
  People’s Democratic Republic of Algeria 
              Ministry of Higher Education and Scientific Research 

 

    Ibn Khaldoun University of Tiaret  
Dissertation  

 

Presented to: 

 

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE  

DEPARTEMENT OF MATHEMATICS 

 

in order to obtain the degree of : 

 

MASTER 
 

Specialty: Functional analysis and differential equation  

 

Presented by: 

 

                                                                   Belarbi Zahia                                                                                                                                                                                                                                                                              

Belaidabi Imane 

 

On the theme: 

  

 

 

 
 

 

 

 

 

 Defended publicly on 24 / 06 /2024 in Tiaret in front the jury composed of:  

 

Mr  Benali Halim MCA Tiaret University Chairman 

Mr  Baghdad Said MCA Tiaret University Supervisor 

Mrs Khelifa Hizia 
 

MCB Tiaret University Examiner 

2023-2024 

Mönch-Krasnoselski fixed point theorem in Banach spaces 
and its applications to certain nonlinear 

problems 



2

Acknowledgements

All praise be to Allah the lord sovereign of the universe and

may Allah praise his Prophet Muhammad and his household

and companions.

First of all, we express our highest gratitude to Allah glory be

to him for the blessing and compassion through all the days

that we went through to complete our memory.

Secondly, we would like to acknowledge and give our warmest

thanks to our supervisor Mr.Baghdad Said for his confidence,

guidance and advice. Without his guidance, it would be an

impossible task for us to complete our research. It is an honor

for us to be supervised by a distinguished professor in

mathematics field.

Special thanks are due to our jury members for accepting to

be part of the panel of examination and judging the research

work to be complete for its defense.

Last but not least, we would also like to thank our beloved

families members and our siblings who encouraged us and

prayed for us throughout the time of our research.



Dedication

This dissertation is sincerely dedicated to my

parents

who have been my source of inspiration, guide

and give me strength,

when i thought of giving up, who continually

provide their moral, spiritual, emotional, and

financial support.

I also dedicate my dissertation to my siblings,

and all my family and friends for their love,

support and prayers.

Zahia



Dedication

This dissertation is sincerely dedicated to my

parents

who have been my source of inspiration, guide

and give me strength, when i thought of

giving up, who continually

provide their moral, spiritual, emotional and

financial support.

I also dedicate my dissertation to my brothers,

and all my family and friends for their love,

support and prayers.

Imane



Abstract

In this memory, we present the Mönch-Krasnoselski fixed point theorem in Banach
space which is a generalisation of the classical Krasnoselski fixed point theorem. We
also give some applications to classes of nonlinear integral equations in the space of
continuous functions using the technique of noncompactness measures. Examples are
provided to illustrate the obtained results.
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Introduction

The fixed point theorems are important mathematical tools for demonstrating the
existence and uniqueness of solution in various types of equations, they have played
a major role in various fields, including functional analysis, dynamics, topology and
differential equations.

Fixed point theorems concern maps f of a set X into itself. That under certain
conditions admit a fixed point that is, a point x ∈ X such that f(x) = x see [12].

The fixed point theory is at the heart of nonlinear analysis because it provides
the necessary tools for existence theorems in many nonlinear problems. It uses analysis
and topology tools for this reason we have the classification "fixed point and topolog-
ical theory" and "fixed point and metric theory" we will mentions some fixed point
theorems like Banach, Schauder, Schaefer and Krasnoselski.

The development of fixed point theory is the most important branch of nonlin-
ear analysis, it has had a profound impact on the progress of nonlinear analysis. In
fact, many natural phenomena in chemistry, physics, mechanics, economics and biol-
ogy exhibit nonlinear behavior. Mathematically, these problems are often expressed
as nonlinear differential equations, making nonlinear analysis an ongoing active and
relevant field of research. It directly addresses real-world problems and applications.

Nonlinear differential equations and integrodifferential equations, along with gen-
eral optimization problems are prominent subjects in nonlinear analysis. There are
many questions related to the existence and uniqueness of solutions for certain types of
equations (differential equations, partial integrodifferential equations) can be reduced
to the existence and uniqueness of a fixed point for an appropriate mapping defined
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on a Banach space. One of the most significant existence tools in nonlinear analysis
is Krasnoselski theorem established in 1955 by Krasnoselski. His result is captivating
and possesses a very wide range of applications see [14].

In this memory, we study the Mönch-Krasnoselski fixed point theorem and some
of their applications (to neutral partial integrodifferential equations ) see [19],[21], and
it is composed of three chapters.

In the first chapter, we introduce the notations, definitions, lemmas, and
theorems that will be used throughout this memory.

In the second chapter, we introduce the measures of noncompactness and
condensing operators and we state and prove the Mönch and Mönch-Krasnoselski
theorems.

In the third chapter, we study the existence of mild solution for two types of
neutral partial integrodifferential equations by applying the Mönch-Krasnoselski fixed
point theorem. This analysis will be based on the Mönch-Krasnoselski fixed point
theorem in Banach spaces.
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Main notations used

• Ω: An open bounded of Rn.

• ‖ · ‖: A norm on a vector space.

• A: denote the adherence of A.

• (E, d): A metric space.

• K: real or complex numbers.

• := : Equality by definition.

• ‖ · ‖2 : The norm in space L2(Ω) defined by: ‖x‖2 =

(∫
Ω

|x|2
) 1

2

.

• ∇u : Gradient operator ∇u =

(
∂u

∂x1

,
∂u

∂x2

, ....,
∂u

∂xn

)
.

• (F, ‖ · ‖): A normed vector space (a Banach space).

• MF : denote the bounded subsets of F.

• MNCs: denote the Measures of Noncompactness.

• co(Ω): closed convex hull of Ω.

• C0(N): The set of all suites.

• C([a, b],Rn): The set of all continuous functions.

• B(a, r): The open ball.

• Bc(a, r): The closed ball.

• Å: The interior of subset A.

• L : The space of linear operator.



Chapter 1
Preliminary notions

1.1 Topology of normed vector spaces

Definition 1.1.1. [2] Let F be a vector space on K a norm on F is an application
‖ · ‖ : E −→ R+ verifying the following properties :

1. ‖ x ‖= 0⇔ x = 0;

2. ‖ x+ y ‖≤‖ x ‖ + ‖ y ‖ for all x, y ∈ F ;

3. ‖ λx ‖= |λ| ‖ x ‖ for all x ∈ F and λ ∈ K.

A normed vector space (F, ‖ · ‖) is a vector space F provided with a norm ‖ · ‖.

Remark 1.1.1. A normed vector space is a metric space. The distance between two
vectors is defined by the norm:

d(x, y) =‖ x− y ‖ .

Proposition 1.1.1. [2] If ‖ · ‖ is a norm on a vector space F then we define on
F, d(a, b) =‖ b− a ‖ with d is the distance associated with the norm ‖ · ‖ which verifies
the two additional properties :

1. It is invariant by translation:

‖ b+ p− a− p ‖=‖ b− a ‖ ∀ p ∈ F. (1.1)

2. It is homogeneous:

‖ λb− λa ‖= |λ| ‖ b− a ‖ . (1.2)
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Example 1.1.1. [1] The set of real numbers equipped with the distance d(x, y) = |x−y|
is a metric space.

Example 1.1.2. [2]

1. The absolute value is a norm on R.

2. The module is a norm on C.

3. If p ∈ [1,+∞[ we define a norm ‖ . ‖p on Kd :

‖ x ‖p=

(
d∑
i=1

|xi|p
) 1

p

. (1.3)

4. If p = 2 the norm ‖ . ‖2 on Rd is the euclidean norm on Rd defined by:

‖ x ‖2=

(
d∑
i=1

|xi|2
) 1

2

. (1.4)

5. The norm ‖ . ‖∞ on Kd is defined by:

‖ x ‖∞= max{|xi|; 1 ≤ i ≤ n}. (1.5)

Definition 1.1.2. [2] • Let a ∈ F , and let r ≥ 0: The open ball with center a and
radius r is the set:

B(a, r) := {x ∈ F ; ‖ x− a ‖< r}. (1.6)

• The closed ball with center a and radius r is the set :

Bc(a, r) := {x ∈ F ; ‖ x− a ‖≤ r}. (1.7)

Examples 1.1.1. [2]

(1) In R, the open ball B(a, r) is the interval : ]a − r; a + r[ ; the closed ball is the
interval : [a− r; a+ r].

(2) In C = R2 with the usual distance, the balls are disks.

(3) In R2 with the norm ‖ . ‖∞, the balls are squares to the axes of contact details.
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Definition 1.1.3. A neighborhood of a ∈ F is any subset V ⊂ F such that there exists
an r > 0 such that B(a, r) ⊂ V .

Definition 1.1.4. A subset U ⊂ F is an open set of F if it is a neighborhood of each
of its points, i.e.

∀a ∈ U,∃r > 0;B(a, r) ⊂ U. (1.8)

Remark 1.1.2. ∅ and F are always open sets of F.

Proposition 1.1.2. Let (F, ‖ · ‖) be a normed K-vector space.

1. For all x ∈ F , the singleton {x} is a closed set.

2. A finite subset of F (finite union of singletons) is a closed set of F.

3. Closed balls in F are closed sets of F.

4. Spheres are closed sets of F.

Definition 1.1.5. [1] For a subset A of F , the adherence of A, denoted by A, is the
set of all adherent points of A.

Examples 1.1.2. [2]

(1) In R, the closure of an interval is the corresponding closed interval.

(2) In (R2, ‖ . ‖∞), the closure of the half-plane {(x, y);x > 0} is the half-plane
{(x, y);x ≥ 0}.

Definition 1.1.6. [1] Let A be a subset of F. A point x of A is called an interior point
of A if A is a neighborhood of x in F, A ∈ V (x).
The interior of a subset A of F, denoted by Å, is the set of all interior points of A.

Definition 1.1.7. A subset A of a normed vector space F is said to be dense in F if
A = F .

Example 1.1.3. [2] A part A of normed vector space (F, ‖ . ‖) is said to be bounded if
there exists a constant c <∞ such that ‖ x ‖≤ c for all x ∈ A, a function f : F −→ F

is said to be bounded if its image is a bounded part of F.

If L is an arbitrary set, we denote by L∞(L,K) the vector space consisting of all
bounded functions f : L→ K. We define a norm on L∞(L,K) by setting

‖ f ‖∞= sup{|f(t)|; t ∈ L}.
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If F is a norm vector space, we note L∞(L, F )the vector space constituted by all
bounded function f : L −→ F . The natural norm on the space L∞(L, F ) is the norm
‖ . ‖∞ defined by:

‖ f ‖∞= sup{‖ f(t) ‖; t ∈ L}. (1.9)

1.1.1 Continuous applications

Definition 1.1.8. [4] Suppose that (E,d) and (Y, φ) are two metric spaces. A function
f : E → Y is continuous at x ∈ E if for all ε > 0 there is δ > 0 such that

‖ f(x)− f(x0) ‖< ε provided that ‖ x− x0 ‖< δ.

The function f is said to be continuous if f is continuous at all points x ∈ E.

Remark 1.1.3. [1] Let (E,d) and (E’,d’) be two metric spaces. The global continuity
of a function f : E −→ E ′ is written precisely:

∀x ∈ E ,∃αx,ε > 0, ∀y ∈ E, ‖ y − x ‖≤ αx,ε ⇒‖ f(y)− f(x) ‖≤ ε.

Definition 1.1.9. [1] We say that f ∈ C(E,E ′) is uniformly continuous if it verifies:

∀ε > 0,∃αε > 0,∀x, y ∈ E, ‖ x− y ‖≤ αε ⇒‖ f(x)− f(y) ‖≤ ε.

Definition 1.1.10. [12] Let E be a metric space equipped with a distance d. A map
f : E → E is said to be Lipschitz continuous if there is k ≥ 0 such that:

d(f(x1), f(x2)) ≤ kd(x1, x2), ∀x1, x2 ∈ E.

The smallest k for which the above inequality holds is the Lipschitz constant of f.
If k < 1 f is said to be a contraction.

Proposition 1.1.3. [1] (f Lipschitzian) ⇒(f uniformly continuous) ⇒ (f is continu-
ous).

Example 1.1.4. [1] On a metric space (E, d). For any x0 ∈ E the function d(x0, ·) :

x ∈ E → d(x0, x) ∈ R is Lipschitzian of ratio 1 since:

∀x, y ∈ E, | d(x0, y)− d(x0, x) |≤ d(x, y).
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Example 1.1.5. [2] On E = Kd provided with the norm ‖ . ‖∞ , coordinated appli-
cations are continuous .

