Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université Ibn Khaldoun – TIARET

Faculté des Sciences de la Matière

Département de Physique

Mémoire Présenté par :

M^{elle}MazouzChaimaa

Pour obtenir le diplôme de

Master

Filière : physique

Spécialité: Nano physique

Sujet :

Caractérisations cristallographiques, optiques et éléctriques de phases de type spinelle

Soutenu le : 14 septembre 2023

Devant le jury:

- M. Belarbi El Habib
- M.DebdabMansour
- M. Haouzi Ahmed

Pr Président Pr Examinateur Pr Encadreur

Année universitaire:2022/2023

Dédicace :

Je dédie ce modeste travail : A mes parents, A mes frères et mes soeurs, A toute ma famille Pour leur soutien et leur encouragement A tous mes amis partout, A tous ceux qui ont sacrifié leur temps pour la science et tous ceux qui utilisent la science pour le bien et la

Prospérité de l'humanité

Remerciements

Avant tout, je remercie **Dieu** tout puissant pour la volonté, la santé et la patience, qu'il ma donnée durant toutes ces années d'étude.

Je tiens à remercier Monsieur **Pr. Haouzi Ahmed**, professeur àl'université Ibn Khaldoun de Tiaret pour m'avoir proposé ce sujet et pour la grande aide qu'il m'apporté tout au long de ce travail.

Je remercie aussi les **membres de jury** qui m'ont fait l'honneur de Juger mon travail à savoir **Messieurs les professeurs :**

Belarbi El Habib : Directeur du Laboratoire Synthèse et Catalyse de Tiaret (LSCT) et

Dabdab Mansour : Chef d'équipe au Laboratoire Synthèse et Catalyse de Tiaret (LSCT)

Ainsi, je remercie également **mes enseignants** du département de physique qui ont fait de grands efforts afin de parfaire ma formation. **J**'exprime mes profondes gratitudes à **ma famille** pour leurs encouragements, leur affection et leur soutien moral.

Je tiens également à remercier **mes amis** pour leur aide, leur patience, leur compréhension et leurs encouragements.

Melle MazouzChaimaa

Liste des Symboles

DRXDiffraction des rayons X θ Angle d'incidence des rayons X. d_{hkl} Distance interréticulaire entre les plans de la famille {hkl}. h kl Indices de Miller. Ordre de diffraction. n λ Longueur d'onde du rayonnement incident. (λ) Taux d'inversion. β (FWHM) Largeur à mi-hauteur de la réflexion. Dxrd La taille moyenne des cristallites Paramètre de maille. a Τd Tétraédrique Oc Octaédrique. Κ Facteur de forme estimé à 0,89 $I_{0,\lambda}$ Intensité du rayonnement incident. $I_{t,\lambda}$ Intensité du rayonnement transmis. 1 largeur de la cuve contenant l'échantillon. Vitesse de la lumière. с С Concentration du milieu. Coefficient d'absorption. α Т Transmittance. R Résistance. Conductivité électrique. σ Résistivitéélectrique. ρ G Conductance du diélectrique. Permittivité du vide. ϵ_0 Capacitédu vide. C_0 S Surface. e Distance entre les armateurs du condensateur. εr' Permittivité relative réelle. ε," Permittivité relative imaginaire. V Tension alternative sinusoïdale.

f,v Fréquence.

ωPulsation du champ électrique.

- Eg Energie de gap optique.
- A Absorbance.
- k Constate de Boltzmann.
- Ea Energie d'activation.
- T Température.
- h Constante de Planck.

Liste des figures

Figure I.1 : structure du spinelle minéral MgAl ₂ O ₄	03
Figure I.2 : Sites tétraédriques et sites octaédriques	04
Figure II.1 : Principe de diffraction des rayons X par une famille de plans réticulaires (P P3)	1, P2, 12
Figure II.2 : Diffractogramme du spinelle NiCo ₂ O ₄	13
Figure II.3 : Absorption, émission	14
Figure II.4 : schéma de principe du spectrophotomètre mono-faisceau	15
Figure II.5 : Cuve contenant l'échantillon dissous dans un solvant	16
Figure II-6: Représentation schématique de spectrophotomètre de type double faisces	au 16
Figure II.7 : Spectre UV-Visible	17
Figure II.8 : Spectre UV-visible d'une molécule	17
Figure II.9 : Détermination graphique du gap optique	19
Figure II.10: Les grands domaines spectraux du rayonnement électromagnétique	20
Figure II.11: Schéma de principe de l'analyse par spectroscopie d'absorption infraro	uge22
Figure II.12 : Circuit équivalent du montage en SIC	24
Figure III.1 : Double Sintering Céramique Technique	
Figure III.2 : Spectre de diffraction des rayons x du MgFe2O4	30
Figure III.3 :Spectre de diffraction des rayons x du MgFe1.8Cr0.2O4	31
Figure III.4 :Spectre de diffraction des rayons x du MgFe1.5Cr0.5O4	32
Figure III.5 :Spectre de diffraction des rayons x du MgFe1.3Cr0.7O4	33
Figure III.6 :Spectre de diffraction des rayons x deMgFe1Cr1O4	

Figure III.7: Evolution du paramètre de maille en fonction de laconcentrationxen chrome36
Figure III.8 : Variation de la taille des cristallites en fonction du taux de chrome (x) 37 Figure III.9 : Variation de l'absorbance en fonction de la longueur d'onde des ferrites
$MgFe_{2x}Cr_xO_4$
Figure III.10 : Variation de la densité optique en fonction de l'énergiedes différentes ferrite
MgFe _{2-x} Cr _x O ₄
Figure III.11 : Spectres infrarouge des composés $MgCr_xFe_{2-x}O_4$ ($0 \le x \le 1$) 40 Figure III.12 : Représentation du cryostat, du porte-échantillon et du module demesure de l'impédancemètreModulab XM
Figure III.13 : Variation de la constante diélectrique ε_r 'avec la fréquence des composés MgFe _{2-x} Cr _x O ₄ (x = 0 à 1)
Figure III.14 :Variation de la constante diélectrique ε_r " avec la fréquence des composésMgFe2_xCrxO4(x = 0 à 1)
Figure III.15 : Variation de la conductivité alternative σ_{ac} avec la fréquence pour MgFe _{2-x} Cr _x O ₄ (x = 0 à 1)
Figure III.16 : Variation de la constante diélectrique ε_r 'en fonction de la teneur en Cr (x) pourune fréquence de 1 kHz à 300K
Figure III.17 : Variation dufacteur de dissipation ($tg\delta$)en fonction de la teneur en Cr (x) pour une fréquence de 1 kHz à 300K
Figure III.18 : Variation dufacteurla conductivité en courant alternatif σ_{ac} en fonction de la teneur en Cr (<i>x</i>) pourune fréquence de 1 kHz à 300K
Figure III.20 :Conductivité électrique en fonction de 1000/T de MgFe _{1,8} Cr _{0,2} O ₄ (a)(x = 0,2)
Energies d'activation (b) et (c)
Figure III.21 :Conductivité électrique en fonction de 1000/T de MgFe _{1,5} $Cr_{0,5}O_4$ (x = 0,5)49
Figure III.22 : Conductivité électrique en fonction de 1000/T de $MgFe_{1,3}Cr_{0,7}O_4$ (x = 0,7)50

Liste des Tableaux

Tableau I.1 : Caractéristiques physico-chimiques des spinelles directs ZnFe ₂ O ₄ et NiCo ₂ O ₄ 06
Tableau I.2 : Caractéristiques physico-chimiques de quelques spinelles inverses
Tableau III.1 : Pics et distances interéticulaires du MgFe2O4
Tableau III.2 : Pics et distances interéticulaires du MgFe1.8Cr0.2O4
Tableau III.3 : Pics et distances interéticulaires du MgFe1.5Cr0.5O4
Tableau III.4 : Pics et distances interéticulaires du MgFe1.3Cr0.7O4
Tableau III.5 : Pics et distances interéticulairesdu MgFe1Cr1O434
Tableau III.6 : valeurs du paramètre de maille a pour chaque concertation x $deMg_2Fe_{2-x}Cr_xO_4$.35
Tableau III.7 : Taille des cristallites en (nm) pour chaque concentration.
Tableau III.8 : Fréquences v_1 et v_2 en (cm ⁻¹) pour chaque concentration
Tableau III.9 : Paramètres diélectriques de MgFe _{2-x} Cr _x O ₄ ($x = 0,0$ à 1) à 1 kHz à 300K46

Sommaire

Introduction Générale :				
Chapitre I : Structure et propriétés des oxydes de type spinelle				
I.1. Description générale				
I.2. Les différents types spinelles05				
I.2.1. Spinelle direct05				
I.2.2. Spinelle inverse				
I.2.3. Spinelle Intermédiaire06				
I.3. Structure cristalline et propriétés du ferrite spinelle07				
I.3.1. Composés de spinelle07				
I.3.2. Ferrite spinelle08				
I.4. Applications				
I.5.Références bibliographiques09				

Chapitre II : Techniques expérimentales utilisées

II.1 Introduction :	2
II.2 Diffraction des rayons X1	.2
II.2.1 Introduction1	2
II.2.2 Production des rayons X1	3
II.2.3 Traitement des spectres et identifications des phases 1	.3
II.2.4. Exemple d'un diffractogramme 1	3
II.3. La spectroscopie UV-Visible 1	.4
II. 3.1. Principe de la spectroscopie UV - Visible 1	.4
II. 3.2. Appareillage et Fonctionnement	15

II. 3.2.1. Spectrophotomètre à mono-faisceau15
II. 3.2.2. Spectrophotomètre à double-faisceau16
II. 3.3. Le spectre UV-Visible17
II. 3.4. Détermination du gap à partir d'un spectre d'absorption 18
II.4.La spectroscopie infrarouge19
II.4.1.Théorie du rayonnement électromagnétique19
II.4.2.Interprétation des spectres dans le moyen infrarouge21
II.4.3. La spectroscopie infrarouge à transformée de Fourier
II.4.3.1.Principe
II.4.3.2. Techniques d'examen des échantillons en spectroscopie FTIR
II.5. Description du principe de la SIC
II.5.1. Introduction
II.5.2. Principe
II.6. Références bibliographiques26
Chapitre III : Caractérisations et discussions

III.1. Introduction	
III.2. Elaboration des échantillons de ferrites MgCr _x Fe _{2-x} O ₄	28
III.2.1. Le Pastillage	
III.2.2 Le frittage à 1100°C pour 24h	28
III.2.3Double sintering céramique technique	28
III.3. Analyse des propriétés structurales, optiques et électriques	29
III.3.1. Caractérisation par diffraction des rayons X (DRX)	29
III.3.2. Calcul du paramètre de maille a	35

III.3.3. Granulométrie	6
III.4. Analyse des propriétés optiques	7
III.5. Analyse par spectroscopie FTIR4	0
III.6. Mesures électriques4	1
III.6.1. Variation de la constant diélectrique ε_r' avec la fréquence42	2
III.6.2. Variation de la conductivité ac avec la fréquence4	4
III.6.3. Dépendance du comportement diélectrique de la composition x4	4
III.6.4. Energies d'activation E _a	47
III.7. Références bibliographiques	51
Conclusion générale :	52

Introduction générale

L'expérience a toujours montré l'existence de matériaux conducteurs et de matériaux isolants. D'autres matériaux se trouvent dans une situation intermédiaire, on peut les qualifier à la fois de mauvais isolants et de mauvais conducteurs : ce sont les semi-conducteurs.

