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ABSTRACT

T he present investigation examines the influences of the Reynolds number and the flow
behavior index on the rheological behavior, mean flow quantities, and turbulence. The
current study also tends to ascertain the accuracy and reliability of the results predicted by

DNS and LES laboratory code of Ostwald de Waele fluids flow.

A DNS has been performed to study the fully developed turbulent flow of Pseudoplastic,
Newtonian, and Dilatant fluids through an isothermal pipe at a simulation Reynolds number
of 6500. The finite difference scheme performed the numerical integration with second-order
accuracy in space and time, and a numerical resolution of (129 x 129 x 193) gridpoints in axial,
radial and circumferential directions. A Large Eddy Simulation (LFS) with an extended Sma-
gorinsky model has been conducted to investigate the fully developed turbulent flow forced
convection of thermally independent Ostwald de Waele fluids through a heated stationary pipe.
This investigation has been conducted on various flow behavior indices and Reynolds numbers
at a fixed simulation Prandtl number with a grid resolution of 65° gridpoints in axial, radial
and circumferential directions, respectively, and a domain length of 207 in the axial direction.
The DN S results show that the increased flow behavior index ameliorates the transport mecha-
nism of the radial and tangential velocity fluctuations from the axial velocity fluctuations and
the transport from the wall vicinity towards the core region. The LFES results suggest that the
decreased flow behavior index induces a pronounced suppression in the turbulent kinetic energy
along the pipe radius due to the reduction in the generation and transport of the turbulence
intensities of the velocity fluctuations far away from the wall towards the buffer region.
Keywords : DNS, LES, extended Smagorinsky model, fully developed turbulence, Pseudoplas-

tic, Newtonian, Dilatant, forced convection.



FRENCH ABSTRACT

a présente étude s’interesse aux influences du nombre de Reynolds et de l'indice
L d’écoulement sur le comportement rhéologique, les quantités moyennes d’écoulement et
les statistiques de turbulence. Aussi elle vise également & vérifier la précision des résultats
prédits par les codes DN S et LES lors de I’écoulement du fluide d’Ostwald de Waele. DN S
a été utiliseé pour étudier 1’écoulement turbulent pleinement développé de fluides Pseudo-
plastiques, Newtoniens et Dilatants a travers un cylindre chauffé a un nombre de Reynold
égale 6500. Le schéma de différences finies a permis l'intégration numérique avec une précision
du second ordre dans 'espace et le temps, et une résolution numérique de (129 x 129 x 193)
points de grille dans les directions axiale, radiale et circonférentielle. Une simulation a grands
échelles (LES) avec un modele de Smagorinsky étendu a été menée pour étudier la convection
forcée des fluides d’Ostwald de Waele thermiquement indépendants a travers un cylindre
stationnaire chauffé. Cette étude a été menée sur différents indices d’écoulement et nombres
de Reynolds avec une résolution numérique de 65° points de grille dans les directions axiale,
radiale et circonférentielle avec une longueur du domaine de 201 dans la direction axiale. Les
résultats obtenus par DN S montrent que 'augmentation de l'indice d’écoulement améliore
le mécanisme de transport des fluctuations des vitesses radiale et tangentielle a partir des
fluctuations de la vitesse axiale et le transport a proximité de la paroi vers la région centrale.
Les résultats issus de l'approche LFES suggerent que la diminution de l'indice d’écoulement
induit une suppression prononcée de I’énergie cinétique turbulente le long du rayon du cylindre
en raison de la réduction de la génération et du transport des intensités de turbulence des

fluctuations de vitesse loin de la paroi vers la région tampon.

Mots clés : DNS, LES, étendue de Smagorinsky, turbulence pleinement développée, Pseudo-

plastique, Newtonien, Dilatant, convection forcée.
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GENERAL INTRODUCTION

urbulence is a complex phenomenon that occurs in many natural and artificial systems.
T It refers to a state of fluid flow in which the fluid motion is irregular and chaotic, with
fluctuations in velocity, pressure, and other fluid properties occurring seemingly randomly. Tur-
bulence can be observed in various contexts, from airflow over an aeroplane wing or river water
movement to fluids in a chemical reactor or plasma dynamics in a fusion device. The study of
turbulence is important in many fields of science and engineering, including fluid mechanics, me-
teorology, oceanography, and aerospace engineering. This complexity makes turbulence difficult
to predict and model accurately, and it remains one of the major unsolved problems in physics
and engineering. Turbulence can significantly improve the efficiency and performance of many
systems, from aircraft engines to chemical reactors. Understanding the nature and behaviour of

turbulent flow is important in many fields, including fluid mechanics, engineering, and physics.

Today DN S and LES have become an important tools for the turbulence research com-
munity. DNS and LES can provide accurate, complete, and detailed data, especially in the
near-wall regions and/or separation regions. Despite improvements in experimental techniques,
it is still difficult for experimental methods to get reliable data for certain variables, especially,
for compressible flows. For example applying the DN S tool to flows of non-Newtonian fluids

allows the rheology model to be treated with certainty.

For this dissertation, the first investigation devote to a Direct Numerical Simulation (DN.S)
of the fully developed turbulent flow of Ostwald de Waele fluid through an isothermal axially
stationary pipe over the range of flow behaviour indices (0.75 to 1.2) and Reynolds number
equal to 6500. Computations are carried out by a finite difference scheme with second-order

accurate in space and time. The numerical resolution is (129 x 129 x 193) gridpoints in radial,
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tangential, and axial directions, respectively, with a domain length of 20R.

The second study of this thesis report on the large eddy simulation (LFES) with Smagorinsky
extended model to investigate numerically the fully developed turbulent forced convection heat
transfer of thermally independent Ostwald de Waele fluids through axially stationary pipe over
the range of flow behaviour indices (0.75 to 1.6) and Reynolds numbers (4000 to 12000) at
a fixed Prandtl number equal to 1. Uniform heat flux is imposed on the wall as a thermal
boundary condition with an adequate grid resolution of 65° gridpoints in the streamwise, radial
and spanwise directions, respectively, and a computational length of 20R in the streamwise

direction.

Dissertation organization

CHAPTER 1 relates the rheological properties and classification of fluids as well as analog
models that reflect the main behaviors (elastic, viscous and plastic). This chapter also provides

a further understanding of turbulence phenomenon by presenting its characteristics

CHAPTER 2 concern the modeling of the turbulence phenomenon and the numerical proce-
dures adopted in our study. In addition, it provides a comprehensive overview of the research on
fluid flow through stationary and rotating pipes and explores various numerical approaches and
techniques to predict turbulent flow, such as Direct Numerical Simulation (DN S) and Large

Eddy Simulation (LES).

CHAPTER 3 analyses and discusses the DN S results of the turbulent flow of the Ostwald

de Waele fluids through an isothermal pipe.

CHAPTER 4 analyses and discusses largely the emerged LFE'S results of the forced convection
turbulent flow of the thermally independent Ostwald de Waele fluids through a uniform heated

pipe.

Finally, the conclusions are drawn from the findings of the research work, and recommenda-

tions for future work are made.
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GENERALITY ON RHEOLOGY AND
TURBULENCE

What is rheology ?

heology is the study of how materials deform and flow under the influence of external
R forces. The name rheology, from the Greek word rheo (= flow), was suggested by M.
Reiner and E. C. Bingham, who are considered the founders of this scientific discipline. Rheolo-
gical studies are important in the manufacture and applications of plastic materials, lubricating
materials, coatings, inks, adhesives, food, pharmaceuticals, cosmetics, and toiletries.
Rheology is now well established as the science of the deformation and flow of matter. It is the
study of the manner in which materials respond to applied stress or strain. All materials have
rheological properties, which are established by rheometers [1] .
The rheological flow behaviour of any fluid is explained in terms of the relationship between
shear-stress (7) and shear-rate (7). The shear-stress is defined as the tangential force applied
per unit area and the shear-rate is stated as the change of shear strain per unit time. The ratio
of shear-stress to shear-rate is known as dynamic viscosity (1), which can also be defined as
a measure of resistance offered by the adjacent layers to one another during the flow of fluid.
The fluid behavior can be categorized as Newtonian and non-Newtonian. For Newtonian beha-
vior, the viscosity remains constant with shear-rate and the stress exhibits linear relation with

shear-rate while for non-Newtonian behavior, the viscosity may vary with shear-rate [2].

I.1 Rheological properties of fluids

Dynamic viscosity () is just one of several rheological properties that can be used for
material characterisation in engineering application purposes. To define viscosity, consider an
element of fluid sandwiched between two parallel plates of area (A), separated by a gap (e),

being subjected to a steady-shear force (F') on its upper face (see Figure I.1).
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Figure I.1 — Fluid under steady-shear [3].

The steady-shear force will cause the upper plate to move with a velocity (1), relative to the
lower plate. The element is said to be under a shear-stress (7) and flows. The shear-stress is

given by :

With a shear-rate :

= (12)

Dividing the shear-stress by the shear-rate gives a measure of the resistance of the fluid to flow,

that is its dynamic viscosity, defined as :

(1.3)

The viscosity is usually derived from the flow curve : plotting the ratio of shear-stress to shear-
rate as a function of shear-rate will result in a viscosity curve. Instruments that measure viscosity
are referred to as viscometers; those measuring other rheological properties in addition to

viscosity are known as rheometers [3].

I.2 Rheological classification of fluids

I.2.1 Newtonian fluids

Consider a thin layer of a fluid contained between two parallel planes a distance dy a part,
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as shown in Figure [.2. Now, if under steady state conditions, the fluid is subjected to a shear
by the application of a force (F') as shown, this will be balanced by an equal and opposite
internal frictional force in the fluid. For an incompressible Newtonian fluid in laminar flow, the
resulting shear-stress (7) is equal to the product of the shear-rate () and the viscosity of the
fluid medium. In this simple case, the shear-rate may be expressed as the velocity gradient in

the direction perpendicular to that of the shear force.

Surface area A

Figure 1.2 — Simple shear of a Newtonian fluid between two parallel planes [4].

The ratio of the shear-stress to the shear-rate is called the Newtonian viscosity (). It is
independent of shear-rate (%) or shear-stress (7) and depends only on the material at given
temperature and pressure. A plot of shear-stress (7) and shear-rate (7), called the “flow curve”
or rheogram, for a Newtonian fluid is therefore a straight line with a slope (1) passing through
the origin. The single constant (;) completely characterises the flow behavior of a Newtonian

fluid at a fixed temperature and pressure (Chhabra and Richardson, 2008), Equations 1.2, 1.3

[4].

I.2.2 Non-Newtonian fluids

More often in nature, a fluid will possess more than a single type of stress response. A fluid
is deemed complex if it exhibits multiple types of behaviors. While this definition is largely
vague, most complex fluids can be regarded as twofold ; a complex fluid usually exhibits two
types of behaviors, such as a solid-liquid or liquid-gas mixtures. Modeling the dynamics of flow
in complex fluids is convoluted due to the coexistence of multiple matter phases, and nonlinear
effects may arise from the interaction between matter phases. In optical microrheology, micro-
particles are used to track flows in complex fluids to better understand the microfluidics created
by the interaction of multiple matter phases [5]. The role of state variables in the extended fluid
mechanics that is suitable for complex fluids play the hydrodynamic fields supplemented with
additional fields or distribution functions that are chosen to characterize the internal structure.

In general, a different internal structure requires a different choice of the additional fields. The
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state variables (called hydrodynamic fields) chosen in fluid mechanics are [6] :

x =z (p(7), e(T), u(r)) (I.4)

1.2.2.1 Time-independent fluids

Time-independent fluids are those for which the rate of shear (7) at a given point is only
dependent upon the instantaneous shear-stress (7). The flow behavior of this class of materials

can be described by a constitutive relation of the form :

T=f) (L)

A Newtonian fluid is just a special case of a time-independent fluid where the function
(%) is linear at a given pressure and temperature. All fluids for which the function f(+) is not
linear through the origin are time-independent non-Newtonian fluids [7].

Pseudoplastic and dilatant fluids can be described mathematically by the empirical Ostwald de

Waele model, given by the following equation :

T = KLA//” (16)

The variables (/) and (n) are curve fitting parameters known as the fluid consistency index
(K¢) and the flow behavior index (7).

Generally, the power-law model applies only over a limited range of shear-rates, and the fitted
values of (K;) and (n) depend on the range of shear-rates considered. The apparent viscosity 7

is given by [4] :
n= KA} (1.7)
1.2.2.1.a Pseudoplastic fluids

The majority of non-Newtonian fluids are to be found in this category. Those fluids are
characterized, that they have no yield stress and that the apparent viscosity decreases with
increasing shear-rate. The decreasing of the apparent viscosity occurs due a structure change
in the fluid, so that the individual fluid-particles can be better slid along each other. Examples

of Pseudoplastic fluids are biological fluids, paint, polymer solutions, and mayonnaise.
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1.2.2.1.b Dilatant fluids

Dilatant fluids are similar to Pseudoplastic fluids in that they have no yield stress, but their
apparent viscosity increases with increasing shear-rate. The increasing of the apparent viscosity
in the case of suspensions occurs due a structure change in the fluid. This has the effect that
individual fluid-particles interact stronger with each other, which results in increased friction
and higher shear-stresses. The power-law model (but with n greater than 1) can be used for
the mathematical description. Examples of materials with a dilatant flow behavior are starch,
potassium silicate, many suspended solids such as mica and powdered quartz, iron powder in

low viscosity liquids. The following figure show the flow behavior of Independent-time fluids.

Pseudoplastic Dilatant
(Shear thinning) (Shear thickening)
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Figure 1.3 — Flow behavior of Independent-time fluids.

1.2.2.2 Viscoplastic fluids

Viscoplastic fluids are characterized by their ability to sustain shear-stresses where a certain

amount of stress must be exceeded before the flow initiates [8].

