

|gi(t, x, w)− gi(t, x̄, w)| ≤
∣∣∣∣ cos(t)(x)

10i(w2 + 1)
− cos(t)(x̄)

10i(w2 + 1)

∣∣∣∣
≤ cos(t)

10i(w2 + 1)
‖x− x̄‖[−1,1], i = 1, 2.

Therefore, (H2) is verified with p∗(w) =
1

100(w2 + 1)
, bi(w) =

1

10i(w2 + 1)
For each t ∈ I we have∫ T

a

|G(t, s)|ds ≤ 1

Γ(α + β)

(
tρ − aρ

T ρ − aρ

)α+β−1 ∫ T

a

∣∣∣∣∣
(
T ρ − sρ

ρ

)β+α−1

sρ−1

∣∣∣∣∣ ds

+
1

Γ(α + β)

∫ t

a

∣∣∣∣∣
(
tρ − sρ

ρ

)α+β−1

sρ−1

∣∣∣∣∣ ds.
Then

G̃ =

∫ T

a

|G(t, s)|ds ≤ 2

Γ(α + β + 1)

(
T ρ − aρ

ρ

)α+β

.
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The condition

m∑
i=1

bi(w)

Γ(νi)

(
tρ − aρ

ρ

)νi
+ G̃p∗(·, w) ≤ 7

50(w2 + 1)Γ(5
2
)

=
14

75(w2 + 1)
√
π

< 1,

is satisfied with T = 1, a = 0 and α = 1
2
, β = 1. Hence all conditions of Theorem 4.3 are

satisfied, it follows that the problem (4.18) admit a unique solution defined on I.

4.3 Conclusions and Perspective

In this work, we have presented some results to the theory of the existence of solu-
tions, random solutions and uniqueness of fractional implicit differential equations with
the derivatives of generalized-Caputo. The problem studied implicit fractional differen-
tial equations, involving both retarded and advanced arguments. The results obtained
are based on some fixed point theorems and the measure of non-compactness. In fu-
ture research, we plan to study some fractional differential and inclusions with impulses
(instantaneous and not instantaneous) in frchet spaces
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