Les matériaux à base des éléments de transition à structure spinelle présentant des propriétés semi-conductrices ont déjà fait l'objet de très nombreux travaux tant au plan fondamental qu'appliqué mais ils continuent à susciter beaucoup d'intérêt dans les domaines de la catalyse et de la photocatalyse.

Notre choix s'est porté, dans ce mémoire sur des ferrites spinelle $MgFe_2O_4$,utilisés dans plusieurs secteurs, et voir l'effet de la substitution du fer par le chrome. Ce travail présente un double intérêt à savoir :

- La connaissance de différents matériels et l'utilisation de diverses techniques de caractérisation.
- L'acquisition de nombreuses notions fondamentales en physicochimie.

Ce mémoire comporte trois chapitres :

Le chapitre I : principalement dédié à la description de la structure des phases de type spinelle

Le chapitre II :est consacré à la connaissance de certaines techniques expérimentales ayant permis la caractérisation des échantillons étudiés.

Le chapitre III : est consacré aux caractérisations de nos échantillons par les différentes techniques. Il comporte de même une discussion des résultats obtenus.

Enfin, dans une conclusion générale, on rassemblera les principaux résultats tirés de cette étude.

Chapitre I Structure des oxydes de type spinelle

I.1. Description générale

La structure spinelle a été déterminée pour la première fois par Bragg et Nishikawa en (1915) et doit son nom au minéral MgAl₂O₄ [1].Une description détaillée de cette structure a été donnée par divers auteurs [2, 3].

Figure I.1 : structure du spinelle minéral $MgAl_2O_4$

Spinelle MgAl₂O₄

Motif formulaire MgAl₂O₄

Cubique F a = 8.08 Å Z = 4 (Motif périodique Mg₂Al₄O₈) $\rho = 3.58 \text{ g.cm}^{-3}$ $r_{Mg}^{2+}=0.57 \text{ Å}, r_{Al}^{3+}=0.535 \text{ Å} r_{O}^{2-} =1.36 \text{ Å}$ Compacité $\tau = 0.67$ $d_{Mg}^{2+}O^{2-}=1.917 \text{ Å}$ $d_{Al}^{3+}O^{2-}=1.928 \text{ Å}$ Coordinence $[Mg^{2+}] = 4$

 $[Al^{3+}] = 6$ $[O^{2-}] = 4$ Les spinelles ont pour formule chimique générale AB_2O_4 dans laquelle A et B représentent les cations et O [4]. Dans les oxydes de structure spinelle, les anions O^{2-} sont des ions de plus grande dimension (r=0.14 nm ou 1.4 Å).Ils forment un réseau cubique à faces centrées, définissant des sites cationiques tétraédriques (A) et octaédriques (B) :

- * Dans les sites A tétraédriques : le cation entouré au centre de quatre ions oxygène,
- * Dans les sites B octaédriques : le cation entouré au centre de six ions oxygène
 [5].

Figure I.2 : les sites tétraédriques sont représentés en bleu, les sites octaédriques en vert et les atomes d'oxygène en rouge. La maille élémentaire est représentée en trait plein

• La maille spinelle peut être divisée en huit cubes d'arrêts a/2.Dans deux cubes ayant en commun une face ou un sommet,les positions ioniques sont différentes,mais elles sont identiques dans deux cubes ne partageant qu'une arête.Il est suffisant de représenter les positions ioniques dans deux cubes adjacents pour décrire la structure totale .Cet arrangement produit la formation de 64 sites tétraédriques, dont 8 sont occupés par les cations A et 32 sites octaédriques dont 16 sont occupés par les cations B. Ces ions sont un ion A et trois ions B qui constituent avec l'ion oxygène une unité qui

peut être considérée comme l'unité de base du réseau spinelle .Chaque ion A et B est entouré par quatre et six ions oxygène respectivement .La direction O-A est celle de l'une des diagonales du cube et la direction O-B coïncide avec ses arêtes

noir

 Les paramètres de maille des spinelles déterminés expérimentalement sont, généralement, compris entre 8 et 8.11Å [6]

I.2. Les différents types spinelles

Les spinelles sont une très grande famille de composés qui diffèrent par leur caractère **direct**, **inverse** ou **intermédiaire** bien que leur formule soit identique AB_2O_4 . Les sites occupés par les ions métalliques définissent le type selon les sites occupés par les ions.

Un spinelle direct a pour formule $[A][B]_2O_4$ et le type de site occupé est $[Td][Oc]_2O_4$: un atome A est dans un site tétraédrique et deux atomes B sont dans des sites octaédriques.

Un spinelle inverse a pour formule $[B][AB]O_4$ et le type de site occupé est $[Td][Oc]_2O_4$: un atome B est dans un site tétraédrique et un atome de A et un atome de B sont dans des sites octaédriques.

Les spinelles sont caractérisés par leur **taux d'inversion** (λ) que l'on définit par la **fraction d'atome B dans des sites tétraédriques**. Pour un spinelle normal $\lambda = 0$, pour un spinelle intermédiaire $0 < \lambda < 0.5$ et pour un spinelle inverse $\lambda = 0.5$.

$$A_{1-2\lambda}B_{2\lambda}[A_{2\lambda}B_{2-2\lambda}]O_4$$

I.2.1. Spinelle direct

- * Si les 8 ions divalents se trouvent dans les sites tétraédriques et les 16 ions trivalents dans les sites octaédriques, le spinelle est dit normal ou direct.
- * Les spinelles directs les plus connus sont les ferrites de zinc (ZnFe₂O₄) et les nitrates de cobalt (NiCo₂O₄) .Le tableau I.1 résume quelques paramètres physico-chimiques (paramètre de maille, résistivité électrique, masse molaire, densité) des deux spinelles directs les plus connus.

Chapitre I Structure des oxydes de type spinelle

Spinelle direct	а	ρ	Masse molaire (g/mol)	Densité
	(Á)	(ohm.cm)		(g/cm^3)
ZnFe ₂ O ₄	8.44	100	297.47	5.33
NiCo ₂ O ₄	8.11	104	290.81	5.2

Tableau I.1 : Caractéristiques physico-chimiques des spinelles directs ZnFe₂O₄ et NiCo₂O₄

1.2.2. Spinelle inverse

Dans ce type de spinelle, les cations répartissent les deux sites octaédriques et tétraédriques à proportions égales .Les ferrites de nickel (NiFe₂O₄) les ferrites de cobalt (CoFe₂O₄) et la magnétite (Fe₃O₄) caractérisent ces spinelles .Le tableau II résume quelques-unes de leurs propriétés physico-chimiques les plus importantes.

Spinelle in-	А	ρ	Masse molaire	Densité (g/ cm^3)
verse	(Å)	(ohm.cm)	(g/mol)	
NiFe ₂ O ₄	8.33	10 ³ -10 ⁴	234.4	5.38
CoFe ₂ O ₄	8.392	10 ⁷ 234.6		5.29
Fe ₃ O ₄	8.40	410 ⁻⁷	231.6	5.24

Tableau I.2 : Caractéristiques physico-chimiques de quelques spinellesinverses

I.2.3. Spinelle Intermédiaire

Si on trouve des ions divalents placés partiellement dans des sites A et B :

 $M_{1-x}^{3+}M_{1-x}^{2+}[M_{1-x}^{2+}M_{1+x}^{3+}]O_4$.Nous trouverons, par exemple, que la cobaltite de cobalt possède une structure spinelle normale, tandis que la cobaltite de nickel présente une structure spinelle inverse. Il faut noter que les facteurs qui déterminent si le spinelle est normal, inverse, ou intermédiaire sont très complexes. Ils sont, en général, déterminés par un ensemble d'analyses par diffraction de rayons X, spectroscopie de photoélectrons de rayons X et des mesures des propriétés magnétiques [7].

I.3.Structure cristalline et propriétés du ferrite spinelle

I.3.1. Composés de spinelle

Le mot spinelle est dérivé de l'italien spinella, diminutif de spine, épine (à cause de ses cristaux très pointus). Le spinelle se cristallise dans le système cubique, formant des cristaux octaédriques. La majorité des composés du spinelle appartient au groupe spatial *Fd3m*. Le membre principal du groupe a la formule AB₂O₄; "A" représente un ion métallique divalent comme le magnésium (Mg⁺²), fer (Fe⁺²), nickel (Ni⁺²), manganèse (Mn⁺²) et le zinc (Zn⁺²). "B" représente le métal trivalent des ions tels que l'aluminium (Al⁺³), fer (Fe⁺³), chrome (Cr⁺³). Cependant, le titane Ti⁺⁴et Pb⁺²peuvent également occuper ce site"B". La recherche de solutions solides est courante dans ce groupe de matériaux, ce qui signifie qu'ils peuvent contenir certains pourcentages d'ions différents dans tout spécimen particulier [8].