1.2.2.2.a Bingham plastic model

The Bingham plastic model is written as :

=15 + up(¥) for |7| > ‘T(ﬂ
(L.8)

g =0 for |7| < |rf|
1.2.2.2.b Herschel-Bulkley model

A simple generalization of the Bingham plastic model to embrace the non-linear flow curve
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(for = ‘Té? D is the three constant Herschel-Bulkley fluid model. In one dimensional steady

shearing motion, it is written as :

T = TOH —‘th(’;,’)/” for |7" > ‘TUP[‘

4 =0 for |7| < ’TJI‘
1.2.2.3 Time-dependent fluids

These fluids are very difficult to model. Their behavior is such that for a constant shear-rate
4 and at constant temperature the shear-stress 7 either increases or decreases monotonically
with respect to time, towards an asymptotic value 7(). The fluids regain their initial properties
sometime after the shear-rate has returned to zero. The Time-dependent fluids are divided into

two subgroups :
e Thixotropic fluids : At a constant shear-rate the shear-stress decreases monotonically.

o Rheopectic (Antithixtropic) fluids : At a constant shear-rate the shear-stress in-

creases monotonically. These fluids are also called antithixotropic fluids [9].

The following figure summarizes the rheological classification of fluids.

T
=t 77 M = cnst

u F enst
Non-Newtonian / \ Newtonian

) 4 %”’:' wira [
v Rheostable Rheounstable

l *[Pa] l sl
7[Pa]
v Pseudoplastic i X Tixotropic tpal
¥Is7']
l z[Pa] l
>
v Dilatant i Y — . il
Antitixotropic
¥ls™" T[Pa]

l P u: viscosity [Pas]
Bingham y : shear rate [1/s]
v 7 : shear stress [Pa]
MY t : time [s] ¥Is™

Figure I.4 — Rheological classification of fluids.

The following table present the definition of various types of non-Newtonian fluids with

examples.
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Type of fluid Definition Examples
Pseudoplastic
Fluids that depict a decrease in vis- Blood
cosity with increasing shear-rate and Filled polymer systems
hence often referred to as shear- Polymer solutions
thinning fluids Printing inks
Dilatant
Fluids that depict an increase in Aqueous suspension of tita-
viscosity with increasing shear-rate nium dioxide
and hence often referred to as shear- Gum solutions
thickening fluids Wet sand
Bingham
Fluids that do not flow unless the Certain asphalts and bitumen
stress applied exceeds a certain mi- Jellies
nimum value referred to as the yield Sewage sludges
stress and then show linear shear- Thickened hydrocarbon
stress versus shear-rate relationship  greases
Tomato ketchup
Toothpaste
Pseudoplastic
with a Fluids that have nonlinear shear- Heavy crude oils with high

yield stress

stress versus shear-rate relationship
in addition to the presence of yield
stress.

wax content
Filled polymer systems

Thixotropic
Fluids that exhibit the reversible de- Coal-water slurries
crease in shear-stress with time at a Crude oils
constant rate of shear and fixed tem-  Drilling muds
perature. The shear-stress, of course, Filled polymer systems
approaches some limiting value Mayonnaise
Salad dressing
Yoghurt
Rheopectic
Fluids exhibit a reversible increase in  Some clay suspensions
shear-stress with time at a constant
rate of shear and fixed tempera-
ture. At any given shear-rate, the
shear-stress increases to approach an
asymptotic maximum value
Viscoelastic

Fluids that possess the added fea-
ture of elasticity apart from visco-
sity. These fluids exhibit process pro-
perties which lie in-between those of
viscous liquids and elastic solids

Filled polymer systems
Polymer melts
Polymer solutions

Table 1.1 — Various types of non-Newtonian fluids [3].
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I.2.3 Analogic behavior models

1.2.3.1 Viscous behavior

The spring is considered representative of a linear elastic solid that obeys Hooke’s law ;
a viscous material can be modeled using a dashpot which obeys Newton’s law. A dashpot is

mechanical device consisting of a plunger moving through a viscous Newtonian fluid.

Force

: Displacement

Figure 1.5 — Response of an ideal liquid (dashpot) [10].

When a stress (or force) is applied to a dashpot, the dashpot immediately starts to deform
and goes on deforming at a constant rate (strain rate) until the stress is removed. The energy
required for deformation or displacement is dissipated within the fluid (usually as heat) and the

strain is permanent [10].

1.2.3.2 Elastic behavior

Structured fluids have a minimum (equilibrium) energy state associated with their ‘at rest’
microstructure. This state may relate to inter-entangled chains in a polymer solution, randomly
ordered particles in a suspension, or jammed droplets in an emulsion. Applying a force or
deformation to a structured fluid will shift the equilibrium away from this minimum energy
state, creating an elastic force that tries to restore the microstructure to its initial state. This

is analogous to a stretched spring trying to return to its undeformed state.

t Displacement

Force

Figure 1.6 — Response of an ideal solid (spring) [10].
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1.2.3.3 Viscoelastic behavior

Two basic ingredients are used :

* spring : according to Hooke’s law, the strain (7) is proportional to the applied stress (7),

which reads.

T=GY (1.10)

Physically, elastic elements represent the possibility of storing energy. This storage can be

achieved by different processes (e.g., polymer recoil).

* dashpot : the response of the dashpot, the plunger of which is pushed at the velocity ()

is :
T =y (I.11)
Physically, dashpots represent dissipative processes that occur as a result of the relative motion

between molecules, particles, or polymer chains. This motion induce friction when there is

contact between elements or viscous dampening if there is an interstitial fluid [11].

1.2.3.4 Plastic behavior

Skate (or Saint-Venant element) : this analogical model represents the rigid solid perfectly
plastic; it introduces nonlinearity into models and describes a plastic behavior (irreversible
deformation) used for threshold fluids. The applied stress must exceed a plasticity threshold

(also called threshold of deformability, friction, flow stress) to obtain a displacement.

Figure 1.7 — Saint-Venant element.
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What is turbulence ?

ore than one century of experience has shown that the turbulence problem is inconve-
M niently difficult. Though conceptually simple, the turbulence problem is an unsolved
problem of classical physics. In other words, no simple analytical theory completely describes
the physics of turbulence. Instead, engineers and scientists rely on the ever-increasing power
of digital computers to model or simulate turbulence for a given application to calculate the
relevant properties of turbulent flows [12]. For engineering applications, the diffusivity of tur-
bulence is an important factor. The diffusivity leads to rapid mixing, increasing transfer rates
of momentum, heat and mass through the flow domain. For example, turbulence can delay
boundary layer separation on aerofoils at large angles of attack, increase heat transfer rates,

provide resistance to flow in ducts, increase momentum transfer between currents, and so on

[13].

1.3 Turbulence phenomenon

I.3.1 Turbulence understanding

Over the last 10 to 120 years, there have been huge changes in our understanding of the
processes which lead from laminar flow to turbulence, processes now beginning to produce
results directly impinging on our symposium objective of assessing fluxes. These changes first
came about through increased awareness that the theory of linear stability, which had succeeded
in describing the early stages of instability, was inadequate when looking further, particularly,
when one was concerned with turbulence and its onset. A fundamental change came with the
recognition that dynamical systems having a very limited number of modes of incommensurate

frequency could exhibit a chaotic motion [14].

Man has evolved within a world where air and water are, by far, the most common fluids
encountered. The scales of the environment around him and of the machines and structures his
ingenuity has created mean that, given their relatively low kinematic viscosities, the relevant
global Reynolds number, associated with the motion of both fluids is in most cases, sufficiently
high that the resultant flow is of the continually time-varying, spatially irregular kind we call
turbulent. However, our Reynolds number is chosen not by the overall physical dimension of

the body of interest. [15].
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Turbulence, the pseudo-random and apparently unpredictable state of a fluid, is one of the most
challenging problems in fluid dynamics. Turbulent flows show a marked increase in mixing and
friction ; predicting these phenomenon is of great importance in practical engineering applica-
tions. Consequently, numerous scientists have invested much effort in observing, describing, and
understanding turbulent flows. One of the first attempts at quantifying turbulence was made by
Reynolds, who showed that the flow regime changes from its orderly laminar state to a turbulent
one when a critical parameter (Reynolds number) is exceeded. Another important discovery was
that turbulent flows incorporate a hierarchy of eddies or whirls, which range from large scales
to very small in size. Energy is transferred between these scales, generally from the larger to
the smaller, until the smallest scales are finally dissipated into heat by molecular viscosity. The
Russian scientist Kolmogorov formulated this energy cascade theory into physical laws for the

various scales present in a turbulent flow [16].

Turbulent flows always occur at a large Reynolds number and often originate as the insta-
bility of laminar flows with increasing Reynolds numbers. Turbulent flows are rotational and
three-dimensional. High levels of fluctuating vorticity characterise them. An important vorti-
city maintenance mechanism is ‘Vortex stretching’, not exhibited by two-dimensional flows, and
hence turbulent fluctuations are essentially three-dimensional vorticity fluctuations. All turbu-
lent flows are inherently dissipative. Dissipation is the deformation work of the viscous stresses,
which increases the internal energy at the expense of the kinetic energy of the turbulence. Tur-
bulent flows require a continuous energy supply, failing which the turbulence decays rapidly.
Turbulence is a continuum phenomenon governed by the equations of fluid mechanics. Even the

smallest scales in any turbulent flow are much larger than any molecular length scale [13].

1.3.2 Turbulence structure

One approach towards understanding turbulence is to attempt to break the complex, ran-
dom field of turbulent motions into elementary recurring motions, which can then be considered
as the key building-blocks or components of the turbulent flow. These motions are somewhat
loosely and variously referred to as eddies, organised motions or coherent structures, and they
have been the focus of many studies for over four decades (Townsend 1976 ; Cantwell 1981 ; Hus-
sain 1986 ; Adrian 2007). This resembles the atomistic approach, which has enjoyed enormous
success in chemistry and physics. But it is clear that it cannot be so simple when applied to
continuous, random fluid motions, especially when they range over many scales. The difficulty

presents itself in the very first step of defining what exactly constitutes an eddy or a coherent
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structure, and it must be confessed that here there are no unequivocal definitions [17].

In most turbulent flows energy is transferred from the mean flow to the turbulence at the largest
scales been refined by Onsager and Kolmogorov, amongst others. Richardson suggested that the
energy transfer takes place in the form of (what is now called) a cascade of energy. The word
cascade (probably first introduced in this context by Onsager) is meant to imply that the energy
flux takes the form of a long chain of intertial transfers. That is to say, energy is first passed
from the largest vortices to slightly smaller eddies, say from scale /; to scale /1. The vortices of
scale 1 then transfer some of their energy to slightly smaller vortices of size /5, where /5 is some
fraction of /1 . And so, it goes on, with energy being passed down through a hierarchy of scales

until, finally, we reach the microscale where the kinetic energy is converted into heat [18].

1.3.3 Characteristics of turbulence

e Randomness : Turbulent flow is unpredictable because small random perturbations
during a particular period are amplified to that level. After a certain period of time,
deterministic prediction of further development becomes impossible. This fact could seem
to conflict with the fact that turbulent flow is described in thorough detail by Navier-

Stokes equations, which are of a deterministic character.

« Diffusivity : Mixing of transported scalar quantities occurs relatively more quickly than
during molecular diffusion. This characteristic obviously has important practical conse-
quences, and turbulence is characterized by an increase in the mixing of fluids. The in-
tensity of this mixing can be several orders of magnitude greater than mixing occurring

due to molecular diffusion.

o Vorticity : Turbulent flows are characterized by high local values of vorticity related to
the presence of Vortex structures. The field of vorticity is generally non-homogeneous and
changes dynamically in time. Vortex structures tend to be called coherent vortices or,

more generally, coherent structures.

e Scale spectrum : Vortex structures, which occur spontaneously in a turbulent flow field,
are characterized by a wide scale of length measuring units. Their size is limited from the
top by the dimensions of the shear areas in which they occurred and from the bottom

by the size of vortices subject to dissipation in direct connection with the fluid viscosity.
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Thus, the size of the structures is characterized by a dense spectrum typical for fractals.
Related to this is that the turbulent flow field can be characterized as a dynamical system

with a “very high” number of degrees of freedom.

Integral scale — Energy Injection

Length scale (/)

©©GOGb®G
©06066©666

A319u9 jo xnpj

Kolmogorov scale — Energy dissipation

Dissipation into heat ‘

Figure 1.8 — Energy cascade.

e 3D structure : Vortex structures occur in the space of a turbulent flow field in random
locations and with random orientation. The 3D structure of the vector field of velocity
fluctuations originates from this situation. During certain boundary conditions, structures
greater than a certain limit size can be spatially arranged ; for example, they can have a

planar character.

o Dissipation : Turbulence is a dissipative process, which means that the kinetic energy
of the motion of a fluid is dissipated at the level of small vortices and changes to heat.
Therefore, for turbulent flows to be conserved over the long term, it is necessary to supply
energy to the system from outside. This is done in the area of large scales; energy is
collected from the mainstream. The energy is then transferred towards smaller scales with

the help of cascade transfer.

e Non-linearity : Turbulent flows are non-linear, and their occurrence is conditioned on
applying non-linearities when small perturbations grow. The development and interaction
of individual structures in the turbulent flow field can be described only with a non-linear
mathematical model. Turbulence theory states that the eddies also vary in size. This
is illustrated by the large and small scales shown in Figure 1.9. The largest eddies break

down into smaller eddies, which break down into even smaller eddies. This process of eddy
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breakdown transfers kinetic energy from the mean flow to progressively smaller scales of
motion. This process is known as the energy cascade. At the smallest scales of turbulent

motion, the kinetic energy is converted to heat by means of viscous dissipation [19].

Small Structure

Large Structure

Figure 1.9 — Large vs. small scale eddies of smoke flow [19].

