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INTRODUCTION

The purpose of this work is to give some results from two internationally research articles on
a class of integral inequalities, [I]-[8]. All integral inequalities are considered in the Lebesgue
space L,, where p # 1. The techniques employed comprise integral calculus properties, the

Fubini theorem, Hélder’s classical inequalities, and integration by parts.

We used the derivative formulas of a function defined by an integral since the variable lies
at the integral’s boundary and is used as the second variable in the integrated function. The

articles employ the Hardy, Copson, and Steklov operators.

The memory consists of a preliminary, two chapters and a bibliography.

The preliminary part presents certain definitions and properties necessary for this work

concerning:

1. Fubini’s theorem: a definition and an observation are given in the case of a non-constant

bounded integral.

2. Function defined by an integral: we present the three forms of derivatives for a func-

tion defined by an integral, as well as the general case (Leibniz rule).

3. Weighted function: we define a weight function and provide several examples.
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4. The classical Holder inequality for p < 0,0 <p <1 and p > 1.

5. Some several operators known as:

(a) Hardy operator, Hardy dual operator and weighted Hardy operator.

(b) Copson operator, Copson dual operator and weighted Copson operator.

(c) Steklov operator, Pachpatte operator and weighted Steklov operator.

(d) General Hardy-Steklov operator.

(e) Hardy-Steklov operator T and two Hardy-Steklov type operators.

The first chapter contains an academic paper on the generalization of integral inequal-
ities utilizing the Hardy-Steklov and Copson-Steklov operators, with proof given two results

associated with two parameters of summation and applications related to these inequalities.

In the second chapter, we put our interest in examining some weighted inequalities of
the type Hardy-Steklov and Copson-Steklov which depend on integral operators of the Hardy-
Steklov and Copson-Steklov, then we give as an application the particular cases depending on

the boundary functions r and h.
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Chapter 1

Preliminary

1.1 Definitions and properties on L, spaces

Definition 1.1. (The L, spaces) Let Q C R, a measurable set with 0 < p < oo and let
f:Q—R. We say that f € L,(2) if

1. f is measurable on ).

2 Wl = ([ 150 ) < oo

Definition 1.2. Let e C Q) such that mes(e) =0, f : Q — R measurable, the essential sup and

the essential inf are defined as a sequence.

e esssup f(x) =inf sup f(x).
xe) z€Q\e

inf = inf .
o ess;relﬂf(x) supxé%\ef(x)

Definition 1.3. Let Q) C R, measurable and let f : Q2 — R,

if [ is measurable and

Q| > 0. We say that f € Loo(2)

”f”LOO(Q) = €55Sup ’f(x)| < 0. (1.1)
e

1.1.1 Fubini’s Theorem

Theorem 1.1. Let f(z,y) be a measurable function on Q , and Q = (a,b) X (¢,d) C R x R,
where a < b and ¢ < d hence f(x,y) is integrable on (c,d) for partially all x € (a,b) and f(x,y)



1.1 Definitions and properties on L, spaces Preliminary

is integrable on (a,b) for ally € (c,d):

/Q [(@,y)dady = / b ( / df(x,wdy) da
:/Cd </abf(x,y)dx>dy.

Remark 1.1. We have the partial case where the integral has a non-constant boundary when

using the fubini theorem

/ /q)(x,y)dydx:/ / O(x,y)dzr dy.
0 0 0 Y

1.1.2 Integration by parts

Definition 1.4. Let I C R, p, v be two functions of C'(I,R) class and a,b € I, then

—/ W (x)v(z) de. (1.2)

1.1.3 Weighted function

Definition 1.5. A function is considered a weight function on an interval I C R if and only if

it is a positive, measurable function on I.

Example 1.1. .

e [n the field of integral inequality, we generally put w(x) =1 and I = (0,00),

1.1.4 Function defined by an integral

h(x)
e Function x — F(x) = f(t)dt
r(z)
Definition 1.6. Let f be an integrable function on I C R and r,h be two functions of
C'(I,R) class. Let
h(z)
F(r) = ft)dt,
r(z)

then the derivative function of F(x) exists and is given by

F'(x) = W' (x) f(h(x)) = r'(2) f(r(2))-
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We have the following examples:

Example 1.2. Let f be an integrable function on

I ={a,b] CR.

1. The function F is defined by the integral / ft)dt .

F: I —R
9:»—>F(;E):/ f(t)dt.

(a)  The function F is continuous on I and F(a) =0
(b)  F is derivable in all z € I and F'(z) = f(x)

b
2. The function F is defined with the mtegml/ f(t)dt .

F: I —
R

b
x— F(x) = / f(t)dt.

(a)  The function F is continuous on I and F(b) =0
(b)  F is derivable in all x € I and F'(z) = — f(z)

b
e Function r — &(x) = / flz, t)dt.