Dans la plupart des structures d'oxyde, les ions d'oxygène sont sensiblement plus nombreux que les ions métalliques et la structure du spinelle peut être approchée par un remplissage cubique d'ions O⁻²dans lesquels les cations occupent certains interstices. La structure d'un composé de spinelle est similaire à la structure hautement symétrique du diamant. La position des ions A est presque identique aux positions occupées par les atomes de carbone dans la structure du diamant. La disposition des 4 autres ions dans la structure est conforme à la symétrie de la structure du diamant. Il y a bien un nombre important de composés ayant la structure du spinelle. La plupart sont des oxydes, certains sont (halogenidesspinels AB₂X₄, X=S, Se, Te) des sulfures comme CuCo₂S₄ [9], des séléniures comme MgSc₂Se₄ [10]et des tellurures comme CuCr₂Te₄[11]. De nombreux cations différents peuvent être introduits dans la structure du spinelle et plusieurs combinaisons de charges différentes sont possibles[12], par exemple Co⁺²Fe₂⁺³O₄,Mg₂⁺²Ti⁺⁴O₄, Li⁺¹Al⁺³Ti⁺⁴O₄

Dans les spinelles d'oxyde, les deux types de cations ne diffèrent généralement pas beaucoup en taille, car la structure du spinelle n'est stable que si les rayons des différentesespèces ioniques dans le même composé ne diffèrent pas trop. Des combinaisons de cationssimilaires se retrouvent dans les sulfures, $Zn^{+2}Al_2^{+3}S_4$ et $Cu_2^{+2}Sn^{+4}S_4$. La plupart desspinellesse répartissent en trois séries déterminées par un métal B : série des aluminates avec Al^{+3} une série de magnétite avecFe⁺³; une série de chromites avec Cr^{+3} . Il existe unvaste échange cationique (solution solide) au sein de chaque série, mais très peu entre lesséries [13]. Les spinelles sont classés en fonction de la répartition des cations dans les deux sitesprincipaux en trois types.

I.3.2. Ferrite spinelle

Le type de spinelle dépend de l'énergie colombienne des ions chargés [14] et leur influence dans la polarisation des anions : les grands ions divalents favorisent l'occupation tétraédrique et les grands ions trivalents favorisent l'occupation octaédrique.

La formule chimique générale des ferrites possédant la structure spinelle minéral, est MeFe₂O₄, où Me représente un ion métallique divalent dont le rayonionique est compris entre 0,6 et1 Å. Dans le cas des ferrites simples, Me est l'un des éléments de transition Mn, Fe, Co, Ni, Cu et Zn, ou Mg et Cd. Une combinaison de ces ions estégalement possible, un Ferrite mixte. Le symbole Me peut représenter une combinaison d'ionsqui ont une valence moyenne de deux, par exemple Li^{+1} et Fe⁺³ dans la ferrite de lithium $Li_{0,5}Fe_{2,5}O_4$, le site des ions de fer trivalents (Fe⁺³) du MeFe₂O4 peuvent être remplacés en toutou en partie par un autre ion trivalent tel que Al⁺³ ou Cr⁺³, donnant lieu à des cristaux mixtesavec les aluminates et les chromites. Si les ions ferriques sont remplacés par un ion tétravalentcomme le Ti⁺³, une partie égale du Fe⁺³ est modifiée en Fe⁺².

I.4. Applications

Les oxydes complexes à structure de spinelle, souvent appelés "spinelles",appartiennent aux groupes de matériaux stratégiques qui sont utilisés dans de vaste domainedes technologies. Ils présentent d'excellentes propriétés magnétiques, semi-conductricescatalytiques et d'absorption.

Les applications des spinelles sont extrêmement variées et se retrouvent, par exemple, dans le domaine du magnétisme, l'électronique, de l'optique ou encore de la mécanique notamment dans l'industrie électrique grâce à leurs propriétés électriques et/ou magnétiques. Ils sont également l'un des pôles les plus attrayants de l'électrocatalyse dans le cadre de l'effort technologique consacré à la conversion de l'énergie. De nombreuses recherches se poursuivent sur une vaste diversité d'oxydes spinelles afin de trouver de meilleurs rendements pour des applications industrielles [15].

[1] C. A. Jouenne, Traité de Céramiques et Matériaux Minéraux. Éd Septima, Paris (1990).
[2]Toufic Jean Daou''Synthèse et fonctionnalisation de nanoparticules d'oxydes de fer magnétiques''. Thèse Doctorat, Université Louis Pasteur, Strasbourg I (2007)

[3] Ouramdane "Propriétés structurales et magnétique de nanoparticules et nanostructures de ferrites de zinc : $ZnFe_2O_4$ " Thèse Doctorat, Université Mouloud Mammeri, TiziOuzou (2013)

[4] Sylvain Hallynck ''Elaboration et caractérisations de composites chargés en ferrite spinelle à morphologie contrôlée pour utilisations micro-ondes'', Thèse Doctorat, Université Louis Pasteur, Strasbourg I (2005)

[5] Idiri Naima ''Elaboration d'électrodes modifiées à base des nanoparticules Ni_{0.3}Co_{2.7}O₄ dans une matrice de polypyrrole'' Mémoire de Magister, Université Mouloud Mammeri, TiziOuzou (2011)

[6] D. M. Adams, An Introduction to Concepts in Solid-State Structural Chemistry, Inorg.Solids John Wiley Sons Lond. (1974).

[7] Z. Xiong, L. Huang, J. Peng, Y. Hou, Z. Ding, and S. Wang, Spinel-Type Mixed Metal-Sulfide NiCo₂S₄ for Efficient Photocatalytic Reduction of CO₂ with Visible Light, ChemCatChem**11**, 5513 (2019).

[8] L. Zhang, J. Fan, W. Tong, L. Ling, L. Pi, and Y. Zhang, Scaling of the MagneticEntropy Change in Spinel Selenide CuCr₂Se₄, Phys. B Condens. Matter **407**, 3543(2012).

[9] T. Suzuyama, J. Awaka, H. Yamamoto, S. Ebisu, M. Ito, T. Suzuki, T. Nakama, K.Yagasaki, and S. Nagata, Ferromagnetic-Phase Transition in the Spinel-Type CuCr₂Te₄,J. Solid State Chem. **179**, 140 (2006).

[10] D. M. Smyth, Barium Titanate, Defect Chem. Met. Oxides 253 (2000).

[11] R. J. King, Minerals Explained 40: The Spinels, Geol. Today 20, 194 (2004).

[12] E. J. Verwey, P. W. Haayman, and F. C. Romeijn, Physical Properties and CationArrangement of Oxides with Spinel Structures II.Electronic Conductivity, J. Chem.Phys.**15**, 181 (1947).

[13] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, Vol. 17(John wiley& sons, 1976).

[14] G. Aliprandi, Matériaux Céramiques et Céramiques Techniques : I, ElémentsCéramurgieTechnol. Septima Paris (1996).

[15] Ouramdane "Propriétés structurales et magnétique de nanoparticules et nanostructures de ferrites de zinc : $ZnFe_2O_4$ " Thèse Doctorat, Université Mouloud Mammeri, TiziOuzou (2013)

Chapitre II Techniques expérimentales utilisées

II.1. Introduction :

Ce chapitre rappelle le principe des différentes méthodes expérimentales qui sont à notre disposition et montre comment elles permettent, de caractériser les échantillons, de mesurer les paramètres physiques et en tirer des conclusions.

II. 2. Diffraction des rayons X :

II.2.1. Introduction :

L'utilisation des méthodes de rayons X est un outil très performant et universel pour déterminer la structure des cristaux. Pratiquement tous les domaines de physique du solide ont recours à l'une ou l'autre des méthodes de caractérisation par rayon X.

Les rayons X sont indissociables de quelques grands noms de la physique tels Röntgen le découvreur de ce rayonnement électromagnétique en 1895, Bragg, Laue, Debye, Scherrer, Miller et tant d'autres noms qui évoquent, une loi physique découverte ou une méthode expérimentale. Pour un échantillon le rayonnement pénètre dans le cristal, il y a absorption d'une partie de l'énergie et excitation des atomes avec émissions de radiations dans toutes les directions. Les radiations émises par des plans atomiques qui sont en phase vont engendrer un faisceau cohérent qui pourra être détecté.

La condition pour les radiations soit en phase s'exprime par la relation de Bragg :

$$n.\lambda = 2d \sin \theta$$

n : ordre de la diffraction

 λ : la longueur d'onde du faisceau de rayon X

d : distance de deux plans réticulaires, en angströms (Å)

 θ : angle de diffraction

— Schema de différention des rayons A par une famille de plans réficulair P₁, P₂, P₃, etc., sont les plans de cette famille ; 0 est l'angle de Bragg.

Figure II.1 : Principe de diffraction des rayons X par une famille de plans réticulaires (P₁, P2, P3).

II.2.2. Production des rayons X :

Le rayonnement X est émis par un tube à rayons X constitué d'une anode métallique (Cu ou Co) bombardée par un faisceau d'électron produit par un filament chauffé. Le spectre émis par exemple par une anode de cuivre (Cu), consiste en un fond continu produit suite à la collision d'électrons sur l'anode. Ces électrons convertissent leur énergie cinétique en rayonnement X. A ce spectre s'ajoute des pics qui correspondent à l'énergie libérée suite aux réarrangements des électrons suite à l'éjection de un ou plusieurs électrons lors de l'excitation. Les raies $K_{\alpha 1,\alpha 2}$ correspondent à des transitions entre les orbitales L et K, les raies caractéristiques K β aux transitions de l'orbitale M à l'orbitale K.

II.2.3. Traitement des spectres et identifications des phases :

Après la diffraction, on obtient un spectre d'énergie du faisceau diffracté en fonction de l'angle de diffraction 20. Dans ce spectre, les valeurs angulaires peuvent être en espace basal en Å en appliquant la loi de Bragg (équation citée ci dessus) et en utilisant la longueur d'onde K α de l'anode utilisée pour produire le rayonnement X incident, ceci donne accès à la valeur de la distance interréticulaired_{hkl}. L'ensemble des spectres de diffraction des rayons X a été réalisé à l'aide d'un diffractomètre automatique avec une radiation de Cu-K α avec une raie d'incidence (20) varie de 4° à 70°.

II.2.4. Exemple d'un diffractogramme :

On donne à titre d'exemple le diffractogramme du spinelle $NiCo_2O_4$ montrant les différents pics de diffraction

Figure II.2 :Diffractogramme du spinelle NiCo₂O₄

II.3. La spectroscopie UV-Visible

La spectroscopie UV-Visible permet d'accéder qualitativement à des renseignements quant à la nature des liaisons présentes au sein de l'échantillon mais également de déterminer quantitativement la concentration d'espèces absorbant dans ce domaine spectral. Non destructive et rapide, cette spectroscopie est largement répandue en analyse chimique ou biochimique.