1.3.4 Isotropic turbulence spectra

The topology of isotropic turbulent flow can be described in a statistical sense with the help
of the energy spectrum F/(k), which is a performance spectral density of velocity fluctuations.
This spectrum shows us the distribution of kinetic energy in individual wave numbers. Figure
[.10 shows a model energy spectrum, which shows the typical form of an energy spectrum
obtained from an experiment. In the graph, non-dimensional variables are used, which are
defined with the help of Kolmogorov scales. The energy spectrum in log-log coordinates is
characterized by an inclination of 2 in the energy area and an inclination of —5/3 in the inertial
subrange. In the area of dissipation, there is quicker suppression of the spectrum. The inclination
of the spectrum in the energy area is not entirely clear, and its actual value depends on specific

boundary conditions; the specified value expects isotropy [15].

In flows of practical interest, the turbulent stress tensor is non-isotropic, a state created partly by
the deformation of the large eddies by mean strain or body forces, partly by flow inhomogeneities
and partly by boundary conditions. If the stress tensor were isotropic, all the normal stresses
would be equal, and there would be no shear-stresses (for otherwise, reorienting the axes would
cause the normal stresses to be unequal). Thus, in isotropic turbulence : wju; = 2§;;k/3. A
departure from the isotropic state provides a measure of the stress anisotropy, which can be

expressed in terms of the deviatoric part of the stress tensor [15].

2. 2
U = (*uyuj — 3/«'(@) + gk(;,;j (I1.12)
~——

~—_—

anisotropic tsotropic
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Figure 1.11 — Kolmogorov cascade.

In 1941 Kolmogorov published a fundamental article that gives a mathematical apparatus
to Richardson’s idea of an energy cascade. Kolmogorov’s theory is based on three hypotheses :
a hypothesis of local isotropy, and the first and second similarity hypotheses.

The hypothesis of local isotropy relates to small-scale vortices. The largest vortices have ap-
proximately the dimension of shear area, and the topology of these vortices is anisotropic, which
can be attributed to specific boundary conditions (often very regular). The mean size of energy
vortices is smaller, which we will refer to as ¢y . The more or less chaotic energy transfer towards
small scales is leading to a gradual increase in the isotropy of smaller scales. This is the basis

for the Kolmogorov hypothesis of local isotropy ; during sufficiently high Reynolds numbers, the
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motions of small scales ¢ < /; are statistically isotropic. The scale /p; is the boundary bet-
ween small isotropic vortices and large non-isotropic vortices. For a better idea, let us consider
lpr ~ 1/60y . In the area of small isotropic vortices, ¢ < {z; two mechanisms of energy transfer

dominate transfers from large scales to small scales and viscous dissipation.

The parameters that manage these processes are the rate of energy transfer from large
scales to small 37 and kinematic viscosity . In a settled state, the rate of dissipation 'V is
in balance with the rate of production : ¢ ~ Sp;. It is apparent from this that the universal
statistical state of small scales is determined by viscosity v and the rate of the transfer of
energy from the area of large scales $g;. This outcome formulates Kolmogorov’s first similarity
hypothesis, which says that in a turbulent flow with a sufficiently high Reynolds number, the
statistics of motions of small scales (¢ < /) have a universal formulation and depend only on

the scale ¢, viscosity v and dissipation rate £ [20]. For the dimension analysis, we can use ¢ and

k, and then we get :
E(k) = 237230 (kny,), (1.13)

Where VU (k7)) is the compensated Kolmogorov spectrum function. The area of scale / < /p;
is usually referred to as the universal equilibrium range. In this area, the scales //u ({) are
small compared to /y/uy and small vortices can quickly adapt to conserve dynamic equilibrium
with the rate of energy transfer 3z , which is determined by large vortices (/) the typical
value of fluctuations in velocity for perturbation of scales [ and 1y and then for ¢y . From the
dimensional analysis, it is possible to clearly specify the values of resulting Kolmogorov scales
(except the non-dimensional constant). The relevant quantities are only the rate of dissipation
e[m?/s?], and kinematic viscosity v [m?/s] : length, velocity and time-based Kolmogorov scale

ni [m], w, [m/s] and 7, [s], respectively, can be define the following equations :

V3 /4
e = <;) (I.14)

v)4 (L.15)

™

Uy = (
1/2
T = C) (1.16)

Two identities are apparent from these definitions. First, the Reynolds number based on Kol-
mogorov parameters is a unit : 7,u, /v = 1. This fact is in accordance with the claim that

the cascade transfer continues in the direction towards continuously smaller scales until the
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Reynolds number is so small that it enables dissipative processes. Also, from the Equations 1.14

and .15 we can express the rate of dissipation :

3 24
v Uy, v
E=——F = M — 5 (117)
"Ik veo T,

In the inertial subrange, the effect of the viscosity is insignificant, and the coefficient kn, << 1
is insignificantly small. Therefore, in the inertial area, the compensated Kolmogorov spectrum
is defined Equation 1.13 approximately by a constant W (k7;) = C. and the energy spectrum
can be expressed by the relationship [21] :

E(k) = C*3k=/3 (1.18)

Where C' is the universal constant (~ 1.5).
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II.1 Turbulence modeling

The implementation of all methods used in turbulence is based on the use of numerical
mathematics—discretization of the problem is performed in space and time. Generally, each
method of mathematical modelling requires enough spatial and time discretization to model
the values of the gradients of all variables, which are considered in this case. The maximum
values of these gradients are based on the minimum sizes of structures. Their sizes depend on
flow conditions (the geometry of the area, speed, and properties of the fluid) and the requirement

for the results.

Using the DNS method, it is necessary to select discretization, so that Vortex structures of all
sizes up to Kolmogorov length and Kolmogorov time scale are captured. In the LES discreti-
sation method, the filter for spatial structures is defined. The turbulent fluctuations in the flow
are usually resolved by employing either DN .S or LES. The basic principle of LES is to resolve
all the energy-carrying ‘large eddies’ while the dissipative ‘small eddies’ are modelled. In terms
of computational requirements and time, LL/ZS occupies an intermediate position between DN S
and RANS. Recent advances in computational technology have made LFES more viable and
affordable for industrial turbulence studies. Over the past decade, more and more and more
attention has been paid to the reliability of using LES to analyse turbulent flows. However, it
is yet to replace RAN S as the most widely used industrial approach for predicting turbulence

(see Figure I1.1) [13].
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Figure II.1 — Classification of unsteady approaches according to levels of modeling and readiness
[22].

I1.1.1 Direct Numerical Simulation (DNS)

During the implementation of calculations with the help of DNS, spectral or pseudo-
spectral methods are used. A solution is expected in the form of a Fourier series in space.
This approach was processed in 1972 by Orszag with Patterson. As a result of the capacity
of computer technology, the DNS method is still used for the calculation of geometrically
simple areas of flow during extremely small Reynolds numbers. For increasing the Reynolds
number, the number of discretized elements in the area is sharply growing, and the necessary
time step is declining. The flow calculations with the help of DN S are extremely demanding
on the performance of computer technology and last a very long time. It can be proved that
computer demands considering the discretization in space and time, grow with the sixth power
of the Reynolds number. Today best computers, with the performance of dozens of gigaflops, can
resolve tasks with the help of DN S characterized by a Reynolds number of order of a maximum
of 10%. From an application point of view, tasks of turbulent flow in machines are characterized
by Reynolds numbers of 10° and greater, and flow in the atmosphere and hydrosphere is several
times greater. For achieving a ten times greater Reynolds number, it will be necessary to increase

the performance of computers a million times.

The DN S method is currently used and, obviously, for a long time in the future, will be used to
solve fundamental tasks related to turbulence theory. It is limited to geometrically simple areas
and very low Reynolds numbers. However, it provides us with a perfect picture of the physics
of flow fluid. From a correctly performed DNS simulation, obtaining random variables in a

random location and time is possible. The results of such simulations are generally regarded as
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equivalent to the results of experiments, but experiments are far ahead in terms of reliability

and comprehensiveness of information [20].

Direct Numerical Simulation represents the modeling of Navier-Stokes equations with the
help of numeric mathematical processes. Such that all persisting eddies are resolved. Small flow
structures will develop if the Reynolds number of a flow becomes very large. But, due to viscous
forces in the flow, very small eddies die rather quickly. The Kolmogorov law gives the size of the
persisting eddies, It is (R@fg'/ 4) in 3D and <Rc*1/ 2) in 2D. To capture all persisting eddies in,

one would need a mesh size of ~ Re 5/%,

In relation to this, the number of degrees of freedom 7 of the particular problem is usually
defined, which is related to the number of elements of the discretization network. It is based
on the relationship between the size of the largest [y and the smallest 7). structures in the flow
field.

From the Kolmogorov theory for isotropic turbulence, there is apparent dependence of this
relationship on the Reynolds number in the formulation /o /7 ~ Re?/*. The number of degrees
of freedom of the problem is related to the number of elements in the 3-dimensional space [20].

Therefore, the following proportion applies :

ng ~ (lo/nk)°* ~ Re%/4 (I1.1)

I1.1.2 Large Eddy Simulation (LES)

LES is currently a very popular approach for turbulent flow simulation. The basic idea
starts by decomposing the quantities which describe the flow (velocity, pressure, body forces)
into two parts : one part containing the large flow structures (large scales) and the remainder
containing the small scales, this approach makes sense in applications. Considering again the
example of a hurricane, one is primarily interested in predicting the behavior of the large eddies.
These eddies are the most dangerous ones and it is important to predict their way and their
velocity in order to take steps to offer protection. The actual behavior of the millions of small
eddies is not of interest. But these small eddies of course influence the behavior of the large
eddies. There is a direct interaction between the small and the large eddies.

In addition, the interaction of the small eddies among each other influences the large eddies.
That means, a prediction of the behavior of the large eddies is not possible without taking into

account the interactions coming from the small eddies. The distinction of what are the large
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scales and the small scales might be given by the application. The following figure show the

classification of unsteady approaches as show the following figure.
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Figure I1.2 — Dissipation in DNS and LES [5].

II.2 Numerical procedures

The adequacy of the computational domain is assessed later by examining the streamwise
two-points correlations which must be large enough to include the largest length scale struc-
tures, periodic boundary conditions for the velocity components were applied in streamwise and
circumferential directions whereas no-slip boundary conditions were imposed at the wall ; in ad-
ditional to the Neumann boundary conditions were used for the pressure. Periodic boundary
conditions were imposed in the streamwise and the spanwise directions since the turbulent flow
is fully developed. The periodic boundary in the streamwise direction can be justified provided
that the flow can be considered homogeneous in that direction and that the length of the com-
putational domain was sufficiently large to include the largest scale of the turbulent motions in
the flow. This can be checked by ensuring the streamwise two-points correlation coefficients are
uncorrelated at a separation of one-half period in the homogeneous directions and this is when

these correlations fall of to zero value, according to the given equation :

(' (r,0,z,t)a (r,0,z+1/2 L, ,t))
(a'(r,0,z,t)d (r,0,z,1))

Ro(1/2L. ) = ~ 0 (11.2)
A domain independence study has largely carried out for the moderate Reynolds number : the
main findings indicate that the adequate domain length is . = 5D in the Newtonian fluid. For

the shear-thinning power-law fluids, according to Singh et al. [23], the flow index affects the
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long helical structures near the wall and at the centre of pipe, where the range of length scales
in the flow increases with decreasing flow index, where Singh et al. chose 47D as domain length

for the flow index 0.6 < n < 1, and 16D for n = 0.4.

In order to achieve a realistic numerical simulation of a turbulent flow, the adequacy of numerical
resolution in the direct numerical resolution is still one of the greatest challenges, where the
spatial and temporal resolutions must be sufficient fine to resolve the smallest length scale
structures in turbulent flow. In other word, the Kolmogorov length and time scales must be
resolved by the spatial and temporal network distribution : the distance between two sequential
points in space and time should be proportional to the Kolmogorov scales. In this end, a number
of criteria have been deduced to estimate this required numerical resolution. As mentioned
above, the Grotzbach [24] criteria are one of the large commonly used techniques for evaluating

the spatial resolution, where he formulated three criteria :

The first one concerns the computational domain which should be large enough to include the
largest length scale structures ; the second one requires that the vertical grid width distribution
must be able to fully resolve the thin vortical layers in the vicinity of the wall responsible for
the wall friction and for the turbulence production, which can be met by ensuring that at least
three gridpoints within the viscous sublayer. The last one requires the mean grid widths must
be smaller than the smallest relevant turbulence elements. As for the temporal resolution, a
more restrictive criterion must be applied to ensure that the time step is enough to resolve the
smallest time scale structures in turbulent flow and to avoid numerical instabilities : This can
be achieved by assuring that the imposed time step must be smaller than the Kolmogorov time
scale.

Our present DN S investigation have been carried out on a finite difference scheme, second-order
accurate in space and time. The numerical resolution is (129 x 129 x 193) gridpoints in (radial,
tangential, and axial) directions, respectively, with a domain length of 20R.

In LES, numerical spatial resolution is always one of the biggest challenges. Indeed, the mesh
imposed on the computational domain should be enough fine to capture and resolve the smallest
scale structures in the turbulent flow, and limit the influence of the mesh on the accuracy of the
results. A uniform distribution of gridpoints must be applied in the axial and circumferential
directions (periodic directions) in order to use the trigonometric developments elements in the
pressure equation. A non-uniform distribution must be imposed in the normal direction of the
wall where a refinement of the mesh near wall region is necessary for a better resolution in

the zone close to the wall. In fact, in the viscous sub-layer, at least three gridpoints must be
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arranged so that the first gridpoint must be located at (V" < 1).
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Figure II.3 — Gnambode mesh independence study.