Theorem 1.1.1. [5] An application g : E → E ′ is continuous if and only if the inverse
image of any open set (resp. closed) is open (resp. closed).

Corollary 1.1.1. [5] if g : E −→ E ′ is continuous, then we have g(B) ⊂ g(B) for
any B ⊂ E.

Theorem 1.1.2. [5] The composition of continuous applications is continuous. In
other words, if g : E −→ E ′ and h : E ′ → Z are continuous, then g ◦ h : E → Z is
also continuous.

Example 1.1.6. C([a, b],Rn) with a, b ∈ R is the space of all continuous y functions
define of [a, b] in Rn. the number ‖ y ‖∞= supt∈[a,b] ‖ y(t) ‖ define a norm and
(C([a, b],Rn), ‖ · ‖∞) a Banach space.

1.1.2 Convexity

Definition 1.1.11. [6] A subset C of Rn is called convex if:

αx+ (1− α)y ∈ C, ∀x, y ∈ C, ∀α ∈ [0, 1].

Proposition 1.1.4. [6]

(a) The intersection
⋂
i∈I Ci of any collection {Ci | i ∈ I} of convex sets is convex.

(b) The vector sum C1 + C2 of two convex sets C1 and C2 is convex.

(c) The set λC is convex for any convex set C and scalar λ. Furthermore, if C is a
convex set and λ1, λ2 are positive scalars,

(λ1 + λ2)C = λ1C + λ2C. (1.10)

(d) The closure and the interior of a convex set are convex.

(e) The image and the inverse image of a convex set under an affine function are
convex.

Definition 1.1.12. [6] Let C be a convex subset of Rn. We say that a function
f : C → R is convex if :

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), ∀x, y ∈ C, ∀α ∈ [0, 1]. (1.11)
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Definition 1.1.13. Let F be a R–vector space and A be a subset of F. The convex
hull of A is defined by:

conv(A) = {x ∈ A, x =
n∑
i=1

λixi;λi ∈ [0, 1],
n∑
i=1

λi = 1}. (1.12)

1.2 Complete spaces

Definition 1.2.1. [1] A sequence (xn)n∈N of a metric space (E,d) is called a Cauchy
sequence if it satisfies :

∀ε > 0, ∃Nε ∈ N,∀m,n > Nε, d(xm, xn) ≤ ε. (1.13)

Definition 1.2.2. [3] Let F be a normed vector space. A sequence (Un)n∈N is bounded
if ‖ un ‖≤M for some M ≥ 0 and all n.

Definition 1.2.3. [2] Given a metric space (E,d), a sequence (xn)n∈N of points in E
converges to a point a ∈ E if the distance d(xn, a) tends to 0 as n tends to infinity.
In other words,(xn)n∈N converges to a if and only if the following property holds:

∀ε > 0, ∃N ∈ N, ∀n > N, d(xn, a) < ε. (1.14)

Remark 1.2.1. [2] In a normed vector space, every convergent sequence is bounded.
The converse is false.

Example 1.2.1. [2] If we endow Km with the norm ‖ . ‖∞ then a sequence
(xn)n∈N ⊆ Km converges in Km if and only if it converges "coordinate by coordinate".

Example 1.2.2. [2] Let C1([0, 1]) be the set of f : [0, 1] −→ R functions of class C1.
We define a norm ‖ . ‖C1 on C1([0, 1]) by setting

‖ f ‖C1=‖ f ‖∞ + ‖ f ′ ‖∞ . (1.15)

Then, a sequence (fn)n∈N ⊆ C1([0, 1]) converges to a function f ∈ C1([0, 1]) in the
sense of the norm ‖ . ‖C1 if and only if (fn)n∈N converges uniformly to f and (f ′n)

converges uniformly to f ′.

Proposition 1.2.1. [1] A Cauchy sequence is always bounded.

Proposition 1.2.2. [1] Every Cauchy sequence admitting a convergent sub-sequence
converge.
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Definition 1.2.4. [1] The metric space (E, d) is said to be complete if every Cauchy
sequence in (E, d) converges.

Definition 1.2.5. A Banach space is a normed vector space that is complete.

Remark 1.2.2. [2] Let F be a vector space. If ‖ . ‖1 and ‖ . ‖2 are two equivalent
norms on F, then ‖ . ‖1 and ‖ . ‖2 have the same Cauchy sequences. Therefore, F is
complete for ‖ . ‖1 if and only if it is for ‖ . ‖2.

Remark 1.2.3. [2] If d1 and d2 are two equivalent distances on the same set E, then
E can be complete for d1 without being complete for d2.

Examples 1.2.1. [2]

(1) R is complete.

(2) Q is not complete.

(3) Every finite-dimensional normed vector space is complete.

Proposition 1.2.3. [2]

Let (E,d) be a metric space, and let A be a subset of E.

(1) If A is complete for d, then A is closed in E.

(2) If (E,d) is assumed complete, then A is complete for d if and only if A is a closed
subset of E.

Corollary 1.2.1. [2] If [a, b] is a closed bounded interval, then the space
(C([a, b]), ‖ . ‖∞) is complete. More generally, if E is a metric space, F a Banach space,
and if we denote Cb(E,F ) the set of all continuous, bounded functions f : E −→ F ,
then Cb(E,F ) is complete for the norm ‖ . ‖∞.

Corollary 1.2.2. [2] The space (C0(N), ‖ . ‖∞) is a Banach space.

Corollary 1.2.3. [2] If F is a normed vector space, then every finite-dimensional
subspace of F is closed in F.

Theorem 1.2.1. [2] If F is a Banach space, then every absolutely convergent series
with terms in F converges in F.

Proposition 1.2.4. [2] Let F be a normed vector space. If every absolutely convergent
series with terms in F converges, then F is complete.
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Some properties of complete spaces :

Proposition 1.2.5. [1] In a complete metric space (E, d), the complete subspace are
the closed ones.

Corollary 1.2.4. [1] Let (E, d) be a metric space. Any intersection of complete sub-
space is complete.

Proposition 1.2.6. [1] Let (E, d) be a metric space. Any finite union of complete
subspace of (E, d) is complete.

Proposition 1.2.7. [1] A finite or countable product of complete metric spaces is
complete.

Theorem 1.2.2. [2] Let (E, d) be a complete metric space, and let (On)n∈N be a
sequence of open E. In particular, we have

⋂
nOn 6= ∅.

Corollary 1.2.5. [2] If (E, d) is a complete metric space, then any closed space of E
is a space of Baire, and all open from E as well.

Corollary 1.2.6. [2] Let (E, d) be a complete metric space. If (Fn)n∈N is a sequence
of closed of E such as

⋃
n∈N Fn = E then Ω :=

⋃
n F̊n is a dense open in E.

1.3 Compactness

Definition 1.3.1. [7] Let {Aα : α ∈ Λ} be a family of subsets of the space X and
B ⊆ X. We say that the family {Aα : α ∈ Λ} is a cover of B (or that the family
{Aα : α ∈ Λ} covers B) if and only if B ⊆

⋃
α∈ΛAα.If Λ is finite and {Aα : α ∈ Λ}

covers B,then {Aα : α ∈ Λ} is called an open cover(closed cover)of B.

Definition 1.3.2. [7] Let {Aα : α ∈ Λ} be a cover of a subset B of a space X. Let
Ω ⊆ Λ. Then the family {Aα : α ∈ Ω} is called a sub-cover of the cover {Aα : α ∈ Λ}
for B if and only if {Aα : α ∈ Ω} is a cover of B.

Definition 1.3.3. [7] A topological space X is called compact if and only if any open
cover for X has a finite sub-cover for X. A subset B of a space X is compact if and
only if B is a compact topological space with the subspace topology.

Example 1.3.1. [7] Let X be any infinite set. Then (X,C), the infinite topology, is
compact.
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Definition 1.3.4. [1] A topological space (X, T ) is said to be compact if it is separated
and if every open covering admits a finite sub-covering:(

X = ∪
i∈IOi

)
⇒
(
∃J ⊂ I, Jfinite,X = ∪

i∈JOi

)
. (1.16)

Theorem 1.3.1. [8] For any a, b ∈ R with a < b, the interval [a, b] is compact.

Proposition 1.3.1. [1] Every metric space that is compact is also complete.

Lemma 1.3.1. [8] Every closed subspace of a compact space is compact.

Lemma 1.3.2. [8] Every compact subspace of a Hausdorff space is closed.

Theorem 1.3.2. [8] Let X and Y be compact topological spaces. Then X × Y is also
compact.

Theorem 1.3.3. [8] A subspace of Rn is compact if and only if it is closed and
bounded.

Corollary 1.3.1. [8] Every quotient of a compact space is compact.

1.3.1 Compact metric spaces

Definition 1.3.5. [2] Let (E, d) be a metric space.

(1) A point x ∈ E is said to be an adhesion value of a sequence (xn)n∈N ⊆ E if there
exists a sub-sequence of (xn)n∈N that converges to x.

(2)The metric space E is said to be compact if any sequence (xn)n∈N ⊆ E has at least
one value adhesion in E.

(3) A set A ⊆ E is said to be a compact of E if the metric space (A, d) is compact.

Example 1.3.2. [2] Every closed bounded interval [a, b] ⊆ R is compact: this is the
Bolzano-Weierstrass theorem.

Remark 1.3.1. [2] Let E be a metric space.

(1) Every compact set A ⊆ E is closed.

(2) If E is compact, then every closed subset of E is compact.

(3) If E is a normed vector space, then every compact subset of E is closed and bounded.

Remark 1.3.2. In a finite-dimensional normed vector space, compact sets are exactly
the closed bounded sets.
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Remark 1.3.3. [2] Let (E, d) be a compact metric space, and let a ∈ E. If a is the
only value of possible adhesion of a sequence (xn)n∈N ⊆ E, then (xn)n∈N converges to
a.

Remark 1.3.4. [2] Any finite union of compact sets is compact. In particular, any
finite set is compact.

Definition 1.3.6. [2] Let (E, d) be a metric space. It is said that a set A ⊆ E is
relatively compact in E if Ā is a compact of E.

Remark 1.3.5. [2] Let (E, d) be a metric space. A set A ⊆ E is relatively compact
in E if and only if any sequence (xn)n∈N ⊆ A has at least one adhesion value in E.

Corollary 1.3.2. [2] Let (E, d) be a metric space. If (Kn)n∈N is a decreasing sequence
of non-empty compact sets in E, then

⋂
nKn 6= ∅.

Remark 1.3.6. [2] Let (E, d) be a metric space. If every decreasing sequence of
non-empty closed sets in E has a non-empty intersection, then E is compact.

Proposition 1.3.2. [8]

• A sequentially compact metric space is totally bounded.

• A sequentially compact metric space is compact.

• A sequentially compact metric space is complete.

Continuous functions on a compact

Theorem 1.3.4. [2] Let C be a compact metric space, and let E be a metric space. If
f : C −→ E is continuous, then f(C) is a compact subset of E.

Example 1.3.3. [2] Let C and E be two metric spaces, with E compact. If f : C −→ E

is a continuous bijection, then f−1 : E −→ C is continuous.

Theorem 1.3.5. [2] If E is a compact metric space, then every continuous function

f : E −→ R is bounded and attains its bounds.

Theorem 1.3.6. [2] Let C and E be two metric spaces. If C is compact, then every
continuous function f : C −→ E is uniformly continuous.

Corollary 1.3.3. [2] Let F be a finite-dimensional normed vector space. If f : F → R
is a continuous function satisfying lim‖x‖→∞ f(x) = +∞, then f is bounded below and
attains its lower bound.
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1.3.2 Compact operators on normed spaces

Definition 1.3.7. [9] Let X and Y be normed spaces. An operator T : X −→ Y is
called a compact linear operator if T is linear and if for every bounded subset M of X,
the image T(M) is relatively compact, that is, the closure T (M) is compact.

Lemma 1.3.3. [9] Let X and Y be normed spaces. Then:

(a) Every compact linear operator T : X −→ Y is bounded, hence continuous.

(b) ) If dim X =∞, the identity operator I : X −→ X (which is continuous) is not
compact.

Theorem 1.3.7. [2] Let T ∈ L(X, Y ). Then T is compact if and only if T ∗ is compact.