II. 3.1. Principe de la spectroscopie UV - Visible

L'interaction électromagnétique caractérise l'aptitude d'un édifice atomique à voir son énergie modifiée par l'action d'un rayonnement électromagnétique. Soit un système atomique pouvant être caractérisé par deux niveaux énergétiques quantifiés E_1 et E_2 (avec arbitrairement $E_1 < E_2$). Si le rayonnement électromagnétique permet de passer du niveau E_1 au niveau E_2 , le système doit acquérir de l'énergie. On parle alors d'absorption. Le passage du niveau E_2 au niveau E_1 conduit à une libération d'énergie, il s'agit d'émission. L'absorption ou l'émission d'énergie se fait alors sous forme d'onde électromagnétique, dont l'énergie dépend fortement de l'ordre de grandeur de la différence d'énergie entre les deux états, notée ΔE .

Figure II.3 : Absorption, émission

La fréquence v du rayonnement émis ou absorbé et l'écart énergétique ΔE entre les niveaux initiaux et finaux sont reliés par la relation de Planck-Einstein : $\Delta E = hv$, avec h la constante de Planck (h = 6,63.10⁻³⁴J.s). Dans le vide, la fréquence v et longueur d'onde λ sont liées par la célérité de la lumière c : v = c/ λ . On en déduit: $\Delta E = hc/\lambda$. On ne s'intéressera ici qu'aux transitions énergétiques absorbant ou émettant dans l'UV - Visible, c'est-à-dire mettant en jeu des transitions entre niveaux électroniques. D'un point de vue expérimental, la longueur d'onde (ou la fréquence) d'un rayonnement électromagnétique absorbé est donc caractéristique de la différence d'énergie entre deux niveaux électroniques. La spectroscopie d'absorption, conduisant expérimentalement à la détermination des longueurs d'ondes absorbées, permet ainsi d'obtenir les écarts ΔE entre niveaux électroniques et par conséquent des renseignements sur la structure électronique de l'édifice.

II. 3.2. Appareillage et Fonctionnement [1]

II. 3.2.1. Spectrophotomètre à mono-faisceau :

La détermination des longueurs d'onde des rayonnements électromagnétiques absorbés se fait grâce à l'utilisation d'un spectrophotomètre. Le schéma de principe du spectrophotomètre mono-faisceau est présenté ci-dessous :

Figure II.4 : schéma de principe du spectrophotomètre mono-faisceau

Une source polychromatique (émettant dans l'UV ou le visible) est placée devant un prisme. Ce système dispersif va décomposer le rayonnement polychromatique émis par la source. En orientant correctement le système diaphragme-échantillon-photodétecteur, la solution contenue dans la cuve sera irradiée avec un rayonnement quasi monochromatique. Le diaphragme, une simple fente fine, permet d'éclairer l'échantillon avec un faisceau de faible largeur, donc de bonne qualité monochromatique, le photodétecteur mesurant quant à lui l'intensité du rayonnement transmis après traversée de la solution échantillon, notée $I_{t\lambda}$. D'un point de vue pratique, l'échantillon est constitué de l'édifice à étudier, dissous dans un solvant et contenu dans une cuve. Il faut donc que solvant et cuve n'interfèrent pas dans les données mesurées. Ainsi on les choisira transparents dans le domaine choisi. Dans le commerce, il existe différentes cuves adaptées aux différents domaines spectraux rencontrés (plastique pour le visible, quartz de plus ou moins bonne qualité pour l'UV). Pour ce qui est du solvant, son influence est neutralisée en réalisant un blanc, c'est-à-dire en mesurant l'intensité du rayonnement transmis après traversée de la cuve ne contenant que du solvant. Expérimentalement, l'appareil extrait comme donnée brute l'intensité $I_{t,\lambda}$, obtenue après traversée de la solution. Celle-ci étant dépendante de la source, on préfère calculer deux grandeurs dérivées : l'absorbance A et la transmittance T.

Figure II.5 : Cuve contenant l'échantillon dissous dans un solvant.

La transmittance T est définie par : $T = I_{t,\lambda} / I_{0,\lambda}$. On l'exprime en pourcentage.

L'absorbance A se calcule par : A = $\log(I_{0,\lambda}/I_{t,\lambda})$ = - logT. C'est une grandeur positive.

II. 3.2.1. Spectrophotomètre à double-faisceau :

Dans ce cas il n'est pas nécessaire de faire des blancs ou des lignes de bases. Ce type de spectrophotomètre est le plus répondu. Un faisceau traverse le compartiment échantillon et le second le compartiment référence. La soustraction du blanc est faite automatiquement par le logiciel du traitement.

Figure II-6: Représentation schématique de spectrophotomètre de type double faisceau.

II. 3.3. Le spectre UV-Visible

Afin d'obtenir un spectre UV-visible, la solution est soumise aux rayonnements dont la longueur d'onde est comprise dans l'intervalle 10-200 nm (UV lointain), 200-400 nm (proche UV) et dans l'intervalle 400-800 nm (domaine de la lumière visible).

Figure II.7 : Spectre UV-Visible

Pour chaque longueur d'onde, l'absorbance est mesurée et les données recueillies sont utilisées pour tracer les variations de l'absorbance (en ordonnées) en fonction de la longueur d'onde (en abscisse). Le graphique ainsi obtenu constitue un spectre UV-visible.L'analyse d'un tel spectre mène à la détermination de la longueur d'onde du maximum d'absorption λ_{max} , c'est une grandeur permettant d'identifier l'espèce chimique en solution.

Figure II.8 : Spectre UV-visible d'une molécule.

la loi de Beer-Lambert : pour une solution contenant une unique solution absorbante :

A=e.l.c

l : la largeur de la cuve contenant l'échantillon (donc la longueur du chemin optique),

c : la concentration molaire de l'échantillon et

 ϵ : le coefficient d'extinction molaire (exprimé usuellement en mol⁻¹.L.cm⁻¹ si l est exprimée en cm).

Cette loi est valable pour les solutions transparentes, peu concentrées et dans ces conditions elle est également additive. La relation de Beer-Lambert donne donc accès au coefficient d'extinction molaire ε qui caractérise l'absorption de l'édifice dans les conditions de l'expérience. En se plaçant à la longueur d'onde du maximum d'absorption, le coefficient ε_{max} peut être calculé. La donnée de ces deux grandeurs (λ_{max} ; ε_{max}) est caractéristique de l'absorption d'un édifice dans des conditions expérimentales données.

II. 3.4. Détermination du gap à partir d'un spectre d'absorption :

La spectroscopie UV-Visible permet de mesurer le gap du matériau. En combinant les mesures d'absorbance, on peut déduire le gap du matériau analysé à partir de la relation suivante [2,3]

$$(\alpha h\nu)^n = A(h\nu - E_g)$$

A : constante

 E_g : énergie du gap optique (eV)

hv: énergie d'un photon en eV

 α : coefficient d'absorption

ndépend du type de transition :

Pour = 2, le gap optique est de nature directe

Pour $=\frac{1}{2}$, le gap optique est de nature indirecte

L'évaluation de l'énergie du gap optique se fait à partir de la courbe :

$$(\alpha h\nu)^n = f(h\nu)$$

Cette courbe présente une partie linéaire dont la tangente, extrapolée, coupe l'axe des abscisses hv en un point de coordonnées ($hv = E_{opt}$, $\alpha = 0$). Le point d'intersection avec l'axe des énergies (hv) donne la valeur du gap. Nous donnons à titre d'exemple le tracé (αhv)² en fonction de l'énergie des photons hv pour le spinelle NiCo₂O₄. Pour des transitions directes et permises, on obtient une droite. La **Figure II.9** indique comment on en déduit la valeur du gap soit E_g = 2.01eV.

Figure II.9 : Détermination graphique du gap optique [4].

II.4. La spectroscopie infrarouge

Le principe de base de la spectrométrie repose sur la mesure de l'interaction entre un rayonnement électromagnétique et la matière à différentes fréquences. Elle permet d'obtenir des informations sur la matière à partir de son interaction avec le rayonnement incident.

Selon la fréquence de ce rayonnement (ultraviolet, visible, infrarouge...), l'interaction matière rayonnement concerne divers types de niveaux d'énergie de la matière. Dans ceparagraphe, nous nous intéressons plus spécifiquement à la gamme de longueurs d'ondes de l'infrarouge.

II.4.1. Théorie du rayonnement électromagnétique

Le rayonnement infrarouge (IR) est une radiation de nature électromagnétique, correspondant à la partie du spectre comprise entre 12800 cm⁻¹ et 10 cm⁻¹ (0.78 à 1000 μ m). La **Figure II.10** présente la partie du spectre électromagnétique correspondant à l'infrarouge. La fenêtre spectrale de l'IR, se décompose habituellement en 3 parties : le proche, le moyen et le lointain IR. Les régions du proche (PIR) et du moyen infrarouge (MIR) s'étendent respectivement de 12800 à 4000 cm⁻¹ (0.78 à 2.5 μm) et de 4000 à 400 cm⁻¹ (2.5μm à 25 μm). Pour caractériser les ondes, on utilise la **périodicité spatiale** (longueur d'ondeλ) ou la **périodicité temporelle** (fréquencev).

Figure II.10: Les grands domaines spectraux du rayonnement électromagnétique.

L'examen de cette vaste gamme de longueurs d'ondes permet l'accès à une multitude depropriétés physiques et chimiques des matériaux observés. En effet, l'intensité du rayonnement incident étant connue, la mesure de l'intensité du rayonnement transmis, diffusé ou réfléchi, chargé d'information sur la matière exposée au rayonnement est possible. Une application de la spectrométrie est l'analyse de la cristallochimie des matériaux. Elle passe par la compréhension des bandes d'absorptions attribuables aux différentes propriétés physiques et chimiques de la matière. Elles peuvent donc être utilisées pour aider à l'identification des différents minéraux qui constituent ces matériaux.

Le spectre IR est ainsi constitué de nombreuses bandes d'absorption. Par conséquent, **tout matériau possède une signature qui lui est propre**.L'étude des spectres permet de tirer deux types d'informations :

Des informations qualitatives: l'identification d'un composé est recherchée à partir de sa signature spectrale par attribution des absorptions aux différentes liaisons chimiques en présence.

Des informations quantitatives: l'intensité de la bande d'absorption rend compte de la concentration du groupe chimique caractéristique de cette absorption. Elle peut être modélisée par **la loi deBeer-Lambert** citée ci-dessus.

II.4.2. Interprétation des spectresdans le moyen infrarouge

Les spectres IR contiennent des informations sur les caractéristiques physiques etchimiques des échantillons analysés. Ils sont composés de bandes d'absorption qui vont être utilisées pour déterminer la structure de la molécule étudiée ou du mélange à identifier. Les bandes d'absorption dans le MIR (800 – 4000 cm⁻¹) résultent des modes de vibration, ceux-ci, pouvant être attribués à des groupements fonctionnels fondamentaux. L'interprétation des spectres consiste le plus souvent, en la comparaison des résultats obtenus avec ceux de la bibliographie.