In order to ensure the precision of the spatial grid resolution, a study of the mesh independence
is necessary. To this end, Gnambode et al. performed their study with the LFS code used in the
present study for an Ostwald de Waele fluid with a flow index of 0.8 at a simulation Reynolds

number of 12000, with different numbers of gridpoints in the circumferential, axial, and radial

directions, presented respectively in (a), (b) and (c) in Figure II.3.

They found that the grid of (65 x 65 x 65) gridpoints in the axial, radial, and circumferential
directions respectively and admitting an adequate resolution is considered as a good compromise
between the required precision and the C'PU time. Note that in their investigations, Gnambode
et al. [25] used a length domain in the flow direction (axial direction) of 20R. The primitive

variables will be calculated at different points, located on the faces of the cells for the velocity
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components or in the center of the cells for the scalars in Figure I1.4. The variables ¢y = 7V}, g,

rV, and ¢. = V, and they are considered in order to avoid the problem of the singularity on

the axis of the driving. The positions of the variables are defined by the following spatial

coordinates :

1 1
qo — <i,j + 2 k+ 2) where (0:.(i),7m (), zm(k))

qr—><i+

1 1
5"7’ k + 2) where (qm(1),rc(4), zm(k))

1 1
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Figure I1.4 — Staggered mesh.

(I1.3)

(IL.4)

(IL5)

(I1.6)

(IL7)

(I1.8)

(11.9)

Note that in the radial direction, a non-uniform grid resolution specified by a hyperbolic function

has been applied in the radial () direction, where the gridpoints in this direction are closest

together at the cylinder wall and progressively spaced away from the wall towards the center of
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the cylinder as shown the following figure :

Figure I1.5 — Grid mesh.

The mesh refinement is given by the hyperbolic equation :

y; = |rjlsin[r + (j — 1)0] (j=1,....,m;)

zj = |rj|cos[m + (j — 1)6]

™
0= ———
40(my, — 1)
tanh(a;)
rj=Tq———
tanh(ay)

j—1

Ej N m; — 1

1 <1+b>
Ga =5 M\ 10y

Tay = §(T0uter - Tinner)

(11.10)

(I1.11)

(11.12)

(11.13)

(11.14)

(11.15)

(11.16)

Parameter (b) is used to control the extent of the grid to the walls and typical values for this

study are between 0.7 and 0.95. The parameters m;, m;,m;, are the number of vertices in the

axial, radial, and tangential directions respectively. o, is the adjustable parameter to determine

the concentration of gridpoints in the flow region near the wall.
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Time is rendered dimensionless using the cylinder radius R and the maximum laminar flow
velocity U.r. The calculations were carried out at a constant C'F'L (Current, Friedrichs and
Lewy state) and not at a constant time step. Gnambode, performed a time-step independence
study of the Ostwald de Waele fluid with a flow index of 0.75 through a no rotating pipe.
The study considers C'F'L of 0.04R/U.;, or 0.01R /U, for stabilize the solutions and avoid the
divergence problem. However, the time step which varies is limited by the value At = 0.01 for

n = 0.75.

The statistics are calculated by averaging in the periodic directions and over time. The final
data are obtained by ensemble average over the time interval from the scaled time ¢ = 250 to
t = 8000 for the smallest rotation rate. At the highest rotation rate, statistics are sampled from

scaled time ¢ = 250 to ¢ = 10000 [5].

I1.3 Bibliographic review

urbulence flow is one of the fundamental issues in fluid mechanics; fluid mechanics is
T the study of how fluids move and the forces that develop as a result. Turbulence is a
significant issue that has previously received much attention in the mechanical and engineering
fields. Fluid flow can be either laminar, turbulent, or transitional. For laminar flow, there is
only one component of velocity. Concerning turbulent flow, the predominant component of the
velocity is also along the pipe, but it is unsteady and accompanied by random components
normal to the pipe axis. In the transitional flow, both laminar and turbulent features occur.
The most critical dimensionless parameter for pipe flow is the Reynolds number, the ratio of

inertia to viscous effects in the flow [26].

Reynolds made one of the first efforts to quantify turbulence, demonstrating that when a critical
parameter (Reynold number) is exceeded, the flow regime changes from orderly laminar to
turbulent. The turbulent flows contain a hierarchy of eddies or spirals ranging in size from the
largest scales to the smallest. The transfer between these scales from the larger to the smaller
creates energy until molecular viscosity finally dissipates the minor scales into heat. This theory

was formulated by the Russian scientist Kolmogorov [16].

Both natural processes and numerous industrial processes involve turbulent flows. For instance,
a high-velocity wind can abruptly change direction, and speed is present during a storm. When

an aeroplane takes off, the air above the runway becomes agitated. This air must be calmed
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before the next aircraft takes off. This is essential because there is a time limit on how long
the plane can wait between take-offs. Numerous other applications for turbulent flows include
oceanography and wind channels used in automobile design. Often, chemical reactions like those
in gas engines involve turbulent flows. There are numerous significant and fascinating physical

phenomenon [27].

A significant industrial issue that has recently attracted a lot of attention is the turbulent
flow of Newtonian fluids in an axial pipe. A range of engineering applications, including flow in
turbo engines, heat exchangers, combustion chambers, nuclear reactors, etc. include turbulent
flow in pipes, which is significant in the mechanical and engineering sectors. A considerable
amount of literature has been investigated to perform the fully developed turbulent flow cha-
racteristics of Newtonian fluids flowing inside isothermal cylindrical pipes either experimentally

or numerically by the references : [16], [27] [28], [29], [30].

Nishibori and Kikuyama (1987) [31] experimentally investigated the turbulent flow of the New-
tonian fluid inside an axially rotating pipe utilising the laser Doppler velocimeter and flow
visualization techniques. To shed further light on the laminarization phenomenon. It is obser-
ved that the rotating boundary layer is initially strongly stabilized by the centrifugal force due
to the rotating velocity component, resulting in a laminarization of flow; when the rotation
speed of the pipe is increased to a certain value, a laminarization phenomenon is observed in
the rotating layer in the inlet region near the entrance. Interestingly, when laminarization oc-
curs in the rotating layer near the pipe wall, the axial velocity profile becomes flat near the pipe
axis, similar to that observed in the laminar inlet flow developing in a stationary pipe. Thus,
the flow pattern inside the boundary layer near the pipe wall can be estimated using the shape
factor based on the axial velocity profile. Moreover, under the same rotation rate conditions, the

laminarization of flow in the inlet region is promoted as the axial Reynolds number is decreased.

A modified two Reynolds stress transport closure model was created by Malin and Younis (1997)
[32] for simulating fully developed turbulent flow and heat transfer of Newtonian fluid through an
axially rotating conduit. The turbulence-energy dissipation rate, turbulent stresses, heat fluxes,
and modeled transport equations are all solved. The investigation findings demonstrated that
both models mimic the significant reduction of turbulent transport caused by rotation. The
model results are generally consistent with both published data and large eddy simulations.

They discovered that the S.SG model produced a closer agreement with the observed tangential
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velocities than the Q1, [ P, and I P —C models. Their calculations demonstrated an encouraging
understanding of the measured data and LFES findings. The discovery suggests that the rotation

rate significantly influences the hydrodynamic and thermal properties.

Ould-Rouiss and Feiz [33] performed Direct Numerical Simulation and Large Eddy Simulation
of fully developed turbulent pipe flow in an axially rotating pipe for various Reynolds numbers
and rotation rates. The DN S has been carried out at two Reynolds numbers Re = 4900 and
Re = 7400 for different rotation rates ranging from 0 to 18. Large Eddy Simulation with the
dynamic model have been conducted for a Reynolds number up to 20600. Different statistical
turbulence quantities, including the mean and fluctuating velocity components, friction coef-
ficient, Reynolds shear-stresses, and higher order statistics, are obtained and analyzed. Their
study investigates the effects of the Reynolds number and the rotation number on the turbulent
flow characteristics. The governing equations are discretised on a staggered mesh in cylindrical
coordinates. The numerical integration is performed by a finite difference scheme, second-order
accurate in space and time. The time advancement employs a fractional step method. Their re-
sults show that the axial velocity profile gradually approaches a laminar shape when increasing

the rotation rate due to the stability effect caused by the centrifugal force.

(DNS) and (LES) of turbulent channel flow of various non-Newtonian fluids were car-
ried out using the viscosity of the power-law and Casson models. In their investigation, Ohta
and Masahito Miyashita. (2014) [34]. used a low Reynolds number of wall turbulence of non-
Newtonian viscous fluid close to Newtonian fluid. Based on the DN S results, the turbulence
structures of these viscous fluids might be generally normalized but with locally changing vis-
cosity as for Newtonian fluid. Moreover, the LFS results showed that the Smagorinsky model
of turbulent flow for non-Newtonian fluids might be treated universally by spatially scaling the

locally changing viscosity.

According to Eggels (1994), Yang (2000) [35] argued that suppressing radial fluctuations leads to
the Taylor-Proudman theorem, which is manifested in the suppression of turbulent fluctuations
perpendicular to the plane of rotation, where rotating flow tends to become two-dimensional in
its plane of rotation. These investigations have shown that the swirl of the forced vortex has a
stabilising influence which suppresses the turbulent radial exchange of heat and momentum. In

particular, the pipe rotation reduced the hydraulic loss and wall heat transfer rate.
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A constant viscosity characterises the Newtonian behavior concerning shear-rate. Non-
Newtonian fluids do not directly link shear-stress and shear-rate. This class of fluids has an
infinite number of possible rheological relationships. No single equation has yet been proven to
precisely define the shear-stress-shear-rate relationships of all such materials over all ranges of

shear-rates-the turbulent flow of non-Newtonian systems [36].

In technical applications, non-Newtonian fluids often exhibit Pseudoplastic behavior. Shear
thinning fluids have an apparent viscosity that decreases with an increasing shear-rate. The
viscosity of power-law fluids (a specific class of shear-thinning fluids) decreases as the rate
of fluid deformation increases [37]. When the shear-stress is very small, flow begins to occur
(the flow curve passes through the origin), and the growth rate in shear-stress increases with

increasing shear-rate. This behavior is called shear thickening [3].

Bogue and A.B. Metzener (1963) [38] presented velocity profiles of viscous Newtonian and
non-Newtonian fluids flowing through smooth, circular tubes recorded in the turbulent core
area. The flow behavior indexes ranged from 0.45 to 0.90, while the Reynolds numbers ranged
from transitional levels to above 100000. When normalized concerning the mean velocity or
compared based on the velocity defect parameter, turbulent core profiles were identical to
those for Newtonian fluids. The apparent viscosity measured at the wall shear-stress is a useful
parameter from a mechanical perspective. Its use lessens the dependence of the friction factor
correlation on model-based parameters at low Reynolds numbers (i.e, on the flow behavior index
n). Extrapolation raises the intriguing possibility that, at high Reynolds numbers, the apparent
viscosity would suffice as a characterization. Since the parameter must be calculated through

trial and error, it is less interesting from a design perspective.

Malin (1997) [39] used the modified version of an existing two-equation turbulence model to
represent the turbulence of power-law fluids in smooth circular tubes to examine the effect of
the power-law index and generalised Reynolds number. In the same year, Malin (1997) [32] used
the same study with another computation of Bingham-plastic fluids. The LB k£ — ¢ and Wilcox
k — w turbulence models were tested against experimental data on the friction factor and mean
velocity profile for various Bingham different Reynolds numbers, with different values of the
Hedstrom number. Where the numerical results of the power-law of friction factor and velocity
profile are compared to experimental data, the model produces reasonably good agreement

with the experiment. Furthermore, the results show that latency in transition to turbulence
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was predicted only for strongly non-Newtonian fluids with n = 0.6.

Malin (1998) [40] presented other numerical results using a two-equations turbulence model to
compute the turbulent flow of Herschel-Bulkley fluids in smooth pipes. The model generates
flow resistance curves over a range of power-law indices and generalized Reynolds and Hedstrom
numbers. The computed results for the laminar regime were in excellent agreement with the

analytical data.

In 2015, Gnambode et al. [25] implemented a (LES) technique with an extended Smagorinsky
model to perform a numerical investigation into the turbulent flow of power-law fluids. Their
study is one of the first investigations to examine in detail the turbulent flow of Pseudoplastic
and Dilatant fluids through a pipe at different Reynolds numbers (4000, 8000, and 12000) and
over a flow behavior index of (0.5 <n < 1.4).

Gnambode et al. [25] offered an extensive analysis of flow behavior index and Reynolds number
effects on the rheological and turbulence characteristics. The findings of their study suggest that
the decreased flow behavior index induces a marked enhancement in the mean axial velocity
profiles in the logarithmic flow region (Figure I1.6a). This is due to the higher viscosity in the
core flow region. It is worth mentioning that increased Reynolds number results also an increase
in the velocity profiles along the pipe radius, especially in the logarithmic flow region (Figure

IL6b).
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Figure I1.6 — RMS of axial velocity fluctuations [25].
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Gavrilov and Rudyak (2016) [41] developed power-law fluid turbulent pipe flow using DNS.
Two calculations were performed at generalized Reynolds values of 10* and 2 x 10*, and the
power-law indices n varied from 0.4 to 1. The researchers found that the predicted friction
coefficient agreed with the experimental correlation. Moreover, the results showed that when
compared to the flow of Newtonian fluid, the anisotropic Reynolds stress tensor is stronger in
power-law fluid flows. As the flow index n decreases, the turbulence anisotropy becomes more

prominent.

Recently, Abdi et al. 2019 [42] offered extensive investigations of the turbulent flow of
non-Newtonian fluids using the LFES approach; these investigations provided an important
opportunity to advance the understanding of the rheological behavior heat transfer mechanism
on the non-Newtonian fluids. The authors employed the LFES with an extended Smagorinsky
model to investigate numerically the fully developed turbulent flow of Ostwald de Waele fluid
through a straight cylindrical pipe with a length of the domain of 20R in the axial direction

and a numerical resolution of 65% grid points in the axial, radial, and circumferential directions.