Proposition 1.3.3. [2] If T ∈ L(X, Y ) is compact, then T maps weakly convergent
sequences to strongly convergent sequences. The converse is true if X is a Hilbert
space.

Proposition 1.3.4. [2] Let S ∈ L(X, Y ) and T ∈ L(Y, Z). If S or T is compact, then
TS is also compact.

Theorem 1.3.8. [23](Ascoli-Arzela Theorem) Let A ⊂ C([0, b],Rn). A is relatively
compact if:

1. A is bounded, i.e. there exists M > 0:

‖ y(t) ‖≤M, ∀t ∈ [0, b] and y ∈ A,

2. A is equicontinuous, i.e. for any ε > 0, there exists δ(ε) > 0

∀t1, t2 ∈ [0, b], |t1 − t2| < δ ⇒‖ y(t1)− y(t2) ‖< ε, ∀y ∈ A.

Example 1.3.4. [2] Every finite-rank operator is compact.

1.4 Some fixed point theorems

Definition 1.4.1. Let (E, d) be complete metric space and let a map T : E −→ E,
we say that x ∈ E is a fixed point of T if T (x) = x.
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1.4.1 Banach fixed point theorem

Definition 1.4.2. [11] A mapping T from a metric space E into itself is said to be a
contraction if: d(T (x), T (y)) ≤ Kd(x, y), for all x, y in E and 0 ≤ K < 1.

A contraction mapping is continuous but not conversely.

Theorem 1.4.1. [12] Let T be a contraction on a complete metric space E. Then T
has a unique fixed point x ∈ E.

1.4.2 Schauder fixed point theorem

Theorem 1.4.2. [13] Let C be a closed and convex subset in a Banach space F, and
let T : C −→ C be a continuous mapping such that T(C) is relatively compact. Then
T has a fixed point.

1.4.3 Schaefer’s fixed-point theorem

Theorem 1.4.3. [13] Assume that (F, ‖ . ‖) is a Banach space and that T : F −→ F

is a continuous compact mapping. Moreover assume that the set:

⋃
0≤λ≤1

{x ∈ F : x = λT (x)}

is bounded. Then T has a fixed point.

1.4.4 Krasnoselski fixed-point theorem

In 1955, Krasnoselski observed that in a large number of problems, the integration
of a differential operator gives rise to a sum of two applications, a contraction and a
compact application. He then declares:
Principle: The integral of a differential operator can produce a sum of two applications,
a contraction, and a compact operator.

Theorem 1.4.4. [14] Let M be a non-empty closed convex subset of a Banach space
(F, ‖ . ‖). Suppose that A and B map M into F such that:

• Ax+By ∈M (∀x, y ∈M),

• A is continuous and AM is contained in a compact set,

• B is a contraction with constant k < 1.

Then there is a y ∈M with Ay +By = y.



Chapter 2
Mönch-Krasnoselski fixed point theorem

2.1 Measures of noncompactness and condensing op-

erators

In this section we consider the notions connected with measures of noncompactness
(MNCs for brivity) and condensing operators.

2.1.1 Notion of a measure of noncompactness

Definition 2.1.1. [15] A function ϕ, defined on the set of all subsets of a Banach
space F with values in some partially ordered set (Q,≤), is called a measure of non-
compactness if

ϕ(coΩ) = ϕ(Ω) for all Ω ⊂ F. (2.1)

Definition 2.1.2. [15] Let (E, ‖ . ‖) be a complete metric space. A map

ϕ : MF −→ [0,+∞[

is called a measure of noncompactness (MNC) defined on E if it satisfies the following
properties:

(a) Regularity : ϕ(B) = 0⇔ B is a precompact set.

(b) Invariant under closure : ϕ(B) = ϕ(B),∀B ∈M .

(c) Semi-additivity : ϕ(B1UB2) = max{ϕ(B1), ϕ(B2)},∀B1 ∈M,∀B2 ∈M .

From these axioms, we can immediately deduce the following properties:

18
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(1) Monotonicity : B1 ⊂M ⇒ ϕ(B1) ≤ ϕ(B).

(2) ϕ(B1 ∩B2) ≤ min{ϕ(B1), ϕ(B2)},∀B1 ∈M,∀B2 ∈M .

(3) Non-singularity : If B is a finite set, then ϕ(B) = O.

(4) Generalized Cantor’s intersection theorem : If {Bn} is a decreasing sequence of
nonempty, closed and bounded subsets of E and limn−→+∞ ϕ(Bn) = 0, then the
intersection B∞ of all Bn is nonempty and compact.

• If E is a Banach space, the measure of noncompactness ϕ can enjoy some additional
properties. Let us list some of them :

(5) Semi-homogeneity : ϕ(tB) =| t | ϕ(B) for any number t and B ∈M .

(6) Algebraic semi-additive : ϕ(B1 +B2) ≤ ϕ(B1) + ϕ(B2),∀B1 ∈M,∀B2 ∈M .

(7) In variance under translations : ϕ(x0 +B) = ϕ(B)for any x0 ∈ E and B ∈M .

(8) Lipschitzianity : | ϕ(B1)−ϕ(B2) |≤ Lϕρ(B1, B2), where ρ denotes the Hausdorff
semi-metric ρ(B1, B2) = inf{ε > 0 : B2 ⊂ B1 + εB(O, 1), B1 ⊂ B2 + εB̄(O, 1)}.

(9) Continuity : For every B ∈M and for all ε > 0, there is δ > 0 such that

| ϕ(B)− ϕ(B1) |< ε for all B1 satisfying ρ(B,B1) < δ.

(10) Invariance under passage to the convex hull : ϕ(co(B)) = ϕ(B) for all B ∈M .

The Kuratowski and Hausdorff measures of noncompactness

Definition 2.1.3. [15] The kuratowski measure of noncompactness is a mapping
α(Ω) : MF −→ R+ defined by:

α(Ω) = inf{ε > 0; Ω admets a finits covering by sets of diameter smaller then ε}.

The diameter of a set A means the number:

diam(A) = sup{‖ x− y ‖: x, y ∈ A}.

In other words:

α(Ω) = inf{ε > 0;∃k ∈ N,Ω =
k⋃
i=1

Oi, diam(Oi) < ε, for all i = 1....k}.
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Definition 2.1.4. [15] The Hausdorff measure of noncompactness is an application
χ(Ω) : MF −→ R+ defined by :

χ(Ω) = inf{ε > 0,Ω ⊂
n⋃
i=1

B(xi, ri), xi ∈ F, ri ∈ R+, for all i = 1....n}.

In other words:

χ(Ω) = inf{ε > 0,Ω has a finite ε− net ∈ F}.

Remark 2.1.1. The kuratowski and Hausdorff MNCs its satisfy all the above prop-
erties of 2.1.2.

Remark 2.1.2. [15] Based on the above definition

diam(Oi) < ε⇒ diam(Oi) ≥ α(Ω), for all Ω ∈MF .

Which implies that diam(Ω) is a condidate to be α(Ω) .

Definition 2.1.5. [17] The Kuratowski and Hausdorff MNCs are invariant under
passage to the convex hull: φ(M) = φ(co(M)).

Theorem 2.1.1. [17] The Kuratowski and Hausdorff MNCs are related by the in-
equalities

χ(M) ≤ α(M) ≤ 2χ(M).

In the class of all infinite dimensional Banach spaces these inequalities are the best
possible.

Theorem 2.1.2. [15] Let B be the unit ball in E. Then α(B) = χ(B) = 0 if E is
finite-dimensional, and α(B) = 2, χ(B) = 1 in the opposite case.

Remark 2.1.3. [17] Though in general α and χ are different MNCs, in some Banach
spaces we can find a direct relation between them.

2.1.2 Condensing operators

In this section we introduce the condensing operators and study some properties.

Definition 2.1.6. [15] Let F1 and F2 be Banach spaces and let ϕ and ψ be MNCs in F1

and F2. A continuous operator f : D(f) ⊂ F1 −→ F2 is said to be (ϕ, ψ)−condensing
if Ω ⊂ D(f)), ψ[f(Ω)] ≥ ϕ(Ω)⇒ Ω is relatively compact. The operator f is said to be



2.1. Measures of noncompactness and condensing operators 21

(ϕ, ψ)−condensing in the proper sense if ψ[f(Ω)] < ϕ(Ω) for any set Ω ⊂ D(f)) with
compact closure. If the set Q is linearly ordered , then the two notions of condensing
operator coincide. A continuous operator f is said to be (q, ϕ, ψ)− bounded if

ψ[f(Ω)] ≤ qϕ(Ω)

for any set Ω ⊂ D(f)). Whenever F1 = F2 and ϕ = ψ we shall simply say ψ −
condensing and (q, ψ) − boundell. In the case q < 1, (q, ψ) − bounded operators are
sometimes referred to as ψ − condensing with constant q.

Proposition 2.1.1. [15]

(a) If the MNC ϕ1 is regular, then any (q, ϕ1, ϕ2)−bounded operator with q < 1 is
(ϕ1, ϕ2)−condensing.

(b) If f1 is a (ϕ1, ϕ2)−condensing operator and f2 is a (ϕ2, ϕ3)−condensing operator
that maps totally bounded sets into totally bounded ones, ϕ1 and ϕ3 are regular
MNCs, and Q = [0,∞), then the composition f2 ◦ f1 is a (ϕ1, ϕ3)−condensing
operator.

(c) If Q = [0,∞) and ϕ2 is semi-additive, then the set of all (ϕ1, ϕ3)−condensing
operators is convex.

Example 2.1.1. [15] Suppose the operators g0, g1 : X ⊂ F1 −→ F2 are (γ, β)−condensing,
the set where the MNCs γ and β take their values is linearly ordered (as a consequence
of which f0 and f1 are (γ, β)−condensing in the proper sense), and γ is semi-additive.
Then the family of operators g = {gλ : λ ∈ [0, 1]}, where gλ(x) = (1−λ)g0(x)+λg1(x),
is (γ, β)−condensing.

Corollary 2.1.1. [15]

(a) If the set M is bounded and q < 1, then the family f is χ−condensing.

(b) The sum f + g of a compact operator f : F1 −→ F2 and a contractive operator
g : F1 −→ F2 is a χ−condensing operator on any bounded set M ⊂ F1.

Definition 2.1.7. [17] If E and Y are metric spaces, φ and A measures of noncom-
pactness defined on E and Y respectively, and T : D ⊂ E −→ Y a mapping, then

(a) T is a (φ, λ)−contractive operator with constant k > 0 (or simply k−(φ, λ)−contractive)
if T is continuous and verifies that for every bounded subset A of D we have
λ(T (A)) ≤ kφ − (A). In the particular case when E = Y and λ = φ we simply
say that T is a (k − φ)-contractive operator.
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(b) T is a (φ, λ)−condensing operator with constant k > 0 (or simply k−(φ, λ)−condensing)
if T is continuous and verifies that for every bounded and non precompact subset
A of D we have λ(T (A)) < kφ(A). In the particular case when E = Y and
λ = φ we simply say that T is a (k−φ)-condensing operator. Moreover, if k = 1

we say that T is a φ-condensing operator.

Remark 2.1.4. [17]

(a) If φ = α, the k − α−contractive (or (k − α)-condensing) operators are usually
called k−set-contractive (or k−set-condensing) operators.

(b) If φ = χ, the (k − χ)-contractive (or (k − χ)-condensing) operators are usually
called k−ball-contractive (or k−ball-condensing) operators.

(c) Every compact operator is k− (φ, λ)-contractive and k− (φ, λ)-condensing for all
k > 0.

(d) Every k − (φ, λ)-condensing operator is k − (φ, λ)-contractive.

2.1.3 Fixed point theorems

Theorem 2.1.3. [18](Mönch) Let D be a bounded, closed and convex subset of a
Banach space such that 0 ∈ D, and let G be a continuous mapping of D into itself. If
the implication

V = convG(V ) or V = G(V ) ∪ {0} ⇒ α(V ) = 0 (2.2)

holds for every subset V of D, then G has a fixed point.

Proof. We define a sequence (yn) byyn+1 = G(yn) (n = 0, 1, 2, ...)

y0 = 0
(2.3)

Let Y = {yn : n = 0, 1, 2, ...}. As Y = G(Y ) ∪ {0}, from 2.3 it follows that Y is
relatively compact in D. Denote by Z the set of all limit points of (yn). It can be easily
verified that Z = G(Z). Let us put

R(X) = convG(X) for X ⊂ D,
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and let Ω denote the family of all subsets X of D such that Z ⊂ X and R(X) ⊂ X.
Clearly D ∈ Ω. Denote by V the intersection of all sets of the family Ω. As Z ⊂ V ,V
is nonempty and

Z = G(Z) ⊂ R(Z) ⊂ R(V ).