La position d'une bande dépend à la fois de la nature du vibrateur (et donc de la liaison) mais aussi de son environnement.

L'intensité d'une bande dépend de la concentration, mais aussi de la nature et de la polarité de la liaison.

II.4.3 La spectroscopie infrarouge à transformée de Fourier

II.4.3.1. Principe

Pour notre étude, nous allons utiliser un spectromètre à transformée de Fourier, dont le schéma général de principe est décrit en **Figure II.11**

Dans ce type d'appareillage, le faisceau infrarouge provenant de la source est dirigé versl'interféromètre de Michelson qui va moduler chaque longueur d'onde du faisceau à une fréquence différente. Dans l'interféromètre le faisceau arrive sur la séparatrice. La radiation de la source est alors divisée en deux faisceaux par un séparateur de faisceaux. Un des faisceaux parcourt un chemin optique fixe, l'autre un chemin optique de longueur variable à cause d'un miroir mobile, avant d'être recombinés, de traverser l'échantillon et de frapper le détecteur. Quand la différence de chemin optique entre les faisceaux correspond à un multiple entier de la longueur d'ondes d'une bande, on obtient une interférence constructive. Une interférence négative est obtenue lorsque la différence correspond à un multiple entier impair du quart de la longueur d'onde.

Figure II.11: Schéma de principe de l'analyse par spectroscopie d'absorption infrarouge

L'ensemble de ces interférences positives et négatives transmises à travers un signal complexe produit un interférogramme à partir duquel le spectre est calculé par transformée de Fourier. L'avantage de ce dispositif est d'avoir accès instantanément à la densité optique pour toute une gamme de longueurs d'ondes (Avantage de Fellgett). D'autre part ce type d'appareil permet d'avoir une résolution spectrale et une précision spectrale élevées, de travailler avec des signaux faibles et d'obtenir le spectre rapidement et avec un bon rapport signal sur bruit. En regard des différentes réponses de la matière à l'excitation par un rayonnement IR, nousallonsutiliser dans cette étude deux modes de spectrométrie IR.

II.4.3.2 Techniques d'examen des échantillons en spectroscopie FTIR

Le choix de la technique d'échantillonnage dépend de la nature de l'échantillon. Plusieurs méthodes ont été mises au point pour la caractérisation d'échantillons d'état physique différents par spectroscopie infrarouge avec l'emploi d'accessoires spécifiques. On ne citera que le procédé suivant dont on se servira dans nos mesures expérimentales : **Procédé par transmission (absorption) :domaine de l'infrarouge moyen (4000 – 400cm⁻¹)**

Suite à la mesure enregistrée par le détecteur et après conversion de l'intensité par transformée de Fourier inverse, on définit le spectre soit en transmittance % T, soit en absorbance A. Ce mode de mesure nécessite l'utilisation de supports transparents en infrarouge entre autres le bromure de potassium (KBr)

La radiation infrarouge est produite par chauffage d'une source qui est souvent un filament deNernst (alliage d'oxyde de Zr, Th et Ce).

II.5. Description du principe de la SIC

II.5.1. Introduction

Ils existent plusieurs types de méthodologies expérimentales pour étudier le mouvement des espèces chargées dans la matière solide.La spectroscopie d'impédance est une technique expérimentale parfaitement adaptée à la mesure des propriétés électriques des matériaux, elle permet de déterminer les propriétés de conduction (ionique et électronique) d'un solide massif mais aussi en théorie d'observer les différentes contributions à la conduction d'un matériau (grains, joints de grains, pores, défauts..). Elle consiste à appliquer une perturbation sinusoïdale d'amplitude constante et de fréquence f variable (de pulsation $\omega = 2\pi f$) et à analyser la réponse du système.Comparées à d'autres méthodes expérimentales, les spectroscopies diélectriques sont plus faciles à mettre en œuvre, moins onéreuses et applicables à tous les types de porteur de charges (électrons comme ions). C'est pour ces raisons qu'elles sont aujourd'hui très largement utilisées et qu'elles fonts l'objet d'une littérature abondante.

II.5.2. Principe :

La SIC apparaît comme méthode de choix pour l'étude de la conduction ionique ou électrique des matériaux. Dans ce type de spectroscopie, on observe la réponse d'un échantillon soumis à une tension alternative, dont on fait varier la fréquence. On mesure alors le déphasage entre le courant traversant l'échantillon et la tension imposée. Pour cela, on assimile le système (échantillon+ électrodes de mesure) à un circuit équivalent, représenté sur la **Figure II.12**. Il est formé d'une capacité montée en parallèle avec une résistance R_{dc} (où R=1/G, G_{dc} étant la conductance du diélectrique). La mesure consiste alors à évaluer respectivement les composantes conductrices G_{dc} et capacitive C_{dc} du circuit équivalent.

Dans un condensateur, dont le diélectrique est le vide, la capacité C₀ est donnée par :

$$C_0 = \varepsilon_0 \frac{S}{e}$$

Dans cette expression, ε_0 est la permittivité du vide ($\varepsilon_0 = 8,85.10^{-12} \text{ F.m}^{-1}$), *S* et *e* sont respectivement la surface et la distance entre les armatures du condensateur.

Figure II.12 : Circuit équivalent du montage en SIC

A partir de l'étude des solides qui conduisent difficilement le courant électrique, Faraday a montré que l'introduction de matière isolante entre les armatures d'un tel condensateur fait croître sa capacité C qui devient alors égale à :

$$C = \varepsilon_r C_0$$

Où ε_r représente la constante diélectrique relative d'un diélectrique parfait. Dans le cas idéal, ε_r est réel. Mais dans la réalité, pour tenir compte des pertes associées dissipée, la permittivité, mesurée en courant alternatif, est toujours définie comme une grandeur complexe :

$$\varepsilon_r^* = \varepsilon_r^{'} - i\varepsilon_r^{'}$$

Les parties réelles et imaginaires de cette permittivité s'écrivent alors :

$$\varepsilon_r' = \frac{C}{C_0}$$
$$\varepsilon_r'' = \frac{G}{C_0\omega}$$

 ω étant la pulsation.

On remarque que les propriétés capacitives et conductrices correspondent respectivement aux parties réelle et imaginaire de la permittivité et que $\varepsilon_r^{'}$ apparaît comme la constante diélectrique réelle du condensateur, alors que $\varepsilon_r^{''}$ est appelé facteur de perte ou d'absorption diélectrique.

Chapitre II

Une autre façon d'exprimer le caractère résistif d'un condensateur consiste à faire appel à la notion de conductivité totale σ_{ac} de la façon suivante :

$$\varepsilon_r^{"} = \frac{\sigma_{ac}}{\varepsilon_0 \omega}$$

Sachant que σ_{ac} est égale à :

$$\sigma_{ac} = \frac{1}{R} \frac{e}{S} = G \frac{e}{S}$$

Où *R* est la résistance du système.

S est la surface de l'échantillon.

e est l'épaisseur de l'échantillon.

On montre, que σ_{ac} peut être considérée comme la somme de deux termes [5,6].

$$\sigma_{ac} = \sigma_{dc} + \sigma'(\omega)$$

 σ_{ac} est la conductivité mesurée en courant continu en fait référence au phénomène diffusif des porteurs de charges. $\sigma'(\omega)$ désigne la conductivité de polarisation créée par la réorientation dipolaire des porteurs de charges. Etant données les différentes expressions possibles des propriétés capacitives et conductrices des matériaux, il existe de multiples façons de rendre compte de la réponse du système lors de l'expérience de SIC. En effet, à partir des mesures, on peut à titre d'exemple représenter, à une température donnée :

- ✓ Les évolutions des parties réelles ou imaginaires de la conductivité totale σ_{ac} en fonction de la fréquence, en échelle logarithmique.
- ✓ Les évolutions des parties réelles ou imaginaires de la permittivité diélectrique en fonction de la fréquence, en échelle semi-logarithmique.
- ✓ Les évolutions de la partie imaginaire de l'impédance Z'' en fonction de sa partie réelle Z' (Diagramme de Nyquist)
- ✓ Les variations de la partie imaginaire de la permittivité en fonction de sa partie réelle

[1] http://culturesciences.chimie.ens.fr/content/introduction-%C3%A0-la-spectroscopie-uv-visible

[2] T. Güngör, Journal of Research in physics 27 (1998) 9–14.

[3] G.D. Cody, J. of. Non-cryst.Solids 141 (1992) 3-15.

[4] Hebbal Hadja, Synthèse et caractérisations électriques et optiques de phases de type spinelle, mémoire Master 2, Génie des Matériaux, Université Ibn khaldoun Tiaret, 2015

[5] Jonscher.A.K, Dielectric Relaxation in Solids, Ed. Chelsea dielectric press London ,1983.

[6] S. Golin, Phys. Rev. 132, 1963

Chapitre III Caractérisations et discussions

III.1 Introduction :

Le dopage est l'action d'ajouter des impuretés en petites quantités à une substance pure afin de modifier ses propriétés.

Le dopage d'un matériau consiste à introduire, des atomes d'un autre matériau. Ces atomes vont se substituer à certains atomes initiaux et ainsi introduire d'avantage d'électrons ou de trous et par conséquence améliorer les propriétés du matériau. Le taux de dopage est limité, pour que le matériau conserve sa structure cristallographique initiale pour préserver ses propriétés.

Ce chapitre est dédié à la présentation des résultats relatifs aux composés de ferrites MgFe₂. _xCr_xO₄ayant différentes composition (x = 0, 0.2, 0.5, 0.7 et 1) synthétisés par méthode de double sinteringceramic à partir des oxydes de fer et de magnésium (Fe₂O₃, MgO) pour x=0 et desoxydes de fer, de magnésium et de chrome (Fe₂O₃,MgO,Cr₂O₃) pour x≤1 [1,2]. Cette partie est consacrée à l'étude de l'effet de substitution du fer par le chrome sur les propriétés structurales, optiques et électriques.

III.2. Elaboration des échantillons de ferrites MgCr_xFe_{2-x}O₄:

La densification des composants est un passage obligé pour améliorer les caractéristiques des matériaux. Elle nécessite deux étapes : le compactage et le frittage [3].