Abdi et al. 2019 [42] provided the first extensive investigation of the heat transfer of a shear-
thinning using LFES with an extended Smagorinsky model. They numerically investigated the
forced convection fully developed turbulent flow of the Pseudoplastic (n = 0.75) and Newtonian
fluids through a heated axially rotating pipe over a rotation rate range (0 < N < 3) at simulation

Reynolds and Prandtl numbers equals 4000 and 1, respectively.

30 T T T

400
zzZ

25

20

U=(1/0.41) In(Y *)+5.5..
s
>

Y+

(a) Turbulent Axial Velocity. (b) Mean temperature profile.

Figure IL.7 — Results of Abdi et al. [42].
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Figure I1.8 — RMS of temperature fluctuations [42].

In this study, a Direct Numerical Simulation (DN S) was conducted to examine the turbulent
flow characteristics of Pseudoplastic, Newtonian, and dilatant fluids through an isothermal
pipe. The simulation was performed at a Reynolds number of 6500. The numerical resolution
employed a grid consisting of 129 x 129 x 193 points in the axial, radial, and circumferential

directions, respectively.

Furthermore, a Large Eddy Simulation (LFS) with an extended Smagorinsky model was em-
ployed to investigate the forced convection of a thermally independent Ostwald de Waele fluid
through a heated stationary pipe in a fully developed turbulent flow regime. This investigation

encompassed different flow behavior indices and Reynolds numbers (4000, 8000, and 12000).
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DNS OF TURBULENT FLOW OF
OSTWALD DE WAELE FLUIDS

II1.1 Introduction

on-Newtonian fluids have complex rheological properties, so their flow behavior is dif-
N ficult to predict using traditional experimental methods or analytical models. Direct
numerical simulation (DNYS) is a powerful tool for understanding the complex flow behavior
of fluids. In particular, it is a highly accurate method for resolving turbulence and its impact
on fluid flow. One important parameter affecting fluid flow behavior is the flow behavior index.
The flow behavior index is commonly used to describe the rheological properties of fluids in
various industrial applications, including oil and gas production, chemical processing, and food
production.
The fully developed turbulent flow of non-Newtonian fluids through a smooth stationary pipe is
a problem of considerable significance and has received much attention in the past; the litera-
ture contains several well-documented experimental and numerical investigations. These studies
have given special consideration to describing this kind of fluid rheological and hydrodynamic
behavior by revealing the effects of various rheological parameters on flow patterns and the

turbulence features.

II1.2 Problem description

The present study deals with numerical simulation with a fully developed turbulent flow of
Pseudoplastic (n = 0.75), Newtonian (n = 1), and Dilatant (n = 1.2) fluids trough isothermal
cylindrical pipe at a simulation Reynolds number of 6500 by using the DN S approach with
computational domain length of 20/2. The numerical resolution employed a grid consisting of

129 x 129 x 193 points in the axial, radial, and circumferential directions, respectively.
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S
Figure III.1 — Geometry and computational domain of DNS.
III.3 Mathematical formulation
The conservation of mass, momentum and energy equations govern the flow of a non-
Newtonian fluid are presented and written in dimensionless form as :
Continuity equation :
gz; =0 (IIL.1)
Momentum equations :
duj  Owiwy) _ 10p 9 [V (81@ N aujﬂ (111.2)
ot ox; pOx;  Ox; Oxj;  Ox;
Energy equation :
br A 0T Lk <0ui N 3uj> (IIL.3)
Dt pCp 0x;0x;  2pC, \ Ox;  Ox;

The developments relating to the equations, which governing the phenomenon are reported

in CHAPTER 4.

IIT.4 Results and discussion

I11.4.1 Validation

The mean axial velocity profile for the Newtonian fluid have been compared reasonably

with those available in the literature for validation purposes. Figure I11.2 compares the results
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of mean turbulent axial velocity profiles of the Newtonian (n = 1) fluid with those of experi-
mental PIV Eggels (1994) [43] and DN S of Redjem et al. (2007) [44] at Reg = 5500. As shown
in Figure I11.2, the predicted velocity profile of the Newtonian fluid agrees with the universal
linear laws UT = Y and U" = 2.5[nY ™" + 5.5 in the viscous sublayer (0 < Y < 5) and

logarithmic region (5 < ¥ < 30), respectively.
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Figure III1.2 — Validation of mean velocity profile in DNS.

The following paragraphs assess to reveal the effects of the behavior index on the mean
characteristics to describe the flow patterns of the Ostwald de Waele fluids via analyzing and
discussing the turbulent streamwise, radial and, tangential velocity distributions of the Pseudo-
plastic (n = 0.75), Newtonian (n = 1), and Dilatant (n = 1.2) fluids at a simulation Reynolds
number of 6500 largely.

I11.4.2 Mean axial velocity profile in DNS

Figure I11.3 illustrates the turbulent axial velocity profiles along the pipe radius (R), scaled
by the friction velocity (UT = /Tw/p ) against the distance from the wall in wall units ¥ . The
dashed lines represent the universal velocity distributions in the viscous sublayer (0 < YV < 5)

and in the logarithmic layer (30 < Y™ < 200).



1I1.4. Results and discussion

25

20

Figure II1.3 — Mean axial velocity profile in DNS.

As shown in Figure I11.3, the turbulent axial velocity profile of the Newtonian fluids is consistent
with the universal velocity distributions in the viscous sublayer ; denoting a linear axial velocity
distribution over the viscous sublayer is ascribed to the molecular shear-stress as the dominant
force compared to the turbulent one in this region. Moreover, the Newtonian profile collapses
very well with the universal law U" = 2.5[nY " + 5.5 in the core region. According to Figure
I11.3, the flow behavior index effect is nearly limited in the near-wall region ; it can be said that
the turbulent streamwise velocity is almost independent of the flow behavior index (7) in the
vicinity of the wall. The turbulent axial velocity profiles of Pseudoplastic and Dilatant fluids
are almost identical in the near-wall region ; these profiles are consistent with each other in the
viscous sublayer (1 < Y ). Moreover, these profiles collapse very well with the universal law

(Ut =Y™) in the vicinity of the wall (0 < YT <5).

Further away from the near-wall region, the mean flow quantities strongly depend on the rheolo-
gical properties of the Ostwald de Waele fluids ; the flow behavior index significantly affects the
streamwise velocity distributions beyond the buffer region over the abovementioned conditions.
It can be seen from Figure II1.3 that beyond approximately (V" = 1), the axial velocity profiles
begin to deviate gradually from each other with the distance from the wall (V") ; this deviation
is more pronounced far away from the wall towards the core region where the influence of the

flow behavior index on the axial velocity distribution becomes more significant in the buffer
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and logarithmic regions.

Beyond the buffer region, the streamwise velocity profile of the dilatant fluid lies down the
Newtonian and Pseudoplastic profiles along the radial coordinate. In contrast, the velocity
profile of the Pseudoplastic fluid is somewhat larger than the Newtonian and Dilatant fluids,
which lie down the universal logarithmic law over the logarithmic layer. It should be noted that
the decreased flow behavior index results in an increase in the turbulent axial velocity profile
with the distance from the wall (Y") away from the wall towards the core flow region, where
this trend is more pronounced in the logarithmic region (30 < Y < 200). It is interesting to
note that this discrepancy is due to the influence of the apparent viscosity and shear-rate of
the Ostwald de Waele fluids in this region; the shear-rate of shear-thinning fluid (n = 0.75) is
higher than the Dilatant and Newtonian ones along the pipe radius, the enhancement in fluid
shear-rate induces a noticeable increase in the movement of the fluid layers past each other away
from the wall towards the core region with the wall distance, resulting a pronounced increase

in the mean axial velocity along the pipe radius especially in the buffer layer and core region.

111.4.3 Turbulence intensities of velocity fluctuations in DNS

The current subsection evaluates the effect of the rheological behavior of the Ostwald de
Waele fluids on the generation and transport of the turbulence intensities from the viscous
sublayer towards the core region via analyzing and discussing the effects of the flow behavior
index on the turbulence intensities of the velocity fluctuations.

Figure III.4a, Figure I11.4b, and Figure III.4c depict the distribution of axial, radial and tan-
gential velocity fluctuations, respectively, of Pseudoplastic (n = 0.75), Newtonian (n = 1), and
Dilatant (n = 1.2) fluids scaled by the friction velocity U, = /7y /p along the pipe radius (R),
versus the distance from the wall in wall units V" at a simulation Reynolds number of 6500. As
seen in Figure II1.4a, the distribution of turbulence intensities of the axial velocity fluctuations
of Pseudoplastic and Dilatant fluids exhibit a similar trend along the pipe radius, where there
is a clear trend of oscillating in these profiles over the radial direction. The turbulence intensi-
ties of the axial component gradually enhance away from the wall with the wall distance. The
profiles of the Pseudoplastic and Dilatant fluids differ considerably in the buffer (5 < Y < 30)
and logarithmic (30 < Y < 200) regions where this discrepancy becomes more distinct in the
core region. At large wall distance, RM S of the axial velocity fluctuations of the Pseudoplastic
and Dilatant fluids begin to drop rapidly and fall off to lower values in the core region; this

means that the axial fluctuations begin to vanish gradually in this flow region.
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As seen in Figure I11.4a, the turbulence intensities profiles of the axial velocity fluctuations begin
to deviate from each other further away from the wall towards the core region ; this deviation
becomes more distinct with the distance from the wall ('), especially in the logarithmic region.
The RM S profiles of the Dilatant fluid lie above those of the Pseudoplastic and Newtonian fluids
along the pipe radius. The increased flow behavior index results in a pronounced enhancement in
the RM S of the axial velocity fluctuations beyond the buffer region (5 <Yt < 30). It is evident
that this increase in the flow behavior index also leads to a slight shift in the peak location of
the profile away from the wall towards the core region. Moreover, the axial velocity fluctuations
are generated near the wall. They are transported from the near-wall region towards the core
region, it can be said that with an increasing flow behavior index, the generation of the axial
velocity fluctuations enhances considerably. The increased flow behavior index also ameliorates

the transport of the axial velocity fluctuations from the wall vicinity towards the core region.

As shown in Figure II[.4b, the turbulence intensities of the radial velocity fluctuations are
identical and are consistent with each other in the viscous sublayer for both flow behavior
indices in the viscous sublayer (0 < Y < 5) up to approximately ¥ " = 3; these profiles are
nearly linear and equal to zero value along the near-wall region (Y < 3). It can be said that
the RM S of the radial component is almost independent of the flow behavior index in this
flow region. These profiles begin to deviate from each other out of the viscous sublayer, where
this deviation becomes more distinct further away from the wall towards the core region with
wall distance ; where beyond Y = 3, the profiles of the radial turbulence intensities exhibit
a significant enhancement further away from the wall towards the core region. Moreover, the
radial turbulence intensity profiles begin to decrease noticeably after reaching their peak values

in the logarithmic region (30 <Yt< 200).

It can be seen from Figure II1.4b that the RM .S of radial fluctuations profiles of the Dilatant
fluid lies above those of the Pseudoplastic and Newtonian along the radial coordinate. It can
be said that with increasing flow behavior index, the radial fluctuations enhance significantly
along the pipe radius, and the predicted peak locations shift away towards the core region. It
can be said that the increased flow behavior index results in a pronounced enhancement in the
turbulence intensities of the radial velocity fluctuations along the pipe radius. In other words,
the increased flow behavior index induces a noticeable enhancement in the transport mechanism

of the turbulence intensities of the radial velocity fluctuations from the axial ones.
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Figure III.4 — Turbulence intensities of velocity fluctuations in DNS.

As shown in Figure I1I.4c, the same trend of RM S of tangential fluctuations is observed along
the pipe radius for Pseudoplastic (n = 0.75), Newtonian (n = 1), and Dilatant (n = 1.2) fluids.
The tangential fluctuations are almost neglected in the near-wall region, where this is ascribed
to the molecular shear-stress being the dominant force compared to the turbulent one in this
region. It can be seen from Figure I11.4c that the RM S profiles of the Dilatant fluid lie above
those of the Pseudoplastic and Newtonian along the radial coordinate, as the flow behavior
index increases as the RM S of tangential fluctuations is enhanced along the pipe radius and

their peak locations shift towards the core region. It is evident that the increased flow behavior
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index induces a noticeable enhancement in the transfer of the tangential velocity fluctuations

from the axial ones.

I11.5 Conclusion

The present study aimed to investigate the effects of the flow behavior index of the Ostwald
de Waele fluids on the rheological behavior, flow pattern, and turbulence statistics.

The results of this study will be summarized :

o The streamwise velocity increased gradually with decreasing flow behavior index along

the pipe radius, especially in the core region.

o The increased flow behavior index resulted in a pronounced amelioration in the mechanism
of generation of the axial fluctuations and a noticeable enhancement in the mechanism
of the transport of the axial velocity fluctuations from the wall vicinity towards the core

region.

o The increased flow behavior index led to ameliorating the transport mechanism of the
radial and tangential velocity fluctuations from the axial velocity fluctuations and also to

ameliorating the transport from the wall vicinity towards the core region.
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IV.1 Introduction

he transfer of heat in a fluid flowing through a pipe is a fundamental problem in many
T engineering applications. In industrial processes, the transfer of heat is often accompanied
by the transfer of mass, which can significantly affect the overall efficiency of the process.
The rheological properties of the fluid play a crucial role in determining the heat transfer
characteristics. Power-law fluids are a class of non-Newtonian fluids that exhibit a nonlinear
relationship between the shear-stress and the shear-rate, and they are commonly encountered
in many industrial applications. In recent years, Computational Fluid Dynamics (C'F'D) has
emerged as a powerful tool for studying the flow behavior of power-law fluids. Large Eddy
Simulations (LES) are a C'F'D technique used to simulate turbulent flows. LES divides the
flow into large-scale and small-scale motions, and only resolves the large-scale motions while

modelling the small-scale motions.