Since

R(V ) ⊂ R(X) ⊂ X for all X ∈ Ω, R(V ) ⊂ V and therefore V ⊂ Ω.

Moreover,
R(R(V )) ⊂ R(V ), and hence R(V ) ∈ Ω.

Consequently
V = R(V ) i.e. V = convG(V ).

In view of 2.3, this implies that V is a compact subset of D. Applying now the Schauder
fixed point theorem to the mapping G | V . We conclude that G has a fixed point.

Theorem 2.1.4. (Darbo)[16] Let C be a nonempty, bounded closed and convex subset
of a Banach space F and let T : C −→ C be a continuous mapping. Assume that there
exists a constant K ∈ [0, 1) for any nonempty subset S of C such that:

α(TS) ≤ Kα(S).

Where α denotes the Kuratowski measure of noncompactness defined in F. Then T
has a fixed point in the set C.

2.2 Measure of noncompactness in spaces of func-

tions

2.2.1 The Hausdorff MNC in the space C[a, b]

In the space C[a, b] of continuous real-valued functions on the segment [a, b] the value
of the set-function χ on a bounded set Ω can be computed by means of the formula
[15]

χ(Ω) =
1

2
lim
δ−→0

sup
x∈Ω

max
0≤τ≤δ

‖ x− xτ ‖ (2.4)
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where xτ denotes the τ -translate of the function x:

xτ (t) =

x(t+ τ), if a ≤ t ≤ b− τ,

x(b), if b− τ ≤ t ≤ b.
(2.5)

2.2.2 MNC in the space C([0,+∞[,R)

We will use a measure of noncompactness in the space C([0,+∞[,R) [20]. In order to
define this measure let us fix a nonempty bounded subset X of the space C([0,+∞[,R)

and a positive number T . For x ∈ X and ε ≥ 0 denote by ωT (x, ε) the modulus of the
function x on the interval [0, T ], i.e.

ωT (x, ε) = sup{|x(t)− x(s)| : t, s ∈ [0, T ], | t− s |≤ 0}.

Further, let us put
ωT (X, ε) = sup{ωT (x, ε) : x ∈ X},

ωT0 (X) = lim
ε→0

ωT (X, ε), ω0(X) = lim
T→∞

ωT0 (X).

If t is a fixed number of R+, let us denote X(t) = {x(t) : x ∈ X} and

diamX(t) = sup{|x(t)− y(t)| : x, y ∈ X}.

Finally, consider the function µ is a measure of non compactness in the space C([0,+∞],R)

defined on the family MC([0,+∞],R) by the formula

µ(X) = ω0(X) + lim
t→∞

sup diamX(t).

2.2.3 MNC in the space C([a, b], F )

The space C([a, b], F ) is furnished with the standard sup-norm ‖x‖∞ = sup{‖x(t)‖F :

t ∈ [a, b]}. We use χ to denote the Hausdorff measure of noncompactness in the
Banach space F . We also define the function ψC on the family of bounded subsets in
C([a, b], F ) by taking:

ψC(Ω) = χ∞(Ω(t)) +modC(Ω),

where

modC(Ω(t)) = lim
δ→0

sup
x∈Ω
{sup{| x(t2)− x(t1) |: t1, t2 ∈ (t− δ, t+ δ)}},
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modC(Ω),= sup{modC(Ω(t)) : t ∈ [a, b]},

and
χ∞(Ω) = sup{χ(Ω(t)) : t ∈ [a, b]}.

Then, ψC is a full monotone and nonsingular MNC on the space C([a, b], F ).

2.2.4 MNC in C1([a, b], F )

Let C1([a, b], F ) denote the Banach space of the continuously differentiable functions
x : [a, b] −→ F , equipped with the norm ‖x‖c1 = ‖x‖c + ‖x′‖c. The function ψC1 ,
defined on the bounded subsets of C1([a, b], F ) by the formula [15]

ψC1(Ω) = ψC(Ω) + ψC(Ω′)

is an MNC, where Ω′(t) = {x′(t) : x ∈ Ω}. If the set Ω′ = {x′ : x ∈ Ω} is equicontinu-
ous and the MNC ψCn is continuous, then ψC1(Ω) ∈ C[a, b].

2.2.5 MNC in Cn([a, b], F )

Let Cn([a, b], F ) denote the Banach space of the n-times continuously differentiable
functions x : [a, b] −→ F , endowed with the norm ‖x‖Cn =

∑n
i=0 ‖x‖C · Then each

MNC ψ on C([a, b], F ) generates an MNC ψCn on Cn([a, b], F ) by the rule

ψCn(Ω) = ψC(Ω) + ψC(Ω′) + · · ·+ ψC(Ωn),

where Ω(n) = {x(n) : x ∈ Ω}.

2.2.6 MNC in Lp([a, b])

Let Ω be a bounded subset of the space Lp([a, b]) of equivalence classes of measurable
functions x : [a, b] −→ R which are p-integrable, endowed with the norm ‖x‖ =(∫ b

a

(|x(t)|pdt
) 1

p

. Then

1

2
µ(Ω) ≤ χ(Ω) ≤ µ(Ω).

The function µ appearing above is defined by the formula

µ(Ω) = lim
ε−→0
{sup
x∈Ω

[ max
0≤h≤ε

‖ x− xh ‖]},



2.3. Mönch-Krasnoselski fixed point theorem 26

where xh denotes the steklov mean of the function x defined as

xh(t) =
1

2h

∫ t+h

t−h
x(s)ds.

Proposition 2.2.1. [22] Let F be a Banach space and T ⊂ C([a, b], F ) equicontinuous
with T (t) bounded for each t ∈ [a, b]. Then

1. For all t, s ∈ [a, b], one has

|α(T (t))− α(T (s))| ≤ 2ω(T, δ),

where ω(T ; δ) is the modulus of continuity of T , namely

ω(T, δ) = sup{|u(t)− u(s)|; t, s ∈ [a, b], |t− s| ≤ δ, u ∈ T}.

2. We have
α

(∫ 1

0

T (t)dt

)
≤
∫ 1

0

α(T (t))dt,

where ∫ 1

0

T (t)dt =

{∫ 1

0

u(t)dt;u ∈ T
}
.

2.3 Mönch-Krasnoselski fixed point theorem

Lemma 2.3.1. [19] Let S : F −→ F be a strict contraction with constant K ∈ [0, 1).
Then, I − S is bijective and (I − S)−1 : F −→ F is continuous Lipschitzian with
constant (1−K)−1.

Proof. Notice for x, y ∈ F , we have:

‖ (I − S)x− (I − S)y ‖≥ (1−K) ‖ x− y ‖ . (2.6)

Thus, I − S is one-to-one. Now, let y ∈ F be fixed. The map which assigns to each
x ∈ F the value Sx + y is a strict contraction from F into itself, and so has a unique
fixed point x0 ∈ F , by the contraction mapping principle. Hence, x0 = Sx0 + y, and
therefore, y = (I − S)x0. Consequently, F = (I − S)F . The second assertion follows
from 2.6.

The following theorem is a basic result in topological fixed point theory. It gener-
alizes, in some sense, Mönch fixed point theorem as well as Krasnoselski fixed point
theorem.
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Theorem 2.3.1. [19] Let F be a Banach space and M be a nonempty closed convex
subset of F. Let T : M −→ F and S : F −→ F be two continuous mappings satisfying
the following conditions:

(i) There is some x0 ∈ M and a positive integer n0, such that for all countable
C ⊂M , we have:

C = F (n0,x0)(T, S, C) implies that C is relatively compact. (2.7)

(ii) S is a strict contraction.

(iii) (x = Sx+ Ty, y ∈M) implies x ∈M .

Then, T + S has at least one fixed point in M.

Proof. [19] Referring to Lemma 2.3.1 , we see that τ = (I − S)−1T : M −→ F is
well defined and continuous. Moreover, from our assumptions, we know that τ maps
M into itself and we have F(T, S,Ω) = τ(Ω), for any Ω ⊂ M . Now, we consider the
iterative sequence (Dn) of sets:

D0 = {x0}, Dn = F (1,x0)(T, S,Dn−1), n ∈ N.

By mathematical induction, it is easily seen that for all n ∈ N, we have:

Dn ⊂ Dn+1. (2.8)

We will use mathematical induction to prove that the statement P(n) given by “for
all n ∈ N ∪ {0}, the set Dn is compact” is true. Observing that D0 is compact, we
obtain that the base case P(0) is true. Next, we perform the inductive step. Assume
that P(n) is true for some integer n ≥ 0; that is, Dn is compact. Using the continuity
of τ together with the Krein–Milman theorem, we infer that:

Dn+1 = F (1,x0)(T, S,Dn) = co({x0} ∪ τ(Dn)) (2.9)

is compact. Consequently, we have shown our statement P (n + 1) to be true, and
thus, our inductive step is complete. Let us put D = ∪n∈NDn. Easy considerations
lead us to infer that:

D = F (1,x0)(T, S,D). (2.10)

Notice for every n ∈ N, Dn is compact, and so, it is separable. Thus, for each n, there
exists a countable set Cn ⊂ Dn, such that Dn = Cn. Let us consider C =

⋃
n∈NCn. It
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is easy to check that:
D = C. (2.11)

Linking 2.10 and 2.11, we arrive at:

C = D = co({x0} ∪ F(T, S,D)) = co({x0} ∪ F(T, S,D))

= co({x0} ∪ F(T, S, C)) = co({x0} ∪ F(T, S, C)) = F (1,x0)(T, S, C).

As a result:
C = F (1,x0)(T, S, C). (2.12)

Using a simple mathematical induction, we obtain:

C = F (n0,x0)(T, S, C). (2.13)

From our hypotheses, we know that C is relatively compact. In view of 2.12 , we have
τ(C) ⊂ C. The Schauder fixed point theorem ensures the existence of a fixed point
for τ which, in turn, is a fixed point for T + S.



Chapter 3
Applications

3.1 Neutral partial integrodifferential equation with-

out compactness

We will investigate the existence of mild solutions for neutral partial integrodifferential
equations of the following form [19] d

dt
G(u)(t) = AG(u)(t) +

∫ t
0
B(t− s)G(u)(s)ds+M(t, u(t)) for t ∈ [0, a],

u(0) = u0 ∈ F,
(3.1)

where A : D(A) ⊂ F −→ F is a closed linear operator on a Banach space (F, ‖ . ‖F ),
(B(t))t≥0 is a family of closed linear operators on F having the same domain D(B) ⊃
D(A) which is independent of t and

G(u)(t) = u(t)−G(t, u(t)) for t ∈ [0, a],

where G,M are given functions to be specified later. Equation 3.1 is known as abstract
neutral integrodifferential equations.

3.1.1 Resolvent operators and measure of noncompactness

Let (F, ‖ . ‖F ) be a Banach space and let C([0, a], F ) denote the Banach space of all
continuous functions defined on [0, a] with values in F equipped with the standard
sup-norm. Also, for any closed linear operator (A, D(A)) on F, we denote by Y the
Banach space D(A) equipped with the graph norm

‖ x ‖G:=‖ Ax ‖F + ‖ x ‖F .

29
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We need the following results on the resolvent operator theory. Let us consider the
following integrodifferential equation:y

′(t) = Ay(t) +

∫ t

0

B(t− s)y(s)ds for t ≥ 0

y(0) = y0 ∈ F.
(3.2)

We start by defining the resolvent operator for Eq. 3.2.

Definition 3.1.1. [19] A resolvent operator for Eq. 3.2 is a bounded linear operator
valued function R(t) ∈ L(F ) for t ≥ 0 having the following properties:

(a) R(0) = I, the identity map on F and ‖ R(t) ‖L(F )≤ Meβt for some constants
M ≤ 1 and β ∈ R.

(b) For each x ∈ F,R(t)x is strongly continuous for t ≥ 0.

(c) R(t) ∈ L(Y ) for t ≥ 0. For x ∈ Y,R(.)x ∈ C1(R+, F ) ∩ C(R+, Y ) and:

R′(t)x = AR(t)x+

∫ t

0

B(t− s)R(s)xds for t ≥ 0

= R(t)Ax+

∫ t

0

R(t− s)B(s)xds for t ≥ 0.