Theorem 1.2. Let f be an application of I X [a,b] where I is an interval of R and for

0 0
every x € I , the partial application —— : t +— a—f(x,t) is integrable on [a,b] . If the
T

ox

function

f: Ix[ab] — R,
(x,t) — f(xz,t).

0
is continuous on I X [a,b] and the partial derivative function 2 as well continues on

Oz
I x [a,b], then the function

®: I —R
b
x »—>/ f(z,t)dt.
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is derivable on I and its derivative ® verifying

b
d'(x) = / g—f(x, t)dt, forall € I,
. Or

this later relationship can also be written as
b b
di </ f(%t)dt> :/ g(x,t)dt,fomllx el
x\ J, . Ox

e Leibniz Rule
For r, h are in C'(I,R) and the function F' is defined as

h(zx)
F(z) = | f(z,t)dt. (1.3)

r(x

We have the derivative function of F' exists and it is given by

F'(z) =N (z)f(z,h(x)) —r'(x) f(x,r(z)) + /( e (x,t)dt. (1.4)

1.2 Holder inequality

Some properties of conjugates
Definition 1.7. Let p,q # 0 we say p, q are two conjugates if
1 1
_|_
p q

we conclude that

I p—1 I qg—-1
q p D q
g:q_]‘ﬁ ]_j:p_l;
p q
p.-q=q+Dp.

Lemma 1.1. Let Q@ C R be a measurable set, f € L,(Q2,R) and g € L,(2,R)

9



1.3 Some several known operators. Preliminary

1 1
with — + — =1, then
P q
1. Forp > 1 we get

/Q | f@)g() | de < f ool 9 o

([ 15 M);(/glg(@ ic)

2. For 0 <p <1 we get

/Q | f@)g(@) [ de = f sl 9 o

- ([ 17 |pdx)‘1°(/9|g<x> i)

3. For p < 0 we get

[ Vi@ 1ar= ([ 156 |pda:)’1’(/ﬁ|g<x> def.

1.3 Some several known operators.

1.3.1 Hardy operators

The well-known Hardy operator is defined for all non-negative measurable func-
tions f on (0, 00).

1. Hardy operator:

H(P) = [ ot

2. Hardy dual operator:
. 1 [
A(f@) == [ Ft)dr

10



1.3 Some several known operators.

Preliminary

3. Weighted Hardy operator:

1 xr
7o | roua

where w is a weighted function and

H(f)(x) =

4. Hardy type operator:
FiNte) = [ s

1.3.2 Copson operators

Let f be a non-negative measurable function on (0, 00).

et = [ Ha

1. Copson operator:

2. Copson dual operator:
~ Tt
e = [ Ll
0
3. Weighted Copson operator:

Culpe) = [ %dﬂ

1.3.3 Steklov operators

1. Steklov operator

The well-known Steklov operator is defined by
h(z)
st = [ s

11



1.3 Some several known operators. Preliminary

where f is a non-negative measurable function on (0, c0) and the boundary

functions r, h satisfying the following conditions :

r, h are non-negative, differentiable, increasing functions on [0, oo].
For all x € (0,00) : 0 < r(z) < h(z) < 0. (1.5)

r(0) = h(0) = 0 and r(oc0) = h(c0) = 0.
2. Pachpatte operator :
PUNe) = [ st
3. Weighted Steklov operator

Su(f) () = / o J@ua

1.3.4 General Hardy-Steklov operator

The general Hardy-Steklov operator is defined by

h(zx)
Gus(f)(@) = 9(x) | i

where ¢ is a positive measurable function on (0,00) and f is a non-negative
measurable function on (0,00) with the boundary functions r, h satisfying the

following conditions :

1. r, h are non-negative, differentiable and increasing functions on [0, co].
2. For all z € (0,00) : 0 < r(z) < h(z) < 0.

3. 7(0) = h(0) = 0 and r(c0) = h(oc0) = 0.

12



1.3 Some several known operators. Preliminary

1.3.5 Hardy-Steklov operators
The Hardy-Steklov operator is defined by

1. Hardy-Steklov operator:

1 h(:z:)
() = [ s
L Jr(x)
where the functions f, r and h satisfied the three above conditions of Steklov

operator ([1.5]).

2. Hardy-Steklov type operator:
The Hardy-Steklov type operators are defined by

h(x)
Ty(f)(x) = - / F(t)dt,

T

with the boundary function h satisfying the following conditions:

(a) h is a non-negative, differentiable and increasing function on [0, oo].

(b) For all z € (0,00) : 0 < h(z) < 00, h(0) =0 and h(oco) = 0.

with the boundary function r satisfying the following conditions:

(a) 7 is a non-negative, differentiable and increasing function on (0, co.
(b) For all x € (0,00) : 0 < r(z) < 00, 7(0) =0 and r(c0) = o0.