III.2.1. Le Pastillage :

C'est la première étape de densification du matériau. Elle consiste à faire d'un mélange de différentes poudres une matière solide et compacte. Il s'agit de **mélanger** les poudres avec des quantités précises afin d'obtenir les proportions stœchiométriques voulues.Cette étape consiste à transformer notre poudre en un objet dense et compact en exerçant une contrainte uni axiale. Pour le pastillage un simple cric hydraulique ayant une pression de (3 tonnes) et une pièce qui est constituée de deux pistons et d'une forme cylindrique creuse des deux côtés ont été utilisées. Cette étape se fait en mettant la poudre dans le moule qui nous donne la forme d'une pastille. Ensuite, une pression est appliquée à ce dernier en utilisant le cric qui est supporté par une forme en (H) fabriquée en acier. Une fois la poudre comprimée on procède à son extraction sous forme de pastille.

III.2.2 Le frittage à 1100°C pour 24h:

C'est la deuxième étape de la densification du matériau. Il permet d'éliminer les contraintes internes introduites par les différents traitements mécaniques et d'homogénéiser la composition chimique du matériau.

III.2.3Double sintering céramique technique :

Cette démarche consiste à renouveler chacune des deux étapes précédentes, on récupère les pastilles de chaque concentration, elles sont de nouveau broyées, on a opéré un deuxième pastillage et enfin on effectue un deuxième frittage à 1100°C pour une durée équivalente à la première, qui est de l'ordre de 24h. Au cours de cette étape, une inter-diffusion a lieu entre les particules adjacentes ce qui les amènent à coller ensemble. Ce deuxième frittage a pour but de bien réorganiser et réarranger les composésdu premier frittage et ainsi pouvoir remplir les vides laissés par les composés durant le premier frittage. Ce que l'on appelle la « **Double Sintering Céramique Technique**»(**Figure III.1**)qui est une technique utilisée pour son coût moins onéreux par rapport à d'autres procédés et à sa simplicité.

Figure III.1 : Double Sintering Céramique Technique

III.3. Analyse des propriétés structurales, optiques et électriques

III.3.1.Caractérisation par diffraction des rayons X (DRX)

Les spectres de diffraction aux rayons X des concentrations suivantes : (x=0, x=0.2, x=0.5, x=0.7, x=1) sont présentés sur les **Figures III.2,3,4,5,6**. Tous ces spectres confirment la formation de ferrites d'une structure spinelle cubique. La réflexion des pics (2 2 0), (3 1 1), (4 0 0), (5 1 1), (4 4 0) est visible pour les cinq spectres, les tableaux rassemblent toutes ces réflexions ainsi que les distances interréticulaires d_{hkl} correspondantes.

Measurement profile

Figure III.2 : Spectre de diffraction à rayons x de MgFe2O4

Peak list				
	hkl	2-theta(deg)	d(ang.)	FWHM(deg)
	220	30.128(8)	2.9639(7)	0.15(2)
	140	31.920(6)	2.8014(5)	0.09(3)
	311	35.447(9)	2.5304(6)	0.145(10)
	400	43.09(4)	2.0976(17)	0.18(3)
	116	55.97(3)	1.6416(9)	0.11(3)
	511	57.019(8)	1.6139(2)	0.17(3)
	440	62.578(11)	1.4832(2)	0.142(10)

Fe₂O₃(JCPDS 330664)

Tableau III.1 :Pics et distances interéticulaires de MgFe2O4

Chapitre III Caractérisations et discussions

Measurement profile

Figure III.3 :Spectre de diffraction à rayons x deMgFe1.8Cr0.2O4

hkl	2-theta(deg)	d(ang.)	FWHM(deg)
220	30.22(2)	2.955(2)	0.15(2)
140	32.00(4)	2.795(3)	0.14(4)
311	35.574(8)	2.5216(6)	0.149(9)
400	43.265(7)	2.0895(3)	0.13(4)
511	57.119(18)	1.6113(5)	0.15(2)
440	62.758(12)	1.4794(3)	0.142(13)
533	74.19(7)	1.2772(11)	0.21(8)

Peaklist

Fe₂O₃

Tableau III.2 : Pics et distances interéticulaires de MgFe1.8Cr0.2O4

Peaklist

hkl	2-theta(deg)	d(ang.)	FWHM(deg)
220	30.16(3)	2.960(3)	0.18(3)
311	35.490(10)	2.5274(7)	0.160(8)
400	43.175(11)	2.0937(5)	0.16(4)
511	57.077(19)	1.6124(5)	0.16(2)
440	62.682(14)	1.4810(3)	0.158(15)

Tableau III.3 : Pics et distances interéticulaires de MgFe1.5Cr0.5O4

Peaklist

Figure III.5 :Spectre de diffraction à rayons x deMgFe1.3Cr0.7O4

hkl	2-theta(deg)	d(ang.)	FWHM(deg)
111	18.238(12)	4.860(3)	0.17(4)
220	30.08(4)	2.969(3)	0.15(3)
311	35.472(10)	2.5286(7)	0.163(10)
400	43.142(17)	2.0952(8)	0.13(2)
511	57.060(18)	1.6128(5)	0.139(19)
440	62.676(16)	1.4811(3)	0.153(18)

Tableau III.4 : Pics et distances interéticulaires de MgFe1.3Cr0.7O4

Figure III.6 :Spectre de diffraction des rayons x deMgFe1Cr1O4

- L-1		-1/	
nki	2-theta(deg)	d(ang.)	FVVHIVI(deg)
111	18.43(2)	4.810(6)	0.20(2)
220	30.266(11)	2.9506(10)	0.10(2)
140	32.133(15)	2.7834(12)	0.14(4)
311	35.620(10)	2.5184(7)	0.171(9)
400	43.317(17)	2.0871(8)	0.15(2)
511	57.24(2)	1.6082(6)	0.19(3)
440	62.858(8)	1.47724(17)	0.210(14)
533	75.39(3)	1.2598(4)	0.18(9)

Fe₂O₃

Peaklist

Tableau III.5 : Pics et distances interéticulaires de MgFe1Cr1O4

Le pic desdiffractogrammes correspondant au plan (311) est d'autant plus intense pour une teneur faible en Cr pour x = 0, 0.2.

III.3.2. Calcul du paramètre de maille a:

Le paramètre de maille (a) pour tous les échantillons a été calculé en utilisant les équations suivantes :

Equation 1:

Loi de Bragg :

$$n \lambda = 2\mathbf{d}_{hkl} \operatorname{Sin} \theta \operatorname{donc} : \mathbf{d}_{hk} = \frac{n \lambda}{2 \operatorname{Sin} \theta}$$

d_{hkl}: distance inter réticulaire.

n : ordre de diffraction (nombre entier).

 λ : longueur d'onde des rayons X (1,540598).

 θ : angle de Bragg = demi-angle de déviation (moitié de l'angle entre le faisceau incident et la direction du détecteur).

Equation 2 :

Dans une structure cubique on a :

$$\mathbf{d}_{\mathrm{hkl}} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

 d_{hkl} : distance inter réticulaire.

a: paramètre de maille.

(h kl) : indices de Miller.

Les valeurs du paramètre de maille (a) calculées pour toutes les concentrations sont classées dans le **Tableau III.6.** Elles sont proches de celles trouvées dans la littérature [1,2] sauf que la varia-

tion n'est pas linéaire.

Х	Paramètre de maille a(Å)
0	8.3924
0.2	8.3624
0.5	8.3824
0.7	8.3864
1	8.3526

Tableau III.6 : valeurs du paramètre de maille a pour chaque concertation x de $Mg_2Fe_{2-x}Cr_xO_4$

Pour mieux faire une clarification, la variation du paramètre de maille est tracée dans la **Figure III.7**. On remarque que le paramètre de maille pour tous les composés (x=0.2, x=0.5, x=0.7, x=1) est inférieur à celui de la phase non dopée (x=0).

La diminution du paramètre de maille est due à cause de la différence desrayons ioniques (r_{Cr3+} = 0.64 Å et r_{Fe3+} = 0.67 Å). Cette variation est non-linéaire et n'obéit pas à la loi de Vegardqui énonce que dans une solution solide, à température constante, il existe une relation linéaire entre les paramètres de maillede la structure cristalline et les concentrations de ses éléments constituants.

Figure III.7: Evolution du paramètre de maille en fonction de laconcentrationxen chrome

III.3.3. Granulométrie :

La taille moyenne des cristallites DxRD pour tous les échantillons a été évaluée à partir du pic de diffraction (3 1 1) pour chaque concentration en utilisant l'équation de Scherrer qui se présente comme suit :

$$Dxrd = K\lambda/\beta cos\theta$$

K : Facteur de forme sans dimension qui est estimé à (0,89).

 λ : Longueur d'onde incidente Cu K α (1,540598).

 θ : Moitié de l'angle d'incidence/ angle de Bragg.

 β : Largeur à mi-hauteur de la raie pour le pic le plus intense (3 1 1) en radian.

D'après ces résultats (**Tableau III.7**) la taille des particules est à l'échelle nanométriqueet les valeurs sont comprises entre 56.9nm et 48.3nm. De façon générale, la courbe (**Figure III.8**) relative à la variation de la taille des particules montre une décroissance régulière en fonction du taux de substitution de chrome x.

Х	β(FWHM)	COS0	DXRD
0	0.00253	0.9525	56.9
0.2	0.00260	0.9522	55.4
0.5	0.00279	0.9524	51.6
0.7	0.00284	0.9524	50.7
1	0.00298	0.9520	48.3

Tableau III.7 : Taille des cristallites en (nm) pour chaque concentration.

Figure III.8: Variation de la taille des cristallites en fonction du taux de chrome (x)

III.4. Analyse des propriétés optiques

Dans le but d'étudier le caractère semi-conducteur des spinelles ferrites, nous avons utilisé latechnique de spectroscopie UV-Visible afin de déterminer la valeur du gap énergétique. Il estbien connu que les isolants tendent à avoir une prédominance des liaisons ioniques, les semiconducteurstendent à avoir des liaisons covalentes. Dans le premier cas, il est difficile defairedéplacer un électron de la bande de valence vers la bande de conduction. Dans ledeuxième cas, avec un minimum d'énergie on peut faire déplacer l'électron de valence vers labande de conduction. En recherchant des propriétés semi-conductrices nous avons enregistrél'absorbance (A) en fonction de la longueur d'onde λ . Les propriétés optiques ont été déterminées en utilisant un spectromètre UV-Vis dans la gamme de 400 nm à 1200 nm.

Figure III.9 :Variation de l'absorbance en fonction de la longueur d'onde des ferrites

A partir des spectres représentés ci-dessus, on observe un pic apparaissant à une longueur d'onde de 700 nm environ expliquantl'incorporation des atomes du chrome dans le réseau de la ferrite du magnésium.