This study investigates the effect of Reynolds number on the rheological behavior of Ostwald—de
Waele fluids in a straight pipe using Large Eddy Simulation (L£S). The simulations are perfor-
med for three Reynolds numbers (4000, 8000 and 12000) and for different flow behavior indices
(0.75, 1 and, 1.2), covering turbulent flow regimes. To compare the results of Newtonian and
non-Newtonian fluids at the different Reynolds numbers a numerical resolution of 65 gridpoints
was used in the r, 0, and z dimensions for the calculations, which employed a finite difference
method. Significant variations were observed in the apparent viscosity and shear-rate, parti-
cularly at high Reynolds numbers, where the fluids exhibited non-Newtonian behavior with a
pronounced decrease in apparent viscosity. Additionally, the study numerically analyzed the
heat transfer characteristics of power-law fluids flowing in a heated horizontal pipe at isoflux

conditions, using Large Eddy Simulations (LFS) with an extended Smagorinsky model.
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IV.2 Problem description

In this study, Large Eddy Simulation (LES) was used to investigate turbulent flow in a
pipe with domain length of (2012). To discretize the Navier-Stokes equations, a finite difference
scheme that was second-order accurate in both space and time was employed. The convective
and diffusive terms were evaluated using a combination of a third-order Runge-Kutta explicit
scheme and a Crank-Nicholson implicit scheme. This approach allowed for an efficient and
accurate simulation of the turbulent flow. To account for the effects of turbulent eddies that

were smaller than the grid size, a dynamic model was employed as the sub-grid scale model.

Figure IV.1 — Geometry and computational domain of LES.

IV.3 Governing equations

The conservation of mass, momentum, and energy equations governing the thermal flow of

a non-Newtonian fluid are presented by Equations III.1, ITI.2 and III.3.

The kinematic viscosity is determined from the Ostwald de Waele model defined by :

v =n/p with n = K"} (IV.1)

The filtered momentum Equation IV.1 governing incompressible Non-Newtonian fluid are writ-
ten in a cylindrical coordinate system and are made dimensionless using the centreline axial
velocity of the analytical fully developed laminar profile, (U.;, = (3n +1).U,/(n+ 1)) as a re-

ference velocity.
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p*
— V.4
P= U (IV.4)
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t = — where t., = (IV.5)
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V=5 (IvV.6)
By introducing the dimensionless quantities as defined :
Ouj  O(ujuj)  Op 1 0 |.,.1(0u Ou;
ouj — n v.7
8t + 6@ 8.L7 Res a.Ll 61‘]' al,l ( )
Where Re; is the Reynolds number defined by :
Re. pUcL27an/ (IV 8)
S Kf M
Where 7, S;; are the shear-rate and the strain rate respectively :
Y= 1/25i;Si; (IV.9)
1 (0u; Ou;
Spi= ~ d J V.10
J 2 (8@ * ax, > ( )
Equations IV.7 is filtered using a generic spatial average filter on a cylindrical control volume :
— 1 / / / / / / /
0,2) = —(—— 00, 20 ArTAGTA V.11
q(r,0,z) TATAHAfofq(rﬂ ' ArAG Az ( )
The filtered equations are written :
ou;
- =0 V.12
(971]' 8121-113- op 1 0 T ou; 8ﬂj 8le
ou; _ n—1 | 22 V.13
ot - 8:131' 8331' - Res 8&32' al‘j o 8582' 6)331- ( )
Where 7;; = q;q; — ¢;q; is the sub-grid tensor and T;; = 47! ggj - f'yi"jﬂ% is the additional

sub-grid tensor for a non-Newtonian fluid.

The above dimensionless Equations IV.8, IV.9, and IV.10 are written in cylindrical coordinate
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system with the following change of variables :

Gr =10 , g9 = 109 and, ¢, = v, (IV.14)

This change of variables, taken from the work of Verzicco and Orlandi (1996), was chosen to
avoid the singularity on the axis of the pipe (r = 0). Explaining Equations IV.14 and IV.13

in terms of the variables ¢,, g9 and ¢. , we obtain :

9g.  0qp | 0q.
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=0 (IV.15)
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With the temporal derivatives :
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The sub-grid stress tensor derived from convective terms :
Tr: = @4z — 4 q 702 = 409z — Q042> T2z = €20z — 4242 (IV-22)

Pz

Tro = GrQ9 — 4rq6, To0 = 9696 — 9090, Trr = GrGr — 4rqr (IV.23)
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The additional sub-grid stress tensor for non-Newtonian fluid (derived from viscous terms) :

T, = v”laaq: - Wl%q:,Tez = 4" 1%% - W%%Z (IV.24)
RTINS T L V.25
Too = 7"18839 — gt %?,Tee = W%q; —qnl %Cf; (Iv.27)

T.p = v”*lgqj - "1(1;,T7 = v”*li(g - F% (TV.28)

Ty = @ - fyn—lfé’ (IV.29)

Ohta and Miyashita (2014) [34] showed that 7, and Tj terms are very small and can be neglected
in front of the terms that are the sub-grid tensors that model almost all the small scale effects.
With this approximation, equations [V.15, IV.16 and IV.17 are in the following form :
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The energy equation as well as the thermal boundary conditions of the non-Newtonian fluid

flow with heat transfer is written :

(IV.34)

ot U or r 00 v 0z or2 " ror | r2 062 022
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Where « is the thermal diffusivity of the fluid is considered constant and independent of shear
and temperature. This is because variations in thermal diffusivity with temperature or shear-

rate are small compared to those of viscosity.

A heat flux density is imposed on the wall. This heat flux density condition requires that the

wall temperature averaged in the azimuthal direction (6) increases linearly in the flow direction

(2).

The energy Equation I'V.34 of the non-Newtonian fluid is made dimensionless using the reference

temperature 7,.; = qu /pC,U.r, . The dimensionless temperature is defined as :

0 = (T, (2)) = T (0,7, 2,))/Tyes (IV.35)

T.cr presents the reference temperature and is defined as 7)., where (7}, (2)) is an average in

time and periodic directions.

Using the definition of temperature (given by Equation IV.35), the dimensionless form of the

energy equation is as follows :

0 10 10 0 o (1T, 1
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, (IV.36)
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By filtering Equation IV.36, the filtered energy equation is written :
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Where the sub-grid terms or sub-grid heat fluxes are defined by :
7o = 40 — 30,790 = 9O — 490, 26 = ¢.0 — .0 (IV.38)
The simulation Prandtl number is given by :
K
Pr, = t (IV.39)
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With K the consistency at temperature (7),), the tensors 7., 7o and 7.o are the sub-grid

heat flux tensors.

The dimensionless equations governing the turbulent flow of the thermally-dependent Ostwald
de Waele fluids (Pn > 0) are written as follows :
Continuity equation :

0q-  0qg T&Iz
or 00 0z

=0 (IV.40)

Momentum equations :
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Energy equation :
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The sub-grid heat flux in the energy equation is modeled by :
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With «a; is the turbulent thermal diffusivity coefficient defined by :
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oy = =2 (IV.47)

Where Pr; is the turbulent Prandtl number calculated by :

I 4\ 9T
w (IV.48)
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IV.4 Results and discussion

IV.4.1 Hydrodynamic study of turbulent power-law fluids flow

IV.4.1.1 Mean normalized shear-rate and viscosity

The present subsection seeks to reveal the effect of the flow behavior index and Reynolds
number on the rheological behavior by analyzing and discussing the evolution of the apparent
fluid viscosity and the shear-rate of the Pseudoplastic and Dilatant fluids for various Reynolds
values. The normalized apparent viscosity distributions of Pseudoplastic and Dilatant fluids
along the pipe radius (1) versus the distance from the wall in wall units ¥ are depicted in
Figure 1V.2. Figure IV.2a illustrates the flow behavior index effects on the shear-rate profiles
at a simulation Reynolds number of 4000 and over a wide behavior index range of ( 0.75, 1 and
1.2), while that Figure IV.2b illustrates the Reynolds number effects on the shear-rate profiles
for flow behavior index of 0.75, 1 and 1.2 over a Reynolds number range of (4000, 8000 and
12000).

Figure 1V.2 demonstrates that the shear-rate is approximately linear and constant along the
viscous sublayer (0 < YV < 5) for all flow behavior indices and each Reynolds number. Beyond
(Y" =5), the shear-rate profiles begin to decline gradually as one moves away from the wall
(V") where this trend is more obvious in the buffer region (5 < Y < 30) for all considered
cases. This reduction in the shear-rate away from the pipe wall towards the logarithmic region
(30 < V" < 200) is related to the reduction in the viscous force far away from the near wall

region towards the core flow region.

As shown in Figure IV.2, the shear-rate distributions seem strongly affected by the flow behavior
index and the Reynolds number along the sublayer and buffer regions; this effect seems less

significant in the logarithmic region. The shear-rate profiles of Pseudoplastic lie above those of
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Dilatant fluid along the pipe radius for three Reynolds number values (4000, 8000 and 12000),
as shown in Figure IV.2b. It can be said that the decreased flow behavior index results in a
marked increase in the shear-rate distributions over the three regions (sublayer, buffer, and
logarithmic), especially in the near-wall region ; this trend is more pronounced as the Reynolds

number increases.

On the other hand, the shear-rate profiles of Pseudoplastic and Dilatant fluids for the high
Reynolds numbers (12000 and 8000) lie above those of Reynolds of 4000 along the pipe radius,
where this trend is more obvious in the vicinity of the pipe wall for all flow behavior indices. The
increased Reynolds number induces a marked increase in the shear-rate over the three regions,

especially in the viscous sublayer.
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Figure IV.2 — Shear-rate profile.

Figure IV.3 demonstrates the apparent normalized viscosity of the shear-thinning and shear-
thickening fluids along the pipe radius against the distance from the wall in wall units (V') at
simulation Reynolds numbers of (4000, 8000 and 12000). As illustrated in Figure IV.3, no signi-
ficant noteworthy differences are observed between the normalized apparent viscosity profile of
Pseudoplastic and Dilatant fluids in the vicinity of the pipe wall where the apparent viscosity
is independent of the flow behavior index and the Reynolds number near the wall region ; the
apparent velocity profiles of the Pseudoplastic and Dilatant fluids collapse very well with each
other in the viscous sublayer (0 <Y <5). As shown in Figure IV.2, the apparent viscosity

is identical and equal to the apparent viscosity at the pipe wall (7),,) over the viscous sublayer
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(0 <Y <5), for all flow behavior indices and Reynolds numbers. Beyond (Y = 5), the ap-
parent viscosity profiles begin to deviate gradually from each other with the distance from the
wall (V) ; this deviation is more pronounced far away from the wall towards the core region,
where the influence of the flow behavior index on the apparent viscosity distribution becomes
more significant in the logarithmic region. The viscosity of the Pseudoplastic fluid increases
gradually with the wall distance towards the core region, where this increase is more apparent
as the flow behavior index decreases for all Reynolds numbers. It can be said that the reduced
flow behavior index results in a marked increase in the apparent viscosity far away from the
near-wall region. As shown in Figure IV.2, the shear-rate decreases gradually with the wall
distance far away from the pipe wall towards the core region ; this reduction results in a gradual
increase in the apparent viscosity of the Pseudoplastic fluid beyond the sublayer region where

the Pseudoplastic fluid tends to behave like a solid when approaching to the pipe centre.

On the contrary, the apparent viscosity Dilatant decreases gradually with the wall distance far
from the pipe wall for all Reynolds numbers ; this trend is more pronounced as the flow behavior
index. The increased flow behavior index induces a noticeable reduction in the apparent viscosity
far from the near wall region, especially in the logarithmic region. As shown in Figure IV.2, the
decreased shear-rate far away from the vicinity of the wall induces a marked decrease in the

apparent viscosity of the Dilatant fluid with the wall distance towards the logarithmic region.

On the other hand, it is apparent in Figure IV.3 that no significant noteworthy differences
are observed between the normalized apparent viscosity profile of various Reynolds numbers
(4000, 8000 and 12000) along the pipe radius; the viscosity profiles are nearly consistent with
each other along the pipe radius for each Reynolds number. It can be said that the apparent

viscosity of the Pseudoplastic and Dilatant seem independent of the Reynolds number over the

Figure I'V.4 presents the distribution of apparent fluid viscosity normalized by viscosity at the
wall (7,,), against the shear-rate scaled by the shear-rate at the pipe wall (5,,) at simulation
Reynolds number of 4000, 8000 and 12000 and over a wide behavior index range of (0.75, 1 and
1.2). As shown in Figure IV.4, the Newtonian fluid’s apparent viscosity is constant along the
pipe radius and equal to the wall viscosity, so it is independent of shear flow rates and Reynolds
number. The apparent viscosity of the Pseudoplastic and Dilatant fluids are strongly related to
the shear-rate over the three regions (sublayer, buffer, and logarithmic). The apparent viscosity

varies gradually with the shear-rate along the pipe radius for all flow behavior indices.
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Figure IV.3 — Apparent viscosity profile versus Y ' in LES.