Hardy pachpatte operator

13



1.3 Some several known operators. Preliminary

Crapten ||

Hardy-Steklov

and Copson-Steklov
Inequalities

14



Chapter 2

Hardy-Steklov and Copson-Steklov

inequalities

2.1 Introduction and Preliminary

In this section Hardy-Steklov and Copson-Steklov integral inequalities are pre-

sented. Hardy-Steklov operator is defined by
FH) = [ e, 1)

and Copson-Steklov operator is defined by

) p0)()
e = [ e

where v, ¢ are two weighted functions and for x € (0, o)

dt, (2.2)

O(x) = /0 C o)t

Now we present the following lemma which is a tool to establish the principal

results:

Lemma 2.1. Letm € R—1,1 < p < g < o0 and f,v be non-negative measurable

functions on (a,b), then

15



2.1 Introduction and Preliminary  Hardy-Steklov and Copson-Steklov inequalities

p
q

/ab ‘;}ﬂgg(ci>fp(x)d:cg (/abv(x)dx> 15(/: V?éjil)ﬁ(x)dm) :

where V(z) = /09? v(t)dt

Proof. For 1 < p < ¢, thenl

IN

puting r = g, we get

-
it ® € L.(a,b) and ¥ € L, (a,b), we obtain

/abtb(t)\ll(t)dtg </:qﬂ’(t)dt> (/abCD’”(t)dt)i.

p
v

1
7

P =

3=

Now by choosing ¥ = v we get

/a V”ﬂ% )t = / vb(t)(vi(t)‘ffn(g))dt

16
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2.2 Main results Hardy-Steklov and Copson-Steklov inequalities

Applying Holder's inequality ([2.4), we get

[ i <L( ) (/b@f )

I
/\
\\H
&.
~~
v
/‘\
< -
3| =
==
N—
<
Q.
~
~__—
S

Remark 2.1. Let m = p — a and a = 0, then for a # p — 1 we deduce that :

b ?)() ) b 1-¢ b fq() a
[ i )f<>dx<< /OW) ( [ L0 p(t)dt). 25)

2.2 Main results

We present the first result involving the Copson-Steklov operator defined as follows

= [ el

Theorem 2.1. Let f, ¢ be non-negative measurable functions on (0, 00) ,

1 <p<gq< oo andr,h satisfied the conditions (1.5). If a <p—1, then

17



2.2 Main results Hardy-Steklov and Copson-Steklov inequalities

b o@) N\
/0 (I)p—a(x><05f> (ZL’)dIL‘ S (pozl) (/0 ¢(x)d$>

b (I) . q
( =ikl dx> ,

(2.6)

where

o [, R,
J(w) = M{ By )~ iy S )>}.

(2(h(@))) = 1 (@)@ (h(2)) = K (x)6(h(x)).

and

18



2.2 Main results Hardy-Steklov and Copson-Steklov inequalities

f()o(t)
(1)

By putting g(t) = and applying (|1.3]), we obtain :

(Caf) (@) = H@g(hz)) = (@)g(r(2))

. h’<x>¢<h<x>>% P @)o(r(x))

Integrating by parts in the left-hand side of inequality ([2.6)),
for p — a #£ 1 we get:

( ¢(37) ( —1
u'(x) = ra(z) —

| w(z) = (Cuf)"(x)

19



2.2 Main results Hardy-Steklov and Copson-Steklov inequalities

and

" g(x) DV — -1 »
0 (I)p—a(l,) (Csf) ( )d - [(p& 1)(1379_0‘_1(5[}) (Csf) ( )]

b
ey, w O @G

(p—a—1)J

— _(Csf)p(b) + (Csf)p(())
(p—a—1)Pr—"1(h) (p—a—1)Pr21(0)

—a—1/¢ @pa )x'

(Csf)(b) >0, (Csf)(o) =0, (I)(b) > 0 and (I)(O) =0,

We have

since p > o + 1 we deduce

_(Csf)p(b> (Csf)p(o)
b—a—noreip) <M G- Derai)

we conclude

() oo (@),
G20y < L [(HDIECITE,,

1 1
For — 4+ — =1, applying Holder inequality yields
p P

20



2.2 Main results Hardy-Steklov and Copson-Steklov inequalities

" ()
o Pr—o(z)

2 [(AIG I,
prEre [/ (qf(f()x)) | <¢f(f()x>> ;J(x)(Csf)pl(x)div]
. (/ob ((%) ;(Csf)f’(x)y’dw) :
(£ o))
=T ( 20 (Csf)p(fc)dx> : ( A ( o (e P @) !