(3.3)

In the sequel, we provide sufficient conditions ensuring the existence of the resolvent
operator. For this purpose, we consider the following assumptions:

(I) A is a closed densely defined linear operator on a Banach space (F, ‖ . ‖F ).

(II) (B(t))t≥0 is a family of linear operators on F, such that B(t) is continuous from
Y to F for almost all t ≥ 0. Moreover, there is a locally integrable function
b : R+ −→ R+, such that B(t)y is measurable and

‖ B(t)y ‖F≤ b(t) ‖ y ‖G for all y ∈ Y and t ≥ 0.

(III) For any y ∈ Y , the map t −→ B(t)y belongs to W 1,1
loc (R+, F ) and:

‖ d

dt
B(t)y ‖≤ b(t) ‖ y ‖G; for y ∈ Y and a.e. t ∈ R+;

here, W 1,1
loc (R+, F ) stands for the set of all functions u ∈ L1

loc(R+, F ) which admits a
distributional derivative u′ ∈ L1

loc(R+, F ).
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We point out that resolvent operators do not verify semigroup property.
For example, if we take F = R, Ay = y and B(t) = −2y in Eq. (3.2), then, we have:

R(t)x = et(cost+ sint)x and T (t)x = e2tx.

However, the following significant result ensures the existence a resolvent operator for
Eq. 3.2 provided that A generates a strongly continuous semigroup.

Theorem 3.1.1. [19] Assume that (I)− (III) hold. Then, Eq. (3.2) admits a resol-
vent operator if and only if A generates a C0 − semigroup.

We work in the space C := C(I, F ) consisting of all functions defined and contin-
uous on I = [0, a] with values in the Banach space F. The space C(I, F ) is furnished
with the standard sup-norm ‖ x ‖∞= sup{‖ x(t) ‖F : t ∈ I}. We use χC to denote
the Hausdorff measure of noncompactness in the space C(I, F ). We also define the
function ψC on the family of bounded subsets in C(I, F ) by taking:

ψC(Ω) = χ∞(Ω) +modC(Ω),

where

modC(Ω(t)) = lim
δ→0

sup
x∈Ω
{sup{| x(t2)− x(t1) |: t1, t2 ∈ (t− δ, t+ δ)}},

modC(Ω),= sup{modC(Ω(t)) : t ∈ I},

and
χ∞(Ω) = sup{χ(Ω(t)) : t ∈ I};

Then, ψC is a full monotone and nonsingular MNC on the space C(I, F ). We introduce
the following sets. Let M be a nonempty closed convex subset of F, T, S : M −→ F

two nonlinear mappings and x0 ∈ F. For any Ω ⊆M , we define:

F(T, S,Ω) = {x ∈M : x = Sx+ Ty, for some y ∈ Ω},

F (1,x0)(T, S,Ω) = co({x0} ∪ F(T, S,Ω)),

and
F (n,x0)(T, S,Ω) = co

(
{x0} ∪ F

(
T, S,

(
F (n−1,x0)(T, S,Ω)

)))
,

for n = 2, 3, ....
When S = 0, we abbreviate the notation F (n,x0)(T, 0,Ω) to F (n,x0)(T,Ω). It may
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happen that the set F(T, S,Ω) is empty. In such a case, we cannot expect to have
a fixed point for the sum S + T in Ω. Therefore, this case is not relevant to our
purpose. In the case where S is a strict contraction,we are absolutely sure that all the
sets F(T, S,Ω) are nonempty.

Proposition 3.1.1. [19] Assume that:

(a) S : F → F is a strict contraction with constant k ∈ [0, 1) and

(b) (x = Sx+ Ty, y ∈M) implies x ∈M .Then:

(i) F (n,x0)(T, S,Ω) is a nonempty subset of M for any Ω ⊂M and any positive integer
n ≥ 1.

(ii) F (n,x0)(T, S,Ω) = F (n,x0)((I −S)−1T,Ω) for any Ω ⊂M and any positive integer
n ≥ 1.

(iii) Ω1 ⊂ Ω2 ⊂M implies F (n,x0)(T, S,Ω1) ⊂ F (n,x0)(T, S,Ω2) ⊂M for any n ≥ 1.

Lemma 3.1.1. [19] Let H ⊆ C([0, a], F ) be equicontinuous and x0 ∈ C([0, a], F ).
Then, co(H ∪ {x0}) is also equicontinuous in C([0, a], F ).

Lemma 3.1.2. [19] Let H ⊂ C([0, a];F ) be a bounded set. Then, χ(H(t)) ≤ χC(H)

for any t ∈ [0, a], where H(t) = {u(t) : u ∈ H}. Furthermore, if H is equicontinuous
on [0, a], then t→ χ(H(t)) is continuous on [0, a] and:

χC(H) = χ∞(H),

where
χ∞(H) = sup{χ(H(t)) : t ∈ [0, a]}.

Lemma 3.1.3. [19] Let H be a bounded subset of F. Then, there exists a sequence
(un)n∈N ⊆ H, such that:

χ(H) = χ((un)n≥1).

We also need the following elementary result.

Lemma 3.1.4. [19] For all 0 ≤ m ≤ n, we denote Cm
n = (nm). Let 0 < ε < 1, h > 0,

and:
Sn = εn + C1

nε
n−1h+ C2

nε
n−2h

2

2!
+ ...+

hn

n!
, n ∈ N∗.

Then, limn−→∞ Sn = 0.
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3.1.2 New Mönch–Krasnoselski type fixed point theorems

We establish a new fixed point theorem for the sum of two operators. This fixed point
result is really interesting and may have several applications. It will serve as a key
tool for the development of our existence theory. Before making a formal statement of
our fixed point result, we need to recall the following more or less well-known result.
Referring to lemma 2.3.1 and theorem 2.3.1.
We describe the case where S = 0.

Corollary 3.1.1. [19] Let F be a Banach space and M be a nonempty closed convex
subset of F. Let T : M −→ M be a continuous mapping. Assume that there are a
vector x0 ∈ M and a positive integer n0, such that for any countable subset C of M,
we have:

C = F (n0,x0)(T,C) implies that C is relatively compact. (3.4)

Then, T has at least one fixed point in M.

In view of Theorem 2.3.1 , we promptly deduce the following interesting results.

Corollary 3.1.2. [19] Let F be a Banach space, M be a nonempty bounded closed
convex subset of F, and ψ be a nonsingular measure of noncompactness on F. Let
T : M −→ F and S : F −→ F be two continuous mappings satisfying:

(i) there exist a vector x0 and a positive integer n0, such that for any countable subset
Ω of M with ψ(Ω) > 0, we have:

ψ(F (n0,x0)(T, S,Ω)) < ψ(Ω); (3.5)

(ii) S is a strict contraction;

(iii) (x = Sx+ Ty, y ∈M) implies x ∈M .

Then, T + S has at least one fixed point in M.

Corollary 3.1.3. [19] Let F be a Banach space, M be a nonempty bounded closed
convex subset of F, and ψ be a nonsingular measure of noncompactness on F. Let
T : M →M be a continuous mapping, such that there exist a vector x0 and a positive
integer n0, such that for any countable subset Ω of M with ψ(Ω) > 0, we have:

ψ(F (n0,x0)(T,Ω)) < ψ(Ω). (3.6)

Then, T has at least one fixed point in M.
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As a consequence of Corollary 3.1.3, we obtain the following statement which is a
sharpening of Daher’s theorem

Corollary 3.1.4. [19] Let F be a Banach space, M be a nonempty bounded closed
convex subset of F, and ψ be a nonsingular measure of noncompactness on F. Let
T : M →M be a continuous mapping, such that for any countable subset Ω of M with
ψ(Ω) > 0, we have:

ψ(T (Ω)) < ψ(Ω). (3.7)

Then, T has at least one fixed point in M.

3.1.3 Existence results

We will prove the existence of a mild solution for the neutral equation 3.1. But
before that, we need to recall some results regarding the estimation of the Hausdorff
measure of noncompactness for integral operators and related results. We start with
the following interesting results.

Theorem 3.1.2. [19] Let F be a function from [0,+∞) into L(F ). Suppose that F
is continuous for the strong operator topology. Let Ω be a bounded subset of F and
F = {F(.)x, x ∈ Ω} ⊂ C(R+, F ). Then, for any t ≥ 0, we have:

modC(F(t)) ≤ ω(F(t))χ(Ω).

In particular, for any t ∈ [0, a], we have:

modC(F(t)) ≤ 2Maχ(Ω),

where:

ω(F(t)) = lim
δ→0

sup
‖x‖≤1

{‖ F(t2)x−F(t1)x ‖F : t1, t2 ∈ (t− δ, t+ δ)}

and
Ma = sup

t∈[0,a]

‖ F(t) ‖L(F ) .

Proposition 3.1.2. [19] Let F be a function from [0,+∞) into L(F ). Suppose that
F is continuous for the strong operator topology. Then, for any compact K ⊂ F , we
have:

sup
y∈K
‖ F(t)y −F(t0)y ‖F→ 0 as t→ t0.
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Let V be an operator defined on L1([0, a];F ) with values in C([0, a];F ) satisfying the
following conditions:

(S1) There exists d > 0, such that:

‖ Vf(t)− Vg(t) ‖F≤ d

∫ t

0

‖ f(s)− g(s) ‖F ds,

for every f, g ∈ L1([0, a];F ) and t ∈ [0, a].

(S2) For any compact K ⊂ F and any sequence (fn)n≥1 ⊂ L1((0, a);F ), such that
(fn(t))n≥1 ⊂ K for a .e. t ∈ [0, a], we have:

fn ⇀ f0 implies Vfn → Vf0.

The following fundamental theorems are crucial for our further work.

Theorem 3.1.3. [19] Assume that the operator V satisfies (S1) and (S2). Let (fn)n≥1 ⊂
L1((0, a);F ) be integrably bounded, namely:

‖ fn(t) ‖≤ v(t) for all n ≥ 1 and a.e t ∈ [0, a], (3.8)

where v ∈ L1(0, a). Assume that:

χ((fn(t))n≥1) ≤ q(t) for a.e t ∈ [0, a], (3.9)

where q ∈ L1(0, a). Then:

χ((Vfn(t))n≥1) ≤ 2d

∫ t

0

q(s)ds,

for all t ∈ [0, a], where d > 0 is given in (S1).

Theorem 3.1.4. [19] Assume that the operator V satisfies (S1) and (S2). Let (fn)∞n=1 ⊂
L1([0, a];F ) be as in 3.8. Assume that 3.9 holds. Then, for every t ∈ [0, a], we have:

modC((Vfn(t))n≥1) ≤ 4d

∫ t

0

q(s)ds, (3.10)

where d ≥ 0 is the constant in (S1).
For later use, we consider the integral operator:

(V0f)(t) =

∫ t

0

R(t− s)f(s)ds, for t ∈ [0, a],
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where f ∈ C([0, a];F ).
The operator V0 enjoys some interesting and useful properties given by the following.

Theorem 3.1.5. [19] Let (fn)∞n=1 ⊂ L1([0, a];F )be such that the set (fn(t))∞n=1 resides
in a compact set K, for almost every t ∈ [0, a]. Then, the sequence (V0fn)∞n=1 is
relatively compact in C([0, a];F ).

Theorem 3.1.6. [19] The integral operator V0 satisfies (S1) and (S2).
From now on, we assume that the assumptions (I)–(III) hold true and the operator A
generates a strongly continuous semigroup. Our main purpose in the immediate sequel
is to show the existence of solutions to Eq.3.1. Before doing so, it is appropriate to
clarify the definition of solution which we will consider.

Definition 3.1.2. [19] A continuous function u : [0, a] → F is said to be a mild
solution of Eq. 3.1 if:

u(t) = R(t)G(0, u0) +G(t, u(t)) +

∫ t

0

R(t− s)M(s, u(s))ds for t ∈ [0, a]. (3.11)

To obtain the existence of mild solutions to 3.1 , we assume the following assump-
tions.

(H1) The function M : [0, a] × F → F satisfies the Carathéodory conditions; that
is, M(., z) is measurable for all z ∈ F and M(t, .) is continuous for almost all
t ∈ [0, a].

(H2) There exist a function ρ ∈ L1((0, a);R+) and a nondecreasing continuous
function Ω : R+ → R+, such that:

‖ f(t, z) ‖≤ ρ(t)Ω(‖ z ‖F ) for all t ∈ [0, a] and z ∈ F.