As shown in Figure IV.4, the apparent viscosity of the Pseudoplastic fluid is inversely propor-
tional to the shear-rate; the increased shear-rate leads to a decrease in the apparent viscosity
of the Pseudoplastic where this trend is more apparent as the flow behavior decreases for all
Reynolds numbers. It should also be noted that this finding confirms the association between
the apparent fluid viscosity and the shear-rate of the Pseudoplastic fluids where 7 = K4~ On
the contrary, the apparent viscosity of the Dilatant fluid is directly proportional to the shear-
rate. The viscosity profiles increase gradually with the increase in the shear-rate, where this
trend is more apparent as the flow behavior decreases for all Reynolds numbers. This finding
confirms the association between the apparent fluid viscosity and the shear-rate of the Dilatant
fluids where = K+"~'. It is clearly apparent in Figure IV.3. that no significant noteworthy
differences are observed between the apparent viscosity profile of the Pseudoplastic and Dilatant
fluids for the Reynolds number range (4000, 8000 and 12000) along the pipe radius. It can be
said that the relation between the apparent viscosity and shear-rate is nearly independent of

the Reynolds number over the three regions (sublayer, buffer, and logarithmic).
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Figure IV.4 — Apparent viscosity versus shear-rate.
IV.4.1.2 Turbulent axial velocity profile in LES

The reliability and accuracy of the predicted results and numerical procedure are examined
by comparing the present findings to those available in the literature. The validation study
compares the axial velocity of Pseudoplastic (n = 0.75) and Newtonian fluid through stationary
pipe to those of experimental PV, and LFES. Figure IV.5a reasonably compares the turbulent
axial velocity profiles of the Newtonian (n = 1) fluid through an axially stationary pipe with the
LES of Abdi et al. (2019) [42] at the simulation Reynolds number of 4000, experimental PIV
of Eggels (1994) [43]. It can be seen from that no significant differences were found between
the present predicted velocity profile of Pseudoplastic and Newtonian fluids through stationary
(N = 0) with those of the literature along the radius pipe, where the streamwise velocity profiles
turn out to be in excellent agreement with Abdi et al. (2019) [42], experimental PIV of Eggels
(1994) [43]. Moreover, these profiles collapse very well with the universal law (U = Y ) in the
vicinity of the wall and (U" = 2.5InY " + 5.5) in the logarithmic region.

Figure IV.5b compares the turbulent axial velocity profiles of the shear-thinning (n = 0.75)

0) with LES of Abdi et al. (2019) [42] at the simulation

fluid through a stationary (N =

Reynolds number of 4000 and experimental data of Rudman et al. (2004) [45] for a generalized

Reynolds number. As shown in Figure IV.5b, the predicted turbulent axial velocity profile of
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Pseudoplastic fluid is very similar to those found by Abdi et al. (2019) [42] and Rudman et al.
(2004) [45] along the three layers.
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Figure I'V.5 — Validation of turbulent axial velocity in LES.

The present subsection aims to explore the effects of the rheological behavior of the power-law
fluid on the flow pattern and turbulence features by critically examining the effects of the flow
behavior index and Reynolds number on the hydrodynamic and the turbulence characteristics,
especially in the core region and the vicinity of the wall. The present study assesses to reveal
the effects of the flow behavior of Pseudoplastic and Dilatant fluids and Reynolds number on
the turbulent and mean axial velocity profiles over a wide behavior index range of (0.75, 1 and

1.2) for three Reynolds number values (4000, 8000 and 12000).

Figure IV.6 illustrates the turbulent axial velocity profiles along the pipe radius (R), scaled
by the friction velocity (U, = /7y /p ) against the distance from the wall in wall units ¥+
. The dashed lines represent the universal velocity distributions in the viscous sublayer (0 <
Y < 5) and the logarithmic layer (30 < Y™ < 200). It can be seen from Figure IV.6 that the
axial velocity is nearly independent of the flow behavior index (n) and the Reynolds number
in the near-wall region for all considered cases. In the viscous sublayer , the turbulent axial
velocity profiles of Pseudoplastic (n < 1), Newtonian (n = 1), and Dilatant (n > 1) fluids are
almost identical are consistent with each along the viscous sublayer for the three Reynolds

number (4000, 8000 and 12000). Moreover, these profiles collapse very well with the universal
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law (U" = Y ") in the vicinity of the wall (0 < Y™ < 5) denoting a linear axial velocity
distribution over the viscous sublayer for all considered cases. The linear distribution of the
turbulent axial velocity in the near-wall region results because the molecular viscous force is

the dominant force compared to the turbulent one in this region.

As shown in Figure V.6, the effects of the flow behavior index and Reynolds number become
to be significant with the wall distance (V') in the buffer region (5 <V < 30). Beyond ap-
proximately (Y = 10) , the velocity profiles begin to deviate slightly from each other with
the wall distance far away from the near-wall region towards the core region. This deviation
is more pronounced far from the wall towards the core region, where the influence of the flow
behavior index on the axial velocity distribution becomes more significant in the logarithmic
region (30 < Y™ < 200). As shown in Figure V.6, a stronger dependence of the axial and radial
velocity profiles on the flow behavior index and Reynolds number is marked outer the buffer
region (5 < Y™ < 30). The turbulent axial velocity profiles of the Pseudoplastic and Dilatant
fluids deviate pronouncedly from each other in the logarithmic region for all Reynolds numbers ;
this discrepancy is due to the flow behavior index effects in the core region where the turbulent
viscous force is the dominant force compared to the molecular one. It should be noted that
the deviation in the axial velocity profile is more pronounced for the high Reynolds number
(Re = 12000), where the increased Reynolds number leads to deviating the axial velocity profile

significantly in the core region.

The Newtonian fluid’s turbulent mean axial velocity profile collapses totally with the universal
logarithmic law U = 2.5[nY " +5.5 in the logarithmic layer. The turbulent axial velocity profiles
of the Pseudoplastic fluid are somewhat larger than the Newtonian fluid and lie above the
universal logarithmic law over the logarithmic layer, While the profiles of the shear-thickening
lie down the universal logarithmic law in the core region. It can be seen from Figure IV.6
that the axial velocity profiles of the Pseudoplastic fluids are more important than those of
Dilatant fluids. As depicted in Figure IV.6, the velocity profile increases gradually with the
wall distance towards the core region ; this increase in these profiles seems more noticeable as
the flow behavior index decreases in the logarithmic region. The reduced flow behavior index
results in a marked increase in the axial velocity profile along the pipe radius, especially in the
logarithmic region for the three Reynolds number values (4000, 8000 and 12000). As shown in
Figure IV.6b, the increased Reynolds number increases the velocity profile as the flow behavior

index is reduced.
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It is interesting to note that this discrepancy in the turbulent axial velocity, especially far
away from the near-wall region, is due to the influence of the flow behavior index and Rey-
nolds number on the shear-rate distribution and the fluid viscosity along the pipe radius. For
Pseudoplastic fluid, the decreased flow behavior induces a pronounced increase in the apparent
viscosity beyond the buffer region (Y = 5) towards the core region Figure IV.4a, resulting in
a pronounced decrease in the shear-rate along the logarithmic region (Figure IV.2a). Conse-
quently, results in a noticeable increase in the axial velocity profile in the core region, this trend

is more pronounced as the flow behavior index decreases.
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Figure IV.6 — Turbulent axial velocity profiles in LES.

As depicted in Figure [V.4a, the apparent viscosity of the Dilatant fluid decreases gradually with
the wall distance towards the core region, resulting in a noticeable increase in the shear-rate
of the Dilatant fluid over the logarithmic region (Figure IV.3a) and, consequently, results in a
pronounced decrease in the turbulent axial velocity profile in the core region (Figure IV.6), this
trend is more apparent as the flow behavior index increases. As for the Reynolds number effects,
the increased Reynolds number results in a marked decrease in the apparent viscosity (Figure
IV.4b), resulting in a noticeable reduction in the shear-rate of the Pseudoplastic fluid (Figure
IV.3b) and, consequently, results in a pronounced increase in the axial velocity profile of the
Pseudoplastic fluid in the core region (Figure IV.6b). On the contrary, the increased Reynolds
number induces in an evident decrease in the apparent viscosity of the Dilatant fluid (Figure

IV.4b), resulting in an apparent increase in the shear-rate (Figure 1V.3b) and consequently,
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results in a pronounced decrease in the axial velocity profile along the logarithmic region (Figure

IV.6b).

Figure IV.7 presents the streamwise velocity profiles along the pipe radius of Pseudoplastic

and Dilatant fluids, in addition to the analytical velocity profile in the laminar regime for both

fluids scaled by the analytical laminar centreline velocity (U.;, = (3n+ 1)U,/ (n+ 1)), against

the distance from the wall (y), normalized by the pipe radius, over a wide behavior index range

of (0.75, 1 and 1.2) for three Reynolds number values (4000, 8000 and 12000). As shown in

Figure IV.7, the mean axial velocity profile of the Pseudoplastic and Dilatant fluids is similar

to the laminar profile where a parabolic shape characterises these profiles; the velocity profile

in the laminar flow is pronouncedly higher than the others in the turbulent flow.
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Figure IV.7 — Turbulent axial velocity profils versus y/R in LES.
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As discussed in Figure [V.6, the flow behavior index and Reynolds number significantly affect

on the axial velocity distribution along the pipe radius espically in the core region where the

decreased flow behavior index results in marked increase in the velocity in the logarithmic

region and this trend is more obvious as the Reynolds number increases. As mentioned above,

the deviations in the axial velocity profiles are due to the effects of the flow behavior index and

Reynolds number on the apparent viscosity and the shear-rate distribution along the logarithmic

region Pseudoplastic and Dilatant fluids.

1.0
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IV.4.1.3 Turbulence intensities of velocity fluctuations in LES

3.0

25

0.5

Figure IV.8a and Figure IV.8b compare the normalized root mean square (RMS) of the

axial, radial and tangential velocity fluctuations of the shear-thinning (n = 0.75) and Newto-

nian fluids along the pipe radius for the stationary pipe. These profiles have been compared

reasonably with the LES of Abdi et al. (2019) [42] at the simulation Reynolds number of 4000.

As shown in Figure IV.8, the predicted RM S profiles of the shear-thinning are in excellent

agreement with those of Abdi et al. (2019) [42] along the pipe radius in the three sublayers.

O Presente LES, n=0.75, Reg=4000

O Presente LES, n=0.75, Reg=4000

— T — T
O Presente LES, n=0.75, Reg=4000
7| ———LESofAbdietal (2019), n=0.75, Res= 4000

1———LESofAbdietal. (2019), n=0.75, Res= 4000

E LES of Abdi et al. (2019), n = 0.75, Res= 4000

3.0 N
O Presente LES, n=1, Reg=4000
LES of Abdi et al. (2019), n =1, Res= 4000
O Presente LES, n= 1, Reg=4000
2.5 —— LESofdbdietal. (2019), n= I, Res= 4000 O (Ul E
O Presente LES, n =1, Reg=4000
| —— LESof Abdietal. (2019), n =1, Res= 4000
2.0 4 -
1.5 4 -
1.0 -
S
0.5 1 B
=
0.0 =E=EEEE688
10" 10° 10! 10°

Figure I'V.8 — Validation of turbulence intensities in velocity fluctuations in LES.

The current subsection aims to describe the turbulence feature of the Pseudoplastic and Dilatant

fluids by analyzing and discussing the effects of the flow behavior index of the Pseudoplastic

and Dilatant fluids in addition to the effects of the Reynolds number on the generation and

transport mechanism of turbulence intensities of the velocity fluctuation from the wall vicinity

towards the core region.

Figure 1V.9, Figure IV.10, and Figure IV.11 illustrate the flow behavior index and Reynolds

number effects on the turbulence intensities of the velocity fluctuations over a wide behavior

index range of (0.75, 1 and 1.2) for three Reynolds number values of (4000, 8000 and 12000).

The Figure IV.9, Figure 1V.10, and Figure IV.11 depict, respectively the root mean square

(RMS) distribution of the axial, radial, and tangential velocity fluctuations of Pseudoplastic
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and Dilatant fluids, scaled by the friction velocity U, = /7y1//p along the pipe radius (&),
versus the distance from the wall in wall units Y. The flow behavior index and the Reynolds
number affects significantly on the turbulence intensities of the axial, radial, and tangential
velocity fluctuations along the pipe radius, especially in the logarithmic region. The generation
and transport mechanism of turbulence intensities of the velocity fluctuation from the wall
vicinity towards the core region strongly depends on the flow behavior index and Reynolds

number.

It can be seen from Figure IV.9 that the RM S of the axial velocity fluctuations increases gra-
dually with the wall distance far away from the pipe wall towards the core region ; this increase
is more obvious beyond the buffer region until reach its peak at a large wall distance, these
velocity fluctuations begin to drop rapidly and fall off to lower values in the core region for all
considered cases. This means that the axial velocity fluctuations are generated in the vicinity
of the wall and transported towards the buffer region (5 <Yt < 30) ; these axial fluctuations
become to vanish gradually at a large wall distance for all flow behavior indices and Reynolds
numbers. As shown in Figure IV.9, the RM S axial velocity fluctuations profiles are nearly inde-
pendent of the flow behavior index and Reynolds number near-wall region, where these profiles
are almost identical and consistent with each other along the viscous sublayer (0 <Y <5),
meaning that the axial velocity fluctuations generation is independent of the flow behavior index
and Reynolds number. These profiles deviate significantly from each other beyond the buffer
region, and this deviation becomes more distinct with the distance from the wall (Y ), for all
Reynolds numbers. As shown in Figure IV.9, the RM S of the axial velocity fluctuations profiles
of the Pseudoplastic lie above those of Dilatant fluids, where the turbulence intensities of the
axial velocity fluctuations of Pseudoplastic fluid are somewhat higher than the corresponding
RM S for Dilatant fluids for three values of Reynolds numbers. As depicted in Figure IV.9b,
the RM S axial velocity fluctuations profiles of the high Reynolds number lie above those of
lower values. As the Reynolds number increases, the M S profiles become larger with the wall
distance, especially in the buffer region, for all flow behavior indices.

It can be said that decreased flow behavior index results in a noticeable increase in the turbulence
intensities of the axial velocity fluctuations along the pipe radius, especially in the buffer region,
resulting in a noticeable enhancement in the generation and transport mechanism of turbulence
intensities of the velocity fluctuation from the wall vicinity towards the core region, and this
trend is more pronounced as the Reynolds number increases. This enhancement is attributed
to the effects of the flow behavior index and the turbulent axial velocity distributions along

the pipe radius. As discussed above (Figure IV.6), the increased flow behavior index of the
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Figure IV.9 — RMS of axial velocity in LES.