then

(Csf)P(x)dx

1

boo(x) pxxl—plf p b () px,,
( 0 (I)poz(x)(Csf)()d) S(p—Oé—l)(/o Pr— a()|']( )‘ d) ,

it’s the same as

" b p % p ’ o(x) 2) P dx %
( 0 (I)p—a(x)(Csf) (x)dZU) < (p—Oé—l)/O <—(I)PO‘(;L’> ‘J( )| d ) ,

for p > 1, we deduce

"_dl) Px)dx P o ¢(r) ) 1P da
0 (I)p—a(x)(osf) (l’)d < ((pcvl)) /O (I)p_a(x) ‘J( )| dx. (27)

21




2.2 Main results

Hardy-Steklov and Copson-Steklov inequalities
From the inequality ([2.5)), we have
b _5 b
J(x
) oy < /¢ £t /¢(t)
. PP (x) 0

q
dt | . (2.8)
Applying the inequalities (2.7) and (2.8), we result that

" ¢(x) p
0 q)p—a(x)(csf) (sz:)dx S( —&—1) (/ ¢ )

QI3

We obtain the desired inequality.

]
We present now the second Theorem via the Steklov operator defined by
h(x)
- [ o
r(x)
Theorem 2.2. Let f,v be non-negative measurable functions on (0, 00) ,
1 <p<q<ooandr, h satisfied the conditions (1.5). If a < p—1, then
b P/ 1=
v(z) p /
———(F,fP(x)dr < | —— v(z)dz
| s (maye) <pa1> ( o) )
(2.9)

S

where

29



2.2 Main results Hardy-Steklov and Copson-Steklov inequalities

Proof. We already know that:

(Vh() = W@V (b)) = W (@)o(h(z),

and

Integrating by parts in the left-hand side of (2.9)), for p — o # 1, we get

( / o U(x) ( o —1
= vy e )

w(x) = (st)p(x)v w/@j) - p(st)p_l(x)(st)/(:C)

\ \

23



2.2 Main results Hardy-Steklov and Copson-Steklov inequalities

Hence

) P(e\dr — 1 P(x
/O Vp—a(x) (FSf) ( )d - [(poz 1)Vp—a—1(x)(F8f) ( )]

b

0

- /o (p—a-— 1_)1/73—04—1(I)p(st)p_l(x)(st)'(x)d:c

(p —a—1DVrei(z)

_ [ _(st)p(x) ]b

p b 1 . .
+(p—a—1)/0 WT‘l(x)(FSf) (2)(F,f) (z)d

_ _(st)p(b) + (st)p(o)
(p—a—=1)Vr=e=i(b) = (p—a—1)VP=2=(0)

_|_

p " (@)K (2)(Fy )7 (@)
(p—a—1) /0 Vre(x) o

We have
(F5f)(b) >0, (Fsf)(0) =0, V(b) > 0 and V(0) = 0,

given that p > a + 1, we deduce

_(st)p<b) (st)p<0)
b —a—yvrai) <M G e - pyea)

we obtain

() b @K@ EN )
| (£:) (x)d“@—a—l)/o Vo)

24



2.2 Main results Hardy-Steklov and Copson-Steklov inequalities

1 1
By using Holder inequality for — 4+ — =1, we deduce
p P

/ "D e
o VPo(z)”

1 1

B D b U(:L‘) ) v b U(I) ) P
= a ) (/O Vp—a(x)(FSf) (x)dx) (/0 (Vpa(x) | K(x) | dx) )

then

1 1

'@ e de) P @) )
(/0 Vp—a(x>(st) ( )d> <(pa1)</0 Vp_a(l’) |K( )‘ d) ,

as a result

R ORI L S o O Y
( | s ) <x>dx> <—— (Vpa(x) | K(x)| d) ,

for p > 1, we deduce

" @) o R W A C) I
/Ovp_a(x)(st) (x)de < <(pa1>) /Ow_a(x) | K(x) [ dv. (2.10)

25



2.2 Main results Hardy-Steklov and Copson-Steklov inequalities

From the inequality ([2.5)), we have

o), . K@
/avpa(x)K(sc)daK(/o (t)dt> (/0 (t)vqapq(t)dt>. (2.11)

Applying inequalities (2.8]) and (2.11]), it follows

b U(x) ) D p b 1-4
/0 —VP—O‘(:(:)(FSf) (x)dzx < (p——a— 1) (/0 v(x)da:)
" () g
X (/0 WTQ(SU) ‘ K(SB) ’ dl’) .

We obtain the desired inequality. ]

3

2.2.1 particular cases

Some particular cases are established involving the choice of the functions h and

T.

elet0<f<A<oo,p>1.

By taking h(z) = Az and r(z) = S in Theorem [2.6] and Theorem [2.2, we
get the following corollary.