(H3) There exists a function θ ∈ L1([0, a];R+), such that for any bounded set Ω ⊆ F :

χ(f(t,Ω)) ≤ θ(t)χ(Ω).

(H4) There is a k0 ∈ [0, 1), such that for any t1, t2 ∈ [0, a] and any z1, z2 ∈ F , we
have:

‖ G(t1, z1)−G(t2, z2) ‖F≤ k0(| t1 − t2 | + ‖ z1 − z2 ‖F ).

(H5)

k0 +Ma lim
r→∞

inf
Ω(r)

r

∫ a

0

ρ(s)ds < 1.
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To allow the abstract formulation of our problem, we define the following operators
as follows:

(Su)(t) = R(t)G(0, u0) +G(t, u(t)) for t ∈ [0, a], u ∈ C([0, a];F )

and
T = V0 ◦Nf ,

where
Nfu = f(., u(.)) for u ∈ C([0, a];F ).

It is plainly visible that u is a mild solution of Eq. 3.1 if and only if u is a fixed point
of T + S. With this in mind, we shall show that operators T,S satisfy all conditions
of Theorem 2.3.1 . This will be achieved in a series of lemmas.

Lemma 3.1.5. [19] The operator T maps continuously C([0, a];F ) into itself.

Proof. Let (un)n be a sequence in C([0, a];F ), such that

lim
n→∞

un = u in C([0, a];F ).

By (H1), we have:
lim
n→∞

M(s, un(s)) =M(s, u(s))

for a.e. s ∈ [0, a]. Hence:

‖ Tun − Tu ‖∞≤Ma

∫ a

0

‖ M(s, un(s))−M(s, u(s)) ‖F ds.

Using the dominated convergence Theorem, we obtain:

lim
n→∞

‖ Tun − Tu ‖∞= 0.

This completes the proof.

Lemma 3.1.6. [19] S is a strict contraction.

Proof. Let u, v ∈ C([0, a];F ) and t ∈ [0, a]. Then, by (H4), we have:

‖ (Su)(t)− (Sv)(t) ‖F ≤‖ G(t, u(t))−G(t, v(t)) ‖F
≤ k0 ‖ u(t)− v(t) ‖F .
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Consequently:
‖ Su− Sv ‖∞≤ k0 ‖ u− v ‖∞ .

Lemma 3.1.7. [19] There is a r0 > 0, such that:

(u = Su+ Tv, v ∈ Br0) implies u ∈ Br0 ,

where Br = {u ∈ C([0, a];F ) :‖ u ‖∞≤ r}.

Proof. We argue by contradiction. Assume that for all r > 0, there are u ∈ C([0, a];F )

and v ∈ Br, such that u = Su+ Tv and u /∈ Br. Hence, for any t ∈ [0, a], we have:

‖ (Su)(t) + (Tv)(t) ‖F

≤‖ R(t)(u0 −G(0, u0)) +G(t, u(t)) ‖F + ‖
∫ t

0

R(t− s)M(s, v(s))ds ‖F

≤Ma ‖ u0 −G(0, u0) ‖F + ‖ G(t, u(t)) ‖F +MaΩ(r)

∫ a

0

ρ(s)ds

≤Ma ‖ u0 −G(0, u0) ‖F + ‖ G(t, 0) ‖F +k0 ‖ u ‖∞ +MaΩ(r)

∫ a

0

ρ(s)ds.

Thus:

‖ u ‖∞ =‖ Su+ Tv ‖∞

≤Ma ‖ u0 −G(0, u0) ‖F + ‖ G(., 0) ‖∞ +k0 ‖ u ‖∞ +MaΩ(r)

∫ a

0

ρ(s)ds.

Consequently:

r < ‖ u ‖∞ ≤
1

1− k0

(
Ma ‖ u0 −G(0, u0) ‖F + ‖ G(., 0) ‖∞ +MaΩ(r)

∫ a

0

ρ(s)ds
)
,

this implies that:

1 <
1

1− k0

(Ma ‖ u0 −G(0, u0) ‖F
r

+
‖ G(., 0) ‖∞

r
+Ma

Ω(r)

r

∫ a

0

ρ(s)ds
)
.

Taking the lim inf as r →∞, we obtain that:

1 ≤ k0 +Ma lim
r→∞

inf
Ω(r)

r

∫ a

0

ρ(s)ds,

which contradicts (H5). This achieves the proof.
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Lemma 3.1.8. [19] There is an integer n0, such that χ∞(F (n0,0)(T, S,D)) < χ∞(D),
for any bounded subset D of C([0, a], F ), with χ∞(D) > 0.

Proof. Let D be a bounded subset of C([0, a], F ), such that χ∞(D) > 0. Then, for
any t ∈ [0, a], we have that:

F (1,0)(T, S,D)(t) = {u(t), u ∈ F (1,0)(T, S,D)}

⊆ {u(t)− Su(t), u ∈ F (1,0)(S,K,D)}+ {Su(t), u ∈ F (1,0)(S,K,D)}.

Using the properties of the Hausdorff measure of noncompactness, we get:

χ(F (1,0)(T, S,D)(t)) ≤ χ(T (D)(t)) + k0χ(F (1,0)(T, S,D)(t)).

As a result:
χ(F (1,0)(T, S,D)(t)) ≤ 1

1− k0

χ(T (D)(t)). (3.12)

Referring to Lemma 3.1.3, we see that there is a sequence (un)n≥1 ⊆ D, such that:

χ(T (D)(t)) ≤ χ((Tun(t))n≥1) ≤ χ

((∫ t

0

R(t− s)M(s, un(s))ds
)
n≥1

)
.

Invoking Theorem 3.1.3, we obtain:

χ(T (D)(t)) ≤ 2Ma

∫ t

0

C(s)χ((un(s))n≥1)ds ≤ 2Maχ∞(D)

∫ t

0

C(s)ds.

Taking into account the density of C([0, a];R) in L1([0, a];R), we see that for any
δ < 1−k0

2Ma
, there exists ϕ ∈ C([0, a];R) satisfying∫ a

0

|C(s)− ϕ(s)|ds < δ.

Consequently:

χ(T (D)(t)) ≤ 2Maχ∞(D)
[ ∫ t

0

|C(s)− ϕ(s)|ds+

∫ t

0

|ϕ(s)|ds
]

≤ 2Maχ∞(D)[δ + τt],

where τ = sup0≤s≤a |ϕ(s)|. Thus:

χ(T (D)(t)) ≤ (2Maδ + 2Maτt)χ∞(D).



3.1. Neutral partial integrodifferential equation without compactness 40

This means by 3.12 that:

χ(F (1,0)(T, S,D)(t)) ≤ (λ+ µt)χ∞(D), (3.13)

where λ = 2Maδ
(1−k0)

and µ = 2Maτ
(1−k0)

. Furthermore:

F (2,0)(T, S,D)(t) ⊆ {u(t)− Su(t), u ∈ F (2,0)(T, S,D)}+ {Su(t), u ∈ F (2,0)(T, S,D)}

⊆ {Tv(t), v ∈ co(F (1,0)(T, S,D) ∪ {0})}+ {Su(t), u ∈ F (2,0)(T, S,D)}.

Hence, a similar reasoning as above yields:

χ(F (2,0)(T, S,D)(t)) ≤ χ(T (co(F (1,0)(T, S,D) ∪ {0}))(t)) + k0χ(F (2,0)(T, S,D)(t)).

Thus:

χ(F (2,0)(T, S,D)(t)) ≤ 1

1− k0

χ(S(co(F (1,0)(T, S,D) ∪ {0}))(t)). (3.14)

Referring to Lemma 3.1.3, we see that there exists a sequence

(wn)n≥1 ⊆ co(F (1,0)(T, S,D) ∪ {0}),

such that:

χ(T (co(F (1,0)(T, S,D) ∪ {0}))(t)) ≤ χ

((∫ t

0

R(t− s)M(s, wn(s))ds
)
n≥1

)
≤ 2Ma

∫ t

0

C(s)χ(co(F (1,0)(S,K,D) ∪ {0})(s))ds

≤ 2Ma

∫ t

0

C(s)χ(F (1,0)(T, S,D)(s))ds.

Liking 3.13 and 3.14 , we arrive at:

χ(F (2,0)(T, S,D)(t)) ≤ 2Ma

(1− k0)

∫ t

0

[|C(s)− ϕ(s)|+ |ϕ(s)|](λ+ µs)χ∞(D)ds

≤ 2Ma

(1− k0)

[
(λ+ µt)

∫ t

0

|C(s)− ϕ(s)|ds+ τ
(
λt+ µ

t2

2

)]
χ∞(D)

≤
[
λ(λ+ µt) + µ

(
λt+ µ

t2

2

)]
χ∞(D)

≤
[
λ2 + 2λµt+

(µt)2

2

]
χ∞(D).
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Accordingly:

χ(F (2,0)(T, S,D)(t)) ≤
[
λ2 + 2λµt+

(µt)2

2

]
χ∞(D).

By mathematical induction, we obtain for all integer n ≥ 1 that:

χ(F (n,0)(T, S,D)(t)) ≤
[
λn + C1

nλ
n−1µt+ C2

nλ
n−2 (µt)2

2!
+ ...+

(µt)n

n!

]
χ∞(D).

Accordingly:

χ∞(F (n,0)(T, S,D)) ≤
[
λn + C1

nλ
n−1µa+ C2

nλ
n−2 (µa)2

2!
+ ...+

(µa)n

n!

]
χ∞(D).

Since 0 < λ < 1 and µa > 0, then from Lemma 3.1.4, we deduce that there exists
n0 ∈ N∗, such that:

Sn0 =
[
λn0 + C1

n0
λn0−1µa+ C2

n0
λn0−2 (µa)2

2!
+ ...+

(µa)n0

n0!

]
< 1,

which implies that:
χ∞(F (n0,0)(T, S,D)) < χ∞(D).

Lemma 3.1.9. [19] Let D be a bounded subset of C([0, a], F ). If T (D) is equicontin-
uous, then so is F (n,0)(T, S,D) for any integer n ≥ 1.

Proof. Let u ∈ F(T, S,D). Then, there exists v ∈ D, such that:

u = Su+ Tv.

Hence, for t, t′ ∈ [0, a], we have that:

‖ u(t)− u(t′) ‖F= ‖ Su(t) + Tv(t)− Su(t′)− Tv(t′) ‖F
≤ ‖ Su(t)− Su(t′) ‖F + ‖ Tv(t)− Tv(t′) ‖F

≤ ‖ (R(t)−R(t′))G(0, u0) ‖F +k0

(
|t− t′|+ ‖ u(t)− u(t′) ‖F

)
+ ‖ Tv(t)− Tv(t′) ‖ .

Consequently:

‖ u(t)−u(t′) ‖≤ 1

1− k0

(
‖ Tv(t)−Tv(t′) ‖F + ‖ (R(t)−R(t′))G(0, u0) ‖F

)
+

k0

1− k0

|t−t′|.
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Keeping in mind the fact that T(D) is equicontinuous on [0, a], we deduce that:

‖ u(t)− u(t′) ‖F→ 0 as, t→ t′, (3.15)

uniformly in u ∈ F(T, S,D). This implies that F(T, S,D) is equicontinuous.
In view of Lemma 3.1.1, we conclude that F (1,0)(T, S,D) := co(F(T, S,D) ∪ {0})
is equicontinuous. By mathematical induction, one can see that F (n,0)(T, S,D) is
equicontinuous for all n ≥ 1.

After these preparations, we are now ready to state the main result of this section.

Theorem 3.1.7. [19] Assume that (H1)−−(H5) hold. Then, the problem 3.1 has at
least one mild solution on [0, a].

Proof. Let C be a countable subset of Br0 , such that:

C = F (n0,0)(T, S, C). (3.16)

Referring to Lemma 3.1.8 , we see that χ∞(C) = 0. Hence, by Theorem 3.1.5 together
with assumption (H1), we deduce that T(C) is compact. Now, we apply Lemma 3.1.9
to conclude that F (n0,x0)(T, S, C) is equicontinuous. Going back to 3.16 , we infer
that C is equicontinuous. The use of Lemma 3.1.2 yields χC(C) + χ∞(C) = 0 and,
therefore, C is relatively compact. Invoking Theorem 2.3.1 together with Lemmas
3.1.5 , 3.1.6 , 3.1.7 , we deduce that S + T has a fixed point in Br0 , which is, in turn,
a mild solution to 3.1.