Pseudoplastic and Dilatant fluid results in a noticeable increase in the axial velocity in the
core region, resulting in a marked improvement in the generation and transport mechanism of
turbulence intensities of the velocity fluctuation from the wall vicinity towards the core region,
and this trend is more pronounced as the Reynolds number increases. It can be seen from
Figure IV.10 that the turbulence intensities of the radial velocity fluctuations are identical and
consistent with each other in the viscous sublayer ; these profiles are nearly linear and equal to
zero value along the near-wall region (0 <Y <5) up to approximately Y™ = 3, for all flow
behavior indices and Reynolds numbers. The RM .S profiles of the radial component begin to
deviate from each other out of the viscous sublayer, where this deviation becomes more distinct
away from the wall towards the core region with wall distance. As shown in Figure IV.10, the
radial turbulence intensity profiles begin to decrease noticeably after reaching their peak values
in the logarithmic region (30 < Y™ < 200) for all considered cases.

The profiles of the Pseudoplastic lie down those of the Dilatant fluids along the pipe radius,
where the decreased flow behavior index induces a noticeable decrease in the RMS of the
radial component beyond the buffer region for all Reynolds numbers. It can be said that the
increased flow behavior index results in a pronounced enhancement in the transport mechanism
of turbulence intensities from the axial velocity fluctuation to the radial ones beyond the buffer

region, and this trend is more pronounced as the Reynolds number decreases. As shown in
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Figure I'V.10 — RMS of the radial velocity in LES.

Figure IV.11, the turbulence intensities of the tangential velocity fluctuations of the Dilatant
fluids are somewhat higher than the RM S profile of the Pseudoplastic fluids along the pipe
radius, especially in the buffer region for all Reynolds numbers. The increased flow behavior
index results in a pronounced enhancement in the turbulence intensities of the tangential velocity
fluctuations along the radial coordinates. This means that the increased flow behavior index
induces an apparent enhancement in the transport mechanism of turbulence intensities from
the axial velocity fluctuation to the tangential ones beyond the buffer region. This trend is more

pronounced as the Reynolds number decreases.

IV.4.1.4 Kinetic energy

Figure V.12 presents the turbulent kinetic energy of the Pseudoplastic and Dilatant fluids
along the pipe radius, versus the distance from the wall in wall units ¥, over a wide range of
flow behavior indices (0.75, 1 and 1.2) for three Reynolds number values (4000, 8000 and 12000).
As shown in Figure IV.12, the kinetic energy of turbulent fluctuations shows roughly the same
pattern in turbulence intensities of the axial velocity fluctuations. There is no difference between
the kinetic energy profiles and they are consistent with each other in the viscous sublayer for
all flow behavior indices and Reynolds numbers; these profiles are nearly linear and equal to

zero value near-wall region as a result of the absence of the axial, radial, and tangential velocity
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Figure IV.11 — RMS of the tangential velocity in LES.

fluctuations in the wall vicinity. Beyond Y= = 1, the kinetic energy profiles begin to increase
gradually with the wall distance far away from the pipe wall towards the pipe centre as a result of
enhancement in the axial velocity fluctuations generation and in the transport of the radial and
tangential velocity fluctuations from the axial ones along the pipe radius for all considered cases
(Figure IV.9, Figure IV.10 and Figure IV.11). Beyond approximately (Y™ = 20), the turbulent
kinetic energy profiles of the Pseudoplastic and Dilatant fluids reach their peak values; these
profiles drop and fall off rapidly to the zero value in the buffer region as a result of the vanish
of the axial, radial, and tangential turbulence intensities far away from the pipe wall for all
Reynolds numbers. This attenuation is due to the reduction in the generation and transport
of the turbulence intensities of the velocity fluctuations, and this trend is more obvious as the

Reynolds number decrease.
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Figure IV.12 — Turbulent kinetic energy.

IV.4.2 Turbulent forced convection of Ostwald de Waele fluids

The subject matter of the present section is that of establishing a better understanding
of the rheological and thermal behavior of forced convection turbulent flow of the Ostwald de
Waele fluids. Figures V.13 shows the dimensionless temperature (©') distributions of the
shear-thinning (n = 0.75) and Newtonian (n = 1) fluids at simulation Reynolds and Prandtl
numbers of 4000 and 1, respectively. It should be noted that the dimensionless temperature is
the mean temperature (0 = ((T), (2)) — T (0,7, 2,t)) /Trey) scaled by the friction temperature
(7). As shown in the mean axial velocity profiles (Figures IV.6-1V.8), the temperature profiles
of shear-thinning and Newtonian fluids are consistent with each other in the viscous sublayer,
indicating that the influence of the flow behavior index on the fluid temperature is limited in
this flow region. Moreover, there is a clear trend of increase in the temperature profile (6’ )+
along the radial direction where the temperature profile (6’ )+ begins to enhance gradually wall
with the wall distance far away from the pipe. It can be seen from Figure IV.13 that the profiles
of the shear-thinning and Newtonian fluids begin to deviate slightly from each other with the
wall distance (V') further away from the pipe wall towards the core region, indicating that the
effects of the flow behavior index on the temperature distribution become significant further
away from the viscous sublayer, where the temperature profiles are more affected by the flow

behavior index in the buffer (5 < ¥ < 30) and logarithmic region (30 < Y™ < 200).
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Figure IV.13 — Effect of (n) on the mean temperature profiles.

Figure IV.14 demonstrates the turbulent heat flux of the shear-thinning (n = 0.75) and New-
tonian (n = 1) fluids against the distance from the wall (Y ") in wall units. It is observed that
the turbulent axial and radial heat fluxes of shear-thinning fluid behave differently compared
to those of a Newtonian fluid. It can be noted that the axial and radial heat fluxes profiles
of the shear-thinning and Newtonian fluids are identical and equal to the zero in the viscous
sublayer Y < 1, which indicates that the absence of the fluctuations in this region where the
shear-stress is the dominant force in this region. In turn, these heat flux profiles enhance gra-
dually further away from the wall towards the central region before reaching the peak location.
The heat flux components start to damp progressively in the logarithmic region. The axial and
radial velocity and temperature fluctuations decrease gradually until they fall off to zero value
in the core region. It can be said that the axial velocity and temperature fluctuations generated
at the vicinity of the wall exactly in the viscous sublayer and propagated to the logarithmic
layer, these fluctuations begin to vanish in the remaining region after reaching their maximum

values.

Figure IV.14a shows the turbulent axial heat flux distributions of the shear-thinning and New-
tonian fluids, the profiles of the shear-thinning fluids are somewhat larger than those of the
Newtonian fluid along the pipe radius, especially in the logarithmic region. It can be said that

the decreased flow behavior index (n) induces a slight growth in the axial velocity and the
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temperature fluctuations intensity, and consequently, in the turbulent axial heat flux along the
radial direction. It is worth noting that the decreased flow behavior index results in an enhan-
cement in the generation of the axial velocity fluctuations and temperature fluctuations along
the pipe radius, where the decrease in the flow index also leads to ameliorating the transport of

the axial velocity and temperature fluctuations from the wall vicinity towards the core region.
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Figure IV.14 — Effect of (n) on the profiles of the turbulent heat flux.

As shown in Figure IV.14b, the radial heat flux profiles begin to deviate from each other further
away from the pipe wall with the wall distance ; the radial heat flux of the shear-thinning fluid is
somewhat larger than that of the Newtonian fluid along the pipe radius; this trend is clearer in
the logarithmic region. It is worth noting that this deviation is attributed to the influence of the
flow behavior index on the radial velocity fluctuations, where the decreasing flow behavior index
yields an attenuation in the radial fluctuation which reduces the fluctuations transfer from the
axial to the radial velocity fluctuations. The radial fluctuations intensity plays an essential role
in the turbulent transport of the momentum and heat transfer between the near-wall layer and
the flow core region. The correlations between the axial and wall-normal velocities and between
the axial velocity and temperature directly impact the transfer rates of the transported radial

turbulent heat flux and turbulent momentum flux via the radial velocity fluctuations.
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IV.5 Conclusion

The flow behavior index and Reynolds number were investigated to describe the rheological,

hydrodynamic, and thermal behaviors as turbulence features.

The major conclusions of this research will be summarized :

e The decreased flow behavior index and increased Reynolds number markedly increased
the shear-rate distributions, resulting in a marked decrease in the Dilatant fluid apparent

viscosity for all Reynolds numbers.

o For Pseudoplastic fluid, the decreased flow behavior induced a pronounced increase in the
apparent viscosity beyond the buffer region, resulting in a pronounced decrease in the
shear-rate along the logarithmic layer. Consequently, this resulted in a noticeable increase
in the axial velocity profile in the core region; this trend was more pronounced as the
flow behavior index decreased. On the contrary, the apparent viscosity of the Dilatant
fluid decreased gradually beyond the buffer region, resulting in a noticeable increase in
the shear-rate over the logarithmic layer and, consequently, this resulted in a pronounced
decrease in the turbulent axial velocity profile in the core region; this trend is more

apparent as the flow behavior index increased.

o As for the Reynolds number effects, the increased Reynolds number resulted in a marked
decrease in the apparent viscosity, resulting in a noticeable reduction in the shear-rate of
the Pseudoplastic fluid and consequently, this resulted in a pronounced increase in the
axial velocity profile of the Pseudoplastic fluid in the core region. On the contrary, the
increased Reynolds number induced an evident decrease in the apparent viscosity of the
Dilatant fluid, resulting in a noticeable increase in the shear-rate and, consequently, a

pronounced reduction in the axial velocity profile along the logarithmic region.

o The decreased flow behavior index resulted in a noticeable increase in the turbulence
intensities of the axial velocity fluctuations along the buffer region, resulting in a noticeable
enhancement in the generation and transport mechanism of turbulence intensities of the
velocity fluctuation from the wall vicinity towards the core region. This trend was more

pronounced as the Reynolds number increased.
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GENERAL CONCLUSION

he present investigation aimed to examine the influence of the Reynolds number and the
T flow behavior index on the mean flow characteristics to provide an accurate, complete,
and detailed description of the flow patterns and rheological behavior of the Ostwald de Waele
fluids with using DN S and LES approaches.

A DNS was carried out to study the fully developed turbulent flow of Pseudoplastic
(n = 0.75), Newtonian (n = 1), and Dilatant (n = 1.2) fluids through an isothermal axially
cylindrical pipe at a simulation Reynolds number of 6500. The finite difference scheme
performed the numerical integration with the second-order accuracy in space and time, and
a numerical resolution of (129 x 129 x 193) gridpoints in axial, radial, and circumferential
directions. The second study reported fully developed turbulent flow forced convection of
a thermally independent Ostwald de Waele fluids through a heated cylindrical pipe using
LES with an extended Smagorinsky model. This investigation was conducted on various flow
behavior indices (0.75, 1 and 1.2) and Reynolds numbers (4000, 8000 and 12000) at a fixed
simulation Prandt] number of 1. The numerical resolution was chosen to be 65° gridpoints in
axial, radial, and circumferential directions, respectively, with a domain length of 20R in the

axial direction. A uniform heat flux was imposed on the wall as a thermal boundary condition.

The major conclusions of this research will be summarized as follows :

e The DN S results indicated that the streamwise velocity increased gradually from the wall
towards the core region with the wall distance with decreasing flow behavior index. The
DN S results also suggested that the increased flow behavior index induced a pronounced
enhancement in the generation of the axial velocity fluctuations and also led to ameliora-
ting the transport of the axial velocity fluctuations from the wall vicinity towards the core

region. On the other hand, the increased flow behavior index ameliorated the transport
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mechanism of the radial and tangential velocity fluctuations from the axial velocity fluctuations

and the transport from the wall vicinity towards the core region.

o The LES results suggested that the decreased flow behavior of Pseudoplastic fluid induced
a pronounced increase in the apparent viscosity beyond the buffer region towards the core
region, resulting in a pronounced decrease in the shear-rate along the logarithmic region.
Consequently, this resulted in a noticeable increase in the axial velocity profile in the core
region, and this trend was more pronounced as the flow behavior index decreased. The
LES results also showed that the increased flow behavior index resulted in a noticeable
increase in the axial velocity in the core region, resulting in a marked improvement in the
generation and transport mechanism of turbulence intensities of the velocity fluctuation
from the wall vicinity towards the core region. This trend was more pronounced as the
Reynolds number increased. The decreased flow behavior index resulted in a pronounced
suppression in the turbulent kinetic energy along the pipe radius, this attenuation was
due to the reduction in the generation and transport of the turbulence intensities of the
velocity fluctuations far away from the wall towards the buffer region, and this trend was
more obvious as the Reynolds number decreased.

Our articles of this study are summarizing in the following paragraphs :

o Abdi et al. 2023 [46] performed a numerical analysis of the fully developed turbulent flow
of Pseudoplastic and Dilatant fluids in an isothermal stationary pipe using a Large Eddy
Simulation, and a conventional dynamic model was presented in this work over a wide
range of flow behaviour indices 0.75, 0.8, 1, 1.2, 1.4 and 1.6 at a simulation Reynolds
number of 12000.

o Abdi et al. 2023 [47] carried out a LE'S investigation for three simulation Reynolds num-
bers (Res = 4000, 8000 and 12000). The flow behaviour indices used in this research pri-
marily examined Pseudoplastic, Newtonian and Dilatant fluids were 0.75 (shear-thinning),

1 and 1.4 (shear-thickening), respectively.

Further research could also be conducted to describe the rheological behavior of Bingham
and Herschel-Bulkley fluids. It is necessary to conduct further studies to understand the effects
of the Prandtl and Pearson numbers on the flow pattern and rheological behavior of the Ostwald

de Waele fluids.
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