Corollary 2.1. Let f,v, ¢ be non-negative measurable functions on (0.00),

0<fB<A<oo,p>1and

AT
(Fs1f)(x) = ; fyvly)dy, >0
M F(y)e(y) N

206



2.2 Main results Hardy-Steklov and Copson-Steklov inequalities

If a <p—1, then

bﬂ Plx)dx P p bva: x E
[ A (map s < <p_a_1> (/ <>d>

b U(QZ) , q
X (/0 Vq—%q(x) | Ki(z) | dx) :

and

" o) AN N
/0 (I)p—oz(x)(c&lf) (l‘)dl’f (p—oz—l) ( . ¢( )d )

b (l’) . %
X( 0 @q_%q(x) | Ji(z) | d:l?) .

b () , p\ [P el ,
(Cs,lf) (:L‘)dil? < ( ) 0 @p—a(x)‘Jl<x)| dil?,

V() o(Ae) f(Ax) = Bo(Ba) f(5)]
v(x)

ho) =50 { o) - ﬁﬂfjmw}.

27



2.2 Main results Hardy-Steklov and Copson-Steklov inequalities

1
Remark 2.1. For A\=1 and g = 5 we get a Pachpatte-type inequality.

' o) , p Y
[, Ty Fas et < <<p —a- 1))

(2.12)
<[ o8 (v - 5o (30) £ (32)) @
and
/Ob q);b(f() )( w1 f)P(x)dr < ((p - Z _ 1))19
(2.13)
[ (e -yt (3)) o
Where

(Cspf)(m /f y)oly dy, x> 0.

e Setting r(x) = 0 in Theorem and Theorem [2.2] we obtain the following

results.

Corollary 2.2. Let f,v,¢ be non-negative measurable functions on (0,00)

,p>1and
(Foaf)(z / fol)dy, x>0,

(Conf)(a) = / Mdy, >0,
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2.2 Main results Hardy-Steklov and Copson-Steklov inequalities

where
{0 < h(z) < oo forall z € (0,00),

h(0) =0 and h(co) = oc.
Ifa<p—1, then

b U([E) ) D p b 1=
/0 —VP*O‘(:U) (Fsof)P(z)dx < (p—a— 1) (/0 v(x)dx)

b ”U(ZIL') . %

X (/0 vq—%q(x) | Ko(z) | dCL’) )

and

" o(a) » p e Ve -
A @p—a(x)(CS,Qf) (LI])d.ﬂjS (pa1> ( . ¢( )d )

b (ZE) . %
X( 0 DY %q(x) | Jo(z) | dx) .

If p = q, we have

b v(x) » D b v(x) VP
/0 Vp_a(x)(FS’Qf) (i)daj’g ((pal)) /0 Vp_a(x)‘K2( )‘ dz,

and
b (x) P(2)da P p b¢(az) P
0 ‘I)po‘(ﬂf)(cs’Qf) (z)dr < ((p—a—l)) /0 (I)pa(x)’JQ( )[Pda.
Where /
Ky(x) = V@) [V(hv(xx)))} f(h(z))

29



2.2 Main results Hardy-Steklov and Copson-Steklov inequalities

Remark 2.2. If we take h(x) = x in comllary we obtain the following
weighted Hardy-type inequality and Copson-type inequality.

bow(x) P( o\ p L v(z) ..
/0 vpa(x)(FS,zf) ()dz < <(p_a_1)) /O Va(x)f( )z, (2.14)

b -
X)) < (L)) 2 prayde. (219

o Pre(z) (p—a-—1 dr-e(z)
Where
/ fly)v(y)dy, x>0,

fcbdy,
d(y)

x > 0.
e By setting h(x) = oo and reasoning a manner analogous to the proof of
Theorem [2.6] and Theorem 2.2 we get the following corollary.

Corollary 2.3. Let f,v, ¢ be non-negative measurable functions on (0, 00),

1<p<qg< oo and

(Fosf)( / Fdy, x>0,

fcbdy’
d(y)

x>0,

s3f

where
0<r(z)<oco foral z€(0,00),

r(0) =0 and r(oc0) = oo.
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2.2 Main results Hardy-Steklov and Copson-Steklov inequalities

Ifa>p—1, then

" u(a) ) p Y
/0 Vr—a(g) (Feaf V(@)de < ((a—p+ 1))

b
q

< /O bv(:c)dx)1§< /0 ’ quga;)(x)|[(3(x)|pdx> ,

and

" g(x) ) p Y
) Bma(g) Sl S <<ap+1>>

p
q

([ o) [ =2 e )
0 o % ri(x)

If p=gq, we get

bﬂ P(x)dx b E v(z) ) |Pdx
/0 Vp—a(l,)(FS,3f) ( )d < ((Oé—p+1)) /O Vp_a(x)‘Kg( )‘ d ,

and

b P
20 (6, pyp(a)dn s( v ) )| ()

o Pro(z) (a—p+1) , oral@)
Where /
Kafr) =~ [V@"U((xx)))] f(r()
x___¢@H¢W@)T "
J3(z) = 5(2) D(r(2)) f(r(z)).