3.2 Example

[19] Now, we apply our abstract results to investigate the existence of mild solutions
for the following neutral integrodifferential equation subjected to some initial data :

∂
∂t

[
u(t, x)− g(u(t, x))

]
= υ · ∇

[
u(t, x)− g(u(t, x))

]
+
∫ t

0
βe−(t−s)µυ · ∇

[
u(s, x)− g(u(s, x))

]
ds

+p1(t)p2(u(t, x)), for t ∈ [0, a] and x ∈ Rd,

u(0, x) = u0(x), for x ∈ Rd,

(3.17)
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where β > 0, µ ∈ [0, 1], υ = (υ1, υ2, ..., υd) is a fixed element in Rd, d ≥ 1, and υ · ∇ω
is the υ − directional distributional derivative of ω, that is:

υ · ∇ω(x) =
d∑
i=1

υi
∂ω

∂xi
(x),

for each ω ∈ Lp(Rd) with υ · ∇ω ∈ Lp(Rd), 1 ≤ p < +∞ and a.e. for x ∈ Rd. Assume
that:

(i) p1 : [0, a] −→ R is integrable, p2 : R −→ R is Lipschitzian with constant L2 > 0

and p2(0) = 0.

(ii) There exists k0 ∈ [0, 1) such that:

|g(z)− g(z′)| ≤ k0|z − z′| for z, z′ ∈ R.

(iii) u0 ∈ Lp(Rd).

Let F = Lp(Rd), d ≥ 1, with 1 ≤ p < +∞ and let υ ∈ Rd.Let u(t) = u(t, .) and define
the functions G,M : [0, a]× F → F by

M(t, ω)(x) = p1(t)p2(ω(x))

and
G(t, ω)(x) = g(ω(x)), for t ∈ [0, a], x ∈ Rd

and ω ∈ F .Hence, 3.17 takes the following form:
d

dt

[
u(t)−G(u(t))

]
= A

[
u(t)−G(u(t))

]
+

∫ t

0

B(t− s)
[
u(s)−G(u(s))

]
ds

+M(t, u(t)) for t ∈ [0, a]

u(0) = u0.

(3.18)
Where A : D(A) ⊆ F −→ F is defined by:

D(A) = {u ∈ LpRd, υ · ∇u ∈ Lp(Rd)},

Au = υ · ∇u,

for each u ∈ D(A), and B(t) = βe−tµA = b(t)A, for t ≥ 0. We will show that all
conditions of Theorem 3.1.7 are satisfied. This will be achieved in a series of lemmas.
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Before we do that, the operator A is the infinitesimal generator of the C0 − group of
isometries {T (t) : F −→ F ; t ∈ R} given by:

[T (t)ξ](x) = ξ(x+ tυ),

for each ξ ∈ F, t ∈ R and a.e. for x ∈ Rd. It should be stressed here that the
semigroup (T (t))t≥0 is neither compact nor equicontinuous. Moreover, for any t ≥ 0

and any y ∈ D(A), we have:

‖ B(t)y ‖F≤‖ b(t)Ay ‖F≤ b(t) ‖ y(t) ‖G,

and
‖ d

dt
B(t)y ‖F≤ µb(t) ‖ Ay ‖F≤ b(t) ‖ y(t) ‖G .

Referring to Theorem 3.1.1 we see that Eq. 3.17 admits a resolvent operator (R(t))t≥0:

Lemma 3.2.1. [19]
‖ G(x)−G(y) ‖p≤ K0 ‖ x− y ‖p .

Proof. Let ω1, ω2 ∈ F . Then, from (ii), we have:

| G(ω1)(x)−G(ω2)(x) |=| g(ω1)(x)− g(ω2)(x) |≤ K0 | (ω1(x))− (ω2(x)) | .

Thus:
‖ G(ω1)−G(ω2) ‖p≤ K0 ‖ ω1 − ω2 ‖p .

Lemma 3.2.2. [19]

‖ M(t, ω) ‖p≤ |p1(t)|Ω(‖ ω ‖p) for all t ∈ [0, a] and Ω ∈ F,

where Ω(r) = L2r.

Proof. Since p2(0) = 0, then:

| M(t, ω)(x) |≤| p1(t) || p2(ω(x))| ≤| p1(t) | L2 | ω(x) | .

Hence:
‖ M(t, ω) ‖p≤| p1(t) | L2 |‖ ω ‖p .
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Lemma 3.2.3. [19] For any bounded set D ⊆ F and any t ∈ [0, a], we have:

χ(M(t,D)) ≤| p1(t) | L2χ(D).

Proof. Let t ∈ [0, a], D a subset of F and λ > χ(D). Then, there are ω1, ..., ωn ∈ F ,
such that D ⊂

⋃n
i=1B(ωi, λ). Notice that for any ω ∈ D, there is an i0 ∈ {1, ..., n},

such that ‖ ω − ωi0 ‖p≤ λ. Hence, for any x ∈ F :

| M(t, ω)x−M(t, ωi0)x | ≤| p1(t) || p2(ω(x))− p2(ωi0(x)) |

≤| p1(t) | L2 | ω(x)− ωi0(x) | .

This leads to:

‖ M(t, ω)−M(t, ωi0) ‖p≤| p1(t) | L2 ‖ ω − ωi0 ‖p≤| p1(t) | L2λ.

Therefore:
χ(M(t,D)) ≤| p1(t) | L2λ.

Letting λ −→ χ(D), we get:

χ(M(t,D)) ≤| p1(t) | L2χ(D).

Lemma 3.2.4. [19] Assume that 2β
(
µa2

2
+ 1
)
< 1. Then:

Ma ≤
1

1− 2β(µa
2

2
+ 1)

, (3.19)

where
Ma = sup

t∈[0,a]

‖ R(t) ‖ .

Proof. We know that:

T (t)x = R(t)x+

∫ t

0

R(t− s)Q(s)xds, (3.20)

with
Q(s)x = −

∫ s

0

B′(s− τ)

∫ τ

0

T (θ)xdθdτ −B(0)

∫ s

0

T (τ)xdτ.
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It is readily verified that:

Q(s)x = βµ

∫ s

0

e−µ(s−τ)A

∫ τ

0

T (θ)xdθdτ − βA
∫ s

0

T (τ)xdτ

= βµ

∫ s

0

e−µ(s−τ)(T (τ)x− x)dτ − β(T (s)x− x).

Therefore, ‖ Q(s)x ‖≤ 2β(µs+ 1) ‖ x ‖. Now, we see from 3.20 that:

Ma ≤ 1 + 2βMa

(
µa2

2
+ 1

)
.

Hence, Ma ≤ 1

1−2β(µa
2

2
+1)

as asserted.

Theorem 3.2.1. [19] If k0 + ‖p1‖1L2

1−2β(µa
2

2
+1)

< 1, then Eq. 3.17 has a mild solution on

[0, a].

Proof. [19] This follows from Theorem 3.1.7 on the basis of Lemmas 3.2.1, 3.2.2, 3.2.3,
and 3.2.4.

3.3 Results on neutral partial integrodifferential equa-

tions with nonlocal conditions

We establish the solution of the existence of Equations (3.21) and (3.22) with finite
delay [21]

d

dv
D(v, zv) = AD(v, zv) +

∫ v

0

H(v − s)D(s, zs)ds+ φ

(
v, zv,

∫ v

0

h(v, s, zs)ds

)
,

(3.21)

z0 = ϕ+ g(z) = C([−r, 0], F ). (3.22)

where v ∈ I = [0, b], A is a closed linear operator defined on Banach space (F, ‖ . ‖)
with domain D(A). Let [H(v)]v≥0 be the set of all closed linear operators on F with
domain D(H) ⊃ D(A) and C([−r, 0], F ) denote the set of all continuous functions
defined on [−r, 0] into F. Throughout this theory, F will be used as Banach space.
The function D in R+ × C −→ F is defined as follows

D(v, ϕ) = ϕ(0)−M(v, ϕ),
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where the function M is continuous from R+ × C into F and the function f is also
continuous from R+ × C × F into F. Let zv ∈ C([−r, 0], F ),∀v ≥ 0, then the history
function zv ∈ C is defined by

zv(t) = z(v + t) for t ∈ [−r, 0].

3.3.1 Existence results

Here, to establish the result on the existence of 3.21 and 3.22, we need the following
lemmas [21].

Lemma 3.3.1. [21] Let H be a bounded subset of F, if there is (un) in H, then

ψ(H) = ψ(un) for n ≥ 1.

Lemma 3.3.2. [21] Let H : [0, b] −→ F be an equicontinuous map and x0 ∈ [0, b],
then co(H ∪ {x0}) is also equicontinuous.

Theorem 3.3.1. [21] The continuous function F from [0,∞) to L(F ) and for some
compact set K ⊂ F , then

sup
y∈K

‖ F(v)y −F(v0)y ‖→ 0 as v → v0.

The operator V defined on L1([0, b];F ) in C([0, b];F ) satisfies,

(S1) For some d > 0, we have

‖ V f1(v)−V f2(v) ‖F≤ d

∫ v

0

‖ f1(s)−f2(s) ‖F ds, for all f1, f2 ∈ L1([0, b], F ), v ∈ [0, b].

(S2) The compact set K ⊂ F and (fn)n≥1 ⊂ L1([0, b], F ) implies (fn(v))n≥1 ⊂ K for
all v ∈ [0, b] we have

fn −→ f0 ⇒ V fn −→ V f0.

Theorem 3.3.2. [21] Suppose the operator V satisfies (S1) and (S2) and (fn)n≥1 ⊂
L1([0, b], F ) is integrable and bounded,

‖ fn(v) ‖≤ ω(v), ∀v ∈ [0, b], n ≥ 1, for some ω ∈ L1(0, b).
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Assume that for all v ∈ [0, b] and for some q ∈ L1(0, b) such that

ψ

((
fn(v)

)
n≥1

)
≤ q(v).

Then
ψ

((
vfn(v)

)
n≥1

)
≤ 2d

∫ v

0

q(s)ds for all v ∈ [0, b], d ∈ S1.

Definition 3.3.1. [21] The continuous function z : [−r,∞) −→ F is called a mild
solution of Equations 3.21 and 3.22 if the following integral equation is satisfied

z(v) = F(v, zv)

+R1(v)

[
D
(

0, ϕ(0) + g(z)(0)
)]

+

∫ v

0

R1(v − s)φ
(
s, zs,

∫ s

0

h(s, τ, zτ )dτ

)
ds. (3.23)

To establish this result, we need the below hypotheses:

(H1) The mapping φ : [0, b]× C × F satisfied Caratheodary conditions, i.e., φ(v, ., .)

is continuous for all v ∈ I and φ(., x, y) is measurable, for each (x, y) ∈ C × F.

(H2) There is mφ ∈ C([0, b],R+) and the mapping Ωφ from , R+ into R+ then

‖ φ(v, x, y) ‖≤ mφ(v)Ωφ(‖ x ‖C + ‖ y ‖),∀v ∈ I and (x, y) ∈ C × F.

(H3) The mapping h : R+ × R+ × C −→ F is continuous and mh : [0, b] −→ [0,∞)

for some continuous function mh we have

‖ h(v, s, x) ‖≤ mh(s)Ωh(‖ x ‖C),∀x ∈ C, 0 ≤ s ≤ v ≤ b,

where Ωh : R+ −→ R+ is the increasing function.

(H4) There exists the functions p1, p2 ∈ L1([0, b],R+) such that

ψ(φ(v,Ω1,Ω2)) ≤ p1(v)ψ(Ω1)+p2(v)ψ(Ω2) for some bounded subsets Ω1,Ω2 ⊂ F.

(H5) There is a constant k ∈ [0, 1) for any x1, x2 ∈ C we have

‖ F(v, x1)−F(v, x2) ‖F≤ k ‖ x1 − x2 ‖ for v ≥ 0.
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(H6) For k1 > 0 and there is a k1 ∈ L1([0, b];R) then

sup
‖x‖C≤K1

‖ F(v, x) ‖≤ αk1(v) and lim infk1−→∞

∫ b

0

αk1

k1

= σ <∞, ∀v ∈ I.

(H7) σ +Ma lim infv−→∞
Ω(r)

r

∫ b

0

mφ(s)ds < 1.

Now we define the following operators as follows:

(Sz)(v) = R1(v)

[
D
(

0, ϕ(0) + g(z)(0)
)]

+ F(v, zv)

(Kz)(v) =

∫ v

0

R1(v − s)φ
(
s, zs,

∫ s

0

h(s, τ, zτ )dτ

)
ds.