Le tracé de la courbe $(\alpha.h\nu)^2$ en fonctionde $(h\nu)$ pour tous les matériaux montre que les oxydes utilisés pour la photocatalyse sont dessemi-conducteurs (**Figure III.10**)

Figure III.10 :Variation de la densité optique en fonction de l'énergiedes différentes ferritesMgFe_{2-x}Cr_xO₄

La valeur de bande interdite directe du MgFe₂O₄ et du MgFe₂O₄ dopé au Cr ont été observées dans la gamme de (1,87-1,50 eV). Selon ces valeurs, on observe que la bande interdite continue à décroître avec l'augmentation de la teneur en Cr (x = 0,2 à x =1) dans les matrices de ferrite de magnésium. Le décalage observé de la bande interdite avec la teneur en chrome est probablement dû à la taille des particules de la poudre. Il a été également rapporté que la taille des particules et la distribution des tailles des particules provoquent un élargissement inhomogène des spectres optiques. La bande interdite peut varier en fonction de la différence d'électronégativité entre l'oxygène et les métaux du site B: le Fe³⁺ se substitue par des ions Cr³⁺ dans le site B.La différence d'électronégativitéentre O et Fe est de 1,61(Pauling electronegativityde l'O est de 3,44 et du Fe est de 1,83), la différence d'électronégativité entre O et Cr est de 1,8 (Cr de 1,66). Le Fe se-

substitue par des ions Cr^{3+} dans le site B. Ce quiconduit à une augmentation de la différence d'électronégativité de 1,61 à 1,8 avec un élément de transition de dopage moins électronégatif (Cr). Cette différence d'électronégativité conduit àchanger la bande interdite. La plage obtenue de l'intervalle de bande indique que ces matériaux MgFe_{2-x}Cr_xO₄peuvent être utilisés dans la photocatalyse

III.5. Analyse par spectroscopie FTIR

Des analyses FTIR ont été effectuées pour évaluer la formation de la structure spinelle. Des pastilles de KBr incluant le matériau à analyser sont formées en broyant 90mg de KBr avec 10 mg descomposés correspondant aux différentes compositions (x=0, 0.2, x=0.5, x=0.7, x=1) jusqu'à l'obtention d'une poudre. La poudre est alors pressée sous 12 tonnes pendant 2 minutes. La pastille ainsi obtenue est analysée. Les spectresinfrarouges des poudres ont été enregistrés dans le domaine 400-4000 cm⁻¹(**Figure III.11**)

Figure III.11 :Spectres infrarouge des composés MgCr_xFe_{2-x}O₄ ($0 \le x \le 1$)

Les mesures des spectres infrarouges effectuéesmontrentla présence de deux bandes d'absorption $v_1(554-600 \text{ cm}^{-1})$ et $v_2(445-495 \text{ cm}^{-1})$ qui sont énumérées dans le **Tableau III.8** en fonction de la teneur en chrome x. L'ordre de grandeur de ces résultats est en accord raisonnable avec ceux de K.Sabri et al.[2]. Ces bandes d'absorption à l'intérieur de cette limite confirment la formation d'une structure spinelle monophasée ayant deux sous réseaux : site tétraédrique (A) et site octaé-drique (B). La bande d'absorption v_1 est affectée au mode de vibration d'étirement du métaloxygène dans les sites tétraédriques, tandis que v_2 est attribuée aux complexes de groupes octaé-driques.

Х	ν_1	v_2
0	445	554
0,2	452	563
0,5	462	568
0,7	491	570
1	495	600

Tableau III.8 : fréquences v_1 et v_2 en (cm⁻¹) pour chaque concentration.

III.6. Mesures électriques

Les spectroscopies diélectriques, et plus particulièrement les Spectroscopies d'Impédance Complexe(SIC) et des Courants Thermiquement Stimulés (CTS), représentent des méthodes de choix pour l'étude de ladynamique des systèmes polaires et des phénomènes de transport de charges dans les solides et les liquides. L'appareil utilisé est un Modulab XM/SOLARTRON (HTDS) de l'ICGMontpellier.Les gammes de travail pour les différentes grandeurs caractéristiques sont :Fréquence de 10 μ Hz à 1 MHz, Impédance de 0,01 Ω à 10¹⁴ Ω , Capacité de 1 pF à 1 F, Angle de perte de 10⁻⁴ – 10⁴.

L'impédancemètre est relié à un cryostat dont la régulation thermique est assurée par un flux de diazote : -195°C à 330°C

Le porte-échantillon inséré dans le cryostat (**Figure III.12**) est adapté à l'étude de poudres pastillées ou de films(épaisseur < 20 mm, diamètre < 20 mm)

Figure III.12 : Représentation du cryostat, du porte-échantillon et du module de mesure de l'impédancemètreModulab XM

Les mesures électriques, nécessitent des pastilles. L'échantillon finement broyé est compacté sous une pression de 200 bars, en forme de pastille de 13 mm de diamètre et $\sim 1-2$ mm d'épaisseur environ. Les mesures électriques ont été effectuées aux conditions suivantes : en fonction de la température (200K à 450k chaque 10K, 1000mV) à fréquences fixes : 10Hz, 100Hz, 1KHz, 10kHz, 100KHz, 200kHz.

III.6.1. Variation de la constant diélectrique_r' avec la fréquence

La variation de la constante diélectrique ε_r ' des composés MgFe_{2-x}Cr_xO₄a été étudiée à température ambiante dans le domaine de fréquence10Hz à200kHz.Une forte décroissance est observée aux basses fréquences suivie par une constance aux hautes fréquences(**Figure III.13**). Ce comportement est observé dans plusieurs ferrites spinelles[4-7]. Ceci peut être expliqué par la polarisation interfaciale du type the Maxwell-Wagner en accord avec la théorie phénoménologique de Koops (Koops, 1951) [8,9]. En accord avec ce modèle, la ferrite est composée de grains bons conducteurs séparés par des joints de grains peu conducteurs. Lors de l'application du champ électrique, les électrons atteignent lejoint du grain par saut, et sila résistance du de grain est suffisamment élevée, les électrons s'empilent aux joints de grain et produisent une polarisation.Cependant, lorsque la fréquence du champ extérieur appliqué augmente au-delà d'une certaine valeur, Lafréquence dusautne peut pas suivre la variation du champ. Elle diminue la probabilité que les électrons atteignent le joint grainet, par conséquent, la polarisation diminue, ce qui entraîne à son tour la diminution de la constante diélectrique.

La grande valeur de la permittivité diélectrique ϵ ' à basse fréquence est due à la prédominance des ions Fe²⁺, des lacunes d'oxygène, des défauts de joint des grains, etc., tandis que la diminution des ϵ_r 'avec la fréquence est due au retard des espècescontribuant à la polarisabilité par rapport au champ électrique appliqué. Aux fréquences plus élevées, ϵ_r 'varie lentement, ce qui est attribué à la contribution de la polarisabilité électrique uniquement.

Figure III.13 :Variation de la constante diélectrique ε_r 'avec la fréquence des composés MgFe_{2-x}Cr_xO₄(x = 0 à 1).

Figure III.14 :Variation de la constante diélectrique ε_r '' avec la fréquence des composés MgFe_{2-x}Cr_xO₄(x = 0 à 1).

La variation de la constante diélectrique $\varepsilon_r''\varepsilon_r''$ en fonction de la composition estillustrée dans la Figure III.14

Figure III.15 :Variation de la conductivité alternative σ_{ac} avec la fréquence pour MgFe₂₋xCr_xO₄ (x = 0 à 1).

III.6.2. Variation de la conductivité ac avec la fréquence

L'étude de la conductivité en courant alternatifdes échantillons a été réalisée dans la gamme de fréquences de 10 Hz à 200 KHz. Toutes les courbes (**Figure III.15**) présentent le même comportement de dispersion avec la fréquence: elle est constante jusqu'à 10^4 Hz puis une augmentation plus annoncée pour les composition (x=0.5 et x=1)

La conductivité électrique dans les ferritesest principalement due au saut d'électrons entre les ions d'un même élément présenté dans plus d'une valenceet répartis aléatoirement sur des sites cristallographiques équivalents du réseau [10]. A la suite de l'application du Champ électrique alternatif, ce saut d'électrons est stimulé, ce qui entraîne une augmentation de la conductivité σ_{ac} .

III.6.3. Dépendance du comportement diélectriquede la composition x :

La permittivité relative réelle ε_r' (Figure III.16), le facteur de dissipationtg δ (Figure III.17) et la conductivité en courant alternatif σ_{ac} (Figure III.18) des échantillons étudiés sontdonnées à une-fréquence de 1 kHz à titre d'exemple.Les valeurs sont enregistrées dans le**Tableau III.9**.

Figure III.16 :Variation de la constante diélectrique ε_r 'en fonction de la teneur en Cr (*x*) pour une fréquence de 1 kHz à 300K

Figure III.17 : Variation dufacteur de dissipation ($tg\delta$)en fonction de la teneur en Cr (x) pour une fréquence de 1 kHz à 300K

Figure III.18 : Variation de la conductivité en courant alternatif σ_{ac} en fonction de la teneur en Cr (*x*) pourune fréquence de 1 kHz à 300K

Composition en ferrite	Permittivité relative réelle(ɛr')	Facteur de dissipa- tion ($tg \delta$)	$\sigma_{ac}(\times 10^{-7})$
x=0	14,52838	0,1415414	1,14
x=0.2	12,26353	0,06138581	0,42
x=0.5	13,44938	0,1068646	0,8
x=0.7	12,53688	0,1107488	0,77
x=1	12,97139	0,1629902	1,17

Tableau III.9 :Paramètres diélectriques de MgFe_{2-x}Cr_xO₄ (x = 0,0 à 1) à 1 kHz à 300K

Il ressort clairement du tableau que, tous les paramètres diélectriquessont affectés par la teneur en Cr (x).

Les spinellesdopés (x=0.2, 0.5, 0.7) au cr ont une conductivité moins élevée que les ferrites non dopées (x=0). Cette diminution de la conductivité en courant alternatif avec la substitution du chrome peut être due à la diminution des ions Fe^{2+} aux sites tétraédriques, ce qui peut diminuerlesaut des porteurs de charge entre les ions Fe^{2+} et Fe^{3+} , et par conséquent, il y a diminution de la conductivité alternative desferrites Cr-Mg [11].