Remark 2.3. The following particular case of corollary [2.5 can be derived
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2.2 Main results Hardy-Steklov and Copson-Steklov inequalities

by taking r(x) = x and q = p.

bou(x) » o L o(z) ..
/0 Vp_a(x)(Fs,sf) (x)dx < (ap+1> /0 V—a(x)f( Ydz, (2.16)

and

" ¢(x) P( ) da Lpbﬂpxx
; ¢m_a(x)(cggf)< )dz < ( > O @m_a(x)f (z)dz, (2.17)

a—p+1

where

(Fs3f)(z / f(y)v(y)dy, x>0,

(Csaf)(x / 1 dy, x> 0.

Remark 2.4. We note that if v(z) = 1 in inequality and inequality
, we get the following Hardy weighted inequalities.

/ObxaHp(aj)dxg (#) /Obxafp(x)dx

and b ,
/0 (e < (#) /0 2" f7(x)dz
where o
= /O f(t)dt
and .
= /x f(t)dt
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Chapten |11

Some estimates for

Hardy-steklov type
operators
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Chapter 3

Some estimates for Hardy-Steklov type

operators

3.1 Introduction and Preliminary

It is generally known that the Hardy inequality is satisfied for monotone functions
but not for arbitrary non-negative lebesgue measurable functions for L, spaces
with 0 < p < 1 (see in [6]). A weaker condition than monotonicity was used
in 2007 to derive the Hardy type inequality ([19]). Particularly, the following

assumptions were validated.

The well-known Hardy-Steklov operator is defined as

h(z)
= [ s

with the boundary functions r, h satisfying the following conditions:
1. r, h are non-negative, differentiable and increasing functions on [0, co].
2. For all z € (0,00) : 0 < r(z) < h(z) < .
3. 7(0) = h(0) = 0 and r(oc0) = h(oc0) = 0.
where f is a non-negative lebesgue measurable function on (0, o).
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3.2 Main results Some estimates for Hardy-Steklov type operators

The classical Hardy operator and its dual are defined as follows:

::iléﬂw@,zﬂﬂ@uzélffwwy

The objective of this section is to give more details for some results involving

the bellow Hardy-Steklov type operators 17, T5 and T3 defined as follows:

h(x)
:él f(y)dy, (3.1)

with the boundary function h satisfying the following conditions:
1. h is a non-negative, differentiable and increasing function on [0, oc].
2. Forall z € (0,00) : 0 < h(z) < 00, h(0) =0 and h(oo) = 0.
=1 | swiy 32
with the boundary function r satisfying the following conditions:

1. r is a non-negative, differentiable and increasing function on [0, oo].

2. Forall x € (0,00) : 0 < r(z) < 00, r(0) =0 and r(c0) = 0.

| sy 33
T Jr(a)
with the boundary functions r, h satisfying the following conditions:

1. r, h are non-negative, differentiable and increasing functions on (0, 00).

2. For all z € (0,00) : 0 < r(z) < h(z) < 0.

3.2 Main results

Throughout the section, we assume that the function f is a non-negative Lebesgue

measurable function on (0, c0).
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3.2 Main results Some estimates for Hardy-Steklov type operators

Lemma 3.1. Let 0 <p <1, ¢ > 0 and f be a non-negative measurable function

on (0,00) such that for all x > 0,

f(z) < %(/Ox fp(y)ypldyy.

(/Oxf(y)dyy < /Ox fPy)y~ dy,

g = Czlv(l—p).

Then
where

Proof. From the hypotheses (3.4)), we have
. 1
“ i p—1 "
flz) < ;(/ Sy dy) :
0

xf(x) < Cl</0x fp(y)yp‘ldy> ;,

then

for 0 < p <1, we get

ey < [ ).

Note that
fl2) = (f (@) fPe)ar ™,
using the inequality (3.6]), we result

(o))" < (C’f)’l’_l</0x fp(y)ypldyy1 = Cip(/ox 'y

36
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3.2 Main results Some estimates for Hardy-Steklov type operators

multiplying by f?(z)z?!, we get

11
fP(x)a,

(2 f @) Pyt < C}p< /0 x fp(y)ypldy)

applying (3.7), we get

flz) < (ﬁ”( /O x fp(y)ypldy) '

for 0 <t <y < x, we deduce

-1
fola)a?

y 51
fy) < ( / fp(t)tp‘ldt> Py,

integrating the above inequality over (0, x) over y, we get

’ I=p ‘ ! P(4+)4P—1 5 P p—1
[ way=c | ( [ o dt) Py dy.