Then z is a mild solution of 3.21 and 3.22 if and only if z is a fixed point of K + S.
Clearly, the linear operator K is continuous on C([0, b], F ) into itself.

Lemma 3.3.3. [21] The linear operator S is a strict contraction.

Proof. Let x, y ∈ C([0, b], F ) and v ∈ [0, b], we have

‖ (Sx)(v)− (Sy)(v) ‖≤‖ F(v, xv)−F(v, yv) ‖≤ k ‖ xv − yv ‖= k ‖ x− y ‖ .

Then
‖ Sx− Sy ‖≤ k ‖ x− y ‖ .

This implies that S is a contraction.

Lemma 3.3.4. [21] There is r > 0, such that z = Sz + Kω, ω ∈ Br implies that
z ∈ Br. Where Br = {z ∈ C([0, b], F ) :‖ z ‖∞≤ r}.

Proof. We prove this by the contradiction method. Suppose r > 0 and z ∈ C([0, b], F )

and ω ∈ Br, then z = Sz +Kω and z /∈ Br. Then for any v ∈ [0, b], we have

‖ (Sz)(v) + (Kω)(v) ‖ =‖ F(v, zv) +R1(v)
[
D
(
0, ϕ(0) + g(z)(0)

)]
‖

+ ‖
∫ v

0

R1(v − s)φ
(
s, zs,

∫ s

0

h(s, τ, zτ )dτ

)
ds ‖

≤‖ F(v, zv) ‖ +Ma ‖ D(0, ϕ(0) + g(z)(0)) ‖

+Ma

∫ b

0

mφ(s)Ω

[
‖ zs ‖ +

∫ s

0

mh(τ)Ωh(‖ zτ ‖)dτ

]
ds
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r <‖ z ‖∞≤Ma ‖ D(0, ϕ(0) + g(z)(0)) ‖ +αr(v) +Ma

∫ b

0

mφ(s)Ω(r)ds.

Dividing r on both sides, we have

1 ≤ Ma

r
‖ D(0, ϕ(0) + g(z)(0)) ‖ +

αr(v)

r
+
Ma

r
Ω(r)

∫ b

0

mφ(s)ds.

This implies that,

1 ≤ σ +Ma lim inf
r−→∞

Ω(r)

r

∫ b

0

mφ(s)ds,

which contradicts (H7), hence z ∈ Br0 .

Lemma 3.3.5. [21] Let M be a bounded subset of C([0, b], F ) with ψ∞(M) > 0, there
is an integer n, such that

ψ∞

(
F (n,0)(K,S,M)

)
< ψ∞(M).

Proof. For M ⊆ C([0, b], F ) is bounded and ψ∞ > 0, we have

F (1,0)(K,S,M)(v) = {z(v), z ∈ F (1,0)(K,S,M)}

⊆ {z(v)− Sz(v), z ∈ F (1,0)(K,S,M)}

+ {Sz(v), z ∈ F (1,0)(K,S,M)}.

By using properties of Hausdorff measure of noncompactness

ψ

(
F (1,0)(K,S,M)(v)

)
≤ ψ(K(M)(v)) + kψ

(
F (1,0)(K,S,M)(v)

)
(3.24)

ψ

(
F (1,0)(K,S,M)(v)

)
≤ 1

1− k
ψ(K(M)(v)).

Let ‖ z ‖= sup−r<v<0 z(v) and
∫ v

0
h(v, τ, zτ )dτ ∈M be integrable. There is a function

C(v) ∈ L1([0, b],R), then bringing Theorem 3.3.2, we have

ψ(K(M)(v)) ≤ ψ(Kz(v)) ≤ ψ

(∫ v

0

R1(v − s)φ
(
s, zs,

∫ s

0

h(s, τ, zτ )dτ

)
ds

)
ψ(K(M)(v)) ≤ 2Ma

∫ v

0

C(s)ψ(z(s))ds ≤ 2Maψ∞(M)

∫ v

0

C(s)ds.

Taking into account the density of C([0, b],R) in L1([0, b],R). For any δ < 1−k
2Ma

, there
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is a function µ ∈ C([0, b],R) with
∫ b

0
| C(s)− µ(s) | ds < δ. Equivalently

ψ(K(M)(v)) ≤ 2Maψ∞(M)

[∫ b

0

| C(s)− µ(s) | ds+

∫ b

0

| µ(s) | ds

]
≤ 2Maψ∞(M)[δ + τv],

where τ = sup0≤s≤b | h(s) |. Hence, ψ(K(M)(v)) ≤ (2Maδ + 2Maτ(v))ψ∞(M).

Using Equation3.27, we have

ψ(K(M)(v)) ≤ (α + βv)ψ∞(M), (3.25)

where α = 2Maδ
1−k and β = 2Maτ

1−k .

Furthermore,

F (2,0)(K,S,M) ⊆
{
Kω(v), ω ∈ co

(
F (1,0)(K,S,M) ∪ {0}

)}
+

{
Sz(v), z ∈ F (2,0)(K,S,M)

}
.

This implies that

ψ

(
F (2,0)(K,S,M) ∪ {0}

)
≤ ψ

(
K(co

(
F (1,0)(K,S,M) ∪ {0}

)
)(v)

)
+ kψ

(
F (2,0)(K,S,M)

)
.

ψ

(
F (2,0)(K,S,M) ∪ {0}

)
≤ 1

1− k
ψ

(
K(co

(
F (1,0)(K,S,M) ∪ {0}

)
)(v)

)
. (3.26)

Using Lemma 3.3.1, there is sup−r<v<0 ω(v),
∫ v

0
h(v, τ, zτ )dτ ∈ F and

ω(v) ⊆ co

(
F (1,0)(K,S,M) ∪ {0}

)
, which implies that

ψ

(
K(co

(
F (1,0)(K,S,M) ∪ {0}

)
)(v)

)
≤ ψ

(∫ v

0

R1(v − s)φ
(
s, ωs,

∫ s

0

h(s, τ, zτ )dτ

))
≤ 2Ma

∫ v

0

C(s)ψ(co

(
F (1,0)(K,S,M) ∪ {0}

)
)(s)

)
ds

≤ 2Ma

∫ v

0

C(s)ψ

(
F (1,0)(K,S,M)(s)

)
ds.

(3.27)
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Using3.25 and 3.27 in 3.26, we have

ψ

(
F (2,0)(K,S,M)(v)

)
≤ 2(Ma)

1− k

∫ v

0

[| C(s)− µ(s) | + | µ(s) |](α + βs)ψ∞(M)ds

≤ 2(Ma)

1− k

[
(α + βv)

∫ v

0

| C(s)− µ(s) | ds+ τ(αv + β
v2

2
)

]
ψ∞(M)

≤
[
α2 + 2αβv +

(βv)2

2

]
ψ∞(M).

Thus
ψ

(
F (2,0)(K,S,M)(v)

)
≤
[
α2 + 2αβv +

(βv)2

2

]
ψ∞(M).

Using induction,

ψ

(
F (n,0)(K,S,M)(v)

)
≤
[
αn + C1

nα
n−1βv + C2

nα
n−2 (βv)2

2!
+ ...+

(βv)n

n!

]
ψ∞(M).

Accordingly,

ψ∞

(
F (n,0)(K,S,M)

)
≤
[
αn + C1

nα
n−1βb+ C2

nα
n−2 (βb)2

2!
+ ...+

(βb)n

n!

]
ψ∞(M).

Since 0 < α < 1 and βb > 0, then from Lemma ?? there is n0 ∈ N, and we have

Sn0 =

[
αn0 + C1

n0
αn0−1βb+ C2

n0
αn0−2 (βb)2

2!
+ ...+

(βb)n0

n0!

]
< 1,

then
ψ∞

(
F (n,0)(K,S,M)

)
< ψ∞(M).

Lemma 3.3.6. [21] Let M be a bounded subset of C([0, b], F ). If K(M) is equicontin-
uous, then F (n,0)(K,S,M) is also equicontinuous for n > 0.

Proof. Let z ∈ F(K,S,M) and v ∈ M , which implies z = Sz +Kw. For v, v1 ∈ [0, b]

such that

‖ z(v)− z(v1) ‖F ≤‖ Sz(v)− Sz(v1) ‖F + ‖ Kw(v)−Kw(v1) ‖F
=‖ (R1(v)−R1(v1))[D(0, ϕ(0) + g(z)(0))] ‖F

+ ‖ F(v, zv)−F(v1, zv1) ‖

+K(|v − v1|+ ‖ z(v)− z(v1) ‖F )+ ‖ Kw(v)−Kw(v1) ‖F .
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Consequently

‖ z(v)− z(v1) ‖

≤ 1

1− k

(
‖ Kw(v) −Kw(v1) ‖F + ‖ (R1(v)−R1(v1))[D(0, ϕ(0) + g(z)(0))] ‖F

)
+

k

1− k
|v − v1|.

Hence, ‖ z(v)− z(v1) ‖F→ 0 as v → v1 and F(K,S,M) is equicontinuous. By Lemma
3.3.2 , F (1,0)(K,S,M) = co(F(K,S,M) ∪ {0}) is equicontinuous. Using induction,
F (n,0)(K,S,M) is equicontinuous ∀n ≥ 1. Now in this position, we give the existence
result for this work.

Theorem 3.3.3. [21] Suppose that (H1) − (H7) hold. Then Equations 3.21 and 3.22

have at least one mild solution for [−r, b].

Proof. For C ⊂ Br is a countable set, then C = F (n0,0)(K,S, C). By Lemma 3.3.5 ,

ψ∞
(
C
)

= 0⇒ K
(
C
)
is compact.

By Lemma 3.3.6 , F (n0,x0)(K,S, C) is equicontinuous and by Lemma ?? ,

ψC(C) = ψ∞(C) = 0,

which implies that C is relatively compact. From Theorem ?? and Lemmas 3.3.3 and
3.3.4 , we have S + K, which have a fixed point in Br. Hence systems 3.21 and 3.22
have mild solutions for [−r, b].

3.3.2 Example

[21] Consider the following neutral partial integrodifferential equation of the form

∂

∂t
[p(s, z(y, t− r))] =

∂

∂y
[p(s, z(y, t− r))] +

∫ t

0

e−(s−t)p(s, z(y, s− r))ds

+H
(
t, z(y, t− r),

∫ t

0

k(t, s, w(x, y − r))ds
)

for y ∈ [0, π], t ∈ I = [0, b], z(0, t) = z(π, t) = 0, t ≥ 0,

z0(y) = ϕ(t, y) +

∫ b

0

m(s) log(1 + |z(s)(y)|)ds; t ∈ [−r, 0], y ∈ [0, π],

(3.28)
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where ϕ is continuous.
Let h(v, s, zs) = k(t, s, w(x, y − r)), 0 ≤ y ≤ π and D(t, zt) = p(s, z(y, t − r)). Take
F = L2[0, π] and define A : F → F as Aw = w′ with domain

D(A) = {w ∈ F : W is absolutely continuous w′ ∈ F,w(y) = w(0) = 0}.

It is clear that A is an infinitesimal generator of semigroup T(t) defined by T (t)w(s) =

w(t + s), for each w ∈ F . Thus, [T (t)]t≥0 is not compact in F and β(T (t)D) ≤ β(D)

where β is the Hausdorff measure of noncompactness and supt∈I ‖ T (t) ‖≤ 1.
Next, to assume the following, g : C([0, b];F ) → F is a continuous function defined
by g(z)(y) =

∫ b
0
m(s) log(1 + z(s)(y))ds, z ∈ C([0, b];F ). Moreover, for any v ≥ 0 and

y ∈ F , we have

‖ H(v)(y) ‖F≤ b(t) ‖ y ‖ and ‖ d

dt
H(v)y ‖F≤ b(t) ‖ y ‖ .

We could see that the above system admits a resolvent operator. Further, the functions
H and k satisfy all our assumptions. Finally, the above said partial differential system
3.28 has a mild solution of [−r, b].



Conclusion

In this work, we present the Mönch-Krasnoselski fixed point theorem in Banach spaces
and some applications of this theorem to prove the existence of solutions to nonlinear
problems. We also give examples to illustrate the obtained results. On the other
hand, we use the technique of noncompactness measures which is an important tool
in nonlinear analysis especially in theory of condensing operators. We can extended
those results for another nonlinear problems in more general locally convex spaces.
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