III.6.4. Energies d'activation E_a

Lorsque la loi d'Arrhenius est respectée dans un domaine de températures, on a :

$$\sigma = \sigma_0 \exp(-E_a / kT)$$

La linéarisation de l'équation donne :

$$In\sigma = In\sigma_0 - E_a / k T$$

Avec k : constant de Bolzman : $(8,625 \ 10^{-5} \text{eVK}^{-1})$ et σ_0 une constante.

Le tracé de log σ = f (1000 / T) donne une droite dont la pente conduit à l'énergie d'activation E_a

$$E_a(eV) = 0,198 \times pente$$

Figure III.19 : Conductivité électrique en fonction de 1000/T de MgFe₂O₄ (a)(x = 0)

Energies d'activation (b) et (c)

On remarque un changement de pente à 370K faisant apparaître deux domaines (**Figure III.18**). Les énergies d'activation étant de 0,345eV et de 0,109 eVdans ces domaines respectivement.

Pour x=0,2, les variations de la conductivité en fonction de 1000/T sont données dans la courbe ci-dessous (**Figure III.20**). Les énergies d'activation dans les deux domaines sont respectivement 0,335eV et 0,186eV.

Figure III.20 :Conductivité électrique en fonction de 1000/T de MgFe_{1,8}Cr_{0,2}O₄ (a)(x = 0,2) Energies d'activation (b) et (c)

Pour x=0,5 ; la **Figure III.21** fait apparaitre aussi différents domaines de variation correspondant à différentes énergies (0,44eV, 0,12eV)

Figure III.21 : Conductivité électrique en fonction de 1000/T de MgFe_{1,5}Cr_{0,5}O₄ (x = 0,5)

L'augmentation de σ avec la température révèle un comportement semi-conducteur classique, propriété exigée en photocatalyse. La variation de **log** σ en fonction de 1000/T élucide deux domaines de variations. Ceci est interprété par deux modes de conductivité différents : dans le premier domaine, la conductivité électrique se fait selon la direction de prolongement des octaèdres. En revanche, pour le deuxième domaine, ce sont les tétraèdres qui conduisent les électrons.

III.22 : Conductivité électrique en fonction de 1000/T de MgFe_{1,3}Cr_{0,7}O₄ (x = 0,7) L'énergie d'activation, Ea=0,083eV, a une valeur se rapprochant de celles trouvées dans le deuxième domaine des échantillons déjà étudiés.

Figure III.22 :La conductivité électrique en fonction de 1000/T de MgFe_{1,3}Cr_{0,7}O₄ (x = 1)

Pour ce dernier échantillon, les mesures fluctuent de façon importante, on ne peut pas tirer conclusion.

[1] A. Rais, K. Taibi, A. Addou, A. Zanoun, Y. Al-Douri, Copper substitution effect on the structural properties of nickel ferrites, Ceram. Int. 40 (2014) 14413–14419.

[2] K. Sabri, A. Rais, K. Taibi, M. Moreau, B. Ouddane, A. Addou, Structural Rietveldrefinement and vibrationalstudy of MgCr_xFe_{2-x}O₄spinel ferrites, Physica B 501 (2016) 38–44

[3] Khaled Seghouani et Yacine Khimoun, Mémoire de Master 2 en Ingénierie des matériaux,''Elaboration et caractérisations des ferrites Ni_{1-x}Cu_xFe₂O₄ '' USTHB, 2013

[4]Mamilla Lakshmi, KatrapallyVijaya Kumar, Krishnan Thyagarajan, Study of the Dielectric BehaviourofCr-Doped Zinc Nano Ferrites Synthesized bySol-Gel Method, Advances in Materials Physics and Chemistry, 2016, 6, 141-148

[5] Ravinder, D. and Kumar, K.V. (2001) Dielectric Behaviour of Erbium Substituted Mn-Zn Ferrites. *Bulletin of MaterialsScience*, **24**, 505-509.

[6] Mohd, H., Shalendra Kumar, A., Shirsath, S.E., Kotnala, R.K., Shah, J. and Kumar, R. (2013) Influence of Cr³⁺ Ion on the Structural, ac Conductivity and Magnetic Properties of Nanocrystalline Ni-Mg Ferrite. *Ceramics International*, **39**,1807-1819.

[7] Wahbaa, A.M. and Mohamed, M.B. (2014) Structural, Magnetic, and Dielectric Properties of Nanocrystalline Cr-SubstitutedCo0.8Ni0.2Fe2O4 Ferrite. *Ceramics International*, **40**, 6127-6135.

[8] Wagner, K.W. (1973) The Distribution of Relaxation Times in Typical Dielectrics. *Annals of Physics*, **40**, 817-819.

[9] Koops, C.G. (1951) On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audiofrequencies.*Physical Review*, **83**, 121.

[10] Muddassar, N., Shah, N.A., Gul, I.H. and Maqsood, A. (2009) Structural, Electrical and Magnetic Characterization of Ni-Mg Spinel Ferrites. *Journal of Alloys and Compounds*, **487**, 739-743.

[11] Sathishkumar, G., Venkataraju, C. and Sivakumar, K. (2013) Magnetic and Dielectric Properties of Cadmium SubstitutedNickel Cobalt Nanoferrites. *Journal of Materials Science: Materials in Electronics*, **24**, 1057-1062.

Conclusion générale

Au cours de ce travail, nous avons caractérisé les composés de la famille spinelle de formule Mg Fe_{2-x} Cr_x O₄ (0 \leq x \leq 1)

- L'étude par D.R.X. sur poudres à température ambiante a permis de contrôler la présence de ces phases. Les réflexions apparaissant dans les diffractogrammes ont été indexées par isotopie aux phases de structure spinelle et de formule AB₂O₄. En effet, la symétrie cubique observée est caractéristique de ce type de matériaux.La taille des grains est de l'ordre nanométrique (48,3–56,9nm) et le paramètre de maille a varie avec la concentration (x) en Cr.
- Un comportement de photo activité est mis en évidence dans ces composés par spectrophotométrie UV/Visible. Ces derniers absorbent la lumière dans la gamme visible, ce qui les rend intéressants pour des applications en photocatalyse, par la conversion de l'énergie lumineuse en énergie électrique.
- Les spectres IR montrent la présence de deux bandes d'absorption v₁(554–600cm⁻¹) et v₂(445–495cm⁻¹).
- L'étude des propriétés électriques dans un large domaine de température a révélé un comportement semi-conducteur. L'exploitation des résultats a permis le calcul de l'énergie d'activation pour le processus de conduction montant ainsi deux domaines.
- Afin d'obtenir des matériaux de structures connues, pouvant être synthétisés par des méthodes simples et disponibles, présentant des propriétés semi-conductrices et absorbant en visible, il serait intéressant de se fixer les perspectives suivantes:
 - élaborer des phases de structure spinelle AB₂O₄ avec une très grande pureté,
 - procéder à d'autres méthodes d'investigations qui permettraient de cerner les propriétés physicochimiques des compositions étudiées.

Abstract:

The serie of Cr-Mg nano ferrites having the general composition MgFe_{2-x}Cr_xO₄ ($0 \le x \le 1$) have been synthesized by the standard double sintering ceramic technique at 1100 °C for 12h. The effect of chromium substitution on structural, optical and dielectric properties of Mg-ferrites is reported in this work. The analysis of XRD patterns revealed the formation of phase cubic spinel structure for all the Cr-Mg ferrite samples. The average grain size was found to be in the nanometer range and of the order of 48,3–56,9 nm. The lattice parameter and crystallite size decrease with increase in Cr concentration (*x*). The UV–vis spectroscopy analysis showed that the energy bandgap (E_g) is 1.87 to 1.50 eV.The infrared spectra measurementsshow clearly the presence of two absorption bands v₁(554–600cm⁻¹) andv₂(445–495cm⁻¹). The ac conductivity (σ_{ac}) was found to increase with an increase in temperature ensuring the semiconducting nature of the prepared ferrites. The corresponding activationenergies for conduction were obtained from the plot of log σ vs 1000/T, which display two slopes of separate regions.

Résumé:

Une série de nano ferrites ayant une composition générale MgFe₂₋xCr_xO4($0 \le x \le 1$) a été synthétisée par la technique « céramique par double frittage » à1100 °C pendant 12h. L'effet de la substitution du chrome sur les propriétés structurale, optiques et diélectriques est reporté dans ce travail. Les analyses par diffraction aux rayons X (DRX) confirment la présence de la phase cubique du type Spinelle pour toutes les compositions. La taille des grains est de l'ordre nanométrique (48,3–56,9 nm) et le paramètre de maille a décroit lorsque la concentration (x) en Cr augmente.Lesanalysespar spectroscopie UV–vis donnent accès à l'énergie du gap (Eg) qui est de 1,87 à 1,50 eV.Les spectres IR montrent la présence de deux bandes d'absorption v₁(554–600cm⁻¹) et v₂(445–495cm⁻¹).La conductivité(σ_{ac}) augmente avec la température indiquant ainsi la nature semi-conductrice des ferrites préparées. Les énergies d'activation sont obtenues en traçantlog σ_{ac} en fonction de 1000/T montrant ainsi deux domaines.

ملخص

تم تصنيع سلسلة من فريت النانو ذات التركيب العام ($1 \le x \ge 0$) MgFe_{2-x}Cr_xO4) بواسطة تقنية "السير اميك بالتلبيد المزدوج" عند 1100 درجة مئوية لمدة 12 ساعة. تم ذكر تأثير استبدال الكروم على الخواص التركيبية والضوئية والعازلة الكهربائية في هذا العمل. تؤكد تحليلات حيود الأشعة السينية (XRD) وجود الطور المكعب من نوع الإسبنيل لجميع التركيبات. حجم الحبوب هو من الترتيب النانومتري (5.4-6.5 نانومتر) وتتناقص معلمة الشبكة عندما يزيد تركيز (x) من الكروم. توفر التحليلات بواسطة التحليل الطيفي للأشعة فوق البنفسجية والمرئية إمكانية الوصول إلى طاقة الفجوة (على سبيل المثال)، والتي تتراوح من1,87 إلى 1.50 الكترون فولت. يُظهر أطياف الأشعة تحت الحمراء وجود نطاقي امتصاص(¹⁻ م000–554) الار (¹⁻ معرف) براد الموصلية (م₂ مع زيادة درجة الحرارة مما يدل على المتصاص(¹⁻ م000هـ 2001) العرفي المقات التنشيط من خلال رسم₂مهما لالتالي المتصاص(¹⁻ مما يدل الفريت المحضر. يتم الحصول على طاقات التنشيط من خلال رسم₂مهما كدالة 7/1000 وبالتالي