Y x
/ Fryrtdt < / fr)rtat,
0 0

we have

since — — 1 > 0, we obtain

p
</Oy fp(t)tpldt>;1 < (/Ox fp(t)tpldt>;1,
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3.2 Main results Some estimates for Hardy-Steklov type operators

adding (3.8) and (3.9), we result

) 1-p ) g D p—1 %_1 D p—1
[ iway < | ( [ o dt) PPy dy.
x x %*1
< [ ( / fp(t)tpldt> PPy dy.
_ l-p P(+)4P—1 ’ P p—1
& (/O fr(t)t dt) /Of(y)y dy
x %—1 x
=C}_p( /0 fp(y)yp‘ldy) /0 FP(y)y?dy

=" ( /O f”(y)ypldy> ' :

for 0 < p < 1, we have the desired inequality

( I f(y)dy)p <o [y

[l
1 1 1 . :
Theorem 3.1. Let 0 <p <1, a<1——and —+ — = 1. If f is non-negative
p D
measurable function on (0,00) and satisfies
“ : P p—1 ’
flz) < — fPly)y"dy |
L\ Jo
then
[T @) 000 < calla? (T @) f@) 00 (3:10)
Where

cy = cifp((l —a)p — 1)_%,
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3.2 Main results Some estimates for Hardy-Steklov type operators

and
h(x)
nNe =1 [ s

with the boundary function h satisfying the following conditions:
1. h is a non-negative, differentiable and increasing function on [0, co].
2. For all z € (0,00) : 0 < h(x) < oo, h(0) =0 and h(co) = oco.

Proof. We can rewrite

Tl = ([ (] " o) @) g

Given that h is a non-negative, differentiable and increasing function on [0, oo,
we conclude that h be a bijective mapping. Put ¢t = h(z), then z = h~'(t), where

h~! is the reciprocal function of h.

Applying inequality (3.4)), we get

p »

[T () (@) 2, 000) = ( /0 OO‘(hl(t))a1 /0 tf(y)dy (hl(t))’dt>

([ ey ([ swm) oo ora)
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3.2 Main results Some estimates for Hardy-Steklov type operators

applying (3.5)), we get

2Ty (f) ()| 2, (0.00)

( /Ooo<h‘1<t>>p<“‘” ( /0 | fp<y)y<p—1>dy) (h_l(t))’dt> %
— ( /O N [(h—l(t))pm—n( /0 t fp(y)y@—l)dy) (! (t>>,] dt);

—d( [T [ e ere v o)

IA

Applying Fubini’s Theorem, we get

2T (f) ()| £, 0.00)

=

<o ( | / ) fp<y>y<p1><h1<t>>p<a”<h1<t>>'dtdy)

D=

~d( [ P / S oy o))
_ u;i(f)

(h—l(t))p(a—l)—i—l] 00
pla—1)+1

, we get

Since aw < 1 — 1, h™!(c0) = 0o and /u'(s)uﬁ(s)ds
p

/y Ty e Var = [

Y

(- )y
pla—1)+1

_ (h—l(y))p(a—1)+1
p(l—a)—1"
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3.2 Main results Some estimates for Hardy-Steklov type operators

consequently,

2T (f)(@)]| £, 0.00)

1 o0 -1 pla—1)+1 »
<C§< O fp(y)yp‘l(};(l(y_))&)_l dy)>

(&0 »
_ ((1 _1 % [/ fp p 1 ( ))(al)p+1dy]

— (1 - a)p— )T [ I (f<y>y1%<h1<y>><a”+é)pdy] %

1

= "= a)p = )7 || F)y' () 1z, 0.00)

1 1
Since — =1 — —, we obtain the desired inequality:

p p

12T (f) (@) |2, 0,00) < AP (1 —a)p—1)7 ||z

By taking h(x) = Az where A > 0 in the above Theorem, we get h™'(x) =
then

z
)\7

=1
Consequently, we obtain the following corollary involving the Hardy-Steklov op-

erator.
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3.2 Main results Some estimates for Hardy-Steklov type operators

Corollary 3.1. Let f satisfy the assumptions of the Theorem [3.1] and

1 AL

S1(f) (z) = ), f(y)dy for x>0,

then the inequality

1\ 7
a5 (1@ < (5) calle @l 00

Remark 3.1. Taking A = 1 in the above corollary, we get the following inequality
via Hardy operator H.

[z H (f) (@)]| < cs |z (@)1, (0,00) -
where e
1@ =1 [ sy

Lemma 3.2. Let 0 < p < 1. Suppose that a non-negative function f satisfies

the condition: there is a positive constant c4 such that for all z > 0,

CEEa fp<y>yp1dy)’l’. .11

(/:O f(y)dy)p < e /:O FP(y)ydy, (3.12)

s = ci(l—p).

Proof. From the hypotheses (3.11]), we have

flz) < %(/:O fp(y)ypldy) ]19,

Then

where

then L
of(a) < ( / fp<y>yp-1dy)p,
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3.2 Main results Some estimates for Hardy-Steklov type operators

for 0 <p < 1, we get

P fP(a) < cii( A fp<y>yp1dy). (3.13)
Note that
f(x) = (f(@)a?)r ! fPa)a (3.14)

using the inequality (3.13)), we result

(2" fP(2)) ! SCi’”( /x ) fp(y)ypldyy ,

multiplying by f?(z)z?!, we get

11
fP ()Pt

@) Pt < ([ rwwea)

By applying (3.14)), we get

fl@) <o ( L ) fp(y)ypldy> p

for 0 <t <z <y < oo, we deduce

~1

/ fP(y)y?~dy < /t fP(y)yP ' dy,

then

s < ([T raway)

-1
()2,
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3.2 Main results Some estimates for Hardy-Steklov type operators

integrating the above inequality over x € (¢,00) , we get

o) 0 00 %—1
[ ot < [T rwra) e
00 %—1 00
~( [ rweta) [T p@et
00 %—1 00
:c}l_p(/t fp(:l;)xp_ldx> /tfp(x)xp_ldy
= ([T pweia)

for 0 < p < 1, we have the desired inequality
oo p (0]
(/ f(x)da:) < 05/ fP(z)2P da.
t t

1 1 1
Theorem 3.2. Let 0 <p <1, a>1——and —+ — = 1. If f is non-negative
p

[]

measurable function on (0,00) and satisfies

/(@) < ;( / : fp(y)ypldy);,

then
| To(F) @)y 000) < €5 ll27 (77 @)™V F@) 000 (315)
Where
ce = Ci_p((l —a)p — 1)_%,
and

= [ s
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3.2 Main results Some estimates for Hardy-Steklov type operators

with the boundary function r satisfying the following conditions:
1. r is a non-negative, differentiable and increasing function on (0, oo].
2. For all z € (0,00) : 0 < r(x) < oo, r(0) =0 and r(co) = oco.

Proof. We can rewrite

@l = ([ (=0 [ f(y)dy)pdxy.

Given that r is a non-negative, differentiable and increasing function on [0, oo],
we conclude that 7 be a bijective mapping. Put t = r(z), then = r~1(¢), where

r~ ! is the reciprocal function of r, we get

p P

(r—t (t))’dt)

29T (1) @)1y 000) = ( [ leey ™ [ sway

([ oy ([T rwm) o)

By applying inequality ([3.12)), we get

12T (f) ()|, 0,00)

) ( /OOO(T_I(t))p(a_l) (C5 /t 1 p(y)y<p‘1>dy) (r—l(t))’dt> |
_ cé ( /ooo {(T‘l(t))p(a—1)</too fp(y)y(p—l)dy> (r_l(t))/} dt>;

-d ( /0 ) /t P e @y e (t))’dydt) ;,
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3.2 Main results Some estimates for Hardy-Steklov type operators

by using Fubini’s Theorem, we obtain

12T (f) ()], (0,00)

<d( [ [ rowrieoree o)

S|

( | rwe [ <r1<t>>p<“1><r1<t>>’dtdy) |

1(0) = 0, we have

y 1 pla—1)+17Y
[y apeva - [COECEY

Given that a > 1 — — and r-
p

I G ) L
- opla—1)4+1 "
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3.2 Main results Some estimates for Hardy-Steklov type operators

therefore,

2 T2 (f) (@), 0,00

1 00 r1 pla—1)+1
<c§</o fp(y)yp‘l(p(l(y_))oé)_1 dy>

@y
((a = )p +1)”

D =

1

/ PPy ) ”f’“dy]

/0 ) (f (y)ylflﬂ(rl(y))@‘l”;)pdy] %

= P(a-1p+1)7

1- 1 a—1)+1
= (o= Dp+ )7 | f @y 0 )
1 a—1)4+1
= C6 Hf (r () HL,,(O,oo)'
Which gives the desired inequality:. [

Now, we present some special cases related to the Theorem [3.2]

Taking r(x) = Bz where 3 > 0 in the above Theorem, we get r'(z) = %
Then
1 a2 r®
ajpl (T 1) p (;1;‘) e F’
SR

we obtain the following corollary involving the Hardy-Steklov operator.

Corollary 3.2. Let f satisfy the assumptions of the Theorem[3.9 and

Sy (f) (x) = s fy)dy for x>0,
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3.2 Main results Some estimates for Hardy-Steklov type operators

then the bellow inequality holds:

1

128, ()] () < <E) " e 12 F @100

Remark 3.2. Taking 3 = 1 in the above corollary, we get the following inequality
via Hardy’s dual operator H.

2 H () @)]| < 6 12 @) 000y
where

B =1 [ sy
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